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Abstract— Output tracking in a SISO causal uncertain 

nonlinear system with an output subject to a time delay is 

considered using sliding mode control. A higher order Padé 

approximation to a delay function with a known time delay is 

used to construct a model of a transformed system without a 

time delayed output and is employed in a feedback sliding 

mode control.  This model functions as a predictor of the plant 

states and the plant output, but is of nonminimum phase due to 

the application of the Padé approximation.  The method of the 

stable system center is used to stabilize the internal dynamics of 

this plant model, and a control is developed using a sliding 

surface to allow the plant to track a arbitrary reference profile 

given by an exogenous system with a known characteristic 

equation.  Simulations of the system are performed for the 

plant model using a first, second and third order Padé 

approximations and a controller in plant feedback mode.  

Numerical examples for Padé approximations of increasing 

order are considered and compared. 

I. INTRODUCTION

UTPUT tracking is important in many control systems, 

including electric power converters, robot manipulators 

and aerospace control systems [1]. The development of 

control algorithms, including sliding mode control, to allow 

output tracking of a reference profile for a system with an 

output time delay has been considered previously [1]-[6]. 

Time delay compensation techniques, developed in [4,5] 

mostly for systems with input delay, have been proposed to 

design the control input based on predicted values of the 

state variables.

The output tracking of a real-time reference profile in 

nonlinear uncertain systems with output delay by sliding 

mode control is considered in [7],[8]. The sliding mode 

control algorithm is designed for the approximate 

nonminimum phase model of a system with output delay. In 

these papers the plant state and the plant output predictor is 

based on the Padé approximation of the first order. The 

transformed system model with the Padé approximation 

replacing the delay element is of a nonminimum phase [9]. 

The developed output tracking sliding mode control 

algorithm [7],[8] suitable for the output tracking in causal 
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nonminimum phase systems employs the method of stable 

system center [10],[11]. This technique is based on the 

transformation of nonminimum phase output tracking in 

causal systems to state variable tracking. The bounded state 

reference profiles are generated using custom-designed 

equations of the system center [10],[11].  

The Padé approximations yield the time delay function 

model of a reasonable accuracy within a limited bandwidth 

[12].  It means that the agility of the system dynamics and of 

the reference output profile must be within this bandwidth in 

order the controller to provide an accurate output tracking. 

Since sliding mode control generates the switching control 

function of a very high frequency, inaccuracy in the output 

time delay approximation can lead to a significant control 

chattering [2],[3],[7],[8]. A contribution of this paper is in 

extending sliding mode output tracking control in causal 

nonlinear uncertain systems with output time delay modeled 

by the first order Padé approximation that is developed in 

[7],[8] to the case with higher order Padé approximation. 

Numerical computer simulations compare the sliding mode 

control performance in systems with the output time delay 

using the first, second and third order Padé approximations. 

It is shown that the higher order Padé approximation yields 

the better tracking accuracy of an arbitrary output reference 

profile given by a linear exogenous system with a known 

characteristic equation. In particular, the higher frequency of 

control switching and lower amplitude of oscillations in the 

output tracking error are achieved.

II. PROBLEM FORMULATION

A. Mathematical Model 

Consider a controllable fully feedback linearizable 

nonlinear SISO dynamic system without time delay 

)(
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xhy

utxgtxx

=

+= φ
            (1) 

where 
ntx ℜ∈)(  is a state vector, 

1)( ℜ∈ty  a controlled 

output and 
1)( ℜ∈tu  is a control input. The output 

command (tracking) profile )(tyc  is given in real time for 

the output )(ty  to be tracked asymptotically: 

)()( tyty c→ .

B. Coordinate Transformation 

The system (1) can be easily transformed [9] to 
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utbty n ),(),()( ξξϕ +=           (2) 

where nTn
yyy ℜ∈= −

],...,,[
)1(ξ , and n  is the relative 

degree. Following the approach in [13], we define a 

coordinate transformation for nTn
yyy ℜ∈= −

],...,,[
)1(ξ  to 

transform the system (1) to a form with relative degree equal 

to one. The new coordinate basis is 
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and the coordinate  
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is a new output. A new output-tracking profile is introduced  
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so that )()( tqtq c→  implies that )()( tyty c→

asymptotically with the eigenvalues defined by the 

polynomial  
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where 011 ,,..., aaan−  are specified nonnegative constants. 

Eigenvalues of the polynomial (6) are to be located in the 

left hand side of the complex plane or in the imaginary axis. 

The system (1) is rewritten in the new basis (3) 
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The internal dynamics of the system (7) are stable and can 

be disregarded when solving the output tracking problem. 

