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Abstract

Our goal is to represent images in terms of geometric objectsacting as prim-
itive elements of an image description. Similar representations obtained by
stochastic marked point processes have already led to convincing image anal-
ysis results but suffer from serious drawbacks such as complex and unstable
parameter tuning, large computing time, and lack of generality. We propose
an alternative descriptive model based on a Jump-Diffusionprocess which
can be performed in shorter computing times and applied to a variety of ap-
plications without changing the model or modifying the tuning parameters.
In our approach, a probabilistic Gibbs model is adapted to a library of geo-
metric objects and is sampled by a Jump-Diffusion process inorder to closely
match an underlying texture. Experiments with natural textures and remotely
sensed images show good potentialities of the proposed approach1.

1 Introduction

Shape extraction is a well known computer vision problem which has been addressed by
various approaches. Deformable models such as parametric or level sets based active con-
tours are particularly efficient to extract or track curved shapes and have been successfully
used, for example, for recognition of organs in medical imaging. Alternative approaches
that use stochastic models and random sampling of geometricobjects are better adapted
to extraction of rectilinear shapes. Stochastic models often involve jump samplers which
allow to deal with state spaces of variable dimension. The most known jump sampler is
the Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm [6]. It is partic-
ularly efficient for recognition of objects with variable numbers of parameters in large
configuration spaces, such as 3D reconstruction [2, 10] or texture modelling [19].

Marked point process based models are among the most efficient stochastic approaches
and have already obtained convincing results in various imaging applications such as
building extraction [13], road network detection [9], or tree crown extraction [14]. The
marked point processes, detailed in [16], exploit random variables whose realisations are
configurations of geometrical objects (for example, rectangles [13], line segments [9], or
ellipses [14]). An energy is associated with each object configuration, and the global min-
imum of this energy is searched for by using the conventionalsimulated annealing [12]

1The first author is grateful to the French Defence Agency (DGA) for financial support. Both the authors
thank the French Mapping Agency (IGN) and the French Forest Inventory (IFN) for the aerial images.



coupled with the birth-and-death sampler [4]. Such processes allow to describe complex
spatial interactions between the objects. Image representations provided by the marked
point process based models are particularly good for complex textured images. However,
these models suffer from the following three major drawbacks:

Lack of generality Each model is associated with a specific application, and a marked
point process is limited to a single type of objects having simple geometric shape.
Moreover, complexity of interactions between the objects defined in the model
makes impossible to generalise each particular model to another application.

Trial-and-error parameter tuning Many parameters (up to ten in most of cases) are to be
used to define the interactions. They are tuned by trial and errors since parameter
estimation techniques which efficiently work with such large configuration spaces
simply do not exist.

Too long computational time Although proposition kernels are developed to speed up
the process, the birth-and-death sampler remains very slow, especially at low tem-
perature.

This paper presents an alternative to the marked point processes. Our aim is not
to provide results as accurate as those obtained by models based on the marked point
process, but to propose a more general stochastic process which can produce target results
in shorter time and can be applied to a large range of applications without modifying
model and tuning parameters. The proposal involves the following two modifications of
the marked point process:

Sampling several types of objects and limiting their interactions: In order to extend
the level of generality, the process must jointly sample different types of geometric
objects (e.g. linear objects such as segments and areal ones such as polygons and
circles). The interactions between these objects must alsobe reduced and simplified
in order to strongly decrease the number of tuning parameters.

Introducing a diffusion dynamic: The diffusion dynamic would allow us to significantly
speed up the convergence of the process. The marked point process based models
cannot use such a dynamic due to complexity of their energy functions (usually
gradients of these functions do not satisfy the Lipschitz continuity condition). The
Jump-Diffusion processes introduced by Grenanderet al.[7] represent a class of
random samplers which efficiently mix both the jump and diffusion dynamics.

The paper is organised as follows. Section 2 presents a Gibbsenergy model adapted to
different types of geometric objects. The model is sampled by a Jump-Diffusion process
detailed in Section 3. Experimental results for texture description problems are given in
Section 4. Basic conclusions are outlined in Section 5.

