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Abstract—In this paper we analyze the design of Generalized
LDPC-staircase (GLDPC-staircase) codes, where the base code is
an LDPC-Staircase code and component codes are Reed-Solomon
codes. More precisely we compare two schemes: scheme A has
the property that on each check node of the base code the
repair symbol generated by the LDPC code is also a Reed-
Solomon repair symbol. On the opposite, with scheme B for
each check node the repair symbols generated by the LDPC code
are Reed-Solomon source symbols. In this work we perform a
behavioral analysis of the two schemes in order to determine the
best one for ITerative + Reed Solomon (IT+RS) and Maximum
Likelihood (ML) decoding. To that purpose we use an asymptotic
analysis using Density evolution (DE) and EXtrinsic Information
Transfer techniques, as well as a finite length analysis. We show
that scheme A is globally the best solution since it significantly
performs better than scheme B with an (IT+RS) decoding and
yields similar performance with ML decoding.

1

I. INTRODUCTION

Application Level Forward Erasure Correction (AL-FEC)
codes are now a key component of reliable multicast/broadcast
transmission systems. They are the key building block of
the FLUTE/ALC (RFC 6726) [1] reliable multicast transport
protocol that is used to push any kind of files (e.g. multimedia)
for instance over the wireless 3G/4G channels (e.g. they are
part of the 3GPP MBMS, DVB-H/SH IPDatacasting, or ISDB-
Tmm services). They are also the key building block of robust
streaming protocols, like the FECFRAME (RFC 6363) [2]
transport protocol, that is also included in the above systems.

The codes we consider are AL-FEC codes for the erasure
channel, that can be used in FLUTE/ALC and FECFRAME.
Among them Low Density Parity Check (LDPC) codes are
of particular interest. The LDPC codes have been intensively
studied due to their near-Shannon limit performance under
iterative Belief-Propagation (BP) decoding [3][4]. A (N,K)
LDPC code, where N is the code length and K is its
dimension, can be graphically represented as a bipartite graph
with N ”variable nodes” (VN) and M = N−K ”check nodes”
(CN). Equivalently, LDPC codes can be represented through
their parity check matrix, HL, that reflects the connections
between (VN) and (CN). The degree of a VN or a CN is

1This work was supported by the ANR-09-VERS-019-02 grant (ARSSO
project) and by the INRIA - Alcatel Lucent Bell Labs joint laboratory.

defined as the number of edges connected to it. A VN of
degree n can be interpreted as a ”Length Repetition Code”
(n, 1), i.e. as a linear block code repeating n times its single
information symbol towards the CN set. Similarly, a CN of
degree n can be interpreted as a Single Parity Check (SPC)
code (n, n−1), i.e. as a linear block code associated with one
parity equation.

A. Related Works

To improve error floor and minimal distance, a general-
ization of these codes was suggested by Tanner in [4], for
which subsets of the variable nodes obey a more complex
constraint than an SPC constraint. The SPC check nodes in
a GLDPC structure are replaced with a generic linear block
codes (n, k) referred to as sub-codes or component codes,
while the sparse graph representation is kept unchanged. More
powerful decoders at the check nodes have been investigated
by several researchers in recent years after the work of
Boutros et al. [5] and Lentmaier and Zigangirov [6] where
BCH codes and Hamming codes were proposed as component
codes respectively. Later several works, on several types
of channels, have been carried out in order to afford very
large minimum distance and exhibit performance approaching
Shannon’s limit. Each construction differs by modifying the
linear block codes (components codes) on the check nodes
such as [7][8][9][10][11][12], and/or the distribution of the
structure of GLDPC codes [7] to offer a good balance between
waterfall performance and error floor under iterative decoding.

