
HAL Id: hal-00781008
https://hal.inria.fr/hal-00781008

Submitted on 25 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alignment-Based Trust for Resource Finding in
Semantic P2P Networks

Manuel Atencia, Jérôme Euzenat, Giuseppe Pirrò, Marie-Christine Rousset

To cite this version:
Manuel Atencia, Jérôme Euzenat, Giuseppe Pirrò, Marie-Christine Rousset. Alignment-Based Trust
for Resource Finding in Semantic P2P Networks. ISWC 2011 - International Semantic Web Confer-
ence, Oct 2011, Bonn, Germany. pp.51-66, �10.1007/978-3-642-25073-6_4�. �hal-00781008�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49824599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00781008
https://hal.archives-ouvertes.fr

Alignment-Based Trust for Resource Finding

in Semantic P2P Networks

Manuel Atencia1,2, Jérôme Euzenat1,
Giuseppe Pirrò3, and Marie-Christine Rousset2

1 INRIA, Grenoble, France
{Manuel.Atencia,Jerome.Euzenat}@inrialpes.fr

2 University of Grenoble, Grenoble, France
Marie-Christine.Rousset@imag.fr

3 Free University of Bolzano-Bozen, Bolzano, Italy
giuseppe.pirro@unibz.it

Abstract. In a semantic P2P network, peers use separate ontologies
and rely on alignments between their ontologies for translating queries.
Nonetheless, alignments may be limited —unsound or incomplete— and
generate flawed translations, leading to unsatisfactory answers. In this
paper we present a trust mechanism that can assist peers to select those
in the network that are better suited to answer their queries. The trust
that a peer has towards another peer depends on a specific query and
represents the probability that the latter peer will provide a satisfactory
answer. In order to compute trust, we exploit both alignments and peers’
direct experience, and perform Bayesian inference. We have implemented
our technique and conducted an evaluation. Experimental results showed
that trust values converge as more queries are sent and answers received.
Furthermore, the use of trust improves both precision and recall.

1 Introduction

Peer-to-peer (P2P) systems have received considerable attention because their
underlying infrastructure is very appropriate for scalable and flexible distributed
applications over Internet. In P2P systems, there is no centralised control or
hierarchical organisation: each peer is equivalent in functionality and cooperates
with other peers in order to solve a collective task. P2P systems have evolved
from simple keyword-based file sharing systems such as Napster and Gnutella
to semantic data management systems such as Edutella [14], Piazza [8] or
SomeWhere [1].

In this paper, by a semantic P2P network we refer to a fully decentralised
overlay network of people or machines (peers) sharing and searching for resources
(documents, videos, photos, data, services) based on their semantic annotations
using ontologies. In semantic P2P systems, every peer is free to organise her local
resources as instances of classes of her own ontology serving as query interface
for other peers. Alignments between ontologies make possible to reformulate
queries from one local peer vocabulary to another. The result of a query is a set

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 51–66, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

52 M. Atencia et al.

of resources (e.g., documents) which are instances of some classes corresponding,
possibly via subsumption or equality, to the initial query posed to a specific peer.

Trust is widely acknowledged as a central factor when considering networks
of autonomous interacting entities and notably in the context of the Semantic
Web. When referring to the notion of trust, T. Berners-Lee advocates for a
user to be able to search for reasons why he or she should be confident of a
returned answer [3]. Trust is helpful to select, from a given set of peers, those
that are expected to answer with most satisfactory instances. Peers may use
this information for broadcasting their queries to a reduced set of peers and to
have an approximation of the reliability of provided answers. Furthermore, peers
may preventively send selected queries in order to improve the trust they have
towards another peer. Finally, by identifying “weak correspondences”, peers may
signal faulty alignments and trigger new matching of the ontologies.

Several proposals have been made that do not share the same meaning for
trust [15,2]. Many are user/agent/peer centred and rely on the assumption that
all peers share similar implicit goals. Trust is then closely related to the notion
of reputation in a community.

In contrast, in the context of semantic P2P systems, each peer may have her
own view on how categorising the resources that are exchanged between peers.
For this reason, we rather promote the computation of subjective trust values
based on direct experiences between peers. We also argue for a finer grained
approach to trust in order to take into account the fact that, for answers provided
by the same peer, the trust into these answers may vary according to which class
they are instance of within the peer ontology.

An Illustrative Scenario

Consider a semantic P2P system for exchanging bookmarks, in which a peer Alice
organises her bookmarks according to two main categories: FavouriteMusic and
GoodRestaurants. These in turn are divided into subcategories: Jazz , PopRock
and Folk for FavouriteMusic, and Italian and Chinese for GoodRestaurants .
Within the Semantic Web, this can be implemented as a lightweight ontology
that can be expressed in RDFS, in which categories and subcategories correspond
to classes and subclasses, and the URLs identifying bookmarks correspond to
URIs declared as instances of some classes.

Suppose that Alice is acquainted with Bob and Chris with whom she shares
some interests in music and restaurants. This is captured by correspondences
between her ontology and Bob’s and Chris ’s ontologies. If Bob organises his
best-of songs according to his favourite singers (e.g., the classes MichaelJackson
and LouisArmstrong are declared as subclasses of BestSongs in his ontology),
the following correspondence expresses that any URL bookmarked by Bob as an
instance of his class MichaelJackson can be bookmarked by Alice as an instance
of her own class PopRock :1

Bob : MichaelJackson ! Alice : PopRock

1 We make use of the notation P : A for identifying a class A of peer P ’s ontology.

Alignment-Based Trust for Resource Finding in Semantic P2P Networks 53

An alignment between two peer ontologies is a set of correspondences between
some classes used by these peers. Figure 1 shows the ontologies and alignments
between Alice’s, Bob’s and Chris ’s ontologies. It must be seen as a (small) part
of a semantic P2P system that can be queried for resource finding.

