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Abstract An iterated refinement procedure for the Guruswami–Sudan list decoding

algorithm for Generalised Reed–Solomon codes based on Alekhnovich’s module min-

imisation is proposed. The method is parametrisable and allows variants of the usual

list decoding approach. In particular, finding the list of closest codewords within an

intermediate radius can be performed with improved average-case complexity while

retaining the worst-case complexity.

Keywords Guruswami–Sudan · List Decoding · Reed–Solomon Codes · Multi-Trial

1 Introduction

Since the discovery of a polynomial-time hard-decision list decoder for Generalised

Reed–Solomon (GRS) codes by Guruswami and Sudan (GS) [12,7] in the late 1990s,

much work has been done to speed up the two main parts of the algorithm: inter-

polation and root-finding. Notably, for interpolation Beelen and Brander [2] mixed

the module reduction approach by Lee and O’Sullivan [8] with the parametrisation of

Zeh et al. [13], and employed the fast module reduction algorithm by Alekhnovich [1].

Bernstein [4] pointed out that a slightly faster variant can be achieved by using the

reduction algorithm by Giorgi et al. [6].

For the root-finding step, one can employ the method of Roth and Ruckenstein [11]

in a divide-and-conquer fashion, as described by Alekhnovich [1]. This step then be-

comes an order of magnitude faster than interpolation, leaving the latter as the main

target for further optimisations.

For a given code, the GS algorithm has two parameters, both positive integers: the

interpolation multiplicity s and the list size ℓ. Together with the code parameters they

determine the decoding radius τ . To achieve a higher decoding radii for some given
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GRS code, one needs higher s and ℓ, and the value of these strongly influence the

running time of the algorithm.

In this work, we present a novel iterative method: we first solve the interpolation

problem for s = ℓ = 1 and then iteratively refine this solution for increasing s and ℓ.

In each step of our algorithm, we obtain a valid solution to the interpolation problem

for these intermediate parameters. The method builds upon that of Beelen–Brander [2]

and has the same asymptotic complexity.

The method therefore allows a fast multi-trial list decoder when our aim is just to

find the list of codewords with minimal distance to the received word. At any time dur-

ing the refinement process, we will have an interpolation polynomial for intermediate

parameters ŝ ≤ s, ℓ̂ ≤ ℓ yielding an intermediate decoding radius τ̂ ≤ τ . If we perform

the root-finding step of the GS algorithm on this, all codewords with distance at most

τ̂ from the received are returned; if there are any such words, we break computation

and return those; otherwise we continue the refinement. We can choose any number

of these trials, e.g. for each possible intermediate decoding radius between half the

minimum distance and the target τ .

Since the root-finding step of GS is cheaper than the interpolation step, this multi-

trial decoder will have the same asymptotic worst-case complexity as the usual GS using

the Beelen–Brander interpolation; however, the average-case complexity is better since

fewer errors are more probable.

This contribution is structured as follows. In the next section we give necessary pre-

liminaries and state the GS interpolation problem for decoding GRS codes. In Section 3

we give a definition and properties of minimal matrices. Alekhnovich’s algorithm can

bring matrices to this form, and we give a more fine-grained bound on its asymptotic

complexity. Our new iterative procedure is explained in detail in Section 4.

2 Preliminaries

2.1 Notation

Let Fq be the finite field of order q and let Fq [X] be the polynomial ring over Fq with

indeterminate X. Let Fq [X, Y ] denote the polynomial ring in the variables X and Y

and let wdegu,v X
iY j , ui+ vj be the (u, v)-weighted degree of XiY j .

A vector of length n is denoted by v = (v0, . . . , vn−1). If v is a vector over

Fq [X], let deg v , maxi{deg vi(X)}. We introduce the leading position as LP(v) =

maxi{i|deg vi(X) = deg v} and the leading term LT(v) = vLP(v) is the term at this

position. An m × n matrix is denoted by V = ‖vi,j‖
m−1,n−1
i=0,j=0 . The rows of such

a matrix will be denoted by lower-case letters, e.g. v0, . . . ,vm−1. Furthermore, let

degV =
∑m−1

i=0 degvi. Modules are denoted by capital letters such as M .