C. Output Tracking Time-delayed Problem 

Output tracking in system (1) can be transformed by (3) to 
output tracking in a scalar system 

utqzbtqzq ),,(ˆ),,(ˆ += ϕ            (8) 

where 1ℜ∈q , 1ℜ∈u ; ( ) 1)(,)(1)(ˆ)(ˆ 10 <≤⋅⋅+⋅=⋅ βδδbb

0,)(ˆ
11 ><⋅ ααϕ . The function 0)(ˆ

0 >⋅b  is assumed 

known. We now assume that the system output of (8) is 
accessible with time delay 

)()(ˆ τ−= tqty .               (9) 

The problem is to design sliding mode control )(tu  that 

forces the output variable )(ˆ ty  to track asymptotically the 

command profile )(tqc  described by an exogenous system 

with known stable characteristic polynomial 

01
1

1 ...)( pppP k
k

k
k ++++= −
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where k is the order of the exogenous system, and 

011 ,,..., pppk−  are specified nonnegative constants. Note 

that we require 

.0)(ˆ)(lim =−
∞→

tytqc
t

             (11) 

The problem can be reformulated by replacing the time-

delay function (9) by the ePad ′  approximations [12]. 

D. Padé Approximations 

The Padé approximations for a time delay τ  can be 

represented as a ratio of two polynomial functions of the 

Laplace variable s  with real coefficients. This is [12] 
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where s  is the Laplace variable and j  is the order of the 

Padé approximation. Let us introduce a new output variable 

y~  assuming that equality (12) becomes exact. In particular, 

we obtained the following state variable Padé 

approximation: 
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Taking into account (12) and (13) the system (8) and (9) 

can be approximately replaced by a state variable model. In 

particular, for the first order Padé approximation the system 

(8), (9) can be modeled by [7],[8] 

−=

−=

utqzbyqzy

y

),,(ˆ)~,,,(~

~42

ηϕ

τ
η

τ
η

        (14a) 

where ytqzyqz ~42
),,(ˆ)~,,,(

τ
η

τ
ϕηϕ −+−= , and the new output 

y~  is an approximation for the original output ŷ .
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Similarly, using a second order Padé approximation the 

system (8) and (9) can be approximately replaced by 

utqzbtqzyy
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The systems in eqs. (14a) and (14b) and are of nonminimum 

phase with unstable forced zero dynamics.  They are also 

systems without time delay, where the output and states are 

predicted using the Padé approximations of any selected 

order. So, the original tracking control problem with output 

time delay has been approximately transformed into a 

nonminimum phase output-tracking problem without delay. 

The nonminimum phase output tracking problem (11), (14) 

with y~  standing for ŷ  is addressed using the method of the 

stable system center that transforms the output tracking in a 

nonminimum phase system to the state variable tracking. 

III. THE METHOD OF STABLE SYSTEM CENTER IN 

NONMINIMUM PHASE OUTPUT TRACKING

The results are formulated for the following nonminimum 
phase system: 

+=

++=

uytyy

tfyQQ
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ψωψϕ

ψψ
          (15) 

where mnRt −∈)(ψ  is the internal state, mty ℜ∈)(  the 

controlled vector-output, mtu ℜ∈)(  the control function; 

mℜ∈⋅)(ϕ  is a bounded vector field and mm×ℜ∈⋅)(ω  is a 

nonsingular matrix; )()(
1

mnmnQ −×−ℜ∈  is a known 

nonsingular non-Hurwitz matrix, mmnQ ×−ℜ∈ )(
2  is a known 

matrix, the pair ),( 21 QQ  is completely controllable; )(tf  is 

an unmatched [1,2] external disturbance. 
Remark. The system (15) is nonminimum phase, since 

)()(
1

mnmnQ −×−ℜ∈  is a non-Hurwitz matrix that yields 

instability of the zero dynamics. 
The problem is to provide the tracking of a causal smooth 

reference (command) profile, )(tyy c→ , in the presence of 

an unmatched bounded external disturbance )(tf .

A. Replacing output tracking by state tracking 

Now, we have the output tracking problem for the 
nonminimum phase system (15) which is in the normal 
canonical form [9]. We seek state tracking control in order to 
apply traditional state variable sliding mode control 
techniques [2,3]. Rewriting system (15) in errors we obtain 
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where ψψψ −=−= ccy eyye , .