FavouriteBookmarks

FavouriteMusic GoodRestaurants

Jazz PopRock Folk Italian Chinese

Alice

Pizzeria

BestRestaurants

LouisArmstrong FastFood

BestOf
Bob

BestSongs

MichaelJackson

Chris : Gastronomic !Alice : GoodRestaurant

Chris : Trattoria !Alice : Italian

Chris : BluesMusic !Alice : Jazz

Chris

MyBookmarks

Restaurants BluesMusic

Gastronomic Trattoria

Bob : MichaelJackson !Alice : PopRock

Bob : LouisArmstrong !Alice : Jazz

Bob : Pizzeria !Alice : Italian

Fig. 1. Three semantic peers in a P2P semantic network

Suppose Alice wants to get bookmarks from her acquaintances in the network
to enrich her bookmarks about Italian restaurants. The alignments between her
ontology and Bob’s and Chris ’s ontologies allow to reformulate her initial query
about Italian restaurants into the query Pizzeria asked to Bob, and Trattoria
asked to Chris . As his answer set, Bob will return to her the set of instances in
the extension of his class Pizzeria , and Chris the set of instances in the extension
of his class Trattoria.

Alice notices that Chris has some bookmarks in common with her, and thus
tends to trust Chris for providing her with instances that fits well with her taste
in terms of Italian restaurants. Subsequently, she may be inclined to add new
bookmarks in her class Italian when they come from Chris .

However, although she trusts Chris for restaurants, she may not trust him
for his musical tastes. For instance, for getting new bookmarks about Jazz , she
can discover by choosing a sample of the set of URLs returned by Chris as the
extension of his class BluesMusic that very few corresponding music files fit well
with her taste in terms of Jazz music. For music, she will later tend not to trust
Chris and will prefer to query Bob on this topic.

54 M. Atencia et al.

Contributions

In this paper we propose a probabilistic model to handle trust in a semantic P2P
setting. We define the trust of a peer P towards another peer P ′ regarding a
class C (belonging to P ’s ontology) as the probability that an instance returned
by P ′ as an answer to the query asking for instances of C is satisfactory for P . In
order to compute trust, we exploit the information provided by peers’ ontologies
and alignments, along with the information that comes from direct experience.
Trust values are refined over time as more queries are sent and answers received.

We have designed an experimental protocol to study the convergence of trust,
and to measure the gain of using trust for resource finding in practice.

Finally, a by-product of our trust model is a probabilistic setting for resource
finding, in which the instances returned as answer for a given query are associated
with a probability. This is in line with the recent trends towards probabilistic
databases [4].

The paper is organised as follows. The background of our work is presented
firstly. Then we introduce the notion of probabilistic populated ontology and
the definition of trust. Later we explain the computation of trust and update of
probabilistic populated ontologies. We discuss experimental results, and finally
give some concluding remarks.

2 Preliminaries

In this section the components of a semantic peer-to-peer network are presented:
populated ontologies, alignments and acquaintance graphs. The kind of queries
that we take into account is also described.

2.1 Ontologies and Populated Ontologies

We draw a distinction between the ontological structure and the instances used
to populate it. We deal with lightweight ontologies: classes linked by means of a
less-general-than relation and a disjointness relation.

Definition 1. An ontology is a tuple O = 〈C, !,⊥〉 where C is a non-empty
finite set of class symbols; ! is a partial order on C; ⊥ is an irreflexive and
symmetric relation on C; and for all c, c′, d, d′ ∈ C,

if c ⊥ d, c′ ! c and d′ ! d then c′ ⊥ d′

A populated ontology is the result of adding instances to an ontology in accor-
dance to the intended meaning of the two ontological relations.

Definition 2. A populated ontology O is a tuple 〈O, I, ext〉, where O is an
ontology, I is a set of instances, and ext is a function that maps each class c
of O with a subset ext(c) of I called the extension of c, in such a way that the
family of class extensions covers I, and for all classes c, d the following hold:

1. if c ! d then ext(c) ⊆ ext(d), and
2. if c ⊥ d then ext(c) ∩ ext(d) = ∅.

Alignment-Based Trust for Resource Finding in Semantic P2P Networks 55

2.2 Alignments

In an open and dynamic environment as a P2P network, the assumption of peers
sharing the same ontology is not realistic. But if peers fall back on different
ontologies, there must be a way to connect ontologies and translate queries so
that their addressees are able to process them. Typically this is done by means
of alignments —sets of correspondences between semantically related ontological
entities— and finding alignments is what ontology matching is aimed at (see [7]).

A correspondence between two classes c and c′ of two ontologies O and O′,
respectively, is usually defined as a tuple 〈c, c′, r〉 with r ∈ {!, =, ",⊥}, where
c ! c′ (or 〈c, c′, !〉) is read “c is less general than c′”, c = c′ is read “c is equal
to c′”, c " c′ is read “c is more general than c′”, and c ⊥ c′ is read “c is disjoint
from c′”. Here, however, we deal with a more general notion of a correspondence
inspired from [6].