2 Image representation model

By way of illustration, we restrict ourselves to a simple object set (or library) of seven
geometric patterns (see Fig. 1). Segments, lines, and line ends are specific to linear struc-
tures whereas rectangles, bands, band ends, and circles correspond to areal descriptors.



All the objects have between three and five control parameters, the positional coordinates
(xc,yc) of the object’s centre being common to all the objects. Otherparameters depend
on the object types (e.g. radius for circles; length, width,and orientation for bands and
rectangles; or length and orientation for lines and segments). The parameters are de-
fined in both continuous and discrete domains. This set includes basic objects used in
the known marked point process based models and thus is sufficient to produce detailed
representations of a large range of scenes in terms of their linear and areal components.

Figure 1: The chosen library of linear and areal geometric objects.

2.1 Gibbs energy

The number of objects in any particular scene is unknown, andthe objects have different
numbers of parameters. Thus, the configuration spaceC of our problem is defined as an
union of subspacesCk, each subspace containing fixed numbers of objects of each type.
A probability distributionµ on the configuration spaceC is defined as a combination of
µk distributions on the subspacesCk. We assume unnormalized distributionsµk on Ck

have Gibbs densities of the forme−Ek(x) whereEk is a Gibbs energy associated with the
configuration subspaceCk.

The energyEk takes into account both the coherenceDk(x) between the objects and
the image data and the adjacency constraintsRk(x) for positioning of the objects with no
overlaps:

Ek(x) = Dk(x)+Rk(x); x ∈ Ck (1)

2.1.1 The data coherence term

Dk(x) accumulates the local energy associated with each objectxi of the configurationx:

Dk(x) = ∑
i

d(xi) (2)

whered(xi) is a measure of coherence of the objectxi with respect to the data (i.e. an
image). This measured(.) must satisfy two important conditions:

• It must beindependent of the object type. In particular, the object area must be
taken into account in order to not favour linear or areal object types.

• It must allow toselect “attractive” objects, i.e. the well-fitted objects having a
negative local energy. This feature is very important in themodels using birth-and-
death processes [16, 13, 9] since it partly defines the objectdensity in the scene.



The function we propose is derived from the Mahalanobis distance and includes a thresh-
old θattr that makes some objects attractive if the function is negative:

d(xi) =







√

σ2
in+σ2

out+ε
S(min−mout)2 −θattr if min 6= mout

∞ otherwise
(3)

Here,min andmout represent the mean of pixel intensities inside and outside the object
respectively2 (i.e. the blue and red areas on Fig. 1),σin andσout denote the associated
standard deviations,S is the whole inside and outside area, andε > 0 is an infinitesimal
value allowingd(.) to be derivable. The thresholdθattr allows to select the attractive ob-
jects and tune the sensitiveness of the data fitting. This measure of coherence is based on
homogeneity criteria inside and outside the object. The computation time of this measure
is very short, but this function is not optimal for noisy data. Nonetheless, it produces
better experimental results than other measures,e.g. based on the Bhattacharya distance.

2.1.2 The adjacency constraint

Rk(x) follows from the unique prior knowledge and is necessary fordeveloping a general
model of non-overlapping objects. Other types of interactions such as inter-connections
or mutual alignments of the objects could be also introduced. However, our aim is to
minimise the number of tuning parameters in the model since it is a critical problem for
the marked point processes. This term is expressed as follows:

Rk(x) = ∑
xi,x j∈x

(eκ g(xi,x j) −1) (4)

whereg(xi,x j) taking values in[0,1] quantifies the mutual overlap between the objectsxi

andx j, andκ is a big positive real value (κ >> 1) which strongly penalises the overlaps
(in our experiments,κ = 100). Under small overlaps between two objects, this prior will
weakly penalise the global energy. But if the overlapping ishigh, this prior will act as
an hardcore (i.e. the prior energy takes a very high value), and the configuration will be
practically banned.