Equations of system center (ideal internal dynamics) 

that define a command (tracking) profile )(tcψ  for the 

internal state vector )(tψ , can be written as [8],[9]: 

)(21 tfyQQ ccc ++= ψψ .          (17) 

The disturbance )(tf  can be estimated using an exact 

second order sliding mode differentiator [14]. This is 

yQQtf 21
ˆ)(ˆ −−= ψψ             (18) 

 Once cψ  is identified by integrating eq. (17), the problem 

to provide state tracking in the system (15) can be solved 
using standard sliding mode control [2],[3]. The system’s 
(15) state tracking error dynamics are described by 
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+=

)(),(),,(
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ψψ
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Define the sliding surface mℜ∈σ  as 

0=+= ψσ Kee y , )( mnmK −×ℜ∈ ,       (20) 

Eqs. (19), (20) reduce in the sliding mode to 

( )
−=
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ψ

ψψ

Kee

eKQQe

y

21
 (21) 

Since the pair ),( 21 QQ  is completely controllable, we select 

K  so that the eigenvalues of )( 21 KQQ −  lie sufficiently 

deep in the left half plane. Then the system (22) is locally 
asymptotically stable. We achieve asymptotic output 

tracking in the sliding mode, i.e. 0→ye .

The standard sliding mode controller [2,3], providing 
existence of the sliding mode (21), can be easily designed as 

( )−++⋅−⋅= − )(
2

)(ˆˆ)( 21
1 σ

ρ
ϕω ψ SIGNeQeQKyu yc  (22) 

with cŷ  and )(ˆ ⋅ϕ  estimates of cy  and )(⋅ϕ  respectively, 

and [ ]T

msignsignsignSIGN )(),...,(),()( 21 σσσσ = ,

(.)(.)ˆmax
,1

ii
mi

ϕϕρ −>
=

.

The only problem still to be resolved is obtaining a stable 

solution cψ  (the system center) to the unstable equations of 

the system center (17). 

B. Stable system center 

Consider the exosystems for fyQ cc
ˆ

2 +=θ . Let the 

“cumulative” characteristic polynomial for this exosystem 
be in the format  

01
1

1 ...)( pppP k
k

k
k ++++= −

− λλλλ ,  (23) 

where k is the order of this exosystem, and 011 ,,..., pppk−

are specified numbers.  

The stable system center )(~ tcψ can be computed using 

the following theorem. 

Theorem 1. Given the nonminimum phase system (15) with 

the measurable state vector ),( yψ  and the following set of 

conditions: 

1. the matrix 1

~
Q  in eq. (17) is nonsingular. 
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2. the output reference profile )(tyc  and the unmatched 

disturbance )(tf  can be piecewise represented by known 

linear exosystems with a characteristic polynomial (4). 
Then 

1. the output tracking in real time of a bounded reference 

profile, m
c ty ℜ∈)( , can be replaced by tracking the state 

reference profile nT
cc y ℜ∈)(ψ , such that 

T
cc

T yy ),(),( ψψ →  asymptotically with given 

eigenvalues; 

2. the internal state reference profile mn
c

−ℜ∈ψ~  is 

generated by the matrix differential equation 
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where the constants 011 ,,..., ccck −  are chosen to provide any 

desired eigenvalues for cc ψψ →~ , and matrices 
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mnmn
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− ℜ∈  are given by 
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Proof: See [11].

 Thus, (24) and (25) determine the stable system centre 

)(~ tcψ  for the system (15), which asymptotically converges 

to the ideal internal dynamics (unstable) in eq. (17). Now we 

can use the stable system center )(~ tcψ  for )(tcψ  when 

computing the sliding surface (21), bearing in mind that 

)()(~ tt cc ψψ →  asymptotically. 

IV. EXAMPLE: SLIDING MODE TRACKING CONTROLLER 

DESIGN FOR THE SYSTEM WITH OUTPUT TIME DELAY

Given a 2nd order plant [7],[8] 

12221 ,, xyuxxxx =+−==        (26) 

The desired command output profile is given in the form 

tBAy nc ωsin+= .             (27) 

The relative degree of the plant is equal to two. 
Transforming the plant to the form (7) with relative degree 
equal to one, introduce a new state vector in accordance with 
eq. (3) 

⋅=
2

1

0

1

1

01

x
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z
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The system (26) is rewritten in the new basis (28) as 

( ) ( ) +−+−−=

+−=

uqazaaq

qzaz

11 0100

101
        (29) 

The new output q  is related to the original output y  by 

1010 xaxqyayq +=+= .         (30) 

The command profile for the new output is computed to be 

tCtBAqyayq nncccc ωω cossin0 ++=+=   (31) 

where BCBaBAaA nω=== ,, 00 . The signal in (31) can 

be described by a linear exogenous system of differential 
equations with the characteristic equation (23): 

00)( 223
3 +⋅+⋅+= λωλλλ nP         (31a) 

The system (28) is of relative degree one with stable zero 

dynamics. The output )(ty  reaches )(tyc  asymptotically 

with eigenvalue 0a−=λ  once )(tq  (30) reaches )(tqc . We 

assume that the system output (29) is accessible with a time 

delay )(ˆ τ−= tqy . The problem is to design sliding mode 

control u  that provides asymptotic tracking cqy →ˆ .