Definition 3. Let O and O′ be two ontologies, and let c and c′ be two classes
of O and O′, respectively. A correspondence between c and c′ is a tuple 〈c, c′, R〉
with R ∈ 2Γ where Γ is the set {=, >, <, #,⊥}. An alignment A between O and
O′ is a set of correspondences between classes of O and O′.

In such correspondences, a class is connected to another through a set of base
relations to be thought of as an exclusive disjunction. For instance, c{>, <}c′

(i.e., 〈c, c′, {>, <}〉) is read “either c is more general than c′ or less general than
c′”. In this way, we can express uncertainty with regard to the alignment relation.
Note that the relations ‘"’ and ‘!’ can be seen as abbreviations for {=, >} and
{=, <}, respectively. Secondly, a nonstandard symbol ‘#’ is introduced. It reflects
the idea of overlapping: classes the extensions of which share some instances
but no one is equal to or contained into the other. Finally, c Γ c′ states total
uncertainty about the relation between c and c′.

According to Definition 3, an alignment may include correspondences that
link the same two classes through different relations, or no one connecting two
particular classes. However, one would like alignments to relate any pair of classes
and to do it in one way. If there exists no correspondence between c and c′ in
an alignment A, we can simply add 〈c, c′, Γ〉. If 〈c, c′, R〉, 〈c, c′, S〉 ∈ A with
R (= S, we can replace both with 〈c, c′, R∩S〉. This follows the interpretation of
alignments as a set of correspondences which all hold. The resulting alignment
is said to be normalised.

Definition 4. Let A be an alignment between two ontologies O and O′. The
normalisation of A is the alignment A made up of all correspondences 〈c, c′, R〉
with c ∈ C, c′ ∈ C′ and R =

⋂
RA(c, c′) where RA(c, c′) = {S : 〈c, c′, S〉 ∈ A}.

The alignment A is said to be normalised providing A = A.

Remark 1. Recall that if RA(c, c′) = ∅ then
⋂

RA(c, c′) = Γ.

All alignments considered in this work are assumed to be normalised.

56 M. Atencia et al.

2.3 Peers and Acquaintance Graphs

We consider a finite set P = {Pi}n
i=1 of peers. In this work, Pi will be identified

by i. We assume that each peer Pi is associated with one populated ontology
Oi = 〈Oi, Ii, exti〉 (where 1 ≤ i ≤ n).

An acquaintance graph stands for peers’ acquaintances (or neighbours) in the
network. As usual, a link between two peers reflects the fact that they know the
existence of each other. In addition, we assume that there exists one alignment
between their respective ontologies.

Definition 5. An acquaintance graph is a labelled directed graph 〈P ,acq〉 where
P = {Pi}n

i=1 is the set of vertices and any edge in acq is of the form 〈i, j〉 with
i (= j, and it is labelled with an alignment Aij between ontologies Oi and Oj.
Moreover, if 〈i, j〉 ∈ acq then 〈j, i〉 ∈ acq and Aji is the inverse of Aij .

2

Peer Pj is said to be an acquaintance of peer Pi if 〈i, j〉 ∈ acq. The set of
acquaintances of Pi is denoted by acq(Pi).

Remark 2. Note that, given two ontologies O and O′, we can always consider
the trivial alignment, that is, the one that is made up of all correspondences
〈c, c′, Γ〉 with c ∈ C and c′ ∈ C′.

2.4 Queries and Query Translations

Peers pose queries to obtain information concerning other peers’ populated on-
tologies. We deal with a simple query language, as peers can only request class
instances: if peer Pj is an acquaintance of peer Pi, she may be asked

Q = c(X)? (1)

by Pi with c ∈ Oi. Now, since we do not assume that all peers share the same
ontology, queries may require to be translated for their recipients to be able to
process them.

Query translations are determined by correspondences of the alignments of
the network. Specifically, if peer Pi wants to send Q to Pj , she will first choose
one correspondence 〈c, d, R〉 ∈ Aij (typically R is equal to ‘=’ or ‘>’) and then
send Pj the translation

Q′ = d(X)? (2)

The answer to (1) through its translation (2) is the set of instances of class d
in Pj ’s populated ontology. Unlike queries, we assume that no translation of
instances is ever required. Since alignments may be unsound and incomplete,
this answer may contain unsatisfactory instances, i.e., instances which are not
considered instances of c by Pi.

A peer cannot foresee whether the answer that another peer provides to one
of her queries contains satisfactory instances or not, but this uncertainty can be
estimated with the help of a trust mechanism.

2 Given an alignment A between O and O′, the inverse of A is the alignment A−1 =
{〈c′, c, R−1〉 : 〈c, c′, R〉 ∈ A} between O′ and O, where R−1 = {r−1 : r ∈ R} and r−1

is ‘>’ and ‘<’ if r is ‘<’ and ‘>’, respectively, and r−1 = r otherwise.

Alignment-Based Trust for Resource Finding in Semantic P2P Networks 57

3 The Trust Mechanism

As mentioned above we look at trust as a way to estimate the proportion of
satisfactory instances in a peer answer. The notion of satisfactory instance can
be faithfully captured by an ideal populated ontology O∗

i that corresponds to
a hypothetical situation in which peer Pi classified all instances of the network
according to her ontology Oi. In this way we can express the fact that Pi considers
an arbitrary instance a as an instance of c ∈ Oi by a ∈ ext∗i (c). It is assumed that
Oi = O∗

i and exti(c) ⊆ ext∗i (c) for every class c ∈ Ci. This populated ontology
is referred to as the reference populated ontology of peer Pi.

