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Abstract
Many tools allow programmers to develop applications in high-
level languages and deploy them in web browsers via compilation
to JavaScript. While practical and widely used, these compilers are
ad hoc: no guarantee is provided on their correctness for whole
programs, nor their security for programs executed within arbitrary
JavaScript contexts. This paper presents a compiler with such guar-
antees. We compile an ML-like language with higher-order func-
tions and references to JavaScript, while preserving all source pro-
gram properties. Relying on type-based invariants and applicative
bisimilarity, we show full abstraction: two programs are equivalent
in all source contexts if and only if their wrapped translations are
equivalent in all JavaScript contexts. We evaluate our compiler on
sample programs, including a series of secure libraries.

This version supercedes the version in the official proceedings
of POPL ’13. In particular, we fix upfun in Figure 4, rectifying
an experimental error that rendered the previous upfun an
insufficient protection on several popular browsers. The new
version is confirmed to work on IE 9, IE 10, Chrome 23, and
Firefox 16. Thanks to Karthik Bhargavan for pointing out the
error.

Categories and Subject Descriptors D.2.4 [Software/ Program
Verification]: Validation; D.3.4 [Processors]: Compilers; D.4.6
[Operating Systems]: Security and Protection—Verification.

Keywords Program equivalence; full abstraction; refinement types.

1. Introduction
Many tools allow programmers to develop applications in high-
level languages and deploy them in web browsers via compilation
to JavaScript. These include industrial compilers like GWT for
Java, WebSharper and Pit for F#, and Dart, as well as several
academic efforts like Links (Cooper et al. 2006) and Hop (Serrano
et al. 2006). While practical and, in some cases, widely used,
these compilers are ad hoc: no guarantee is provided on their
correctness for whole programs, nor their security for programs
executed within arbitrary JavaScript contexts.

The lack of security against JavaScript contexts is of particular
concern, since compiled code is routinely linked with libraries au-
thored directly in JavaScript. Libraries like jQuery and Prototype
are widely used, provide improved support for several core web-
programming tasks, but do so by making use of highly dynamic
features of JavaScript, e.g., by redefining properties of predefined
objects. Less well-known libraries are also routinely included in
pages, often by simply including a pointer to the code served from
a potentially untrustworthy URL. It is also common practice to in-
clude rich third-party content (e.g., advertisement scripts) in the
same context as trusted JavaScript code. In all those cases, link-
ing with a malicious or buggy script can easily break invariants of
compiled code, compromise its security, and, in general, render any
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reasoning principles of the source programming language inappli-
cable to the JavaScript code that is actually executed.

This paper presents a correct and secure compiler from a vari-
ant of ML with higher-order functions and references to JavaScript.
Our main result is full abstraction: two programs are equivalent in
all source contexts if and only if their translations are equivalent in
all JavaScript contexts. Full abstraction is an ideal compiler prop-
erty, inasmuch as it enables local reasoning on source code, without
the need to understand the details of the compiler or the target plat-
form. In our case, programmers can rely on their experience with
ML, with static scopes and types, or trust source-level verification
tools—and largely ignore the rather tricky semantics of JavaScript.

Which semantics for JavaScript? Compared to ML, the seman-
tics of JavaScript is daunting. There are several different ECMA
standards and various implementations (mainly by web browsers)
that deviate from the standard in idiosyncratic ways. Maffeis et al.
(2008) give an operational semantics for the ECMAScript 3 stan-
dard, which while extremely detailed, is also unwieldy in that it is
not easily amenable to formal proof or to testing. An alternative
approach is to give a semantics via translation to a simpler lan-
guage, and then to test this translation semantics for compliance
with browser implementations. This is the approach of Guha et al.
(2010), who give a translation of JavaScript into a mostly standard,
dynamically typed lambda calculus called λ JS. The translation se-
mantics is convenient for our purposes (e.g., it is executable) and
not necessarily less precise or more complex. So, following λ JS,
we give a semantics to JavaScript by elaboration to F? (Swamy
et al. 2011), a variant of ML with richer types. We intend this se-
mantics to capture the main features of the ECMAScript 5 standard,
including features like getters and setters that were missing in λ JS.
Our semantics also includes a number of experimental findings per-
taining to implementation-specific features of JavaScript such as
the arguments, caller, and callee properties.



A high-level view of the paper Figure 1 outlines our technical
development. On the left, we have f?, a subset of F? that includes
higher-order functions, mutable references, exceptions, and fatal
errors, but excludes polymorphism for simplicity. Its semantics is
parameterized by a type signature that defines the basic constants
available to a program. On the right, we have concrete JavaScript.

Our compiler takes an f? program (src.f*) with an arbitrary
signature and emits JavaScript syntax in two phases. The first phase
(the ‘light translation’) is compositional and translates f? constructs
to the corresponding ones in JavaScript, e.g., function closures to
function closures, yielding src.js. For code meant to be executed in
untrusted JavaScript contexts, we supplement the light translation
with carefully crafted defensive wrappers (wrap.js) to securely
import and export values at every source type while preserving the
translation invariant.

To reason formally about our compiler, we reflect its output
within an arbitrary JavaScript context back into f?. Specifically, we
employ a variant of the λ JS semantics to translate JavaScript to js?,
an instance of f? with a signature JSExec that provides runtime sup-
port for js? programs. Our proof of full abstraction relies on refine-
ment typing to establish several key invariants of the translation.
For this typing, we introduce JSVerify, a precise typed model of
JSExec expressed using monadic refinement types in f?. Then, we
develop a new eager-normal-form variant of applicative bisimilar-
ity for contextual equivalence in f? and use it to show the main
result of the paper, i.e., that two f? programs are equivalent with
respect to an arbitrary f? context if, and only if, their defensively
wrapped light translations are equivalent with respect to an arbi-
trary js? context. We summarize our main contributions below.

• We describe a compiler from f? (§3) to JavaScript, including de-
fensive wrappers to safely mediate interactions between trans-
lated programs and their context. (§4)
• We introduce js?, a model of JavaScript within f? that includes

security-relevant features of ECMAScript 5 and popular Java-
Script implementations. (§5)
• We formalize our compiler as a translation from f? to js?. We

show that it is a forward simulation that preserves a typing and
heap invariant. This yields safety and correctness for transla-
tions of closed programs executed in isolation. Additionally, by
typing, we show that the defensive wrappers support safely ex-
changing values of various types with an untrusted context. (§6)
• We develop a new co-inductive proof technique for f?, with la-

beled bisimulations to capture the interactions of configurations
of related terms with their abstract context, such that bisimilar-
ity coincides with contextual equivalence. (§7)
• We prove our compiler from f? to js? fully abstract. (§8)
• We close with a brief discussion and experimental evaluation of

our compiler implementation. (§9)

Disclaimer As usual, full abstraction holds only within our for-
mal semantics of JavaScript, and various side channels may still
exist in JavaScript implementations, based, for instance, on stack
or heap exhaustion, or timing analysis.

This presentation necessarily omits many details. Additional
materials, including a technical report with the full formal devel-
opment, an F? implementation with a JavaScript back-end, sample
source and compiled programs, and an updated F? theory in Coq
are available at http://research.microsoft.com/fstar.
Related work Programming language abstractions have long been
recognized as an essential means for protection (Morris 1973);
their secure implementations are often specified as full abstraction
(Abadi 1998; Abadi et al. 2002; Abadi and Plotkin 2010; Agten
et al. 2012). Conversely, many attacks can be interpreted as failures

of abstraction, and several counterexamples to full abstraction ex-
ist. For example, Mitchell (1993) notes that Lisp with FEXPR has
no abstraction contexts, and Kennedy (2006) points out the lack of
full abstraction in translations from C# to .NET.

Many powerful co-inductive techniques exist for program equi-
valence, with various combinations of types, higher-order func-
tions, private mutable state, and exceptions (Sumii and Pierce 2005;
Lassen 2005). As discussed in §7, ours combines their features
so that bisimulations precisely capture the invariants of wrapped
translation within untrusted JavaScript contexts. Although employ-
ing logical relations instead of bisimulations, Ahmed and Blume
(2008) also use type-directed wrappers to prove that typed closure
conversion in the polymorphic λ -calculus is fully abstract. How-
ever, unlike us, they do not use the wrappers in the translation itself.

There has been recent work on protecting JavaScript programs
from malicious contexts. For example, Taly et al. (2011) apply
a dataflow analysis to check that programs in a subset of EC-
MAScript 5’s strict mode (lacking getters and setters) do not leak
private data to an adversary. Using this analysis, the authors were
able to prove the safety of object-capability idioms used by the Caja
(2012) framework that rewrites JavaScript applications to confine
security-critical objects, such as the DOM, behind object capabili-
ties. This confinement property is related to the invariant enforced
by our wrappers, which we check by typing. Taly et al., however,
do not deal with full abstraction.

2. Challenges in secure JavaScript programming
To illustrate the difficulty of writing secure JavaScript code, we
naively implement a protection mechanism around a trusted, exter-
nal function rawSend for posting messages to some target domain
(Figure 2). By calling mkSend(rawSend), we should obtain a func-
tion that enforce the following policy:

• Send messages only to whitelisted URLs (to avoid privacy
leaks); of at most 5 characters (to bound resource usage); that
includes a secret credential (to identify the service users).
• Do not leak the rawSend function or the secret credential, to

prevent bypassing our protection mechanism.

Our implementation calls a sanitize function, hypothetically pro-
vided by some other trusted library. As typical in JavaScript, link-
ing is performed dynamically through the global name-space.