Recently, a GLDPC code construction using LDPC-
Staircase [13] (a structured code that shares similarities with
IRA codes [14]) as the base codes and Reed-Solomon (RS) as
component codes has been proposed in [15][16]. These codes,
based on what we call in this work scheme A, can easily be
tuned to behave either like predefined rate LDPC-Staircase
codes at one extreme, or like a Reed Solomon code at another
extreme. This construction also allows each RS component
code to potentially produce a large number of repair symbols
(called extra-repair symbols) on-demand, which means that a
small rate is achievable, a feature that may be suited to situa-
tions where the channel conditions are worse than expected, or
to fountain like content distribution applications. Finally [16]
assesses the performance of GLDPC-Staircase codes when



using a hybrid decoding scheme based on Iterative (IT), Reed-
Solomon (RS) and Maximum Likelihood (ML) decoding, a
solution that benefits from the same correction capabilities as
an ML decoder but reduces decoding complexity by using
(IT+RS) decoding first.

B. Contributions of this Work

In this paper, we compare the GLDPC-Staircase construc-
tion scheme of [16] to another scheme in order to determine
the best coupling between the LDPC-Staircase and RS codes
for (IT+RS) and ML decoding. The first scheme, called
scheme A, has the property that a generated LDPC-Staircase
repair symbol of a given CN is also the first RS repair symbol
of that CN (we explain how to achieve this later). On the
opposite, in scheme B, this generated LDPC-Staircase repair
symbol is a RS source symbols for that CN. Therefore, for
a given CN, the number of symbols that must be available
(i.e. either received or decoded) for the missing symbols of
this CN to be recovered by RS decoding is higher than in
scheme A. It follows that intuitively we expect better decoding
performance with scheme A than with scheme B. The main
contribution of this paper is to prove, both through a finite
length analysis and through an asymptotic analysis based on
Density evolution (DE) and EXtrinsic Information Transfer
(EXIT) techniques that scheme A performs the best under
(IT+RS) decoding, whereas both schemes behave the same
under ML decoding. Another contribution is the extension of
DE and EXIT techniques to GLDPC-Staircase codes, which
is far from trivial.

The paper is organized as follows. Section II focuses on
the design of GLDPC-Staircase codes with the two coding
schemes. In section III we derive the DE equations of the two
schemes and the decoding thresholds using EXIT functions.
Section IV provides a finite length performance evaluation for
the two schemes. Finally, we conclude.

II. GLDPC-STAIRCASE CODES DESIGN

This section introduces the GLDPC-Staircase code design
and continues with the encoding and decoding methods.

A. Code Construction

GLDPC-Staircase codes are composed of:
• LDPC-Staircase base codes [13]: Let HL be the (binary)

parity-check matrix, of size ML = NL − K rows and
NL columns. NL and K are respectively the LDPC-
Staircase code length and dimension and RL = K/NL
is the associated code rate. HL has the form (H1|H2).
H1 is the ML × K left-hand side part (information)
and each column has the same degree, N1 (number of
”1s” per column). H2 is the ML ×ML right-hand side
part (redundancy) and features a staircase (A.K.A. double
diagonal) structure. H1 is created in a fully regular way,
in order to have constant column and row degrees [13].
Each row H1 is of degree N1

1
rL
−1

, and because of the
staircase structure of H2, a row m of HL is of degree
d1 = N1

1
rL
−1

+ 1 or dm>1 = N1
1

rL
−1

+ 2. These codes

are structured LDPC codes that can also be regarded as
irregular codes if we consider the whole parity check
matrix.

• Reed Solomon inner codes: Each RS code is associated
to each row in HL (i.e. CN) to generate E extra repair
symbols. Therefore the E extra-repair symbols associated
to the mth row of HL are generated by an RS(nm, km)
encoding over GF (28). nm and km are respectively the
RS code length and dimension. The difference between
the two schemes is in the definition of nm and km:

– for scheme A, in row m > 1, the various source
symbols (from the user point of view) involved
in this row plus the previous repair symbol are
considered as source symbols from the RS point of
view. The generated LDPC-Staircase repair symbol
on this row plus the E extra-repair symbols are
considered as repair symbols from the RS point of
view (i.e. the new LDPC-Staircase repair symbol is
also an RS repair symbol). For m = 1 the only
difference is the fact there is no previous repair
symbol (it’s the beginning of the staircase). So we
have: nm = km + 1 + E, and km = dm − 1, no
matter the row. To obtain this scheme we use ”quasi”
Hankel matrix as base matrix to construct the RS
code as explained in [16][17].

