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ANALYSIS AND CONTROL OF QUADROTOR VIA A NORMAL
FORM APPROACH

JING WANG∗†, ISLAM BOUSSAADA∗†, ARBEN CELA‡, HUGUES MOUNIER∗ AND

SILVIU-IULIAN NICULESCU∗

Abstract. This paper focuses on the analysis and control of some mathematical models repre-
senting the dynamics of a quadrotor. By using a normal form approach, the highly coupled parts
in the quadrotor system are eliminated, while all possible properties of the original system are not
changed. The bifurcations of the system are then analyzed. A two dimensional system is deduced
at the origin which can determine the stability and possible local bifurcations of the system. Based
on the normal form and indirect method of Lyapunov, we propose a state feedback control method
with computational simplicity as well as practical implementation facility. Comparing to a standard
PID control, the proposed method has faster response time and less tracking errors especially with
wind disturbance.
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1. Introduction. The quadrotor (see in Figure 1.1) is a mini unmanned aerial
vehicle (UVA) with four rotors, which has been widely studied in the last decades
[1, 2, 3, 4]. It is a system with four inputs, six outputs and highly coupled states.
Due to its simplicity both in mechanical structure and maneuver, it is widely used
in surveillance, search and rescue, mobile sensor networks [1]. Many methods have
been proposed for controlling quadrotors. For example, Bouabdallah et al.[2] have
proposed a backstepping control used separately in two subsystems. Besnard et al.[3]
have proposed a sliding mode control driven by a disturbance observer. Wang et al.[4]
have presented an event driven model free control which can avoid heavy computation.
However, to the best of the authors’ knowledge, the bifurcation of the dynamical
system have never been studied.

Fig. 1.1. The quadrotor(right) from Ascending technologies(Available at ESIEE).

The method of normal forms is an useful approach in studying the dynamical
system properties [5]. Its purpose is employing successive coordinate transformations
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to construct the simplest form of the system. The normal form exhibits all possible
properties of the original system. The normal forms of any degree with a single
input were obtained by using change of coordinates and feedback [6]. For multi-input
systems, the normal forms are deduced from the system with two inputs [7]. Based
on the normal forms, the bifurcations and its control were studied by several authors
[6, 8]. Center manifold is usually applied with the normal forms. It reduces the system
to a center manifold associated with parts of the system with the eigenvalues with
zero real parts at a bifurcation point [9].

To the best of our knowledge, the normal form and center manifold theories have
never been used in the analysis and control of quadrotor. In this paper, the normal
form of the quadrotor system is firstly calculated. By using such a methodology, the
highly coupled parts in quadrotor system are eliminated. Under certain control laws,
the normal form is reduced into a two dimensional system at the bifurcation point
by using center manifold theory. Also, a simple control method based on the normal
form using state feedback is proposed. The control laws are proposed to ensure the
asymptotical stability of the system by moving all the eigenvalues of the system to the
open left half plane. Comparing to a standard PID control, the proposed method has
faster response time and less tracking errors especially when there is wind disturbance,
as illustrated at the end of the paper. The interest of considering such control laws
lies in the simplicity of the controller as well as in its practical implementation facility.

The paper is organized as follows: In Section 2, the model of quadrotor is given.
In Section 3, the normal form of quadrotor is deduced. In Section 4, the bifurcation
of the system under certain control laws is analyzed. In Section 5, simulations with
and without wind disturbance using the proposed method and PID control are given.

2. The quadrotor model. The chosen model of quadrotor is depicted in equa-
tions (2.1). The rotation angles φ, θ and ψ are along the world axis x, y and z
respectively, namely roll, pitch and yaw. wi(i = 1..4) are the accelerations caused by
four rotors, which are the inputs of the system. (g = 9.8m/s2 the gravity).

ẍ = −w1sinθ, ÿ = w1cosθsinφ, z̈ = w1cosθcosφ− g,
φ̈ = w2, θ̈ = w3, ψ̈ = w4.(2.1)

We introduce the variables as x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = z, x6 = ż, x7 = φ,
x8 = φ̇, x9 = θ, x10 = θ̇, x11 = ψ, x12 = ψ̇. Therefore, we can rewrite the system as:

ẋ1 = x2, ẋ2 = −w1sin(x9), ẋ3 = x4, ẋ4 = w1cos(x9)sin(x7),

ẋ5 = x6, ẋ6 = w1cos(x9)cos(x7)− g, ẋ7 = x8, ẋ8 = w2,(2.2)

ẋ9 = x10, ẋ10 = w3, ẋ11 = x12, ẋ12 = w4.