2.2 Interpolation-Based Decoding of GRS Codes

Let α0, . . . , αn−1 be n nonzero distinct elements of Fq with n < q and let w0, . . . , wn−1

be n (not necessarily distinct) nonzero elements of Fq . A GRS code GRS(n, k) of length
n and dimension k over Fq is given by

GRS(n, k) ,
{
(w0f(α0), . . . , wn−1f(αn−1)) : f(X) ∈ Fq [X], deg f(X) < k

}
. (1)
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GRS codes are Maximum Distance Separable (MDS) codes, i.e., their minimum Ham-

ming distance is d = n− k+1. We shortly explain the interpolation problem of GS [7,

12] for decoding GRS codes in the following.

Theorem 1 (Guruswami–Sudan for GRS Codes [7,12]) Let c ∈ GRS(n, k) be

a codeword and f(X) the corresponding information polynomial as defined in (1). Let

r = (r0, . . . , rn−1) = c+e be a received word where weight(e) ≤ τ . Let r′i denote ri/wi.

Let Q(X,Y ) ∈ Fq [X, Y ] be a nonzero polynomial that passes through the n points

(α0, r
′

0), . . . , (αn−1, r
′

n−1) with multiplicity s ≥ 1, has Y -degree at most ℓ, and

wdeg1,k−1 Q(X,Y ) < s(n− τ ). Then (Y − f(X)) | Q(X,Y ).

One can easily show that a polynomial Q(X,Y ) that fulfils the above conditions can

be constructed whenever E(s, ℓ, τ ) > 0, where

E(s, ℓ, τ ) , (ℓ+ 1)s(n− τ )−
(
ℓ+1
2

)
(k − 1) −

(
s+1
2

)
n (2)

is the difference between the maximal number of coefficients of Q(X,Y ), and the num-

ber of homogeneous linear equations on Q(X,Y ) specified by the interpolation con-

straint. This determines the maximal number of correctable errors, and one can show

that satisfactory s and ℓ can always be chosen whenever τ < n−
√

n(k − 1) (for n→∞

see e.g. [7]).

Definition 2 (Permissible Triples) An integer triple (s, ℓ, τ ) ∈ (Z+)3 is permissi-

ble if E(s, ℓ, τ ) > 0.

We define also the decoding radius-function τ (s, ℓ) as the greatest integer such that

(s, ℓ, τ (s, ℓ)) is permissible.

It is easy to show that E(s, ℓ, τ ) > 0 for s > ℓ implies τ < ⌊n−k
2 ⌋, which is half

the minimum distance. Therefore, it never makes sense to consider s > ℓ, and in the

remainder we will always assume s ≤ ℓ. Furthermore, we will also assume s, ℓ ∈ O(n2)

since this e.g. holds for any τ for the closed-form expressions in [7].

2.3 Module Reformulation of Guruswami–Sudan

Let Ms,ℓ ⊂ Fq [X, Y ] denote the space of all bivariate polynomials passing through the

points (α0, r
′

0), . . . , (αn−1, r
′

n−1) with multiplicity s and with Y -degree at most ℓ. We

are searching for an element of Ms,ℓ with low (1, k − 1)-weighted degree.

Following the ideas of Lee and O’Sullivan [8], we can first remark that Ms,ℓ is

an Fq [X] module. Second, we can give an explicit basis for Ms,ℓ. Define first two

polynomials G(X) =
∏n−1

i=0 (X−αi) as well as R(X) as the Lagrange polynomial going

through the points (αi, r
′

i) for i = 0, . . . , n− 1. Denote by Q[t](X) the Y t-coefficient of

Q(X,Y ) when Q is regarded over Fq [X][Y ].

Lemma 3 Let Q(X,Y ) ∈Ms,ℓ. Then G(X)s−t | Q[t](X) for t < s.