– for scheme B, in row m > 1, the various source
symbols (from the user point of view) involved in
this row plus the two repair symbols are considered
as source symbols from the RS point of view. The
E extra-repair symbols are considered as repair
symbols from the RS point of view. So we have:
nm = km + E, and km = dm, no matter the row.
To obtain this scheme we use Vandermonde matrix
as base matrix to construct the RS code.

!"#$"%&'(')*#"+#',"$#(-./'0(
!"#$%&'()%$*+,-./*0$

!"#$"%&'(#',"$#(-./'0(
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23'24(-./'0!

Fig. 1. GLDPC-Staircase(13, 4) code, E = 2 extra repair symbols per CN.

The GLDPC-Staircase (NG,K) codes, where NG = NL +
ML∗E, can also be represented by a Tanner graph (Figure 1).
All the CN have the same number, E, of extra-repair symbols.
So, if rL is the LDPC-Staircase base code rate, then the
GLDPC-Staircase code rate is:

rG =
rL

1 + (1− rL)E
(1)

B. Encoding
Let S = (s1, s2, · · · , sK) be the source symbols. For row

m of HL, let X = (x1, · · · , xkm) be the subset of S that are



involved in this row. Two types of repair symbols are produced
during encoding:
• ML LDPC-Staircase repair symbols, (p1, · · · , pML

): they
are computed us usual, by ”following the stairs” of HL;

• ML ∗ E extra-repair symbols, (e1, · · · , eML∗E): they
are computed by multiplying the km symbols by the
systematic generator matrix Gm of RS(nm, km). For
scheme A, the km symbols consist of X symbols plus
pm−1 (if m 6= 1), whereas they consist of X plus the
two LDPC repair symbols for scheme B.

An advantage of these two schemes is the fact that extra-
repair symbols can be produced incrementally, on demand,
rather than all at once. Another advantage, is the fact the E
parameter can be rather large (it is only limited by the finite
field size, usually GF(28)). Said differently, GLDPC-Staircase
codes can be dynamically be turned into small rate codes.

C. Decoding

Two kinds of decoders are considered:
• ITerative plus Reed-Solomon (IT+RS) decoding: It con-

sists of an IT decoding over the binary LDPC-Staircase
system (i.e. by ignoring extra-repair symbols), associated
to a RS decoding for each CN. Both decoders work
together, in a recursive way, and RS decoding for a CN
can sometimes recover fresh symbols (in the X plus
pm, pm−1 set) that may help IT decoding, and vice-versa.

• Maximum Likelihood (ML) decoding: in order to reduce
decoding complexity, this is usually performed in a
second step, if (IT+RS) decoding failed to recover all
source symbols. This ML decoding consists of a Gaussian
Elimination over the full system, considering both the
binary and non-binary (over GF(28) equations (see [16]).

III. ASYMPTOTIC PERFORMANCE ANALYSIS UNDER
(IT+RS) AND ML DECODING

A. Introduction

EXtrinsic Information Transfer (EXIT) curves are intro-
duced in [18] as a technique to analyze the convergence
of IT decoding process of parallel concatenated component
codes. For binary LDPC codes, a slightly different definition
of the EXIT curve is introduced in [19], where the EXIT
curve is associated with the sparse graph system rather than
with component codes. Roughly speaking, this EXIT curve
gives the fraction of erased bits ”contained” in the extrinsic
information produced by the decoding algorithm, assuming
that the code length tends to infinity and cycle free Tanner
graph. It can be defined for any decoding algorithm (e.g. IT
and ML) and it relates to the asymptotic performance of an
ensemble of codes under the considered decoding.