A. The first-order Padé approximation 

Replacing the time-delay function by the first-order Padé 
approximation as in (13) the system (29) is approximately 
represented by a nonminimum phase system without delay 
[7],[8] 
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τ

τ
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where the output y~  is an approximation to the output ŷ .

Remark. The zero dynamics of the system are 

η
τ

ηη
2

,101 =+−= zaz           (33) 

The equation for 1z  is stable and generates a bounded 

profile given bounded input η . The problem is to stabilize 

the equation for η  while providing asymptotic output 

tracking cqy →~ .

Let the equations of the stable system center (24) and (25) 

have 20,2,2.0,30,300,1000 0210 ====== accc nωτ ,

the parameters 210 ,, PPP  are computed as 

,1000 =P ,9.361 =P 7.62 =P , and 

( )tBtBAc 2cos22sin202020 ++−=θ .

The system center can be written as the transfer function 

)(
100030030

1009.367.6
)(~

23

2

s
sss

ss
s cc θη

+++

++
−=    (34) 

which is employed when implementing or simulating the 

system (26). The sliding surface ησ eeq
~75.0−=  yields the 

sliding mode asymptotic tracking dynamics (assuming 

ηη ee →~ ) obtained in the format (21) 
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ηηη eCeee q 1,10 −=−=           (35) 

Finally 0→ηe  and 0→qe  asymptotically, yielding 

cyy →~  in the sliding mode. The corresponding sliding 

mode controller has been designed using the simplest relay 

format )(25 σsignu −= .

B. The higher order Padé approximation 

This procedure was repeated for Padé approximations of 

orders 2 and 3, using eq. (14a) for 2=j  and 3=j . In these 

cases the number of internal states of the model for the 
system (28) without output delay increases by one for each 
increase in the order of the Padé approximation, retaining 
the original relative degree of the system (28), which is 

equal to one.  The parameters 210 ,, PPP  in (24, (25) become 

matrices, and the gain K  in (20) becomes a vector, i.e. 
1

,
jxjxj

i KP ℜ∈ℜ∈ . The parameters iP  are generated 

using eq. (25).  The equation of the system center (24) 
becomes a matrix differential equation of the third order, 
given the third order characteristic equation of the 
exogenous input (31a).  The system center transfer 

functions, as in (34), are formed from the elements of iP  by 

combining terms to form a matrix transfer function 
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where j  is the order of the Padé approximation used in the 

model. The gain vector K  in (20) is identified by using the 
state error equation in the sliding mode 

ηηη KeeeKQQe y −=−= ,)( 21        (36) 

and solving for the characteristic polynomial of the result.  

For all Padé approximation cases 3,2,1=j  used as examples 

herein, the equations were evaluated for chosen 

eigenvalue(s) 10−=iλ  and the gains jK  were identified 

accordingly. The corresponding sliding mode controller has 
been designed using the simplest relay format 

)(25 σsignu =  for the 2nd order Padé approximation and 

)(25 σsignu −=  for the 3d order 

The results of simulations are shown in Figures 1-3 for a 
reference profile satisfying the exogenous system with a 
given characteristic equation (31a) 

{ } ttttt

tttqc

2sin)]15(1)10(1[25.0)]10(1)4(1[5.0

)15(5.1)(1)(

−−−+−−−

+−−=
 (37) 

Figures 1,2, and 3 compare the plant output command and 
output for a Padé model of order 1,2, and 3 respectively.  

Figures 4, 5, and 6 are zoomed views of figures 1,2, and 3, 
demonstrating lower amplitude but higher frequency 
oscillations (chattering) as the order of the Padé model 
increase from 1 to 3.  

Figure 1: Plant with 1st Order Padé Model/Controller 

Figure 2: Plant with 2nd Order Padé Model/Controller 

Figure 3: Plant with 3rd Order Padé Model/Controller 

254

Authorized licensed use limited to: Sheffield University. Downloaded on April 12,2010 at 09:24:57 UTC from IEEE Xplore.  Restrictions apply. 



Figure 4: Detail View of 1st Order Padé Example 

Figure 5: Detail View of 2nd Order Padé Example

Figure 6: Detail View of 3rd Order Padé Example 

V. CONCLUSIONS

Output tracking in causal nonlinear systems with an 
output delay via sliding mode control is considered. The 
higher order Padé approximation for the time delay function 
is used. Bounded state tracking profiles are generated by 
equations of the stable system center, which performs a 

stable dynamic inverse of a dynamically extended model of 
the plant incorporating stable exogenous models for plant 
inputs and a nonminimum-phase model for the delay. It is 
shown that the higher order Padé approximation yield the 
better tracking accuracy of an arbitrary output reference 
profile given by a linear exogenous system with a known 
characteristic equation. In particular, the higher frequency of 
control switching and lower amplitude of oscillations in the 
output tracking error are achieved for the higher order Padé 
approximations. 
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