For simplicity, we use our mechanism to protect an anonymous
function that prints the message and its target on the console. The
resulting protected send function is exported to the global name-
space and therefore made available to untrusted scripts:
send = mkSend(function (target, msg) {
console.info("Sent " + msg + " to " + target);});

In isolation, our code seems to enforce our policy. However, we
are going to demonstrate how, by carefully manipulating the con-
text, a malicious script can bypass our protection mechanism. We
do not claim any novelty in describing these attacks (Caja 2012;
Taly et al. 2011; Meyerovich and Livshits 2010): with these exam-
ples, we aim at giving our reader a glimpse at the challenges met by
security-conscious JavaScript programmers as well as prepare the
ground for our defensive wrappers in §6.
Attack 1: Overwriting global objects Importing objects from the
global name-space is risky: by definition, every script has access
to this name-space. For instance, a script can maliciously overwrite
the sanitize function right before calling the send operation:
sanitize = function (s,msg) { return msg; };
send("http://www.microsoft.com/owa", "too long!");

To prevent this attack, we must run mkSend before any hostile script
(first-starter privilege) and store a private copy of sanitize as well
as any other trusted library function it may call.



function mkSend(rawSend){
var whiteList = {"http://www.microsoft.com/mail":true,

"http://www.microsoft.com/owa":true};
function newSend(target, msg){
msg = "[" + secret_credential + "]" + msg;
if (whiteList[target]){
rawSend(target,window.sanitize(5,msg));}

else { console.error("Rejected.");}};
return newSend ;}

function sanitize(size,msg) {
return msg.substring(0,size);}

Figure 2. Naive implementation of a secure send

Attack 2: Dynamic source code inspection Unsurprisingly, hid-
ing secrets in source code is to be avoided. Supposing that we
wanted to keep the whiteList secret, a malicious script can use
the toString method on the mkSend function to retrieve its content:
var targets = mkSend.toString().match(/\’.*?\’:true/g)
targets = targets.map(function (s) {

return s.replace(/\’(.*?)\’:true/,"$1") });

A mere regular expression matching on the resulting string lets us
extract the list of valid targets. This is not, as such, a violation of
the specification, yet it is a rather unusual feature.
Attack 3: Redefining Object Since JavaScript is a prototype-
oriented programming language, one can dynamically modify
properties of any object in the system. In particular, one can add
a field to the prototype of the canonical object, Object, hence ex-
tending the white list without even referring to whiteList itself:
Object.prototype["http://www.evil.com"] = true;
send("http://www.evil.com","msg");

To preclude this attack, we must ensure that any given field is
indeed part of the whiteList object, and not inherited from its
prototype chain. To this end, we could use a safe private copy
(obtained by starting first) of the hasOwnProperty method.
Attack 4: Side-effectful implicit coercions Part of the complexity
of JavaScript comes from its treatment of coercions: should the
need arise, objects are automatically coerced at run-time. Instead
of a string, one can, for instance, pass an object with a toString

method that returns a string in the whiteList on the first use and
another string as the actual send operation is performed:
var count = 0;
var target = { toString: function() {

return count++ == 0 ? "http://www.microsoft.com/owa"
: "http://www.evil.com" }};

send(target, "msg");

To tame these implicit coercions, we may explicitly check that the
input arguments are of the correct type, using the typeof operator.
Alternatively, we may force a coercion upon receiving the argu-
ments and store the result—this is the case for msg in Figure 2.
Attack 5: Walking the call stack Finally, stepping outside ECMA
standards, most implementations of the Function object provide
a caller property that points to the current caller of the func-
tion being executed. Abusing this mechanism, any callback (such
as an implicit coercion or a getter) grants access to the argu-
ments of its caller newSend, including msg after concatenation with
secret_credential:
var c;
var target = { toString: function toStr () {
c = toStr.caller.arguments[1].match(/\[(.*?)\]/)[1];
return "http://www.microsoft.com/mail" }}

send(target, "msg");

This code enables one to retrieve the credential by matching the msg
argument. Similarly, one could retrieve any secret on the call stack.
To guard against this attack, we must explicitly clear the caller

field of our functions before any potential callback.

Our proposal The examples above show that local reasoning
about code in JavaScript can be compromised through a variety
of attacks. Hence, writing secure code in JavaScript is a hard-
ship: one must take a great deal of attack vectors into account, and
one ends up maintaining extremely cumbersome programs, which
makes them more error-prone. We propose that programmers in-
stead use a source language with static types and scopes to write
security-sensitive code. A compiler should then securely translate
the source language to JavaScript, freeing the programmer from
thinking about the subtle semantics of JavaScript. In this context,
ML appears to be a particularly effective source language: it has
static types and scopes; it is functional, so we can rely on closures
and higher-order functions also available in JavaScript; and, be-
ing impure, we can adopt a programming style that approaches id-
iomatic JavaScript. In ML, the example of Figure 2 can be written
as shown below, which clearly meets the stated security goals.
let mkSend rawSend =

let whiteList = ["http://www.microsoft.com/mail";
"http://www.microsoft.com/owa"] in

fun target msg→
let msg = "[" ˆ secret credential ˆ "]" ˆ msg in
if mem target whiteList then rawSend target (sanitize 5 msg)
else consoleError "Rejected."

3. Syntax and semantics of f?

In this paper, we use f?, a fragment of F? (Swamy et al. 2011) simi-
lar to ML, with the syntax shown below and a standard, small-step,
call-by value semantics (see the full paper). We have extended the
original presentation and formal development of F? with excep-
tions, fatal errors, and primitive support for a mutable store.

Values range over variables, memory locations, abstraction over
terms, and n-ary, fully applied data constructors. We add a form of
results r, which, in addition to values, includes exceptions raise v
and fatal error. Expressions are in a partial administrative normal
form, with, for instance, function application e v requiring the
argument to be a value. We also have pattern matching, reference
allocation, assignment and dereference, and exception handlers.
Syntax of f?

v ::= x | ` | λx:t.e | D t̄ v̄ values
r ::= v | raise v | error results
e ::= r | e v | let x = e in e′ | v1 := v2 | ref v | !v | terms

try e with x.e |match v with D ᾱ x̄→ e else e′
t ::= T | ref t | t→ t ′ types
H ::= · | (` 7→t v) | H,H ′ store
F [ ] ::= | F v | F t | let x = F in e exn. ctx
E[ ] ::= | E v | E t | let x = E in e | try E with x.e eval. ctx
S ::= · | D:t | T ::κ | S,S′ signature
Γ ::= · | Γ,x:t | Γ,α | Γ, `:t | . . . type env.

An f? runtime state, written H |e, is a pair of a store mapping lo-
cations to values and a program expression. The reduction relation
has the form H |e→S H ′ |e′ where the index S is a fixed inductive
signature that defines all constructors. This signature includes at
least a type exn for exceptions, types ref t for references, and unit.
We also freely use common primitive types like int and bool, and
expect these to be in the signature as well. Our syntax does not in-
clude a fixpoint form because recursion can be encoded with recur-
sive datatypes in the signature. We consider several instantiations
of the signature S in this paper, to define our source language (§4)
and to embed dynamically typed JavaScript within f? (§5).

Syntactic sugar We write applications e e′ as abbreviations of
let x = e′ in e x, for some fresh x. A similar transformation applies
to pattern matching, reference operations, exception raising, etc.
We write if e then e1 else e2 for match e with true→ e1 else e2, and
e1;e2 for let = e1 in e2. Additionally, in code listings, we rely on
the concrete syntax of F?, which closely resembles OCaml and F#.



Plain types F? includes various dependent typing features, but
we ignore this in f?, and restrict the types to a monomorphic sub-
set of ML including function types t→ t ′, references, and recursive
datatypes. Nevertheless, we have extended our Coq-based metathe-
ory of the full F? language to include exceptions, state and errors,
and proved subject reduction for the reduction of open terms, i.e.,
terms that may contain free variables, which is used in §7 and §8.
We present a specialized version of this theorem below, where we
use the type judgment for F? runtime states. This is written here as
S;Γ `H |e : t, denoting that in an environment including the signa-
ture S, free variables Γ, and the typed domain of H (written σ(H),
including ` : t for each ` 7→t v in H), the store H is well-typed and
the expression e has type t. When the signature S is evident from
the context, we simply write Γ ` H |e : t.

Theorem 1 (Type soundness for open-term reduction). Given S, Γ,
H, e, and t such that S;Γ `H |e : t, either (1) e is a result; or (2) e is
an open redex, i.e., e∈{E[x v],E[match x with . . .],E[x := v],E[!x]};
or (3) there exist H ′, e′ such that H |e→S H ′ |e′ and S;Γ `H ′ |e′ : t.

Contextual equivalence We only observe well-typed terms and
compare them at the same plain types. Following Theorem 1, we
define basic observations on runtime states s: (1) s returns, that is,
s →S

∗ H |r, with three kinds of results: any value (written s ⇓);
any exception (written s ⇓ raise); or an error (written s ⇓ error);
or (2) s diverges (written s ⇑) when it has an infinite sequence of
reductions; or (3) (only in case s is open), s reduces to a redex with
a free variable in evaluation context.

We define contextual equivalence for closed values and expres-
sions, considering all typed evaluation contexts. (Equivalence be-
tween open terms can be re-stated using closed function values.)

Definition 1 (Contextual Equivalence). Two (closed, typed) run-
time states s and s′ have the same behavior, written s ≈•e s′, when
they either both return the same kind of result, or both diverge.

Two (closed, typed) terms are equivalent, written e≈e e′, when
they have the same behavior in all evaluation contexts.

4. A compiler from f? to JavaScript
We present our compiler from f? to JavaScript, using the f? program
below as a running example.
let mkLog = let log = ref (Nil : list string) in

let add x = log := Cons x !log in
let iter f = List.iter f !log in
(add, iter)

Calls to mkLog return an abstract interface to a log, with functions
add and iter to extend the log with a string and to operate on its
contents, respectively. Reasoning in f?, it is clear for instance that
the log only contains strings and that it grows monotonically.

In this section, we illustrate informally how our compiler en-
sures that all source invariants are preserved in the translation to
JavaScript. In subsequent sections, we justify it by formalizing our
compiler as a translation from f? to js? and proving it fully abstract.
The light translation Our compiler proceeds in two phases. The
first phase is compositional and purely syntax-directed: the trans-
lation function JeK, shown in Figure 3, translates f? constructs to
their JavaScript counterparts. Following standard practice, we as-
sume uniqueness of variable names. We also use an auxiliary func-
tion, locals(e), that collects the let- and pattern-bound names not
enclosed within additional λ s of expression e.

We translate functions in f? to functions in JavaScript as fol-
lows: Local variable declarations in JavaScript always occur at the
top of a function body, so we collect the source locals and declare
them upfront. When reading a variable x (the second rule), we sim-
ply lookup the JavaScript variable with the same name x. In the
third rule, we translate let-bindings to JavaScript sequence expres-

Jλx:t.eK 7→ function(x){var y;returnJeK;} where ȳ =locals(e)
JxK 7→ x Jlet x = e1 in e2K 7→ (x=Je1K,Je2K)
Je1 v2K 7→ Je1K(Jv2K) JD v̄K 7→ {"tag":str D,str i:JviK}
Jref vK 7→ {"ref":JvK} Jv1 := v2K 7→ (Jv1K.ref=Jv2K,undefined)
J!vK 7→ JvK.ref JerrorK 7→ alert("error")

Jmatch v with D x̄→ e1 else e2K 7→
(JvK.tag === str D)?(xi=JvK[str i],Je1K):Je2K

Figure 3. Light translation from f? to JavaScript

sions (x=e0,e1)—in JavaScript, this expression evaluates e0, as-
signs the result to x, and then evaluates e1.