3. Normal form of the system. It is easy to see that the equilibria of the
system (2.2) are xe = (c1, 0, c2, 0, c3, 0, kπ, 0, kπ, 0, c4, 0), w = (g, 0, 0, 0), where k =
0,±1,±2, ..., ci(i = 1..4) ∈ R are constants and g is the gravity. Note in the real
control system, φ, θ ∈ (−π/2, π/2) and ψ ∈ [0, π). Therefore, without losing gen-
erality, only the equilibrium x0 = (x,w) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, g, 0, 0, 0) is
considered. We move x0 to the origin by changing the coordinates of the inputs
w1 = u1 + g, w2 = u2, w3 = u3, w4 = u4. Then, using the Taylor series of function
sin(x) and cos(x) at x = 0. The system (2.2) can be written in polynomial form as
follows. Here, O5 are the polynomials with 5th and higher degree:

ẋ1 = x2, ẋ2 = −gx9 − u1x9 +
gx39
6

+
u1x

3
9

6
+O5,
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ẋ3 = x4, ẋ4 = gx7 + u1x7 −
gx37
6
− gx29x7

2
− u1x

3
7

6
− u1x

2
9x7

2
+O5,

ẋ5 = x6, ẋ6 = u1 −
gx27
2
− gx29

2
− u1x

2
7

2
− u1x

2
9

2
+
gx47
24

+
gx29x

2
7

4
+
gx49
24

+O5,

ẋ7 = x8, ẋ8 = u2, ẋ9 = x10, ẋ10 = u3, ẋ11 = x12, ẋ12 = u4.

Using the state and input transformation y1 = x1, y2 = x2, y3 = x3, y4 = x4, y5 = x5,
y6 = x6, y7 = gx7, y8 = gx8, y9 = gx9, y10 = gx10, y11 = x11, y12 = x12, v1 = u1,
v2 = gu2, v3 = gu3, v4 = u4, we change the system (3.1) into Brunovsky form:

ẏ1 = y2, ẏ2 = −y9 −
v1y9
g

+
y39
6g2

+
v1y

3
9

6g3
+O5,

ẏ3 = y4, ẏ4 = y7 +
v1y7
g
− y7y

2
9

2g2
− y37

6g2
− v1y

3
7

6g3
− v1y7y

2
9

2g3
+O5,(3.1)

ẏ5 = y6, ẏ6 = v1 −
y27
2g
− y29

2g
− v1y

2
7

2g2
− v1y

2
9

2g2
+

y47
24g3

+
y27y

2
9

4g3
+

y49
24g3

+O5,

ẏ7 = y8, ẏ8 = v2, ẏ9 = y10, ẏ10 = v3, ẏ11 = y12, ẏ12 = v4.

The system (3.1) can be written as:

ẏ = f(y) + g(y)v = Ay + f (2)(y) + f (3)(y) +Bv + g(1)(y)v + g(2)(y)v +O4(3.2)

where A, B are the coefficients of the linear parts, f (2)(y), g(1)(y)v are the second
degree homogeneous polynomials of the system, f (3)(y), g(2)(y)v are the third degree
homogeneous polynomials.

We take a third-degree homogeneous transformation for example [10]:

y = z + φ(2)(z) + φ(3)(z)(3.3)

which z are the new states of the system. φ(2)(z) is a second degree homogeneous
polynomial and φ(3)(z) is a third degree homogeneous polynomial of the states z,
whose coefficients will be defined later.

We get the derivative of equation (3.3). Therefore, the derivative of the new states
z are:

ż = (I +
dφ(2)

dz
+
dφ(3)

dz
)−1ẏ(3.4)

where,

(I +
dφ(2)

dz
+
dφ(3)

dz
)−1 = I − dφ(2)

dz
− dφ(3)

dz
+ (

dφ(2)

dz
)2 + (

dφ(3)

dz
)2 + 2

dφ(2)

dz

dφ(3)

dz
...

In (3.2), we rewrite the f(y) and g(y) using the new states z.

f(y) = A(y) + f (2)(y) + f (3)(y) +O4 = Az +Aφ(2)(z) + f (2)(z) +Aφ(3)(z) + f (3)(z)...

g(y) = B + g(1)(y) + g(2)(y) +O3 = B + g(1)(z) + g(1)(φ(2)(z)) + g(2)(z)...

Therefore, with the help of the equations (3.2), (3.4), by now we have the new system:

ż = Az +Bv +Aφ(2)(z) + f (2)(z) + g(1)(z)v − dφ(2)

dz
Az − dφ(2)

dz
Bv +Aφ(3)(z)

+f (3)(z) + g(2)(z)v + g(1)(φ(2)(z))v − dφ(2)

dz
(Aφ(2)(z) + f (2)(z) + g(1)(z)v)

−dφ
(3)

dz
(Az +Bv) + (

dφ(2)

dz
)2(Az +Bv) +O4
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For the simplicity of the system, the states z and the inputs v should be separated. In
the third degree normal form, the polynomial g(1)(z)v, g(2)(z)v should be canceled.

g(1)(z)− dφ(2)

dz
B = 0

g(2)(z) + g(1)(φ(2)(z))− dφ(2)

dz
g(1)(z)− dφ(3)

dz
B + (

dφ(2)

dz
)2B = 0

Therefore, the transformation in equation (3.3) should be:

φ(2)(z) = (0,−z6z9
g
, 0,

z6z7
g
, 0, 0, 0, 0, 0, 0, 0, 0),

φ(3)(z) = (0, 0, 0, 0, 0,−z6z
2
7

2g2
− z6z

2
9

2g2
, 0, 0, 0, 0, 0, 0).