If peer Pi receives a set B as an answer to the query (2), the proportion of
satisfactory instances is given by the conditional probability p(ext∗i (c)|B). The
probability space under consideration here is the triple (Ω, A, p(·)) where Ω is the
set of instances of the network (a finite set), the σ-algebra A is the power set of
Ω, and p(·) is Laplace’s definition of probability. Our approach for trust aims at
finding approximations to these conditional probabilities. Before the definition
of trust we introduce the notion of a probabilistic populated ontology.

3.1 Probabilistic Populated Ontologies

Once an answer is received, it can be (partly) added or not to the extension of
the queried class. In order to capture the evolution of class extensions in the
network, we consider a time variable t ∈ N, and we will write Ot

i to denote peer
Pi’s populated ontology at instant t (beginning with Oi):

Oi = O0
i ,O1

i , . . . ,O
t
i , . . . (3)

We assume that the underlying ontology never changes, i.e., Oi = Ot
i (t ∈ N),

and that the sequence of class extensions {extti(c)}t∈N is monotonically increasing
for all c ∈ Ci.

Nonetheless, since we deal with probabilities new instances may not be 100%
satisfactory. For this reason, at t ∈ N, peer Pi is associated with a probabilistic
populated ontology.

Definition 6. Peer Pi’s probabilistic populated ontology at time t is a triple

Õt
i = 〈Oi, I

t
i , ẽxt

t

i〉

where It
i is a set of instances and ẽxt

t

i is a function that maps each class c of
Oi with its probabilistic extension

ẽxt
t

i(c) = 〈A∗,F〉 with F = {〈Ak, [pk, qk]〉}k∈K where

• A∗ is a (possibly empty) subset of ext∗i (c), that is, a set of instances which
are certain to be instances of the class c, and all

• Ak are pairwise disjoint subsets of It
i which are also disjoint from A∗, and

all [pk, qk] are distinct subintervals of the unit interval [0, 1], where k ∈ K
and K is a (possibly empty) index set of integers.

58 M. Atencia et al.

Furthermore, the tuple Ot
i = 〈Oi, I

t
i , extti〉 with extti(c) = A∗ *

⊎
k∈K Ak must be

a populated ontology (so that the axioms that relate classes with their extensions
are fulfilled).

A probabilistic extension ẽxt
t

i(c) can be seen as a classical extension extti(c)
partitioned into a number of subsets A∗, A1, . . . , An. All instances of A∗ are
sure to be instances of the class c and then p(ext∗i (c)|A

∗) = 1. However, the
set Ak (1 ≤ k ≤ n) may contain instances that are actually not instances of c.
The idea behind the interval [pk, qk] ⊆ [0, 1] is that there exists some statistical
evidence for pk ≤ p(ext∗i (c)|A

k) ≤ qk.3 The way probabilistic extensions are
built is explained in Section 3.5.

Remark 3. Every populated ontology Oi can be seen as a probabilistic populated
ontology Õi = 〈Oi, Ii, ẽxti〉 where ẽxti(c) = {〈exti(c), ∅〉} for all c ∈ Ci.

Peers build probabilistic populated ontologies as more queries are sent and an-
swered (starting with the “probabilistic version” of Oi):

Õi = Õ0
i , Õ1

i , . . . , Õ
t
i , . . . (4)

And what was said about (3) at the beginning of this section holds for the
underlying populated ontologies of (4).

3.2 Definition of Trust

With the new terminology, Pj ’s answer to query (1) via its translation (2) at time
t is the extension exttj(d), and an arbitrary instance a ∈ exttj(d) is qualified as
satisfactory provided that a ∈ ext∗i (c). The proportion of satisfactory instances
in exttj(d) is given by the conditional probability p(ext∗i (c)|exttj(d)). Our proposal
is that the higher this value is, the more Pi trusts Pj .

Definition 7. Let us consider two peers Pi and Pj (i (= j) and two classes c
and d of Oi and Oj, respectively. The trust that Pi has towards Pj with respect
to the translation 〈c, d〉 at time t is the conditional probability p(ext∗i (c)|exttj(d))
and it is denoted by trustt(Pi, Pj , 〈c, d〉).

This idea is slightly different from most of the existing approaches for trust. In
our setting cheating is not directly addressed: unsatisfactory answers are seen
as the result of peers’ incapacity to understand each other. In addition, trust
is dependent on translations: peers may be very trustworthy in regard with
some translations but not with others. In the following section, we explain our
approach for computing trust. It exploits the information provided by alignments
and revises it with direct experience.

3 The use of intervals follows Lukasiewicz’s notation for conditional constraints in
probabilistic knowledge bases [11].

Alignment-Based Trust for Resource Finding in Semantic P2P Networks 59

3.3 Computation of Trust

Our approach for trust aims at approximating trustt(Pi, Pj , 〈c, d〉) by Bayesian
inference. A probability distribution T t(Pi, Pj , 〈c, d〉) represents Pi’s belief about
θ = p(ext∗i (c)|exttj(d)). If there is no direct experience, alignments are taken to
construct prior beliefs. Answers are later used to revise these beliefs. As they can
be of a size that cannot be processed manually, we propose to perform sampling
with replacement in order to estimate the number of satisfactory instances. We
work with beta distributions as they are typically used to describe the parameter
of a binomial distribution.