Proof Q(X,Y ) interpolates the n points (αi, r
′

i) with multiplicity s, so for any i, Q(X+

αi, Y + r′i) =
∑t

j=0 Q[j](X + αj)(Y + r′j)
j has no monomials of total degree less than

s. Multiplying out the (Y + r′j)
j-terms, Q[t](X + αj)Y

t will be the only term with

Y -degree t. Therefore Q[t](X + αj) can have no monomials of degree less than s − t,

which implies (X − αi) | Q[t](X). As this holds for any i, we proved the lemma. ⊓⊔
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Theorem 4 The module Ms,ℓ is generated as an Fq [X]-module by the ℓ+1 polynomials

P (i)(X,Y ) ∈ Fq[X, Y ] given by

P (t)(X,Y ) = G(X)s−t(Y −R(X))t, for 0 ≤ t < s,

P (t)(X,Y ) = Y t−s(Y −R(X))s, for s ≤ t ≤ ℓ.

Proof It is easy to see that each P (t)(X,Y ) ∈Ms,ℓ since both G(X) and (Y −R(X))

go through the n points (αi, r
′

i) with multiplicity one, and that G(X) and (Y −R(X))

divide P (t)(X,Y ) with total power s for each t.

To see that any element of Ms,ℓ can be written as an Fq [X]-combination of the

P (t)(X,Y ), let Q(X,Y ) be some element of Ms,ℓ. Then the polynomial Q(ℓ−1)(X,Y ) =

Q(X,Y ) − Q[ℓ]P
(ℓ)(X,Y ) has Y -degree at most ℓ − 1. Since both Q(X,Y ) and

P (ℓ)(X,Y ) are in Ms,ℓ, so must Q(ℓ−1)(X,Y ) be in Ms,ℓ. Since P (t)(X,Y ) has Y -

degree t and P
(t)
[t]

(X) = 1 for t = ℓ, ℓ−1, . . . , s, we can continue reducing this way until

we reach a Q(s−1)(X,Y ) ∈Ms,ℓ with Y -degree at most s− 1. From then on, we have

P
(t)
[t]

(X) = G(X)s−t, but by Lemma 3, we must also have G(X) | Q
(s−1)
[s−1]

(X), so we can

also reduce by P (s−1)(X,Y ). This can be continued with the remaining P (t)(X,Y ),

eventually reducing the remainder to 0. ⊓⊔

We can represent the basis of Ms,ℓ by the (ℓ + 1) × (ℓ + 1) matrix As,ℓ =

‖P
(i)
[j]

(X,Y )‖ℓ,ℓi=0,j=0 over Fq [X]. Any Fq[X]-linear combination of rows of As,ℓ thus

corresponds to an element in Ms,ℓ by its tth term being the Fq [X]-coefficient to Y t.

All other bases of Ms,ℓ can be similarly represented by matrices, and these will be

unimodular equivalent to As,ℓ, i.e., they can be obtained by multiplying As,ℓ on the

left with an invertible matrix over Fq[X].

Extending the work of Lee and O’Sullivan [8], Beelen and Brander [2] gave a fast

algorithm for computing a satisfactory Q(X,Y ): start with As,ℓ as a basis of Ms,ℓ and

compute a different, “minimal” basis of Ms,ℓ where an element of minimal (1, k − 1)-

weighted degree appears directly.1

In the following section, we give further details on how to compute such a basis,

but our ultimate aims in Section 4 are different: we will use a minimal basis of Ms,ℓ

to efficiently compute one for M
ŝ,ℓ̂

for ŝ ≥ s and ℓ̂ > ℓ. This will allow an iterative

refinement for increasing s and ℓ, where after each step we have such a minimal basis

for Ms,ℓ. We then exploit this added flexibility in our multi-trial algorithm.

3 Module Minimisation

Given a basis of Ms,ℓ, e.g. As,ℓ, the module minimisation here refers to the process

of obtaining a new basis, which is the smallest among all bases of Ms,ℓ in a precise

sense. We will define this and connect various known properties of such matrices, and

use this to more precisely bound the asymptotic complexity with which they can be

computed by Alekhnovich’s algorithm.

Definition 5 (Weak Popov Form [10]) A matrix V over Fq [X] is in weak Popov

form if an only if the leading position of each row is different.