3 Jump-Diffusion sampler

The search for an optimal configuration of objects is performed using the Jump-Diffusion
process introduced by Grenanderet al. [7]. It has been used in various applications such as
target tracking [15] and image segmentation [8]. This process combines the conventional
Markov Chain Monte Carlo (MCMC) algorithms [12, 6] and the Langevin equations [3].
Both dynamics play different roles in the Jump-Diffusion process: the former performs
reversible jumps between the different subspacesCk, whereas the latter conducts stochas-
tic diffusion within each continuous subspace. The global process is controlled by a
relaxation temperatureT depending on timet and approaching zero ast tends to infinity.
Simulated annealing theoretically ensures convergence tothe global optimum from any

2By takingmin > mout or min < mout instead ofmin 6= mout in the definition domain ofd(.), we can modify
the measure in order to introduce radiometric information and favor respectively bright or dark objects with
respect to the background. This variant ofd(.) will be used for tree crown and building extraction experiments.



initial configuration using a logarithmic decrease of the temperature. In practice, we use a
faster geometric decrease which gives an approximate solution close to the optimum. The
simulated annealing parameters such as the initial temperature are estimated using the ap-
proach of White [18]. The diffusions are interrupted by jumpsfollowing a discrete time
step∆t (in practice,∆t = 50). At the very low temperature, the diffusion process plays a
more important role: the time step is increased (∆t = 100) to speed up the convergence.

3.1 Jump dynamic

Reversible jumps between the different subspaces are performed according to families of
moves called proposition kernels and denoted byQm. The jump process performs a move
from an object configurationx ∈ Ck to y ∈ Ck′ according to a probabilityQm(x → y).
Then, the move is accepted with the following probability:

min

(

1,
Qm(y → x)
Qm(x → y)

e−
(Ek′ (y)−Ek(x))

T

)

(5)

We use two different families of moves in order to jump between the subspaces.

Birth-and-death kernel Q1: This kernel allows for adding or removing an object from
a current object configuration. These transformations corresponding to jumps into
the spaces of higher (birth) and lower (death) dimension aretheoretically sufficient
to visit the whole configuration space. In practice, we choose to add or remove an
object following a Poisson distribution. If an object is added, its type is randomly
chosen and its parameters are chosen according to uniform distributions over the
parameter domains. The computation of this kernel is detailed in [16, 4].

Switching kernel Q2: This kernel allows to switch the type of an object (e.g. a circle by
a rectangle). Contrary to the previous kernel, this move do not change the number
of objects in the configuration. However, the number of parameters can be different
(e.g. three parameters for a circle substituted by five parametersfor a rectangle).
This kernel is based on the creation of bijections between the different types of
objects. The computation of this kernel is detailed in [6].

Usually the jump processes [13, 9, 14, 10] use a perturbationkernel that allows them to
explore each subspace by modifying only parameters of the objects. In our case, this
kernel is substituted by a diffusion dynamic which is clearly faster since the exploration
of the subspace is directed by the energy gradient.

3.2 Diffusion dynamic

The diffusion process between jumps controls the dynamics of the object configuration in
their respective subspaces. Stochastic diffusion (or Langevin) equations driven by Brow-
nian motionsdB(t) with temperatureT are used to explore the subspacesCk. If x(t)
denotes the variables at timet, then

dx(t) = −
dEk(x)

dx
dt +

√

2T (t)dwt (6)

wheredwt ∼ N(0,dt2). At high temperature (T >> 0), the Brownian motion is useful in
avoiding trapping in local optima. At low temperature (T << 1), the role of the Brownian
motion becomes negligible and the diffusion dynamic acts asa gradient descent.



4 Experimental results

4.1 Texture representation

The proposed method has been tested on a number of selected natural textures in order
to evaluate its potentialities of representing various types of images by geometric objects.
The obtained results (some of them are presented in Fig. 2) are quite promising. Various
spatially homogeneous and heterogeneous textures are successfully represented even with
a chosen simple set of objects. Some textures having spatially variant illumination and
reflectance (seee.g. the metal grid and tile roof examples in Fig. 2) are usually difficult
to describe, and often require specific advanced techniquessuch as [1]. Our method is
particularly interesting for representing such textures since the fitting of objects do not
depend of illumination effects.