No direct experience: alignment-based trust. If T t(Pi, Pj , 〈c, d〉) is not defined
(this is the case when, for instance, t = 0), we fall back on alignments. Peers Pi

and Pj ’s ontologies are linked through Aij . Since this alignment is normalised
then there exists a unique R ⊆ Γ such that 〈c, d, R〉 ∈ Aij . The intending
meaning of correspondences is

R = {=} iff ext∗i (c) = ext∗j (d)

R = {>} iff ext∗i (c) ⊃ ext∗j (d)

R = {<} iff ext∗i (c) ⊂ ext∗j (d)

R = {⊥} iff ext∗i (c) ∩ ext∗j (d) = ∅

R = { # } iff none of the above holds

Hence, provided that exttj(d) ⊆ ext∗j (d),

if R is ‘=’ or ‘>’ then p(ext∗i (c)|exttj(d)) = 1

if R is ‘⊥’ then p(ext∗i (c)|exttj(d)) = 0

if R is ‘<’ or ‘ # ’ then p(ext∗i (c)|exttj(d)) ∈ [0, 1]

In the general case, R is a set {r1, . . . , rn} ⊆ Γ (with n ≤ 5). If we assume that
all relations in R are equiprobable, by the law of total probability, we have

trustt(Pi, Pj , 〈c, d〉) ∈ [u, v] with u =
1

n

n∑

k=1

ak v =
1

n

n∑

k=1

bk

where [ak, bk] = [1, 1] if rk is ‘=’ or ‘>’, [ak, bk] = [0, 0] if rk is ‘⊥’, and finally
[ak, bk] = [0, 1] if rk is ‘<’ or ‘#’ (k = 1, . . . , n).

The information above can be used to construct Pi’s prior belief about the
parameter θ = p(ext∗i (c)|exttj(d)) by means of a beta distribution Beta(α, β). If
[u, v] = [0, 1], we take the uniform distribution U [0, 1] = Beta(1, 1). If not, and
u < v, we equal [u, v] with [µ− 2σ, µ+2σ] and then find Beta(α, β) whose mean
and deviation are µ and σ. This is the standard way to find a confidence interval
based on the normal distribution. If u = v, we proceed with σ = 0.005 and µ = u
unless u = 1 and u = 0, in which cases µ = 0.99 and µ = 0.01, respectively.4 In
this way, we define the trust distribution T t(Pi, Pj , 〈c, d〉) = Beta(α, β).

4 The values for α and β can be found by solving µ = α
α+β

and σ =
√

µ(µ−1)
α+β+1

.

60 M. Atencia et al.

Example 1. If R = {<, =} then [u, v] = [.5, 1]. If we make [.5, 1] = [µ−2σ, µ+2σ]
then µ = .75 and σ = .125. This leads to Beta(8.25, 2.75) whose shape is depicted
in Figure 2(a). Figure 2 is completed with the shapes of beta distributions for
the relations R = {=} and R = Γ. The latter corresponds to Beta(0.4, 0.8).5

!"! !"# !"# !"# !"# !"#

!
"!

!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

(a) 〈c, {<, =}, d〉

!"! !"# !"# !"# !"# !"#

!
!
"

!
"

!
"

!
"

(b) 〈c, {=}, d〉

!"! !"# !"# !"# !"# !"#

!
!

!
!

!

(c) 〈c, Γ, d〉

Fig. 2. Beta distributions for different correspondences

Direct experience. Trust at time t is used to choose a peer to which to send a
query, as well as a class through which to translate it. This is explained in detail
in Section 3.4. Let us imagine that Pi receives B = exttj(d). A sampling with
replacement is performed over B in order to estimate the number of satisfactory
instances. Let S ⊆ B be a sample (strictly speaking, S is a multiset). We assume
that every peer can call an oracle (typically the user) to find out whether an
instance is satisfactory or not. More specifically, given a ∈ S, Pi’s oracle provides
a yes/no response to the question: “a ∈ ext∗i (c)?”. Even this, nonetheless, may
be a high burden for Pi’s oracle. We can benefit from peers’ populated ontologies
to process some instances automatically without the need to call oracles. Recall
that Pi is associated with a probabilistic populated ontology Õt

i , and that the
probabilistic extension of class c includes a set A∗ of instances which are certain
to be instances of ext∗i (c). So if a ∈ B ∩ A∗, a ∈ ext∗i (c). We can also identify
unsatisfactory instances automatically: if a ∈ S is such that there exists c′ in Oi

with c ⊥ c′ and a ∈ A′∗ then a /∈ ext∗i (c). The remaining instances are processed
by peer Pi’s oracle.

Assume that T t(Pi, Pj , 〈c, d〉) = Beta(α, β). If s is the sample size, s+ is the
number of successes (satisfactory instances), and s− = s − s+ is the number of
failures, peer Pi’s posterior belief about θ = p(ext∗i (c)|exttj(d)) is summarised in
Beta(α + s+, β + s−). Thus we define

T t+1(Pi, Pj , 〈c, d〉) = Beta(α + s+, β + s−) (5)

5 Although cΓd stands for total uncertainty about the relation between c and d, the
mean of its associated beta distribution, Beta(0.4, 0.8), is not 0.5 but 0.6. However,
our aim is not to find out the correct relation between c and d, but to estimate the
probability p(ext∗i (c)|extt

j(d)). In this sense, total uncertainty arises with c < d, c # d

or c{<, #}d, which are all modelled with a uniform distribution (whose mean is 0.5).