1 Actually, in both [8,2], a slight variant of As,ℓ is used, but the difference is non-essential.
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We are essentially interested in short vectors in a module, and the following lemma

shows that the simple concept of weak Popov form will provide this. It is a paraphrasing

of [1, Proposition 2.3] and we omit the proof.

Lemma 6 (Minimal Degree) If a square matrix V over Fq[X] is in weak Popov

form, then one of its rows has minimal degree of all vectors in the row space of V.

Denote now by Wℓ the diagonal (ℓ+ 1)× (ℓ+ 1) matrix over Fq [X]:

Wℓ , diag
(
1, Xk−1, . . . , Xℓ(k−1)

)
. (3)

Since we seek an element of minimal (1, k − 1)-weighted degree, we also need the

following corollary.

Corollary 7 (Minimal Weighted Degree) Let B ∈ Fq [X](ℓ+1)×(ℓ+1) be the ma-

trix representation of a basis of Ms,ℓ. If BWℓ is in weak Popov form, then one of the

rows of B corresponds to a polynomial in Ms,ℓ with minimal (1, k− 1)-weighted degree.

Proof Let B̃ = BWℓ. Now, B̃ will correspond to the basis of an Fq [X]-module M̃

isomorphic to Ms,ℓ, where an element Q(X,Y ) ∈ Ms,ℓ is mapped to Q(X,Xk−1Y ) ∈

M̃ . By Lemma 6, the row of minimal degree in B̃ will correspond to an element of M̃

with minimal X-degree. Therefore, the same row of B corresponds to an element of

Ms,ℓ with minimal (1, k − 1)-weighted degree. ⊓⊔

We introduce what will turn out to be a measure of how far a matrix is from being

in weak Popov form.

Definition 8 (Orthogonality Defect [9]) Let the orthogonality defect of a square

matrix V over Fq[X] be defined as D(V) , deg V − deg detV.

Lemma 9 If a square matrix V over Fq [X] is in weak Popov form then D(V) = 0.

Proof Let v0, . . . ,vm−1 be the rows of V ∈ Fq [X]m×m and vi,0, . . . , vi,m−1 the el-

ements of vi. In the alternating sum-expression for detV, the term
∏m−1

i=0 LT(vi)

will occur since the leading positions of vi are all different. Thus deg detV =∑m−1
i=0 deg LT(vi) = deg V unless leading term cancellation occurs in the determi-

nant expression. However, no other term in the determinant has this degree: regard

some (unsigned) term in detV, say t =
∏m−1

i=0 vi,σ(i) for some permutation σ ∈ Sm.

If not σ(i) = LP(vi) for all i, then there must be an i such that σ(i) > LP(vi) since∑
j σ(j) is the same for all σ ∈ Sm. Thus, deg vi,σ(i) < deg vi,LP(vi). As none of the

other terms in t can have greater degree than their corresponding row’s leading term,

we get deg t <
∑m−1

i=0 deg LT(vi). Thus, D(V) = 0. However, the above also proves

that the orthogonality defect is at least 0 for any matrix. Since any matrix unimodular

equivalent to V has the same determinant, V must therefore have minimal row-degree

among these matrices. ⊓⊔

Alekhnovich [1] gave a fast algorithm for transforming a matrix over Fq [X] to weak

Popov form. For the special case of square matrices, a finer description of its asymptotic

complexity can be reached in terms of the orthogonality defect, and this is essential

for our decoder.
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Lemma 10 (Alekhnovich’s Row-Reducing Algorithm) Alekhnovich’s algo-

rithm inputs a matrix V ∈ Fq [X]m×m and outputs a unimodular equivalent matrix

which is in weak Popov form. Let N be the greatest degree of a term in V. If

N ∈ O(D(V)) then the algorithm has asymptotic complexity:

O
(
m3 D(V) log2 D(V) log log D(V)

)
operations over Fq .

Proof The description of the algorithm as well as proof of its correctness can be found

in [1]. We only prove the claim on the complexity. The method R(V, t) of [1] computes

a unimodular matrix U such that deg(UV) ≤ degV − t or UV is in weak Popov form.