Fig. 3 presents both the result obtained from an image containing five different tex-
tures and the evolution of the object configuration during the jump-diffusion process. This
result showing five various object layouts underlines interesting potentialities for texture
discremination. At the beginning of the algorithm,i.e. when the temperature is high(red),
the process explores the subspaces and favors configurations with a low energy. At this
exploration stage, the jump dynamic plays an important roleby specifying both the num-
ber and the type of objects. At low temperature(blue), the object configuration belongs
to a subspace being close to the optimal one, and the number ofobjects in the scene does
not evolve very much. The diffusion dynamic is mainly usefulat this stage in order to
perform a detailed adjustment of the object parameters. This dynamic is clearly faster
than a single jump process with a perturbation kernel since the exploration is directed by
the gradient of the energy (and not by a random search). Graphs in Fig. 3 describe how
the energy and the number of objects change in function of thenumber of iterations.

Even if the objects are disconnected (seee.g. brick wall or hair in Fig. 2), the rep-
resentation is detailed enough to be useful in solving texture description and recognition
problems. In particular, it would be interesting to combinesuch object-based representa-
tions with Gibbs Markov random field models which are mostly used on the pixel-wise
intensities [5] and thus cannot explicitly take into account shapes and relative locations of
depicted characteristic objects. In order to deal with morecomplicated textures and have
a description level similar to filter bank methods such as [17], the object library has to be
extended and new relevant shapes, especially curved shapes, should be introduced. More-
over, it will be necessary to develop more general energy functions taking into account, in
particular, typical object deviations and noise in the textures (see the stone ornament and
rose results in Fig. 2 which are quite limited in term of description).

4.2 Remote sensing applications

A similar approach detailed in [11] has been tested on different remote sensing problems
such as bird detection, tree crown extraction, road networkdetection, and building extrac-
tion, with the data used in the marked point process based methods [13, 9, 14]. Although
the obtained results are generally less accurate than thoseobtained by the specialised
marked point process based methods, the proposed general process allows to deal with
various remote sensing problems in much shorter time and without modifying the model
and tuning parameters. Some results are presented on Fig. 4.For the tree crown extrac-
tion, the main goal is to count trees on large forest scenes. Although the shapes of trees



Figure 2: Examples of our representation of textures from
http://www.cgtextures.com in terms of geometrical objects.



are roughly approximated by circles and rectangles, all thetrees are accurately detected.
The accuracy of the tree locations is practically the same asobtained by a marked point
process [14] with elliptical objects to represent the trees.

Figure 3: Texture representation: original image and result (top); evolution of the object
configuration during the jump-diffusion process - configurations from the initial tempera-
ture (red) to the final one (blue)(middle); energy and number of objects graphs in function
of the number of iterations during the critical phase(bottom).

The road network and building extraction results cannot be considered as a final rep-
resentation since the detected objects are not connected (contrary to [9] or [13] where
complex interactions had been defined to link the objects). However, the objects found are
mainly lines and bands which are globally well fitted to roadsand buildings and provide
a rough pattern of the target structures. These object layouts are sufficiently informative
to make it possible to extract the global network on the basisof their subsequent analysis.
For example, one could use post-processing based on a vectorisation principle to connect
the objects found. The building extraction is convincing but the object localisation re-
mains very rough compared to the one obtained in [13]. However, our method is clearly



faster: 30 minutesvs 2 hours on a 0.3 km2 dense urban area using a 3 GHz processor.

Figure 4: Remote sensing applications from aerial images(from top to bottom, and left to
right): Tree crown extraction with the original imagec©IFN, our result, the result obtained
in [14], and crops(top); a road network extraction result and its cropped part, aerial image
of a urban scenec©IGN and the buildings extracted from the associated DEM(bottom).

5 Conclusions

We have proposed a new approach for the representation of images in terms of simple,
or primitive geometric objects. The approach possesses several important characteris-
tics comparing to its conventional counterparts based on the marked point processes and
models. It is more general and works efficiently on various applications without modi-
fying the model and tuning parameters. Moreover, the optimisation technique based on
the jump-diffusion process allows to obtain shorter computational time compared to the
classical jump processes. However, the proposed process islimited by the content of the
object library (the current set in Fig. 1 cannot in principleprovide relevant representations
of complex textures including curved object shapes and noise). In the future, it could be
particularly interesting, first, to extend the object library and, secondly, to develop mod-
els and techniques for automatic selection of relevant objects from a given collection of
training image before the use of the above jump-diffusion process.
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