Function application is straightforward. We translate data values
D v0 . . .vn−1 to objects with a tag field recording the name of
the constructor as a string, and with fields "0", . . . , str (n− 1)
containing the translations of the arguments—the meta-function
str encodes its argument as a JavaScript string. References have
a single field "ref". When assigning a reference, we update the
ref field and then evaluate to undefined, our representation of the
():unit value in JavaScript. We model fatal error in JavaScript by
calling the alert function, which pops up a dialog in most browser
environments—several other possibilities exist for modeling fatal
errors. Finally, we translate matching to JavaScript conditional
expressions, e?e0:e1. Observe that the only statement forms we use
are within functions, where we use var declarations and return.
By relying only on the expression forms of JavaScript, we obtain a
simple compositional translation.

For simplicity, the input of the translation does not contain ex-
ceptions and their handlers, but we still study their properties for all
f? evaluation contexts (including exceptions). Technically, we also
require that f? does not have ref unit and similar types whose val-
ues are all contextually equivalent in f? but whose translations may
be distinguished in JavaScript using untyped equality. Finally, we
do not formalize the translation of polymorphic data constructors,
although they are supported by our compiler implementation.

At top level, our formalization applies to the translation of pro-
grams enclosed within a function. Our implementation augments
this with simple handling for top-level let-bindings. Running this
on the declaration of mkLog, we obtain the following JavaScript,
where List.iter refers to the translation of the f? function List.iter.
function mkLog (u) {
var log; var add; var iter;
return
(log={"ref":{"tag":"Nil"}},
(add=(function(x){
return (log.ref={"tag":"Cons", "0":x, "1":log.ref},

undefined); }),
(iter=(function(f){
return (List.iter(f)(log.ref));}),

{"tag":"Pair", "0":add, "1":iter})));}

Type-directed defensive wrappers Providing a JavaScript con-
text with direct access to mkLog is not fully abstract: an adversary
could, for example, call mkLog, obtain iter, and then call it with a
function f that (as in attack 5 of §2) walks the stack, accesses log

directly from the arguments of List.iter, and breaks its invariants.
To protect our code, we apply type-directed wrappers that build a
firewall between the lightly translated f? code and its context.

Our wrappers are JavaScript functions indexed by source types t.
They come in pairs: a ‘down’ wrapper, written ↓ t, takes a light
translation of a source value v:t and exports it safely to the context;
an ‘up’ wrapper, written ↑t, takes any JavaScript value supplied by
the context and attempts to extract from it a value that is a light
translation of some source v:t; this may fail.

In addition to ensuring that the translated f? code and its context
interact at the expected types, the wrappers seek to enforce a strict
heap separation between the code and the context. Specifically, we



function downunit(x) { return x;}
function upunit(x) { return undefined;}
function downbool(x) { return x;}
function upbool(z) { return (z ? true : false);}
function downstring(x) { return x;}
function upstring(x) { return (x + "");}

function downpair(dn_a, dn_b) {
return function (p) {
return {"tag":"Pair",

"0":dn_a(p["0"]),"1":dn_b(p["1"])};}}
function uppair(up_a, up_b) {
return function(z) {
return {"tag":"Pair",

"0":up_a(z["0"]),"1":up_b(z["1"])};}}

function downfun (up_a,down_b) {
return function (f) {
return function (z) {
return (down_b (f (up_a(z)))); }}}

function upfun (down_a,up_b) {
return function (f) {
return function (x) {
var z = down_a(x);
var y = undefined;
function stub(b) {
if (b) { stub(false); }
else { y = up_b(f(z)); } }

stub(true); return y; };};}

Figure 4. Selected wrappers in JavaScript

ensure that the context never obtains a direct reference to an object
that is used by the light translation; references from f? objects to
objects owned by the context (we call such objects untrusted, or
un, objects) are also problematic, since the contents of un objects
are unreliable, e.g., they may change unexpectedly. So, access to f?

objects by the attacker, and vice versa, are mediated by wrappers.
Figure 4 lists some wrappers used by our compiler. For im-

mutable base types shared between f? and JavaScript, such as
strings, the ‘down’ wrapper does nothing, whereas the ‘up’ wrapper
forces a coercion. There are various JavaScript idioms that serve to
induce coercions at particular types, e.g., for Booleans, we use an
explicit conditional expression; for numbers, we use unary addi-
tion; for strings, we concatenate with the empty string, etc. This
ensures, for instance, that true and false are indeed the only im-
ported Boolean values, foiling problems like attack 4 from §2.

For datatypes such as pairs and lists (and any allocated data),
we must ensure that wrapping preserves heap separation. Thus, we
allocate a fresh representation and recursively wrap their contents.
The ‘up’ wrapper is safe even as its code accesses fields (which may
trigger callbacks to the context via implicit coercions or getters)
because the imported content is kept as a local value on the ‘up’
wrapper stack. Our code includes wrapper generators; for instance,
downpair takes as parameter two ‘down’ wrappers for types a and b
and returns a ‘down’ wrapper for pairs containing an a and a b.

For functions, the situation is more complex, since the ‘up’
wrapper has no way to check that its argument is the valid repre-
sentation of a source f? function. Instead, the wrapping is deferred:
the function downfun, corresponding to ↓ (a→ b), exports a func-
tion f by wrapping it with another function that first imports the
argument x, then applies f, and finally exports the result. In the
other direction, one might have expected upfun (for ↑ (a→ b)) to
be strictly dual to ↓ (a→ b), i.e., export the argument, apply the
function, and import the result. However, this is insufficient. As at-
tack 5 of §2 illustrates, the JavaScript calling convention provides
a function with access to the function object and arguments of its
caller. If a trusted function were to call an untrusted one directly, the

latter obtains a reference to the arguments of the former, breaking
our heap separation discipline.

To this end, following the code of upfun in Figure 4, the wrapper
for importing an untrusted function f (purportedly the translation
of an a→ b value) is itself a function, callable from any trusted
context, that first exports its argument into a local variable z, then
calls a fresh, single-use stub. The stub makes the call to f on behalf
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stub

un

stub

un

...

...

down

up

up

f*

of the trusted code, but before doing so, it needs to
prevent the context from using its own caller field to
traverse the call stack. Unfortunately, directly clearing
this field (e.g., by setting arguments.callee.caller

= undefined) is not supported by many browsers—
assignments to the caller property of a Function are
silently ignored. Instead, we make stub call itself once
before calling f. Since Function objects in JavaScript
are shared across all the activations of a function, this
recursive call induces a cycle in the chain of caller

properties, ensuring that when the call to f proceeds,
the context obtains a reference to the stub but cannot
walk the stack beyond the stub and compromise trusted
code. After the untrusted call completes, up_b wraps up
the result and stores it in y. (Returning the value directly
is dangerous, since the attacker has a pointer to the stub
closure, so, it may be able to call this closure later and
receive the protected value.) After the stub completes, the wrapper
returns the contents of the local variable y. Thus, to an attacker that
attempts to traverse the call stack via the caller/callee proper-
ties, the stack (growing downward) appears as depicted alongside.
Walking upward, untraversable stub objects delimit regions of the
stack that transition from untrusted to trusted code. Additionally,
the up and down wrappers mediate all calls across trust boundaries.

Top-level translation Continuing with our example, we list below
the script that makes mkLog available to an arbitrary JavaScript con-
text after suitable wrapping. Rather than placing mkLog directly into
the global name-space (i.e., the window object in a web browser),
our compiler generates a function init that takes the window ob-
ject as a parameter, defines the lightly translated code of mkLog
in a local variable, and exports it to window.mkLog after unfolding
and applying the down-wrapper ↓(unit→ (string→unit ∗ (string→
unit)→unit)). After running init(window), our script overwrites
init to prevent any later use (such as init.toString()).

function init(w) {
function mkLog(u){. . .} // light translation shown above
w.mkLog=
downfun(upunit,

downpair(downfun(upstring, downunit),
downfun(upfun(downstring, upunit),

downunit)))(mkLog); }
init(window); init=undefined;

Threats and countermeasures We briefly review potential threats
to full abstraction, and informally discuss how we handle them.

• Modifying Object.prototype can override the default behavior
of objects, e.g. when accessing their properties. As an invariant,
translated f? code never triggers a prototype chain traversal, so
our translation does not depend on Object.prototype.
• By changing Function.prototype.apply, an adversary can in-

terpose code at function calls. However, ECMAScript 5 states
that this interception does not affect primitive function calls.
• Function.toString returns the static source of a function clo-

sure as a string. Our wrappers ensure that, for any function g

handed to the adversary, g.toString() always returns the text
of its down wrapper, that is, the constant string "function (z)

{ return (down_b (f (up_a(z)))); }"



• Implicit coercions are pre-empted by systematically forcing
coercions in ‘up’ wrappers.
• Stack walks via callee and caller properties are countered by

the stub mechanism described above.
• Some browsers provide (new Error()).stack, which dumps

the current stack as a string. Assuming that our code runs first,
we disable it in the init function, using the code below.
var oldErr=Error; window.Error=function(){
var x=oldErr(); x.stack=""; return x;};

Are these countermeasures sufficient? The rest of the paper,
culminating with the main results of §8, provide a positive answer,
at least within our semantics of JavaScript.

5. A semantics of JavaScript in f?

We begin our formal development with a semantics of JavaScript by
translation to js?, the instance of f? with inductive signature JSExec
described below; this allows us to carry out our full-abstraction
argument entirely within a single language. We base our semantics
on λ JS, a dynamically typed language to which Guha et al. (2010)
translate JavaScript. We extend λ JS to include some features of
ECMAScript 5 that were missing in the original formulation (which
targeted ECMAScript 3), as well as browser-specific features that
are relevant for full abstraction. Concurrently, Politz et al. (2012)
have extended λ JS to cover the strict mode of ECMAScript 5.

We focus on a few main features of js?: dynamic typing, object
properties, function creation, the calling convention, control oper-
ators, and eval. We refer to our technical report for a complete
presentation, including a formal translation from λ JS to js?.

Dynamic typing. In order to type any JavaScript values, JSExec
defines dyn, a standard ‘type dynamic’, as follows.
type dyn = Null : dyn | Undef : dyn | Bool: bool→dyn
| Str: string→dyn | Num: float→dyn
| Obj: loc→dyn | Fun: dyn→ (dyn→dyn→dyn)→dyn

and obj = list (string ∗ property)
and loc = ref obj
and property = Data: attrs→dyn→property
| Accessor: attrs→ (dyn ∗ dyn)→property

type exn = Break: int→dyn→exn | Exn: dyn→exn | Return: dyn→exn

The type dyn has a constructor for each JavaScript primitive type.
For instance, the JavaScript string literal "Rome" is represented as
Str "Rome": dyn. Objects are references to maps from string (prop-
erty names) to property, the type of values or accessors (getters
and setters). Their property attributes attrs specify, for instance,
whether they are writable or enumerable. (Our translation does
not rely on attributes for security.) Getters and setters are treated
as functions, called to perform property lookups or assignments.
Functions in JavaScript are also objects—one may set properties
on them, writing, for instance, function foo(){}; foo.x = 17.
To handle this, we represent JavaScript functions as js? values
Fun o f, constructed from a function object o:dyn and a closure f.
All functions in JavaScript receive an implicit this parameter and,
following λ JS, a single argument object with a field for each of
their explicit arguments. Thus, the closure f within Fun o f has type
dyn→dyn→dyn. We discuss the three kinds of exceptions shortly.