According to [1, Lemma 2.10], the asymptotic complexity of this computation is in

O(m3t log2 t log log t). Due to Lemma 9, we can set t = D(V) to be sure that UV is in

weak Popov form. What remains is just to compute the product UV. Due to [1, Lemma

2.8], each entry in U can be represented as p(X)Xd for some d ∈ N0 and p(X) ∈ Fq [X]

of degree at most 2t. If therefore N ∈ O(D(V)), the complexity of performing the

matrix multiplication using the naive algorithm is O(m3 D(V)). ⊓⊔

4 Multi-Trial List Decoding

4.1 Basic Idea

Using the results of the preceding section, we show in Section 4.2 that given a basis of

Ms,ℓ as a matrix Bs,ℓ in weak Popov form, then we can write down a matrix CIs,ℓ+1

which is a basis of Ms,ℓ+1 and whose orthogonality defect is much lower than that

of As,ℓ+1. This means that reducing CIs,ℓ+1 to weak Popov form using Alekhnovich’s

algorithm is faster than reducing As,ℓ+1. We call this kind of refinement a “micro-step

of type I”. In Section 4.3, we similarly give a way to refine a basis of Ms,ℓ to one of

Ms+1,ℓ+1, and we call this a micro-step of type II.

If we first compute a basis in weak Popov form ofM1,1 using A1,1, we can perform a

sequence of micro-steps of type I and II to compute a basis in weak Popov form of Ms,ℓ

for any s, ℓ with ℓ ≥ s. After any step, having some intermediate ŝ ≤ s, ℓ̂ ≤ ℓ, we will

thus have a basis of M
ŝ,ℓ̂

in weak Popov form. By Corollary 7, we could extract from

B
ŝ,ℓ̂

a Q̂(X,Y ) ∈ M
ŝ,ℓ̂

with minimal (1, k − 1)-weighted degree. Since it must satisfy

the interpolation conditions of Theorem 1, and since the weighted degree is minimal

among such polynomials, it must also satisfy the degree constraints for τ̂ = τ (ŝ, ℓ̂). By

that theorem any codeword with distance at most τ̂ from r would then be represented

by a root of Q̂(X,Y ).

Algorithm 1 is a generalisation and formalisation of this method. For a given

GRS(n, k) code, one chooses ultimate parameters (s, ℓ, τ ) being a permissible triple

with s ≤ ℓ. One also chooses a list of micro-steps and chooses after which micro-steps

to attempt decoding; these choices are represented by a list of S1,S2 and Root elements.

This list must contain exactly s− ℓ S1-elements of and s− 1 S2-elements, as it begins

by computing a basis for M1,1 and will end with a basis for Ms,ℓ. If there is a Root

element in the list, the algorithm finds all codewords with distance at most τ̂ = τ (ŝ, ℓ̂)

from r; if this list is non-empty, the computation breaks and the list is returned.

The algorithm calls sub-functions which we explain informally: MicroStep1 and

MicroStep2 will take ŝ, ℓ̂ and a basis in weak Popov form for M
ŝ,ℓ̂

and return a basis

in weak Popov form for M
ŝ,ℓ̂+1

respectively M
ŝ+1,ℓ̂+1

; more detailed descriptions for
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these are given in Subsections 4.2 and 4.3. MinimalWeightedRow finds a polynomial of

minimal (1, k − 1)-weighted degree inM
ŝ,ℓ̂

given a basis in weak Popov form (Corol-

lary 7). Finally, RootFinding(Q, τ ) returns all Y -roots of Q(X,Y ) of degree less than k

and whose corresponding codeword has distance at most τ from the received word r.