Alignment-Based Trust for Resource Finding in Semantic P2P Networks 61

3.4 Use of Trust

Imagine that peer Pi wants to query c(X)? (c ∈ Ci) at time t ∈ N. Then Pi

chooses an element from the set

P0 = {〈Pj , dj〉 : Pj ∈ acq(Pi) and dj ∈ Oj}

so that, if 〈Pj0 , dj0〉 is the preferred tuple, Pi will send dj0(X)? to Pj0 . This
choice depends on trust: Pi opts for 〈Pj0 , dj0〉 iff

E(T t(Pi, Pj0 , 〈c, dj0〉)) = max
〈Pj ,dj〉∈P0

{E(T t(Pi, Pj , 〈c, dj〉))}

where E(·) denotes the expected value of a distribution.

3.5 Updating Probabilistic Populated Ontologies

In the end, trust is used for class extensions to be increased with new satisfactory
instances. If peer Pi receives B = exttj(d) as an answer to “c(X)?” then B will be
(partly) added to extti(c). In line with the computation of trust based on direct
experience (see Section 3.3), the set B is partitioned into three subsets:

B = B+
aut * B−

aut * Baut

• B+
aut = {a ∈ B : a ∈ extti(c)} = B ∩ extti(c)

• B−
aut = {a ∈ B : there exists c′ ∈ Oi with a ∈ extti(c

′) and c ⊥ c′}
• Baut = {a ∈ B : a /∈ B+

aut and a /∈ B−
aut} = B \ (B+

aut * B−
aut)

The set B+
aut contains the instances in B that already belong to extti(c), and

B−
aut comprises those instances that, if added to extti(c), would yield to a logical

inconsistency. The set Baut embodies the new information that can be included
in extti(c).

6 Since the answer B was received as the result of a comparison of
trust values, it seems reasonable to add all instances of Baut to extti(c). The fact
that these instances may not be 100% satisfactory, though, should be reflected
in Pi’s populated ontology. As described in Section 3.1, probabilistic populated
ontologies are designed for this purpose.

The set Baut will be included in extti(c) along with an interval [p, q] such that
p ≤ p(ext∗i (c)|Baut) ≤ q on the basis of statistical evidence. Again, we propose
to perform Bayesian inference, but, instead of weighing more on Pi’s oracle, we
lean on the previous sampling and make use of the formula

p(ext∗i (c), Baut|exttj(d)) = p(ext∗i (c)|Baut) · p(Baut|exttj(d)) (6)

Let us explain this in detail. The probability p(Baut|exttj(d)) represents the pro-
portion of instances of Baut in exttj(d) and its computation is straightforward.
By monotonicity, we have

0 ≤ p(ext∗i (c), Baut|exttj(d)) ≤ p(Baut|exttj(d))

6 The subscript “aut” stands for “automatic”, as both instances from B+
aut and B−

aut

can be automatically processed, whereas this is not the case for Baut.

62 M. Atencia et al.

In order to compute a prior about ϑ = p(ext∗i (c), Baut|exttj(d)), we proceed as
the computation of alignment-based trust (Section 3.3): we equate the interval
[u, v], where u = 0 and v = p(Baut|exttj(d)), with [µ− 2σ, µ + 2σ], and then find
Beta(α, β) whose mean and deviation are µ and σ, respectively. A posterior is
computed with the same sampling S used for Equation 5, but this time we count
as a success any satisfactory instance that also belongs to Baut.

Let Beta(α′, β′) be the resulting posterior, and let µ′ and σ′ be its mean and
deviation. The set Baut is included in extti(c) along with the interval [p, q] where

p =
1

p(Baut|exttj(d))
(µ′ − 2σ′) q =

1

p(Baut|exttj(d))
(µ′ + 2σ′)

Hence, p ≤ p(ext∗i (c)|Baut) ≤ q with 95% probability, which is based on the
normal approximation to the posterior density for ϑ and Equation 6. Actually, if
S+ denotes the set of satisfactory instances in the sample S, Baut is partitioned
into Baut ∩S+ and Baut \S+, which are added to extti(c) separately. Thus [p, q]
must be resized accordingly, and then replaced by another interval [p′, q′]. Below
we explain explicitly how probabilistic populated ontologies are built.

As remarked in Section 3.1, Õ0
i is defined as the probabilistic version of Pi’s

initial populated ontology Oi, that is,

• Õ0
i = Õi, and

• at time t ∈ N, if ẽxt
t

i(c) = 〈A∗,F〉 then we define

ẽxt
t+1

i (c) = 〈A∗ * (Baut ∩ S+),F * 〈Baut \ S+, [p′, q′]〉〉

In order for Õt+1
i to be a probabilistic populated ontology, though, Baut must

be included in the extension of any superclass c′ of c. For the sake of space, we
give a brief explanation of how this is done. Notice first that no instance in Baut

belongs to the extension of a class disjoint from c′ as B−
aut ∩ Baut = ∅ and c

is a subclass of c′. All instances in Baut ∩ S+ are certainly instances of c′ since
ext∗i (c) ⊆ ext∗i (c

′). Instead of Baut \S+ we include Baut \ (S+∪extti(c
′)) as some

instances of Baut \S+ may already belong to extti(c
′). In order to find an interval

with which to estimate p(ext∗i (c
′)|Baut \ (S+∪extti(c

′))), we proceed as before to
approximate p(ext∗i (c)|Baut \ (S+ ∪ extti(c

′))) and then apply the monotonicity
of probability. In this way, the upper bound that we obtain is equal to 1.

By construction, Õt+1
i is a probabilistic populated ontology.

4 Experimental Analysis

This section reports on a preliminary experimental campaign that has been
conducted to test the viability of the trust mechanism described in this paper.