Function creation and application While outside the ECMA-
Script specification, most browsers implement a quirk in their call-
ing convention. Functions f receive their (variable number of) argu-
ments in single arguments objects. These objects include a callee

field that points to the function object of f. Conversely, function
objects include an arguments field that points back to the argument
object of their last activation, if any, and a caller field that points
back to the function object of their last caller. (This field may point
to f itself, if it makes recursive calls, or be null, for top-level calls.)

These fields are implicitly updated at every call. In particular, all
JavaScript functions are recursive through the store, since they are
given access to their own object.

To model this calling convention, JSExec defines several oper-
ations. First, a lookup function looks up the property name f in the
map of an object (accounting for function values as well).
let lookup (d:dyn) (f:string) = match d with
Obj loc | Fun (Obj loc) →assoc f !loc | →None

Similarly, a modify function updates properties within object maps.
In this section, we use shorthands for these functions:

e〈 f 〉 , match lookup e f with Some(Data x)→x | →Undef

e1〈 f 〉= e2 , modify e1 f e2

To allocate functions, JSExec defines mkFun as follows:
let mkFun (s:string) (code: dyn→dyn→dyn→dyn) =

let o = alloc () in let f = Fun o (code o) in
o〈"@code"〉 = f; o〈"@toString"〉 = Str s; o〈"prototype"〉 = ...; ...; f

For instance, we formally translate function (x){ return x;} to
mkFun "function(x). . ." (fun o this args→select o args "0")

where the first argument is a string literal that represents the source
text of the function and the second argument is a js? closure that
receives three objects: the (soon-to-be-created) function object o,
the ‘this’ parameter, and the actual arguments. The call to mkFun
allocates o, partially applies the closure to o, and sets various
properties on o before returning f.

To call functions, JSExec provides apply, which receives four
arguments: caller, the object of the calling function; callee, the
function to be called; a this pointer; and an args object.
let apply (caller:dyn) (callee:dyn) (this:dyn) (args:dyn) : dyn =

match callee with | (Fun o f)→
let caller0 = o〈"caller"〉 in let args0 = o〈"arguments"〉 in
try o〈"caller"〉 = caller〈"@code"〉; o〈"arguments"〉 = args;

args〈"callee"〉 = callee; f this args
with Break →error | e→raise e
finally (o〈"caller"〉 = caller0; o〈"arguments"〉 = args0) | ...

Following the code, apply calls f with argument this and args.
First, however, it saves the callee’s caller and arguments fields, sets
these fields for the current call, and sets a pointer from args to
callee. Conversely, once the call returns, apply restores the callee’s
fields to their old value. (The derived f? form try ... with ... finally,
detailed below, ensures that the fields are restored even if the call
raises an exception.) Experimentally, this reflects major browser
implementations of JavaScript.

Property access In JavaScript, properties of objects are looked
up first in the object’s own property map, then in the object’s
prototype (stored in a special property “@proto”), walking the
prototype chain as needed. Once found, if the property happens to
be a getter, then the getter function is called, otherwise its value is
returned. This is implemented by the select function, shown below.
Since calling the getter requires passing a caller object, we write
select caller l f to select field f from object l in the context of the
function object caller. (Recall that the translation of our example
function included a call to select passing its object o as a parameter.)
let rec getProperty (l:dyn) (f:string) = match lookup l f with
| Some p→Some p
| None→match lookup l "@proto" with
| Some (Data l’)→getProperty l’ f | None→None

let select (caller:dyn) (l:dyn) (f:string): dyn =
match getProperty l f with
| Some(Accessor (g, ))→apply caller g l (mkEmptyArgs())
| Some(Data d)→d | →Undef

A similar function, update caller l f v, sets property f on object l to
value v. This function traverses the prototype chain looking for a
setter for property f. If a setter is found, update calls it with caller
and v; otherwise it calls modify l f v.



Exceptions and control operators We model exceptions and the
other imperative control operators of JavaScript using f? excep-
tions. JavaScript has a return statement to end the current call,
and a break l statement to return control to the code location la-
beled l, which must be defined within the same function body. λ JS
desugars both to a single form, which we represent as the excep-
tion Break l v. Additionally, we use exceptions Exn v for JavaScript
exceptions, and Return v to encode finally clauses, as follows.

try e1 with e2 finally e3 , try (try e1 with e2) finally e3

try e1 finally e2 , try raise (Return e1)
with y. match y with | Return r→e2; r | →e2; raise y

Dynamic evaluation JSExec does not support eval, as this would
involve parsing, translating, and loading js? code at run time. On
the other hand, js? contexts can implement any ‘primitive’ function
eval using the datatypes of JSExec, together with any values they
obtain by interacting with our wrapped translation. As such, our
full-abstraction result applies also to contexts that use eval.

Typability We conclude this section with a simple result: every
λ JS program translated to js? is well-typed against JSExec. In the
statement below, JeK is the translation of a λ JS expression to js?.

Theorem 2 (Typability of λ JS translation). For all λJS programs
e with free variables x, we have JSExec;x:dyn ` JeK : dyn.

Contextual equivalence in JavaScript (discussion) After transla-
tion to js?, we formally compare JavaScript programs using the
contextual equivalence of §3 (Definition 1). This equivalence re-
lies on the observation of fatal errors, which are not primitive in
JavaScript, but informally account for any code with an immediate
observable effect, such as alert("error") or window.location =

"http://error.com". This equivalence in js? is also a priori finer
than JavaScript equivalence, inasmuch as it quantifies over all well-
typed js? contexts, not just those obtained by translating JavaScript
contexts. Thus, we err on the safe side: most of our results would
apply unchanged for variants and extensions of JSExec (as long
as its signature is unchanged), for instance, to model additional
features of JavaScript implementations. Conversely, §8 shows that
translations of JavaScript contexts are complete at least for inter-
acting with wrapped translated f? programs.

6. A type-preserving simulation from f? to js?

Formally, our compiler can be viewed as the translation from f?

to JavaScript (§4) composed with the embedding of JavaScript
into js? (§5). In this light, its correctness is far from obvious. For
example, even though superficially we translate f? functions to
JavaScript functions, several corner cases of their semantics lurk
beneath the surface syntax. As we have seen, functional values
translate to expressions that allocate several objects, and are subject
to a calling convention with side-effects.

This section proves several safety properties for the f?-to-js?
compiler. In order to carry out these proofs, we use an alternative,
monadic type system for f? due to Schlesinger and Swamy (2012),
as well as an application of this type system to JavaScript provided
by Swamy et al. (2012). Specifically, we use JSVerify, a variant of
JSExec with monadically refined types that allows us to state and
prove precise typing and heap invariants of js? programs. Using
this machinery, we prove that the light translation preserves types
and is a (weak) forward simulation. Additionally, we prove that the
defensive wrappers successfully maintain several key invariants,
including separating un objects from the others. While useful in
their own right for whole programs (e.g., we can prove that when
a source f? program has no assertion failures, then neither does
its translation), these properties serve primarily as lemmas that
facilitate the main results of §8.

Syntax of types in monadic f?

t ::= T | a | t t | x:t{φ} | ∀a::κ.t | x:t→ t | x:t→DST t φ types
φ ::= > | ⊥ | φ ∧φ | φ ∨φ | ¬ φ | φ =⇒ φ ′ | ∀x:t.φ | ∃x:t.φ formulas

| P | λx:t.φ | Λa::κ.φ | φ u | φ φ

κ ::= ? | E | x:t⇒ κ | α::κ ⇒ κ kinds
u ::= v | t | V v | E v | err | Sel u u | Upd u u u | u1 +u2 . . . logic term

Monadic f? The type system of monadic f? is based on a monad
of predicate transformers called the Dijkstra state monad. The type
of this monad is written DST t wp, and stands for stateful com-
putations yielding a t result and with specification described by
the weakest pre-condition predicate transformer wp. The trans-
former wp takes a post-condition formula post, relating a result of
type t and a final heap, and returns a pre-condition formula pre, a
predicate on an initial heap. Given a program e : DST t wp and a
particular post-condition post to be proven, the f? type checker
builds a verification condition wp post and uses Z3, an SMT
solver (de Moura and Bjørner 2008), to try to discharge the proof.

We give the syntax of monadic f? types above. As in §3, the
type language is parameterized by a signature S that also defines a
set of type constructors T . Types include variables a, type applica-
tions t t ′, refinement types x:t{φ}, and polymorphic types ∀a::κ.t.
Data constructors are n-ary and are given pure dependent func-
tion types ∀a::κ.x:t → t ′. General function types have the form
x:t → DST t ′ φ , with a monadic co-domain dependent on the cur-
ried arguments x:t.

Formulas φ include the usual connectives (implication is writ-
ten =⇒ , distinguishing it from the kind constructor ⇒ discussed
below). Predicates P may be interpreted (e.g. equality), although
uninterpreted predicates can be introduced by the signature S. For-
mulas also include a strongly normalizing applicative language of
functions over logical terms and other predicates. We write λx:t.φ
and Λa::κ.φ for predicate literals or, in the latter case, for trans-
formers from a predicate (or type) a of kind κ to φ . Formulas can
be applied to other formulas or to logical terms u.

The type system is parametric in the logic used to interpret for-
mulas. By default, we use a first-order logic with uninterpreted
functions and theories of functional arrays, arithmetic, datatypes,
and equality. For example, we use type heap and interpreted func-
tions Sel: heap→ ref α→α and Upd: heap→ ref α→α→heap from
the select/update theory of functional arrays (McCarthy 1962) to
model the store. Logic terms also include three kinds of result con-
structors: V v is a result value; E v is an exceptional result; and err is
the error value. We define asResult v,V v, asResult (raise v), E v,
and asResult error, E. Additionally, we write Result r φ as an ab-
breviation asserting that φ x is valid when r = V x.

We have two base kinds: ? is the kind given to value types, while
E is the kind of types that stand for erasable specifications, with the
sub-kinding relation ? ≤ E. We include dependent function kinds,
both from types to kinds, and from kinds to kinds. In most cases,
unless we feel it adds clarity, we omit writing kinds.