Algorithm 1: Multi-Trial Guruswami–Sudan Decoding

Input: A GRS(n, k) code and the received vector r = (r0, . . . , rn−1)

A permissible triple (s, ℓ, τ )

A list C with elements in {S1, S2,Root} with s− 1 instances of S2, ℓ− s

instances of S1

Preprocessing: Calculate r′i = ri/wi for all i = 0, . . . , n− 1

Construct A1,1, and compute B1,1 from A1,1W1 using Alekhnovich’s

algorithm

Initial parameters (ŝ, ℓ̂)← (1, 1)

1 for each c in C do

2 if c = S1 then

3 B
ŝ,ℓ̂+1

← MicroStep1(ŝ, ℓ̂,B
ŝ,ℓ̂

)

4 (ŝ, ℓ̂)← (ŝ, ℓ̂+ 1)

5 if c = S2 then

6 B
ŝ+1,ℓ̂+1

← MicroStep2(ŝ, ℓ̂,B
ŝ,ℓ̂

)

7 (ŝ, ℓ̂)← (ŝ+ 1, ℓ̂+ 1)

8 if c = Root then

9 Q(X,Y )← MinimalWeightedRow(B
ŝ,ℓ̂

)

10 if RootFinding(Q(X,Y ), τ (ŝ, ℓ̂)) 6= ∅ then

11 return this list

Algorithm 1 has a large amount of flexibility in the choice of the list C, but since we

can only perform micro-steps of type I and II, there are choices of s and ℓ we can never

reach, or some which we cannot reach if we first wish to reach an earlier s and ℓ. We

can never reach s > ℓ, but as mentioned in Section 2, such a choice never makes sense.

It also seems to be the case that succession of sensibly chosen parameters can always

be reached by micro-steps of type I and II. That is, if we first wish to attempt decoding

at some radius τ1 and thereafter continue to τ2 > τ1 in case of failure, the minimal

possible s1, ℓ1 and s2, ℓ2 such that (s1, ℓ1, τ1) respectively (s2, ℓ2, τ2) are permissible

will satisfy 0 ≤ s2 − s1 ≤ ℓ2 − ℓ1. However, we have yet to formalise and prove such a

statement.

In the following two subsections we explain the details of the micro-steps. In Section

4.4, we discuss the complexity of the method and how the choice of C influence this.

4.2 Micro-Step Type I: (s, ℓ) 7→ (s, ℓ+ 1)

Lemma 11 If B(0)(X,Y ), . . . , B(ℓ)(X,Y ) is a basis of Ms,ℓ, then the following is a

basis of Ms,ℓ+1:

B(0)(X,Y ), . . . , B(ℓ)(X,Y ), Y ℓ−s+1(Y −R(X))s
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Proof In the basis of Ms,ℓ+1 given in Theorem 4, the first ℓ + 1 generators are the

generators of Ms,ℓ. Thus all of these can be described by any basis of Ms,ℓ+1. The last

remaining generator is exactly Y ℓ−s+1(Y −R(X))s. ⊓⊔

In particular, the above lemma holds for a basis of Ms,ℓ+1 in weak Popov form,

represented by a matrix Bs,ℓ. The following matrix thus represents a basis of Ms,ℓ+1:

CIs,ℓ+1 =




Bs,ℓ 0T

0 . . . 0 (−R)s
(
s
1

)
(−R)s−1 . . . 1


 . (4)

Lemma 12 D(CIs,ℓ+1Wℓ+1) = s(degR − k + 1) ≤ s(n− k).

Proof We calculate the two quantities det(CIs,ℓ+1Wℓ+1) and deg(CIs,ℓ+1Wℓ+1). It is

easy to see that

det(CIs,ℓ+1Wℓ+1) = detBs,ℓ detWℓ+1 = detBs,ℓ detWℓX
(ℓ+1)(k−1).

For the row-degree, it is clearly deg(Bs,ℓWℓ) plus the row-degree of the last row. If and

only if the received word is not a codeword then degR ≥ k, then the leading term of

the last row must be (−R)sX(ℓ+1−s)(k−1). Thus, we get

D(CIs,ℓ+1Wℓ+1) =
(
deg(Bs,ℓWℓ) + sdegR + (ℓ+ 1− s)(k − 1)

)

−
(
deg det(Bs,ℓWℓ) + (ℓ+ 1)(k − 1)

)

= s(degR − k + 1),

where the last step follows from Lemma 9 as Bs,ℓWℓ is in weak Popov form. ⊓⊔

Corollary 13 The complexity of MicroStep1(s, ℓ,Bs,ℓ) is O(ℓ3sn log2 n log log n).