Using the same method, we can calculate the normal form of any degree. A Maple
package ‘QualitativeODE’ [11] has been made for calculating the normal form of
quadrotor. Using this programme, we get the third degree normal form of the system
(3.1) as:

ż1 = z2 −
z6z9
g
, ż2 = −z9 +

z6z10
g
− z39

3g2
− z27z9

2g2
+O4,

ż3 = z4 +
z6z7
g
, ż4 = z7 −

z6z8
g

+
z37
3g2

+O4,(3.5)

ż5 = z6 −
z6z

2
7

2g2
− z6z

2
9

2g2
, ż6 = v1 −

z27
2g
− z29

2g
+
z6z7z8
g2

+
z6z9z10
g2

+O4,

ż7 = z8, ż8 = v2, ż9 = z10, ż10 = v3, ż11 = z12, ż12 = v4.

4. Bifurcation and simplification of the control system.

4.1. Bifurcation of the roots. It is easy to see that in the linear part of the
equation (3.5), z1 is related only to z2, z9, z10, v3; z3 is related to z4, z7, z8, v2; z5 is
related to z6, v1; z11 is related to z12, v4. Therefore, the control laws can be defined
as:

v1 = K11z5 +K12z6, v2 = K21z3 +K22z4 +K23z7 +K24z8,

v4 = K41z11 +K42z12, v3 = K31z1 +K32z2 +K33z9 +K34z10.

In this way, we can move the related eigenvalues in each group separately without
changing the eigenvalues in other groups. Here, we define vi(i = 1..4) as:

v1 = −256z5 +K12z6, v2 = −100z3 − 308z4 − 256z7 − 32z8,

v4 = −1024z11 +K42z12, v3 = 100z1 + 308z2 − 256z9 − 32z10.

The system has three equilibria P e
1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), P e

2 = (0, 0, 43.45,
0,−0.057, 0,−16.97, 0, 0, 0, 0, 0) and P e

3 = (0, 0,−43.45, 0,−0.057, 0, 16.97, 0, 0, 0, 0, 0).
However, only the origin P e

1 can be stable when K12,K42 change.
At the equilibrium P e

1 , for simplicity K12 = K42, when K12 changes, the real and
imaginary parts of the eigenvalues are in Figure 4.1. When K12 < 0, the system has
four eigenvalues with positive real parts, and the system becomes unstable. When
K12 > 0, the system has all eigenvalues with negative real parts, and the system is
asymptotically stable. When K12 = 0, the system has two pairs of pure imaginary
eigenvalues ±16i and ±32i, and all other eigenvalues have negative real parts, which
is a four dimensional center manifold. The stability cannot be determined by the
linear part of the system. It depends on the nonlinearity of the system.
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Fig. 4.1. The eigenvalues when K12 changes from -150 to 150: (a) the real parts. (b) the
imaginary parts.

4.2. Center manifold. The aim of this part is to get the reduced system which
can determine the stability and possible local bifurcations of the system at one bifur-
cation point [12]. A system can be written as:

ẋ = A(b)x+ F (x), x ∈ Rn

where b is a free parameter, b ∈ R.
At its origin x = [0, ..., 0], J(b) is the Jordan form of the matrix A(b) and Q is a

matrix which enables Q(b)J(b)Q−1(b) = A(b). Therefore, we have:

ẋ = Q(b)J(b)Q−1(b)x+ F (x) ⇒ Q−1(b)ẋ = J(b)Q−1(b)x+Q−1(b)F (x)

we define y = Q−1(b)x, then

ẏ = J(b)y +Q−1(b)F (Q(b)y) = J(b)y + F̃ (y)(4.1)

we can separate the Jordan matrix J as matrices B and C whose eigenvalues have
zero real parts and negative real parts respectively. Therefore, we can rewrite the
system (4.1) at the origin with x = [0, ..., 0].

ẏ0 = By0 + f(y0, y−), ẏ− = Cy0 + g(y0, y−).