The main judgments in the monadic type system are S;Γ `D v : t
for values and S;Γ `D e : DST t φ for expressions. They rely on
an auxiliary judgment, S;Γ |= φ , stating that formula φ is deriv-
able from the logical refinements of context Γ. For example, we
can type the program λx:ref int.x :=!x+ 1 as x:ref int→ DST unit
Λpost.λ h:heap.post (V ()) (Upd h x ((Sel h x) + 1)). This is the type
of a function from integer references x to unit, where the weakest
pre-condition for any predicate post relating a unit result to the out-
put heap is the formula post (V ()) (Upd h ((Sel h x) + 1)), indicating
that the function always returns normally with () and updates the
input heap h with the contents of location x incremented.

The judgments for typing terms extend naturally to a judgment
on runtime states, written S;Γ `D H |e : DST t φ . The soundness
theorem for monadic f? is a refinement of Theorem 1; it also applies



to open reductions. In its statement below, we rely on a function
asHeap that interprets a store H as a Sel/Upd value of type heap.

Theorem 3 (Monadic soundness). Given S, Γ, H, e, t, φ such
that S;Γ `D H |e : DST t φ , and a post-condition ψ such that
S;Γ |= φ ψ (asHeap H) is derivable; either: (1) e is a result and
S;Γ |= ψ (asResult e) (asHeap H); (2) e is an open redex; or
(3) there exist H ′, e′,φ ′, such that H |e→S H ′ |e′, S;Γ `D H ′ |e′ :
DST t φ ′ and S;Γ |= φ ′ ψ (asHeap H ′).

We sometimes use a monad iDST, an abbreviation for the DST
monad augmented with a heap invariant: iDST t wp is the type
of a computation that, when run with an input heap h satisfying
HeapInv h ∧ wp post h, diverges or produces an output heap h’ and
result r:t satisfying HeapInv h’ ∧ DeltaHeap h h’ ∧ post r h’. We de-
scribe the heap invariants enforced by iDST below, referring to our
online material for the full definitions.
JSVerify: a precise typed model of JSExec We now present a few
key elements in JSVerify, an interface for JSExec written using the
precise types of monadic f?. We start by showing how we recover
the precision of the source type system by refining the type dyn
introduced in §5. A central feature of this refinement is JSVerify’s
model of a partitioned js? heap. We conclude this subsection with
a lemma relating JSExec to JSVerify.

Dynamic typing We structure our formal development by trans-
lating the types of f? into logical formulas. Specifically, we use a
refinement of type dynamic developed by Swamy et al. (2012) to
embed the simple type language of f? within the refinement logic
of monadic f?. For example, rather than typing Str "Rome" simply
as dyn, we type it as x:dyn{TypeOf x = string}, where TypeOf is an
uninterpreted function from values to E-kinded types.

We show a few cases in the definition of type dyn used in
JSVerify below. The full listing of JSVerify is available online.
type dyn = . . .
| Str: string→d:dyn{TypeOf d=string}
| Obj: l:loc→d:dyn{TypeOf d=TypeOf l}
| Fun: ∀wp. o:dyn{∃ l. o=Obj l ∧ . . .}
→ (this:dyn→args:dyn→ iDST dyn (wp o args this))
→d:dyn{TypeOf d=WP wp}

As in JSExec, an object is a value Obj l, for some heap reference
l:loc. In addition, the refinement on the Obj constructor recalls the
refinement on the underlying loc. The Fun constructor takes two
value arguments, an object o and a function closure, as before.
In addition, it now takes a specificational argument: a predicate
transformer wp for the function closure. The refinement on the
argument o requires it to be an object (in addition to some other
properties, which we elide from this presentation). The function
closure is itself typed within the iDST monad with weakest pre-
condition wp. The type of Fun recalls the predicate transformer of
the closure in its result type, i.e., TypeOf d=WP wp where WP is a
type-level coercion from the kind of wp to E.

Invariants of a partitioned heap Our proof strategy involves en-
riching the type of heap references to keep track of a logical parti-
tion of the js? heap into five compartments. This partition allows us
to prove several invariants, e.g., that there are no references from
objects in the attacker-controlled part of the heap to elsewhere.
These five heap compartments are as follows:

Inv: the invariant heap Let-bound variables, arguments and data
are immutable in f? but are held in heap locations in js?. To keep
track of these locations, we place them in a logical compartment
called the Inv heap. A complication that we handle is that these
locations are not strictly immutable—JavaScript forces us to pre-
allocate locals, requiring a mutation after allocation, and the calling
convention also involves implicit effects. Still, we prove that, once
set, all the relevant fields of objects in the Inv heap never change.

Ref: the heap of source references Locations used to represent
the translation of f? values of type ref t are placed in the Ref heap,
where an invariant ensures that the content of a Ref heap cell, once
initialized, always holds a translation of a t-typed source value.

Abs: the abstract heap of function objects Recall that every func-
tion in js? is associated with a heap-allocated object whose contents
is updated at every function call. We place these unstable locations
in the Abs heap, and ensure that translated source programs never
read or write from these locations, i.e., function objects are abstract.

Un: the untrusted heap This heap compartment is used to model
locations under control of the attacker. Our full-abstraction result
relies crucially on a strict heap separation to ensure that locations
from the other compartments never leak into the Un heap (with one
exception, discussed next).

Stub: the heap of declassified function objects Function objects
corresponding to stubs in the upfun wrapper are allocated in a com-
partment of their own. These objects initially belong to the f? trans-
lation, but, once used, they become accessible from the Un heap. To
this end, we implement (and type) a logical declassification proto-
col, allowing us to prove that, as their ownership is transferred to
the attacker, stub objects do not leak any information.

To keep track of these heap compartments, JSVerify enriches
the representation of heap allocated objects with (ghost) metadata,
outlined below. We have a tag for each compartment. The type tobj,
which is a wrapper around the type obj, associates it with its tag and
a predicate p, an invariant on the contents of the object.
type tag = Inv: tag | Ref: tag | Abs: tag | Un: tag | Stub: tag
type tobj = TO: ∀p::obj⇒ E . t:tag

→o:obj{(t=Ref =⇒ "ref" ∈ dom o ∧ p o)
∧ t =Inv =⇒ . . .}

→v:tobj{TypeOf v=PT p t}
type loc = TL: ∀p::obj⇒ E . t:tag→ ref (v:tobj{TypeOf v=PT p t})

→v:loc{TypeOf v=PT p t}
Values of type tobj are triples TO p t o. Its third component o is
typed as an obj (that is, a map from strings to properties) refined
with a formula stating, for example, that if the object is in the
Ref heap, then it contains the "ref" field, and that it satisfies the
invariant p. A similar, but more complex invariant applies to objects
in the Inv compartment (due to object initialization and implicit
effects). The result type of TO records both the invariant p and the
tag of the object in the refinement. The type loc is also a triple,
TL p t r, where r is a reference to a tagged object. We memoize the
tag and invariant of the content of r with the reference itself, and
the type of TL ensures that the tags of the content and the loc agree.

Translation of types A source type t in f? is translated to the
refined js? type [[t]] , d:dyn{φt d} where φt is a predicate on dyn-
typed js? values. We show a few cases below, where SelObj selects
an object from the heap, and SelProp selects a property.
φstring= λd.TypeOf d=string

φref t = λd.TypeOf d=PT (λo. φt (SelProp o "ref")) Ref
φt→t′ = λd.TypeOf d=WP λ a .Λp.λh.φt (SelProp(SelObj h a) "0")

∧ . . .∧ ∀r h’. Result r φt′ =⇒ p r h’

The translation for primitive types like string is simple: the
refinement formula φstring requires the translated value to be a
Str : dyn. The translation of ref t requires an object in the Ref
heap, whose "ref" field satisfies predicate φt . The translation of
function types φt→t ′ requires the compiled value to be a Fun wp
term, where (among other requirements) the predicate transformer
wp requires its zeroth argument to satisfy φt , and requires proving
the post-condition on a result r that satisfies φt ′ (if it is a value).

Interface of JSVerify To enforce our invariants, JSVerify exposes
a monadic version of the JSExec interface. To operate on un values,



for instance, it provides aliases to the functions select, update, and
apply of §5. An un value is either a primitive value, or an object
(or function) allocated in the Un heap, or a declassified Stub object.
The function selectUn allows a (non-internal) field to be selected
from an un object. Its pre-condition requires both the caller and the
object o to be un-values, and requires the post-condition p to be
proven for any IsUn result and heap (since, via getters, selecting a
field can trigger arbitrary code). The specification for updating an
un object is similar. Calling an un function requires that the caller
be an un value, both this and args be un, and ensures that the result
is also un. In all cases, the use of the iDST monad requires and
ensures the heap invariant as well.
type IsUn x = TypeOf x=string ∨ . . .∨ GetTag x = Un

∨ (GetTag x = Stub ∧ Declassified x)
type un = x:dyn{IsUn x}
val selectUn:caller:dyn{GetTag caller = Un}

→o:un→ f:string{¬ IsInternalField f}
→ iDST dyn (Λp.λh. ∀r h’. Result r IsUn =⇒ p r h’)

val updateUn: caller:dyn{GetTag caller = Un}
→o:un→ f:string{¬ IsInternalField f}→v:un
→ iDST dyn (Λp.λh. ∀r h’. Result r IsUn =⇒ p r h’)

val applyUnUn: caller:un→callee:dyn{GetTag callee = Un}
→this:un→args:un{GetTag args = Un}
→ iDST dyn (Λp.λh. ∀r h’. Result r IsUn =⇒ p r h’)

Accessing the other heaps imposes stricter requirements but also
provides more guarantees.

Relating JSExec and JSVerify To relate our two interfaces, we
prove a lemma that shows that any js? program well-typed against
JSExec is also well-typed against JSVerify, as long as it interacts
only with the Un-fragment of JSVerify. To state this lemma, and in
the rest of the paper, we use the following syntactic shorthands:

• We write S;Γ `D e : t for a computation with a trivial pre-
condition returning a t-result, i.e., S;Γ `D e : iDST t wp>, where
S;Γ |= ∀h.HeapInv h=⇒ wp>(λ h’.HeapInv h’∧DeltaHeap h h’)h.

• S;Γ `D H |e : t stands for S;Γ `D H |e : iDST t wp, where S;Γ |=
wp (λ h’.HeapInv h’∧DeltaHeap h h’) h and h = asHeap H.

• ΓD is the lifting of function types in the context Γ, where a type
t→t’ is lifted to x:t→ iDST t’ wp>. When it is clear from the
context, we write types like t→t’, leaving the lifting implicit.
• tagUn(H |e) is the runtime state obtained by adding Un-tags to

each object and loc-typed constant in H |e.