Proof Follows by Lemma 10. Since s ∈ O(n2) we can leave out the s in log-terms. ⊓⊔

4.3 Micro-Step Type II: (s, ℓ) 7→ (s+ 1, ℓ+ 1)

Lemma 14 If B(0)(X,Y ), . . . , B(ℓ)(X,Y ) is a basis of Ms,ℓ, then the following is a

basis of Ms+1,ℓ+1:

Gs+1(X), B(0)(X,Y )(Y −R(X)), . . . , B(ℓ)(X,Y )(Y −R(X)).

Proof Denote by P
(0)
s,ℓ

(X,Y ), . . . , P
(ℓ)
s,ℓ

(X,Y ) the basis of Ms,ℓ as given in Theorem 4,

and by P
(0)
s+1,ℓ+1(X,Y ), . . . , P

(ℓ+1)
s+1,ℓ+1(X,Y ) the basis of Ms+1,ℓ+1. Then observe that

for t > 0, we have P
(t)
s+1,ℓ+1 = P

(t−1)
s,ℓ

(Y − R(X)). Since the B(i)(X,Y ) form a ba-

sis of Ms,ℓ, each P
(t)
s,ℓ

is expressible as an Fq [X]-combination of these, and thus for

t > 0, P
(t)
s+1,ℓ+1 is expressible as an Fq[X]-combination of the B(i)(X,Y )(Y −R(X)).

Remaining is then only P
(0)
s+1,ℓ+1(X,Y ) = Gs+1(X). ⊓⊔
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As before, we can use the above with the basis Bs,ℓ of Ms,ℓ in weak Popov form,

found in the previous iteration of our algorithm. Remembering that multiplying by Y

translates to shifting one column to the right in the matrix representation, the following

matrix thus represents a basis of Ms+1,ℓ+1:

CIIs+1,ℓ+1 =



Gs+1 0

0T 0


+




0 0

0T Bs,ℓ


−R ·




0 0

Bs,ℓ 0T


 . (5)

Lemma 15 D(CIIs+1,ℓ+1Wℓ+1) = (ℓ+ 1)(degR − k + 1) ≤ (ℓ+ 1)(n− k).

Proof We compute deg(CIIs+1,ℓ+1Wℓ+1) and deg det(CIIs+1,ℓ+1Wℓ+1). For the former,

obviously the first row has degree (s + 1)n. Let bi denote the ith row of Bs,ℓ and b′

i

denote the ith row of Bs,ℓWℓ. The (i+ 1)th row of CIIs+1,ℓ+1Wℓ+1 has the form

[
(0 | bi)−R(bi | 0)

]
Wℓ+1 = (0 | b′

i)X
k−1 −R(b′

i | 0).

If and only if the received word is not a codeword, then degR ≥ k. In this case, the

leading term of Rb′

i must have greater degree than any term in Xk−1b′

i. Thus the

degree of the above row is degR + degb′

i. Summing up we get

deg CIIs+1,ℓ+1 = (s+ 1)n+

ℓ∑

i=0

degR + degb′

i

= (s+ 1)n+ (ℓ+ 1) degR + deg(Bs,ℓWℓ).

For the determinant, observe that

det(CIIs+1,ℓ+1Wℓ+1) = det(CIIs+1,ℓ+1) det(Wℓ+1)

= Gs+1 det B̃ detWℓX
(ℓ+1)(k−1),

where B̃ = Bs,ℓ−R
[
B̀s,ℓ

∣∣ 0T
]
and B̀s,ℓ is all but the zeroth column of Bs,ℓ. This means

B̃ can be obtained by starting from Bs,ℓ and iteratively adding the (j+1)th column of

Bs,ℓ scaled by R(X) to the jth column, with j starting from 0 up to ℓ− 1. Since each

of these will add a scaled version of an existing column in the matrix, this does not

change the determinant. Thus, det B̃ = detBs,ℓ. But then det B̃ detWℓ = det(Bs,ℓWℓ)

and so deg(det B̃ detWℓ) = deg(Bs,ℓWℓ) by Lemma 9 since Bs,ℓWℓ is in weak Popov

form. Thus we get

deg det(CIIs+1,ℓ+1Wℓ+1) = (s+ 1)n+ deg(Bs,ℓWℓ) + (ℓ+ 1)(k − 1).