Since the center manifold is tangent to Ec(the y− = 0 space), we define

y− = h(y0, b), h(0, 0) = Dh(0, 0) = 0, ḃ = 0.(4.2)

We can calculate the function h(y0, b) by using

ẏ− = Dh(y0, b)ẏ0 = Dh(y0, b)[By0 + f(y0, h(y0, b))] = Cy0 + g(y0, h(y0, b))

Therefore, we can get the local evolution equations of y0 which can determine the
stability of the original system.

In quadrotor center manifold analysis, the control laws are defined as:

v1 = −256z5 − bz6 − z35 , v2 = −100z3 − 308z4 − 256z7 − 32z8,

v4 = −1011 − 24z12, v3 = 100z1 + 308z2 − 256z9 − 32z10.

The bifurcation of the system is like in previous subsection. When b < 0, the sys-
tem has two eigenvalues with positive real parts. When b > 0, the system has all
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eigenvalues with negative real parts. When b = 0, the system has two pure imag-
inary eigenvalues ±16i, and all other eigenvalues have negative real parts. The
stability depends on the nonlinear parts of the system. We can use the center
manifold theory to simplify the system, and further simplify the study of the bi-
furcation of the system. In this control system, y0 = [y1, y2]T = [z5, z6]T and
y− = [y3, y4, y5, y6, y7, y8, y9, y10, y11, y12]T = [z1, z2, z3, z4, z7, z8, z9, z10, z11, z12]T .

We seek a quadratic center manifold (a are parameters to be defined later):

yi = ai200y
2
1 + ai020y

2
2 + ai002b

2 + ai110y1y2 + ai101y1b+ ai011y2b, i = 3..12

Using the method mentioned before, we get h(y0, b) = [−0.62b2,−0.62b2,−0.76b2,
− 0.76b2, 0, 0, 0, 0,−0.42b2,−23.58b2] in equation (4.2).

Therefore, the reduced system on the center manifold can be written:

ẏ1 = 16y2 − 0.41b4 − 0.011b8 − (b+ 0.057b4)y1 + 0.00024y32

ẏ2 = −16y1 + 0.67b4y1(4.3)

In the reduced system, when b is positive (negative), the origin is a stable (unstable)
focus. When b = 0, the origin is a center. The phase portrait of equation (4.3) when
b = −0.5, b = 0 and b = 0.5 are depicted in Figure 4.2.

Fig. 4.2. The phase portrait of the reduced system: (a) b=-0.5. (b) b=0. (c) b=0.5.

5. Quadrotor control. Here we propose a control method based on the normal
form and Lyapunov theory. In equation (3.5), the Jacobian matrix of the system can
be easily found. If the system is time invariant, the indirect method of Lyapunov says
that if the eigenvalues of Jacobian matrix of the system at the origin are in the open
left half complex plane, then the origin is asymptotically stable. Therefore, we can
define the state feedback as follows to move all the eigenvalues of the system to the
open left half plane. xr, yr, zr, ψr are the references.

v1 = −256(z5 − zr)− 32z6, v2 = −1700(z3 − yr)− 1000z4 − 256z7 − 32z8

v4 = −256(z11 − ψr)− 32z12, v3 = 1700(z1 − xr) + 1000z2 − 256z9 − 32z10

The simulation task is to let quadrotor follow a square path with the length of 2m
while hovering at the altitude of 10m, which is given in Figure 5.1. The totally sample
time is 20s. For comparison, the simulations using a standard PID control are also
given.

5.1. Simulation without wind disturbance. The simulation results are given
in Figure 5.2. The desired response time is 1s. We can see that the proposed method
has better performance than a standard PID control.
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Fig. 5.1. (a) Reference trajectory for the quadrotor. (b) Wind disturbance.

Fig. 5.2. The simulation without wind disturbance: (a) the proposed method. (b) a standard PID.

5.2. Simulation with wind disturbance. During the trajectory, there may
have wind disturbance with velocity 1m/s as in Figure 5.1, which occurs in all x, y
and z axis. The simulation results are given in Figure 5.3. The desired response time
is 1s. The proposed method can keep the stability during the wind disturbance, and
has better performance than a standard PID control.

6. Conclusion. In this paper, the normal form of quadrotor is deduced. A
Maple package ‘QualitativeODE’ [11] has been written for calculating the normal form
of any degree of the system. From equation (3.5), we can see that the highly coupled
parts in quadrotor system are eliminated. This makes the analysis of the dynamical
system easier. Under certain control laws, the system can be further deduced using
center manifold theorem. A two dimensional system is deduced which can determine
the stability and possible local bifurcations of the control system at the origin. Based
on the normal form and indirect method of Lyapunov, we proposed a state feedback
control method with computational simplicity as well as practical implementation
facility. This method achieved good results. In the simulations, the system can
remain stable with small tracking errors even if there is wind disturbance. Also, this
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Fig. 5.3. The simulation with wind disturbance: (a) the proposed method. (b) a standard PID.

method has faster response time than a standard PID control.
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