We set out to answer two research questions:

1. Do trust values converge as more queries are sent and answers received?
2. Is there any gain in query-answering performance —measured in precision

and recall— by using the trust technique?

In what follows we first describe the experimental setting and then explain the
execution and evaluation.

Alignment-Based Trust for Resource Finding in Semantic P2P Networks 63

4.1 Experimental Setting

The trust mechanism presented in this work has been implemented in a simulator
written in Java. The simulator also deals with aspects indirectly related to trust,
such as generation of P2P networks, populated ontologies and alignments. In the
remainder of the section we elaborate more on these aspects.

P2P network topology. Social networks are well-known to exhibit small-world
characteristics [5]. For this reason, a small-world topology was used for the entire
evaluation. To generate this topology, we ran Kleinberg’s algorithm included in
the JUNG Java library.7 A node in the network represents a peer associated
with a populated ontology. The total number of peers in our evaluation was 20.

Populated ontologies. All populated ontologies in the evaluation had the same
underlying ontology Oi = O. More specifically, we chose the ontological scheme
described in [10] (with 64 classes). The semantic heterogeneity was reproduced
by the way classes were populated with instances. The simulator implements
an ontology population module which was utilised for both reference populated
ontologies O∗

i and initial populated ontologies Oi = O0
i . First, a set S of abstract

instances is generated. In our evaluation, the size of S was 6000. Second, for each
peer Pi, a sample Si is taken from S. Furthermore, this sampling is performed in
a way that Si and Sj overlap for each pair i, j. The size of each Si is determined
with a Zipfian distribution, which is often used to approximate data in physical
and social sciences [12]. The skewing factor considered was 0.5. Third, the top
class of O∗

i is populated with Si and a top-down population process is carried
out by removing instances randomly for the remainder of classes. During this
process, we check that all ontological axioms —subclass and disjoint relations—
are fulfilled. Initial populated ontologies are generated in a similar way, starting
this time with a sample of Si instead of S to populate the top class in Oi.

Alignment generation. A connection between peers Pi and Pj in the network
(edge between nodes) is labelled with an alignment Aij between their respective
ontologies. This is seen as a declined version of a reference alignment A∗

ij which
is never available to the peers. Thus we can capture the real practice of ontology
matching. Reference alignments are built by comparing class extensions in the
reference populated ontologies (for instance, c < d is included in A∗

ij iff ext∗i (c) ⊂
ext∗j (d)). To build initial alignments, correspondences in reference alignments are
discarded or replaced randomly in accord with global values for precision and
recall. In our evaluation, we chose 0.6 for both measures.

4.2 Execution and Evaluation

From all peers and classes in the network we chose a subset P0 ⊆ P of 15 peers
and a subset C0 ⊆ C of 25 classes randomly and ran 100 simulations. At each
round n ≤ 100 of the execution, a peer Pi ∈ P0 and a class c ∈ C0 are randomly
chosen. Then an acquaintance Pj of Pi and a class d ∈ Cj are selected by using

7 http://jung.sourceforge.net

http://jung.sourceforge.net

64 M. Atencia et al.

the trust mechanism (Section 3.4). Notice that Ci = Cj = C as we chose a single
ontological scheme O. To process answers, the maximum number of oracle calls
allowed was 40. The subset Baut ⊆ exttj(d) is included in peer Pi’s probabilistic
populated ontology if the expected value E(T n(Pi, Pj , 〈c, d〉)) is greater than a
given threshold. In our evaluation, this threshold was 0.6.

In order to test the convergence of trust, we analysed the difference

∆n = |E(T n(Pi, Pj , 〈c, d〉)) − p(ext∗i (c)|ext∗j (d))|

over the 10 most occurred queries. Figure 3 shows the experimentation results.
After a number of rounds, ∆n approached 0. Actually, in most of the cases, no
more than 5 rounds were needed for ∆n to be close to 0.1.

!"

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!"#*

!"#+

!"#,

!$

!$!% !& !' !(!) !* !+

-./01

2$
2%
2&
2'
2(
2)
2*
2+
2,
2$"!

"
#$
%

&'()*

Fig. 3. Test of convergence of trust

In order to test the gain in query-answering performance, we compared the
use of the trust mechanism with a naive strategy. In the latter, peers randomly
choose acquaintances and always accept their answers. For the evaluation to be
fair, the same set of queries was used in both strategies. This time we analysed
precision and recall measured by

Precision(n) =
|ext∗i (c) ∩ extni (c)|

|extni (c)|
Recall(n) =

|ext∗i (c) ∩ extni (c)|

|ext∗i (c)|

Figure 4 depicts the average precision and recall over the 100 rounds for the 20
most occurred queries. As expected, the naive strategy produced lower values
for both measures. Furthermore, the use of the trust mechanism ensured high
precision. However, this was not the case for recall. The reason is that peers only
ask their neighbours, and these ones never change. As instances are spread all
over the network, many instances may be unaccessible to peers. It is expected
that if instances were more accessible, recall would be higher, but this remains
to be experimented. The theoretical model presented in this paper is general
enough to cover the case where peers receive answers from non-neighbour peers.

Alignment-Based Trust for Resource Finding in Semantic P2P Networks 65

!"

!"#$

!"#%

!"#&

!"#'

!(

($) % * & + ' , (" ((($ () (% (* (& (+ (' (, $"

-
./
01
21
3
4

56/.7

8.629
:;1</

!"