The lemma follows from the difference of the two calculated quantities. ⊓⊔

Corollary 16 The complexity of MicroStep2(s, ℓ,Bs,ℓ) is O(ℓ4n log2 n log log n).



10

4.4 Complexity Analysis

Using the estimates of the two preceding subsections, we can make a rather precise

worst-case asymptotic complexity analysis of our multi-trial decoder. The average run-

ning time will depend on the exact choice of C but we will see that the worst-case

complexity will not. First, it is necessary to know the complexity of performing a

root-finding attempt.

Lemma 17 (Complexity of Root-Finding) Given a polynomial Q(X,Y ) ∈
Fq [X][Y ] of Y -degree at most ℓ and X-degree at most N , there exists an algorithm

to find all Fq [X]-roots of complexity O
(
ℓ2N log2 N log logN

)
, assuming ℓ, q ∈ O(N).

Proof We employ the Roth–Ruckenstein [11] root-finding algorithm together with the

divide-and-conquer speed-up by Alekhnovich [1]. The complexity analysis in [1] needs

to be slightly improved to yield the above, but see [3] for easy amendments.

Theorem 18 (Complexity of Algorithm 1) For a given GRS(n, k) code, as well

as a given list of steps C for Algorithm 1 with ultimate parameters (s, ℓ, τ ), the algorithm

has worst-case complexity O(ℓ4sn log2 n log log n), assuming q ∈ O(n).

Proof The worst-case complexity corresponds to the case that we do not break early

but run through the entire list C. Precomputing As,ℓ using Lagrangian interpolation

can be performed in O(n log2 n log log n), see e.g. [5, p. 235], and reducing to Bs,ℓ is in

the same complexity by Lemma 10.

Now, C must contain exactly ℓ − s S1-elements and s − 1 S2-elements. The com-

plexities given in Corollaries 13 and 16 for some intermediate ŝ, ℓ̂ can be relaxed to

s and ℓ. Performing O(ℓ) micro-steps of type I and O(s) of type II is therefore in

O(ℓ4sn log2 n log log n).

It only remains to count the root-finding steps. Obviously, it never makes sense to

have two Root after each other in C, so after removing such possible duplicates, there

can be at most ℓ elements Root. When we perform root-finding for intermediate ŝ, ℓ̂,

we do so on a polynomial in M
ŝ,ℓ̂

of minimal weighted degree, and by the definition of

M
ŝ,ℓ̂

as well as Theorem 1, this weighted degree will be less than ŝ(n− τ̂) < sn. Thus

we can apply Lemma 17 with N = sn. ⊓⊔

The worst-case complexity of our algorithm is equal to the average-case complexity of

the Beelen–Brander [2] list decoder. However, Theorem 18 shows that we can choose

as many intermediate decoding attempts as we would like without changing the worst-

case complexity. One could therefore choose to perform a decoding attempt just after

computing B1,1 as well as every time the decoding radius has increased. The result

would be a decoding algorithm finding all closest codewords within some ultimate

radius τ . If one is working in a decoding model where such a list suffices, our algorithm

will thus have much better average-case complexity since fewer errors occur much more

frequently than many.

5 Conclusion

An iterative interpolation procedure for list decoding GRS codes based on

Alekhnovich’s module minimisation was proposed and shown to have the same worst-

case complexity as Beelen and Brander’s [2]. We showed how the target module used
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in Beelen–Brander can be minimised in a progressive manner, starting with a small

module and systematically enlarging it, performing module minimisation in each step.

The procedure takes advantage of a new, slightly more fine-grained complexity analysis

of Alekhnovich’s algorithm, which implies that each of the module refinement steps will

run fast.

The main advantage of the algorithm is its granularity which makes it possible to

perform fast multi-trial decoding: we attempt decoding for progressively larger decod-

ing radii, and therefore find the list of codewords closest to the received. This is done

without a penalty in the worst case but with an obvious benefit in the average case.
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