In [20] we extend this method to the coding scheme A
under (IT+RS) decoding and ML decoding. In case of (IT+RS)
decoding, there is a tight relation between the EXIT curve
and the density evolution (DE) equations of GLDPC Staircase
codes under (IT+RS) decoding. For the ML decoding, it is
shown in [19] that the area under the EXIT curve is always

equal to the asymptotic rate of the ensemble. This allows
to derive an upper bound of the ML threshold, which is
conjectured to be tight in quite general settings, especially
for codes defined by almost regular graphs.

In this work we derive the DE equations of scheme B in
order to determine its EXIT curve under (IT+RS) decoding
(Section III-B2) and we provide the upper bound on the ML
threshold (Section III-C). Then we discuss the two schemes
using DE and EXIT functions (Sections III-B3 and III-C).

B. Density Evolution (DE) Equations

1) Preliminaries: In the sequel, we denote by d̂v and
d̂c the maximum variable and check node degrees in the
bipartite (Tanner) graph associated with the LDPC-Staircase
code. Following [21], we define the edge-perspective Degree
Distribution (DD) polynomials by λ(x) =

∑d̂v
d=1 λdx

d−1 and
ρ(x) =

∑d̂c
d=1 ρdx

d−1, where λd (resp. ρd) represents the frac-
tion of edges connected to variable-nodes (resp. check-nodes)
of degree d. From a node perspective, the DD polynomials are
given by L(x) =

∑d̂v
d=1 Ldx

d and R(x) =
∑d̂c
d=1Rdx

d where
Ld (resp. Rd) represents the fraction of variable-nodes (resp.
check-nodes) of degree d.

Given a GLDPC-Staircase code, DD polynomials λ and ρ
are defined by the underlying LDPC-Staircase code, defined
by the bottom graph of Figure 1 (that is, not containing the
extra-repair nodes). We denote by E(λ, ρ,E) the ensemble of
GLDPC-Staircase with edge-perspective DD polynomials λ
and ρ, and with E extra-repair symbols per check-node.

Assume that an arbitrary code from E(λ, ρ,E), of length
NG, is used over the BEC, and let ε denote the channel
erasure probability. The probability threshold of the ensemble
E(λ, ρ,E) is defined as the supremum value of ε (that is,
the worst channel condition) that allows transmission with an
arbitrary small error probability, assuming that NG goes to
infinity. The threshold value of a given ensemble of codes
can be efficiently computed by using the Density Evolution
(DE) method [21], which recursively computes the fraction
of erased messages passed during the belief propagation
decoding. Density evolution equations are given and derived
in the next section for scheme A and B respectively.

2) DE Equations for GLDPC-Staircase Codes E(λ, ρ,E):
In the sequel, the degree of a check or variable (source or
repair) node will always refer to its degree in the underly-
ing LDPC-Staircase code. We are interested in the erasure
probability of messages exchanges by the IT+RS decoding
along the edges of the LDPC-Staircase code. We denote by
P`,A (P`,B), the probability of a LDPC symbol (source or
repair) node sending an erasure at iteration ` using scheme A
(scheme B). Similarly, Q`,A (Q`,B) denotes the probability of
a check node sending an erasure (to an LDPC symbol-node)
at iteration ` using scheme A (scheme B). Clearly, P0 is equal
to the channel erasure probability ε.

Scheme A: The first repair symbol generated by any RS code
is one of the repair symbols of the LDPC-staircase code.