Lemma 2 (Universal monadic typability of js?). If JSExec;Γ `
H |e : t, then JSVerify;ΓD `D tagUn(H |e) : t

Henceforth, we write Γ `D H |e : t for monadic typing, leaving the
signature of JSVerify in the context implicit.

Formal light translation of f? runtime states We now formalize
the light translation as a relation Γ f̀ H |e : t  I H ′ |e′ for the
translation of the f? runtime configuration H |e of type t into a js?

configuration I,H ′ |e′, where H ′ is the Ref compartment and I
consists of both the Inv and Abs compartments. The subscript f is a
js? value, representing the object of the function that encloses e; it
is Null at the top-level. Figure 5 gives five representative translation
rules, simplifying them by eliding type arguments. The rules are
to be interpreted as inlining the definitions from JSVerify into the
translated term, rather than leaving them as free variables.

The first rule translates a data constructor to an object literal,
which in JSVerify is represented as an Inv location that is allocated
and immediately initialized with the contents of the constructor.
This is particularly important—the alternative of allocating an ob-
ject first, and then setting its fields is not secure, since, in general,
this could cause a traversal of the prototype chain, triggering at-
tacker code in case the attacker has installed a setter on the publicly

∀i.Γ f̀ vi : ti  I ei

Γ f̀ Dt̄→T v̄ : T  I mkInv [("tag",Str (str D)));(str i,ei)]

Γ(x) = t
Γ f̀ x : t  I selectInv f x "0"

Γ,x:tx ò e : t  I e′ xi : ti = locals(e) src any string constant

Γ f̀ λx:tx.e:tx→ t I mkFunAbs src λo x.let xi = mkLocInv() in e′

Γ f̀ e : t ′→ t  I e′ Γ f̀ v : t ′  I v′

Γ f̀ e v : t  I applyAnyAbs f e′ `global (mkInv (TO Inv [("0",v’)]))

v` = Obj (TL Inv `) Γ f̀ v : t  I v′ I(l) = TO Inv [("0",v′)]
Γ f̀ v : t  I selectInv ϕt f v` "0"

Figure 5. Light translation from f? to js? (selected rules)

available Object.prototype. In contrast, the allocation of an object
literal never causes a prototype traversal.

The second rule translates a let- or λ -bound source variable x to
a js? expression that selects from the "0" field of an object stored
in the Inv heap, whose location is bound to a js? variable of the
same name. The invariant guarantees that the "0" field is set in the
immediate object, again preventing any prototype traversal.

The third rule translates a closure. Function objects in the light
translation are always allocated in the Abs heap. So, we use an alias
of JSExec.mkFun from JSVerify called mkFunAbs, which builds the
function object. We translate the body of the function using the
variable o as the caller object, passed as an argument to applyAbs
(an alias of JSExec.apply for calling an Abs function) at every call-
site in the body of e, as shown in the next rule. Again, the arguments
are passed as an object literal.

The last rule is useful primarily for translating runtime expres-
sions, rather than source values. f? has an applicative semantics
with a standard β -reduction rule. However, in js?, values are passed
as pointers to the Inv (or sometimes Abs) heap. Without this last
rule, this mismatch would cause considerable technical difficulties
in our forward simulation proof. For example, in f? we may have
(λx.(x,x)) D→S (D,D) for some constructor D. When translating
the left-hand side, we may allocate only one D in js?, whereas, the
translation of the right-hand side would allocate two objects. To re-
flect both possibilities, the light translation is a non-deterministic
relation on runtime states, indexed by the js? heap I, representing
pre-allocated data. So, in the last rule, if we find a location ` in the I
heap which already contains a value that is a valid translation of the
source value v, then, rather than allocate a fresh location, we may
simply translate v to the expression that selects from `. As such, our
translation relation conveniently hides the details of data allocation
and aliasing—our typed invariant and §8 show that those details are
not observable anyway.

Correctness of the light translation We present our main results
for the light translation, first stating that it preserves the typing
and heap invariants, then that it is a forward simulation: every f?

reduction is matched by one or more js? reductions.
Type preservation states that if an f? state H |e well-typed at t is

translated to a js? state H ′ |e′ (with Inv and Abs heaps I), then the js?
state is well-typed in the iDST monad against JSVerify. The lemma
ensures that when h0 (the logical value corresponding to I and H ′)
satisfies the heap invariant, the js? state diverges, or produces a
result r and post-heap h1, where h1 satisfies the heap invariant and
DeltaHeap h0 h1; and that Result r φt is valid. As a base case, the
heap invariant on the empty heap (produced when translating a
source program, rather than an intermediate runtime configuration)
is trivially satisfied. A technical requirement, due to JavaScript’s



hoisting of local variables, is that all the let-bound variables of the
translated term already exist in the heap I.

Lemma 3 (Type preservation). If Γ f̀ H |e : t  I H ′ |e′ then,
for Γ′ = [[Γ]],Γlocals(e), there exists ψ such that Γ′ `D H ′, I |e′ :
iDST dyn ψ and, for h0 = asHeap (I,H ′), if HeapInv h0 and
LocalsOK locals(e) h0, then

Γ
′ |= ψ (λx h1. HeapInv h1 ∧ DeltaHeap h0 h1 ∧ Result x φt ) h0

Our next lemma ensures that the formal light translation is a
forward simulation. That is, every reduction step of an f? program
H |e is matched by one or more reductions of its js? translation. We
use an auxiliary function Abs I, standing for the set of objects that
may be used as the caller object in js?:

Abs I = {Null}∪{Obj ` | ` ∈ dom(I)∧GetTag `= Abs}
Lemma 4 (Forward simulation). For any source reduction step
H |e→S H1 |e1 and any translation Γ f̀ H |e  I H ′ |e′, where
f ∈ Abs I, there exist reduction steps I,H ′ |e′→S

+ I, I′,H ′1 |e′1, and
a translation Γ g̀ H1 |e1  I,I′ H ′1 |e′1, where g ∈ Abs (I, I′).

Defensive wrappers We now consider the properties of the second
phase of our compiler, i.e., the defensive wrappers. Figure 6 lists
the js? code of downfun and upfun. It is instructive to compare with
the JavaScript wrappers shown in Figure 4—we discuss below a
few simplifications to the code in support of verification. This code
is typed against JSVerify, making use of the heap-partition-aware
variants of functions in JSExec. This allows us to record the code
positions that may trigger callbacks to untrusted code (which leaks
the caller’s object to the context). Specifically, we use the following
variants of mkFun, apply, select, and update.

• abs-functions reside in the Abs heap and are created by mkFunAbs.
They may be called with any caller using applyAnyAbs.
• un-functions are created by mkFunUn with an object o:un. They

are called using applyUnUn, that is, only by callers with an un
object (since this object is possibly leaked to the callee) and
un arguments. Similarly, Un objects are selected using selectUn,
possibly triggering a callback to the context (due to a getter).
• stub-functions specifically support our ‘upfun’ wrapper. They

are created by mkFunStub with an object in the Stub compart-
ment. They can be called at most once by any caller using
applyAnyStub, after which they are declassified and released to
the context. Prior to the declassification, stub objects are safe—
they can be updated without triggering callbacks.
• Local variables and data constructors are allocated in the Inv

heap using mkLocalInv and mkInv, respectively. These local
variables may be set at most once, using setInv, then selected
many times using selectInv. These calls never trigger callbacks.
• Mutable references are allocated using mkRef, and accessed us-

ing selectRef and updateRef. Locations in the Ref compartment
are always well-typed, and the accesses never trigger callbacks.

For a given source type t, ↓ t is an abs-function that takes val-
ues of type [[t]] and returns values of type un. Conversely, ↑ t is an
un-function that takes values of type un and (attempts to) return a
value of type [[t]]. To facilitate proofs of these typing properties,
we instrument the js? wrappers with calls to JSVerify, rather than
JSExec, as already noted. Additionally, we require four verification
hints in the code of upfun. First, we add a call to a ghost function
declassify u callee, which is used to record in the refinement logic
that the stub object has been released to the attacker and should
henceforth be typed as un. A pre-condition of declassify u callee
is that the all the fields of callee must already by typeable as un.
Hence, we set the "caller" field to the stub itself, simulating the

let downfun =
mkFunAbs "downfun" (fun (apair:inv)→

mkFunAbs "downfun_a2b" (fun (af:inv)→
mkFunUn "downfun_f" (fun (u:un) ( :un) (az:un)→

let up a = selectInv u apair "0" in
let z = selectUn u az "0" in
let x = applyUnUn u up a global (mkArgUn z) in
let f = selectInv u af "0" in
let y = applyAnyAbs u f global (mkArgInv x) in
let down b = selectInv u apair "1" in
applyAnyAbs u down b global (mkArgInv y))))

let upfun =
mkFunAbs "upfun" (fun (apair:inv)→

mkFunUn "upfun_a2b" (fun (af:un)→
mkFunAbs "upfun_f" (fun (o:abs) (ax:inv)→

let az = mkLocalInv() in
let by = mkRef (mkInv [("tag", Str "None")]) in
let down a = selectInv apair "0" in
let x = selectInv o ax "0" in
setInv o az "0" (applyAnyAbs o down a global (mkArgInv x));
let stub = mkFunStub "stub" (fun (u:stub) ( :un) (a0:stub)→

let callee = selectStub u a0 "callee" in
updateStub u callee "caller" callee;
declassify u a0; (∗ ghost ∗)
declassify u callee; (∗ ghost ∗)
let f = selectUn u af "0" in
let z = selectInv u az "0" in
let y = applyUnUn u f global (mkArgUn(z)) in
let up b = selectInv u apair "1" in
let b = applyUnUn u up b global (mkArgUn y) in
let someb = mkInv [("tag", Str "Some"); ("0", b)] in
updateRef u by "ref" someb)

applyAnyStub o stub global (allocStub());
selectInv o (selectRef o by "ref") "0")))

Figure 6. Function wrappers in js? (omitting most types)

recursive call in the upfun wrapper of Figure 4 (which, experimen-
tally, we confirm has the behavior of introducing a cycle in the
caller chain).1 As a third hint we add a ghost call to declassify u a0.
Since a0 is also a field of callee, we will release a0 to the attacker
when the call to f proceeds. Since it is a reference to an empty ob-
ject in the stub heap (or an object with a single constant boolean
field in Figure 4), this does not leak any information to the attacker,
and so it can be declassified trivially. A further complication is that
the callee object has an internal field called "@code" containing a
reference to the function closure itself, which the adversary can
use to call the stub directly, once it has access to the stub func-
tion object (e.g., by using Function.prototype.apply). JavaScript
provides no way to clear the "@code" field directly. To handle this
case, we carefully ensure that, after declassification, the function
closure can be typed as a function from un to un. Thus, the stub
returns its result via a side-effect to the reference by. Typing this
idiom requires one level of indirection (our final hint): we initial-
ize the reference by to None and, each time the stub is called and
successfully imports the translation of a source value v:b, it up-
dates by with the translation of Some v. In Figure 4, we collapse the
option reference into a single mutable location, which is a simple
semantics-preserving transformation.