!"#$

!"#%

!"#&

!"#'

!(

($) % * & + ' , (" ((($ () (% (* (& (+ (' (, $"

-
./
01
1

23.45

64378
90:;.

Fig. 4. Comparison between the use of trust and the naive strategy

5 Concluding Remarks

We have proposed a trust mechanism in semantic P2P systems. The trust that
a peer has towards another peer depends on a specific query and represents the
probability that the latter will provide a satisfactory answer. In order to compute
trust, we exploit alignments and peers’ direct experience, and perform Bayesian
inference. Preliminary experimental results show that trust values converge as
more queries are sent and answers received, and that there is a gain in query-
answering precision and recall when peers make use of the trust mechanism.

The notion of probabilistic populated ontology has been introduced. This is a
by-product of trust computation that allows to store and process the instances
obtained from query answers in the same way as it is done in probabilistic
databases [4]. More precisely, a probabilistic populated ontology can be seen as
a probabilistic database in which each fact C(i) is associated with a (lower bound
of) probability. As a result, query answers can be ranked, and only top-k answers
can be returned to interested users. In addition, since trust evolves over time as
more queries are spread over the network and their answers are processed and
stored with their probabilities, the resulting probabilistic populated ontologies
somehow capture and compile the results of a trust propagation.

Many different probabilistic approaches to trust can be found in the literature
[16,13]. Some also perform Bayesian inference over feedback on past interactions.
However, to the best of our knowledge, our model is the only one which explicitly
benefits from ontological content and alignments.

EigenTrust [9] is a peer-to-peer algorithm which, like ours, has a direct trust
computation. Direct trust is then propagated among peers and aggregated to
calculate global trust which can be very costly. As remarked above, we avoid this
computation by exploiting the information on global trust stored and compiled
in the probabilistic populated ontologies of acquaintance peers.

As future work, we plan to extend our trust model in order to deal with
more expressive ontology and query languages. Although witness peers are not
considered in this paper, the use of witness information is another future research
line. Witness peers can help to find new trustworthy acquaintances. In this way,
recall values can increase. Furthermore, the impact of malicious peers that hide
or bias information, or lie, will be studied too.

66 M. Atencia et al.

Regarding the experimentation, we aim to perform a thorough experimental
analysis concerning different network configurations in terms of number of peers,
instances and oracle calls. Moreover, we want to investigate the relation between
the quality of alignments and the speed of convergence of trust values.

Acknowledgements. This work is supported under the Dataring project, which
is sponsored by the Agence Nationale de Recherche (ANR-08-VERS-007), and
the Webdam project, sponsored by the European Research Council (FP7-226513).

References

1. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed
reasoning in a peer-to-peer setting: application to the Semantic Web. Journal of
Artificial Intelligence Research 25, 269–314 (2006)

2. Artz, D., Gil, Y.: A survey of trust in computer science and the Semantic Web.
Journal of Web Semantics 5(2), 58–71 (2007)

3. Berners-Lee, T.: Cleaning up the user interface (1997),
http://www.w3.org/DesignIssues/UI.html

4. Dalvi, N., Re, C., Suciu, D.: Query evaluation on probabilistic databases. IEEE
Data Engineering Bulletin 29(1), 25–31 (2006)

5. Watts, D.J.: Networks, dynamics, and the small-world phenomenon. American
Journal of Sociology 105(2), 493–527 (1999)

6. Euzenat, J.: Algebras of ontology alignment relations. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 387–402. Springer, Heidelberg (2008)

7. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
8. Halevy, A., Ives, Z., Tatarinov, I., Mork, P.: Piazza: data management infrastruc-

ture for Semantic Web applications. In: Proceedings of the 12th International Con-
ference on World Wide Web, WWW 2003, pp. 556–567 (2003)

9. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for
reputation management in P2P networks. In: Proceedings of the 12th International
Conference on World Wide Web, WWW 2003, pp. 640–651 (2003)

10. Lorenz, B.: Ontology of transportation networks. REWERSE project, IST-2004-
506779, EU FP6 Network of Excellence (NoE). Deliverable (2005)

11. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the Semantic Web. Journal of Web Semantics 6(4), 291–308 (2008)

12. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press (1999)

13. Mui, L., Mohtashemi, M., Ang, C., Szolovits, P., Halberstadt, A.: Ratings in dis-
tributed systems: a bayesian approach. In: Proccedings of the 11th Workshop on
Information Technologies and Systems, WITS 2001 (2001)

14. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: EDUTELLA: a P2P networking infrastructure based on RDF. In:
Proceedings of the 11th International Conference on the World Wide Web, WWW
2002, pp. 604–615 (2002)

15. Sabater, J., Sierra, C.: Review on computational trust and reputation models. AI
Review 24(1), 33–60 (2005)

16. Schillo, M., Funk, P., Rovatsos, M.: Using trust for detecting deceitful agents in
artificial societies. Applied Artificial Intelligence 14(8), 825–848 (2000)

http://www.w3.org/DesignIssues/UI.html

	Alignment-Based Trust for Resource Finding in Semantic P2P Networks
	Introduction
	Preliminaries
	Ontologies and Populated Ontologies
	Alignments
	Peers and Acquaintance Graphs
	Queries and Query Translations

	The Trust Mechanism
	Probabilistic Populated Ontologies
	Definition of Trust
	Computation of Trust
	Use of Trust
	Updating Probabilistic Populated Ontologies

	Experimental Analysis
	Experimental Setting
	Execution and Evaluation

	Concluding Remarks