Consider a constraint node c connected to symbol-nodes
(v1, . . . , vd, e1, . . . , eE) where vi denotes an LDPC (source
or repair) symbol node and ei denotes an extra-repair node.
Since c corresponds to an RS code, it can recover the value of
an LDPC symbol node, say v1, if and only if the number of
erasures among the other symbol-nodes (v2, . . . , eE) is less
than or equal to E. Now, at iteration `, the LDPC symbols
are erased with probability P`,A, while extra repair symbols
are always erased with probability ε, the channel erasure
probability. It follows that the probability of a check node of
degree d recovering the value of an LDPC symbol at iteration
`+ 1, denoted by Q̄`+1,A(d), is given by:

Q̄`+1,A(d) = (1− P`,A)d−1 +

min(d−1,E)∑
i=1

E−i∑
j=0

(
d−1

i

)
P i`,A(1− P`,A)d−1−i

(
E

j

)
εj(1− ε)E−j

(2)
Averaging over all possible values of d, we get:

Q`+1,A = 1−
d̂c∑
d=1

ρdQ̄`+1,A(d) (3)

Conversely, an LDPC symbol node v of degree d, connected

to check nodes c1, . . . , cd, sends an erasure to the check node
c1 iff it was erased by the channel, and it received erased
messages from all check nodes c2, . . . , cd. Since this happens
with probability ε · Qd−1

`+1,A, and averaging over all possible
degrees d, we get:

P`+1,A = ε

d̂v∑
d=1

λdQ
d−1
`+1,A = ελ(Q`+1,A) (4)

For more details, the reader can refer to [20].

Scheme B: All the LDPC-staircase repair symbols are source
symbols for the RS codes.

Consider a constraint node c connected to symbol-nodes
(v1, . . . , vd, e1, . . . , eE) where vi denotes an LDPC (source
or repair) symbol node and ei denotes an RS-repair node. The
node c corresponds both to a parity check constraint between
LDPC symbol nodes (v1, . . . , vd) and to RS linear constraints
between all the symbol-nodes (v1, . . . , vd, e1, . . . , eE). Thus,
c can recover the value of an LDPC symbol node, say v1, if
and only if one of the following (disjoint conditions) holds:
(1) there are no erased symbols among v2, . . . , vd;
(2) there is at least one erased symbol among v2, . . . , vd,

but the number of erasures among all the symbol-nodes
(v1, . . . , vd, e1, . . . , eE) is less than or equal to E − 1.

The second condition is also equivalent to the following one:
(2′) the number of erased symbols among v2, . . . , vd is equal

to i and the number of erased symbols among e1, . . . , eE
is equal to j, with 1 ≤ i ≤ min(d − 1, E − 1) and
0 ≤ j ≤ E − 1− i.

Now, at iteration `, the LDPC symbols are erased with
probability P`,B , while RS repair symbols are always erased
with probability ε, the channel erasure probability. It follows
that the probability of a check node of degree d recovering

the value of an LDPC symbol at iteration ` + 1, denoted by
Q̄`+1,B(d), is given by:

Q̄`+1,B(d) = (1− P`,B)d−1 +

min(d−1,E−1)∑
i=1

E−1−i∑
j=0

(
d−1

i

)
P i`,B(1− P`,B)d−1−i

(
E

j

)
εj(1− ε)E−j

(5)
Averaging over all possible values of d, we get:

Q`+1,B = 1−
d̂c∑
d=1

ρdQ̄`+1,B(d) (6)

Conversely, an LDPC symbol node v of degree d, connected

to check nodes c1, . . . , cd, sends an erasure to the check node
c1 iff it was erased by the channel, and it received erased
messages from all check nodes c2, . . . , cd. Since this happens
with probability ε · Qd−1

`+1,B , and averaging over all possible
degrees d, we get:

P`+1,B = ε

d̂v∑
d=1

λdQ
d−1
`+1,B = ελ(Q`+1,B) (7)

For both schemes, we can determine a recursive relation
between P` and P`+1, with P0 = ε. The decoder can recover
from a fraction of ε erased symbols iff lim

`→+∞
Pl = 0.