Equipped with these types, we show that a down-wrapped light
translation has type un. Likewise, we show that, if an up-wrapped
un value returns normally, then it returns a value typed as the
translation of its source type. In the lemma statement, we write ↓t e
for the application of a down wrapper to e, i.e., applyAnyAbs ( :
abs) ↓ t ( : un) e; and ↑ t e is applyUnUn ( : un) ↑ t ( : un) e. In

1 We anticipate enhancing our proof of wrapper typing and the bisimulation
of §7 to account directly for the recursive call in stub, instead of using the
assignment to "caller".



conjunction with Lemma 2, this shows that a wrapped term can be
safely embedded in any JavaScript context.

Lemma 5 (Typing of wrapped terms).
If Γ `D v : [[t]] then Γ `D↓t v : un; if Γ `D v : un then Γ `D↑t v : [[t]].

7. Contextual equivalence by bisimulation in f?

Contextual equivalence is a precise and intuitive notion of equiva-
lence, both in JavaScript and in f?, but it leads to complicated direct
proofs, as one needs to reason about any reduction in any context.
To structure our full-abstraction proof, and to analyze interactions
between translations of equivalent f? expressions and their js? con-
texts, we develop a custom labeled bisimulation proof technique.
Although formally independent of JavaScript, the design of our
bisimulation is guided by its application to source f? and js? in §8:

• Our bisimulation must support f? types, higher order functions,
mutable state, exceptions, divergence, and errors.
• Functions exported using ‘down’ wrappers may share private

state, so we need to jointly relate configurations of functions,
rather than single functions. (See also Sumii and Pierce 2005.)
• Our wrappers stop at imported and exported functions; thus,

to extend wrapping from terms to configurations and maintain
wrapping as a transition invariant, we use a variant of normal
form bisimulation (Lassen 2005): our configurations have free
variables standing for the functions imported from the context;
thus, any callback yields a transition output with a continuation.

Next, we define these bisimulation configurations and we study
their behavior, first using concrete context closures, then more
abstract labeled transitions. The main result of the section is that
labeled bisimilarity coincides with contextual equivalence.

We use interfaces to specify how configurations may interact
with their context. An interface declares some exported functions
(previously sent to the context), some imported functions (previ-
ously received from the context), some continuations (for ongoing
calls to the context), and some memory (shared with the context).

Definition 6 (Interface). An interface I = σ ;Γ consists of heap
types σ (for the heap shared with the context) and a type environ-
ment Γ that binds variables to function types t, each annotated with
one of three sorts:

• z :z t for functions imported from the context;
• x :x t for functions exported to the context; and
• k :k t for continuations of calls to the context.

We let Γz be the projection of Γ on imported functions, and simi-
larly for Γx and Γk. We often elide these annotations, writing for
instance y : t ∈ Γ for any binding of Γ. When y ∈ dom(Γ), we write
Γ|y for the prefix of Γ such that Γ is of the form Γ|y,y:t,Γ′.

Our configurations represent pairs of related f? runtime states,
both waiting for their next interaction with the context. We intro-
duce notations for pairs of related terms in configurations: for any
phrase of syntax M, we write M for pairs of Ms, and write M�
and M� for their left and right projections, respectively. Further, we
treat propositions ϕ with pairs Mn

i=1 as ϕ{Mi
�/Mi}∧ϕ{Mi

�/Mi}.
In this section and §8, we omit the inductive signature S in

typing judgments, and write ‘;’ instead of ‘,’ to separate references
from functions in typing environments.

Definition 7 (Configuration). Given an interface I = σ ;Γ, a well-
formed configuration C = I |ρ (written I ` C ) consists of two
heaps I such that σ ;Γz ` I and two substitutions ρ from every
y:t ∈ Γx]Γk to values v such that σ ,σ(I);(Γ|y)z ` v : t.

In the definition, I is a pair of private heaps, with I� and I� hav-
ing possibly different domains, both disjoint from σ . (The typing

judgments imply dom(σ)∩ dom(σ(I)) = /0.) The substitutions ρ

map every variable in Γx ]Γk to functions; in particular, continu-
ations are just functions. The environment (Γ|y)z let us type them
with free variables standing for previously-imported functions.

Next, we lift the contextual equivalence of §3 from terms to
configurations, relying on generalized contexts and context closure:

Definition 8 (Configuration Context). Given an interface σ ;Γ, a
well-formed evaluation context E = O |Z, e : t consists of

• a heap O such that σ ⊆ σ(O) and σ(O);Γx ` O;
• a substitution Z from every z:t ∈ Γz to a value v such that

σ(O);(Γ|z)x ` v : t
• a call-stack: a typed expression e : t defined by induction on Γk:

when Γk = /0, the stack is any e such that σ(O);Γx ` e : t;
when Γk = k : t1→ t2,Γ′k, the stack is any E[k e1] such that
σ(O);(Γ|k)x,y : t2 ` E[y] : t and e1 : t1 is a stack for Γ′k.

Definition 9 (Context Closure). Given a context O |Z, e : t and
a configuration I |ρ with the same interface and disjoint heaps
(dom(O)∩dom(I) = /0), we let E [C ], (O, I | e){ρ,Z} be the two
runtime states obtained by composing the context with both sides
of the configuration and jointly applying the substitutions ρ and Z
in the order recorded in Γ (substituting first the latest variables).

These runtime states are closed and well-typed: ` E [C ] : t

Definition 10 (Contextual equivalence for Configurations).

≈E , {I ` C such that ∀E ,E [C ]� ≈
•
e E [C ]�}

Our definition generalizes plain contextual equivalences: for in-
stance, contextual equivalence ≈e on functions of type t coincides
with ≈E on configurations with signature /0;x :x t. More gener-
ally, we can reduce contextual equivalence of two open expressions
xi : ti ` e : t to the function-value equivalence of ` λxi.e : ti→ t.
Labeled bisimulations To keep the context implicit, we define
interactions between the configuration and its context as labeled

transitions of the form I ` C
α ; β−−−→I ′ ` C ′ where α and β range

over input and output labels, respectively. The input label (e.g., a
function call with parameters, or returning a result to a previous
call) is provided by the context to the configuration, and the output
label is its response (e.g., a returned value or a callback). The
transition occurs only if both terms in the configuration C have
matching behaviors (e.g., both return the same result, call the same
callback, etc). Thus, the transition relation characterizes pairs of f?
runtime states that have similar interactions with their context.

Definition 11 (Input Label). Given an interface σ ;Γ, an input label
α = Γ′z O |y r consists of

• a signature Γ′z disjoint from Γ;
• a heap O such that σ ⊆ σ(O) and σ(O);Γx,Γ

′
z ` O;

• a value parameter v such that σ(O);Γ′z ` v : t;
• a query q = y r, of one of the three forms below:

x r, a call to any x : t→ t ′ ∈ Γx; or
k v, a return with Γk = Γ′k,k : t→ t ′; or
k (raise v), an exception with Γk = Γ′k,k : t ′ and t = te.

such that, moreover, the values within O and v with a function type
are pairwise distinct variables in Γ′z.

Intuitively, an input label represents a minimal, open context
that calls a function previously exported by the configuration, or
returns from a previous call from the configuration to the context;
O represents some shared heap, and Γ′z some fresh variables stand-
ing for any function imported by this input from the context. In
combination, we obtain a pair of well-typed (open) runtime states
Γz,Γ

′
z ` O, I | yρ v applying the function associated with y in ρ



to v. In the last two forms of query, the condition on Γk ensures
that the context returns only at the top of the stack (with a value or
an exception). The final condition ensures that no function values
are passed directly to the configuration. In particular, the context
cannot directly pass a function x previously received from the con-
figuration. Instead, the context can pass a fresh variable z, and can
later call x whenever z is called back.

Definition 12 (Output Label). Given an interface σ ;Γ and an input
label Γ′z O |y r : t, an output label is one of the following:

• error for failure;
• ⇑ for divergence;
• Γ′′x O′ | v′ for normal returns, such that Γ′′x ` O′ | v′ : t;
• Γ′′x O′ | raise v′ for exceptions, such that Γ′′x ` O′ | v′ : te; or
• Γ′′x O′ | z v′ : t ′′ for callbacks, such that Γ′′x ` O′ | v′ : t ′ and

z : t ′→ t ′′ ∈ Γ′z.

In the last three cases, we require that Γ′′x and Γ′ be disjoint; that
O′ extend O with the locations reachable from v′ and O; and that
all values within O′ and v′ with function types be distinct variables
defining the domain of Γ′′x .

For convenience, to deal with both kinds of inputs, we write
Γ \k y for Γ when y :x ∈ Γ and for Γ \ y when Γk = Γ′k,y : . We
also let Γ+ abbreviate Γ\z y,Γ′z,Γ

′′
x in the interface after the output.

As with input labels, we require that v′ in output results do not
contain names from Γx,Γz.

In combination, compatible inputs and outputs define transitions
between interfaces. Transitions between configurations (defined
shortly) can be seen as their refinement, of the form

σ ;Γ ` C
Γ′z O |q v:t ; Γ′′x O′|z v′:t ′′−−−−−−−−−−−−−−→ σ(O′);Γ

+ ` C ′

A plain labeled simulation on pair of terms would require that,
for every transition on one side, there exists a matching transition
on the other side. In our case, since configurations already account
for both sides, we define transitions as a partial relation between
configurations: we have a transition only when both sides perform
matching outputs. For uniformity, we use two additional terminal
configurations, error and ⇑, with no input, to represent the outcome
of transitions that lead to failure and divergence, respectively.

For a given configuration I ` C , the additional locations in O
in the input label may clash with the private locations of I; our
transitions implicitly assume that this is not the case, as we can
always pick another input label with fresh names, and that the
output label is well-formed.