Therefore, the threshold probability can be computed by:

ε(IT+RS)(λ, ρ,E) = max{P0 | lim
`→+∞

Pl = 0} (8)

When no confusion is possible, the above threshold value will
be simply denoted by ε(IT+RS).

3) Results and Comparison: We plot in Figure 2, the
evolution of the erasure probability transfer on the graph of
GLDPC Staircase code with rG= 1

2 and E=3 for schemes A and
B. These curves represent the value of the erasure probability
on all the LDPC symbols during the propagation of the erasure
probability between check nodes and variable nodes of the
tanner graph where the channel erasure probability is equal
to 0.32. This figure shows that the initial fraction of erasure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 ε
ch

 = 0.32

Pin

P
o
u

t

Evolution of erasures probability transfert of GLDPC code under IT decoding for Schema A and Schema B

 

 

Schema A

Schema B

p(l+1)=p(l)

Fig. 2. The evolution, for schemes A and B, of the (IT+RS) decoding
process for the (d.d) pair (λ(x), ρ(x))= (0.0909.x1+0.9091.x4, x21) of
LDPC Staircase, (rG= 1

2
E=3 ) and ε = 0.32.

messages emitted by the LDPC variables nodes is Pl = 1 in
schemes A and B. After an iteration (at the next output of
the LDPC variable nodes) this fraction has evolved to Pl+1 =
0.32 for the two schemes. After the second full iteration, i.e.



at the output of the LDPC variable nodes, we see an erasure
fraction of scheme A equal to P = 0.2889 whereas is equal
to P = 0.3117 for scheme B. This difference explains that
the erasure probability in scheme A decreases more quickly
than scheme B (i.e the correction of the erasure in scheme A is
better). After that, the processes of the transfer continues in the
same way. The figure shows also that the processes of DE for
scheme B get stuck at a value > 0 (P = 0.3094), whereas for
scheme A the processes finishes with P = 0. This means that
at ε = 0.32 the GLDPC-Staircase code converges only with
scheme A (i.e can recover all the erased LDPC Symbols).

C. Exit Functions

To derive the ε(IT+RS) and the upper bound of the ML
threshold (ε̄ML ≥ εML) obtained by the scheme A, in [20] we
extended the EXIT function method proposed in [19]. This up-
per bound is conjectured to be tight in a quite general settings,
especially for codes defined by almost regular graphs (e.g.
LDPC-Staircase codes) (see [20] for details). In this section,
we apply and extend the same method to determine ε(IT+RS)

and ε̄ML for scheme B. Table I provides the comparison in
terms of ε(IT+RS) and ε̄ML between scheme A and B for
rG = 1

2 and we vary the base code rate rL (i.e vary E). This
table shows that, for different values of E > 0, the (IT+RS)
decoding threshold of scheme A is higher than that of scheme
B. On the opposite, the ML decoding thresholds of the two
schemes, for different values of E, are almost equivalent.

Threshold E scheme A scheme B

ε(IT+RS)

0 0.4380 0.4380
1 0.3943 0.2709
2 0.3481 0.2643
3 0.3443 0.2819

ε̄ML

0 0.4946 0.4946
1 0.4993 0.4998
2 0.4999 0.4999
3 0.4999 0.4999

TABLE I
THRESHOLD COMPARISON OF (IT+RS) AND ML DECODING, WITH rG= 1

2
.

Table II provides the comparison in terms of ε(IT+RS) and
ε̄ML between scheme A and B for different values of rG with
rL = 2

3 . We can do the same remarks as that of table I.

Threshold rG scheme A scheme B Shannon limit

ε(IT+RS)

2
3 (E=0) 0.2709 0.2709 0.3333
1
2 (E=1) 0.3943 0.2709 0.5
2
5 (E=2) 0.4744 0.3639 0.6
1
3 (E=3) 0.5332 0.4394 0.6667

ε̄ML

2
3 (E=0) 0.3298 0.3298 0.3333
1
2 (E=1) 0.4993 0.4998 0.5
2
5 (E=2) 0.5998 0.5999 0.6
1
3 (E=3) 0.6665 0.6666 0.6667

TABLE II
THRESHOLD COMPARISON OF (IT+RS) AND ML DECODING FOR

DIFFERENT VALUES OF rG , WITH rL = 2
3

.

IV. FINITE LENGTH ANALYSIS FOR SCHEMES A AND B
UNDER (IT+RS) AND ML DECODING

We now perform a finite length analysis of both schemes
under (IT+RS) or ML decoding. We measure the average

decoding inefficiency ratio (i.e. the ratio between the number
of symbols needed for decoding to succeed over the number of
source symbols, nbsymbols needed

K = 1+ε, where ε is also called
transmission overhead), and the decoding failure probability
(i.e. the probability that at least one erased source symbol
is not recovered) as a function of the transmission overhead.
In all cases we consider a random transmission order of all
symbols and IID random losses2.

A. Average Decoding Performance

Figures 3(c) and 3(d) provide the average (over 1, 000 dif-
ferent codes and transmission schemes) decoding inefficiency
ratio of both schemes under ML decoding for two code rates,
1
2 and 1

3 . They show that no matter the block size (i.e. code
dimension, K), both schemes perform the same, with results
close to that of MDS codes (characterized by an decoding
inefficiency ratio always equal to 1). This results holds for
the two code rates considered. Figures 3(a) and 3(b) do the
same in case of (IT+RS) decoding only (no ML). They show
that scheme A outperforms scheme B in all cases. This is
made possible by a higher number of RS repair symbols with
scheme A, which mechanically increases the probability of
decoding an erased symbol for this CN. This increase also
avoids stopping sets associated to short cycles, which means
that scheme A performs better than scheme B under (IT+RS)
decoding. However we observe the same performance with
ML decoding because both schemes have the same system to
resolve, the difference being only on the nature of symbols.

B. Decoding Failure Probability

We now analyze the impacts of the coding scheme on the
ML decoding failure probability Figure 4 shows no significant
behavior difference for both schemes: they have a very small
decoding overhead, close to that of MDS codes (vertical line),
and receiving 6 symbols in addition to K enables the decoding
failure probability to fall bellow 10−5, an excellent result.

V. CONCLUSIONS

This work considers two different ways of coupling LDPC-
Staircase and Reed-Solomon codes for (IT+RS) and ML de-
coding. The difference in the resulting GLDPC-Staircase codes
lies in the repair symbol generated by the LDPC code being
part (scheme A) or not (scheme B) of the RS repair symbols.
Finite length and asymptotic analysis show that scheme A is
the best under (IT+RS) decoding whereas the two schemes
behave the same under ML decoding. Since (IT+RS) decoding
is significantly faster than ML decoding and since (IT+RS) is
used first during decoding in order to decode totally (good
reception conditions) or partially the linear system, we highly
recommended to use scheme A. This work also confirms
the excellent performance of GLDPC-Staircase codes (when
K = 1, 000, decoding failure probability falls bellow 10−5

with a 6 symbol overhead only), even for very small blocks
and not only asymptotically.

2Since the symbol transmission order is randomized, the IID or non-IID
nature of erasures does not impact the results.
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Fig. 3. Average performance under (IT+RS) or ML decoding, with rate
rG = 1

2
or 1

3
, as a function of K.
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[19] C. Méasson and R. Urbanke, “An upper-bound for the ML threshold of
iterative coding systems over the BEC,” in Proc. of the 41st Allerton
Conf. on Communications, Control and Computing, October 2003, p. 3.

[20] F. Mattoussi, V. Savin, V. Roca, and B. Sayadi, “Optimization with exit
functions of gldpc-staircase codes for the bec,” IEEE Int. Workshop
on Signal Processing Advances in Wireless Communications (SPAWC),
2012.

[21] T.J. Richardson and R.L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans. on
Information Theory, vol. 47, no. 2, 2001.