Definition 13 (Transition). Given interface σ ;Γ and input label
α = Γ′z O |y r : t, configuration transitions are (partially) defined
below, with one rule for each form of output:

Oρb, Ib |yρb v ⇓ error for b = �, �

σ ;Γ ` I | ρ α ; error−−−−−→ error

Oρb, Ib |yρb v ⇑ for b = �, �

σ ;Γ ` I | ρ α ; ⇑−−−→⇑
Oρb, Ib |yρb v→S

∗ O′ρ ′b, I
◦

b |r′ρ ′b for b = �, �

σ ;Γ ` I | ρ α ; Γ′′x O′|r′−−−−−−→ σ ,σ ′;Γ+ ` I′ | ρ,ρ ′

Oρb, Ib |yρb v→S
∗ O′ ρ ′b, I

◦
b |Eb[z v′ ρ ′b] for b = �, �

σ ;Γ ` I | ρ α ; Γ′′x O′|z v′−−−−−−−→ σ ,σ ′;Γ+,k :k t ` I′ | ρ,k 7→ λ r.E[r],ρ ′

Definition 14 (Bisimilarity). A bisimulation ϕ is a set of configura-
tions closed by transitions: for every I `C ∈ϕ with input label α ,
there exists an output label β and I ′ ` C ′ ∈ ϕ such that

I ` C
α ; β−−−→I ′ ` C ′

Applicative bisimilarity, written ≈A, is the largest bisimulation.

As usual, to prove C ⊆≈A for a given configuration C , it suffices
to build some ϕ that includes C and show that it is a bisimulation.
(See the full paper for additional discussion and examples.)

We now relate labeled transitions on configurations to the re-
ductions of runtime states obtained by context closure.

Lemma 15. Let C ∈≈A. The two sides of any context closure E [C]
either return some identical result; or diverge; or reduce to some

E ′ [C ′] with C
α ; β−−−→ C ′ and C ′ ∈ ≈A.

Lemma 16. For every transition I
α ; β−−−→I ′, there is a context ET

for I such that, for any C : I with input α , we have ET [C ] ∈ ≈•e
if and only if C performs this transition.

Lemma 17. For every transition I ` C
α ; β−−−→ I ′ ` C ′ and

context-closure E ′[C ′], there is a context closure E [C ] such that
E [C ]→S

∗≈•e E ′[C ′].

Theorem 4. ≈E =≈A.

8. Full abstraction for wrapped translations
We are finally ready to prove full abstraction, relating contextual
equivalences in f? and js?. Relying on Theorem 4, we use labeled
bisimulations rather than contextual equivalences: the main idea is
to extend the wrapped translation from source expressions to source
configurations, and to systematically relate their source and target
transitions. We begin by establishing a corollary of type soundness
for reasoning about untrusted callbacks. Then, we establish oper-
ational properties for wrappers, setting up notations for configura-
tion translations (Definition 21).
Untrusted callbacks As we import untrusted values, callbacks
triggered by getters are innocuous, since the context can provide
arbitrary values anyway. To deal with them in the bisimulation, we
use a corollary of open subject reduction, where we use I to refer to
the union of the translation of the source Ref heap H, together with
the Inv, Abs, and the private locations in the Stub heap.

Lemma 18 (Untrusted Callbacks). For every typed open runtime
state s, Oun, I |e, where Γ′z `D s : t ′ and Γ′z defines only functions
z : un→ un, one of the following holds: s ⇑; or s→S

∗ O′un, I
+ |r;

or s→S
∗ O′un, I

+ |E[z ( : un) : un].

Properties of wrappers For functional types, the full paper de-
fines ↓t{x′}, the js? open function value obtained by reducing ↓t x′.
Similarly, ↑ t{z} is the function obtained by reducing ↑t z—this lat-
ter operation just distributes up and down wrappers around the ar-
gument and return of z, so the value always exists. In both cases, we
remove the Fun constructor, and retain the function closure within.
The main operational property for down wrappers is that, as we ex-
port a translation of a source value, we obtain a freshly-allocated un
value that depends only on the source value—not on the choice of
its translation. Its proof is by induction on v relying on monadic typ-
ing (§6) and is mutually inductive with the proof of Lemma 20,
which reasons about importing values from the context. For clarity,
we present the two lemmas separately.

Lemma 19 (Running down). Let Γx ` v : t such that ↓ t is defined
and Γx binds the functions of v. Let Γ′x declare x : un→ un→ un
and ρ substitute ↓t ′{x} for every x :x t ′ ∈ Γx. There exist Oun and v′
such that, for any light translation Γx f̀ v : t  I e′, we have
I | ↓ t e′→S

∗ Oun, I+ |v′ρ and Γ′x `D Oun, I+ |v′ρ : un.

Intuitively, Oun is the new un memory allocated to copy the ex-
ported value, while Γ′x declares the exported wrapped-down trans-
lations of the function variables in v.

The next lemma shows that ‘up’ wrappers return (at most) light
translations of a source value that depend only on the untrusted



context. Besides, those wrappers may trigger untrusted callbacks
in the process, diverge, fail, or raise an exception. (In addition to
divergence in any callbacks that may be triggered, we may get
divergence, for instance, as we try to import a circular list.)

Lemma 20 (Running up). For all values u : un and states s ,
Oun,H, I | ↑ t u, such that Γ′z `D s : [[t]], if s returns with final state
O′un,H

′, I+ |v′ : [[t]] (after any number of untrusted callbacks) then
Γz ` f H ′′ |v : t  I+ H ′ |v′ for some source runtime state H ′′ |v.

Candidate bisimulation We define the full translation of source
configurations. (The full translation of programs is a special case.)
As in §4, this translation is non-deterministic; it includes consis-
tent translations of every piece of the source configuration. It is
designed to be closed by js? transitions. To keeps track of all al-
located stubs, it also includes the translation of Hstub, an auxiliary
store (not present in the source configuration) with one option ref-
erence for every stub. As can be expected of a defensive translation,
its interface consists entirely of untrusted locations and functions.

We refer to the full paper for auxiliary definitions of the evalua-
tion contexts E↓t [ ] for frames that transition from untrusted callers
to translated callees, F [F ′[ ]] for frames that transition from trans-
lated callbacks to untrusted callees, stubs,r for f? stub closures with
object s and reference r (variable by in Figure 4), and U [ ] that
ranges over their continuations after declassification. This defini-
tion also omits partially-applied functions, e.g. ↓ t{x} applied to a
this object and waiting for its arguments object.

Definition 21 (Configuration Translation). A translation of the
source configuration /0;Γ ` C = H |ρ is any configuration of the
form σ ′;Γ′ ` I′,H ′ |ρ ′ such that, for b =�,� we have

(1) Γ ` Hb]Hstub  Ib H◦b .
(2) For every x :x t ∈ Γ, we have Γ` xρb  Ib v◦b and xρ◦b =↓t{v◦b}.
(3) For every k :k t→ t ′ ∈ Γ, we have Γ ` k ρb  Ib E◦b [ ], using the

light translation of expressions with an additional rule trans-
lating [ ] to [ ], and k ρ◦b is E↓t ′ [E◦b [F [F ′[U [ ]]]]] for some typed
continuation U [ ] reachable from stubs,r.

(4) For every r 7→ v : option t ′ ∈ Hstub, ρ◦b also defines stubs,r and
any typed continuations U [ ] reachable from stubs,r.

(5) I′, H ′, and ρ
′ are obtained from I◦, H◦, and ρ

◦ by replacing
every instance of z with ↑ t{z} for every z :z t ∈ Γ.

(6) σ ′ declares un objects (including function objects for the ex-
ported functions x) and the function objects s of the stubs of (4).

(7) Γ′ declares [[z :z t]] = z :z un→ un→ un, [[x :x t]] = x :x un→
un→ un, or [[k :k t]] = k :k un→ un for every declaration in Γ

and every definition of (4),

The lemma statements below account for the non-determinism
of our translation: for soundness, J K collects all configuration
translations defined above; for completeness, J K′ collects all con-
figuration translations without stub callbacks. We obtain our main
theorem for programs seen as singleton configurations.

Lemma 22 (Soundness). If I ` C ∈ ≈E then JI ` CK⊆≈E .

Lemma 23 (Completeness). If JI ` CK′∩≈E 6= /0 then I ` C ∈ ≈E .

Theorem 5 (Full abstraction). For all translations ` v : t /0 e such
that ↓t is defined, v0 ≈e v1 in f? if and only if ↓t e0 ≈e ↓t e1 in js?.

9. Preliminary case studies and discussion
Although we leave an extensive evaluation of our compiler as future
work, we have already used it to program several small case studies
(available on the web)—we briefly describe two of these here.

Secure subsystems A traditional challenge in JavaScript program-
ming involves combining code from multiple, mutually distrusting

sources, while maintaining a degree of control over the resulting
mash-up. One design towards this objective could be to implement
a subsystem in f? that mediates mash-up interactions, prove it cor-
rect using monadic f?, and then deploy it using our compiler.

To illustrate our point, we have implemented an interference-
free local store on top of the localStorage object in HTML 5,
which offers a key-value store per web page. The challenge is that
this resource is shared between all scripts running in a web page:
they can all read, write, and even clear the whole storage without
any access control. To enable mash-ups to use local storage, we
implement a secure API setItem, getItem, and removeItem that
multiplexes access to localStorage while ensuring isolation.

Advising JavaScript Meyerovich and Livshits (2010) propose
CONSCRIPT, a browser-based implementation of aspect-oriented
advice for JavaScript, itself expressed as JavaScript code. In prelim-
inary experiments, we have been able to implement 6 CONSCRIPT
policies in f?. Being written in f? makes the advice simpler: we
can prove correctness of the advice by contextual equivalence at
the source level, and, unlike CONSCRIPT, we do not require any
browser modifications.

Performance The benefits of running secure JavaScript come at
a price, as any interactions with untrusted code are mediated by
wrappers. The cost of wrapping, however, is proportionate only to
the number of “boundary crossings” between trusted and untrusted
code. When executing within f?, there is little overhead due to secu-
rity protections. Nevertheless, we expect to improve our translation,
with an eye towards performance, along several axes. For example,
our current representation of datatypes is naı̈ve. We might instead
use JavaScript’s ArrayBuffer, which offers a packed data represen-
tation. For the wrappers, rather than exporting data by copying, we
plan to investigate using Object.freeze, a new feature that dynam-
ically renders the fields of an object immutable. We are also consid-
ering using a lazy semantics for the wrappers that import data (pos-
sibly using proxies of the forthcoming ES6 standard). This would
necessitate reflecting the callbacks in the source semantics, as lazy
importing may trigger callbacks to the context as imported data is
read, but the performance gains may make this a good tradeoff.

Conclusions It is increasingly common for compilers to target
JavaScript, contributing to a growing view of JavaScript as the
“assembly language of the Web”. Our work provides a foundation
for such compilers, particularly when compiled code must interact
with code from other, less trustworthy sources. Relying on full
abstraction, developers who program in higher level languages such
as ML can reliably and securely deploy their code, without having
to worry about the intricacies of JavaScript.
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