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Abstract

This paper is devoted to a numerical implementation of the Francfort-
Marigo model of damage evolution in brittle materials. This quasi-static
model is based, at each time step, on the minimization of a total energy
which is the sum of an elastic energy and a Griffith-type dissipated en-
ergy. Such a minimization is carried over all geometric mixtures of the
two, healthy and damaged, elastic phases, respecting an irreversibility
constraint. Numerically, we consider a situation where two well-separated
phases coexist, and model their interface by a level set function that is
transported according to the shape derivative of the minimized total en-
ergy. In the context of interface variations (Hadamard method) and using
a steepest descent algorithm, we compute local minimizers of this quasi-
static damage model. Initially, the damaged zone is nucleated by using
the so-called topological derivative. We show that, when the damaged
phase is very weak, our numerical method is able to predict crack prop-
agation, including kinking and branching. Several numerical examples in
2d and 3d are discussed.

1 Introduction

Fracture mechanics is a field of paramount importance which is the subject of
intense research efforts, see [22, 25, 46] and reference therein. While many works
address the issue of microscopic modelling of fractures and the coupling of some
defect atomistic models with macroscopic elasto-plastic models, we focus on
purely macroscopic models in the framework of continuum mechanics. Roughly
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speaking such continuum models can be classified in two main categories. On
the one hand, there are models of crack growth and propagation which assume
that the crack is a (d − 1)-dimensional hypersurface in dimension d (a curve in
the plane, and a surface in the three-dimensional space). On the other hand, one
can consider models of damage where there is a competition between the initial
healthy elastic phase and another damaged elastic phase. The transition from
healthy to damaged can be smooth (i.e., there is a continuous damage variable
which measures to what extent, or local proportion, the material is damaged)
or sharp (i.e., there is an interface between a fully healthy and fully damaged
zones). The Francfort-Marigo model [35] of quasi-static damage evolution for
brittle materials pertains to the latter category and it is the purpose of this
work to propose a numerical implementation of such a model. One of our main
conclusion is that, although the Francfort-Marigo model is a damage model, it is
able to describe crack propagation, when the damaged phase is very weak, and
it gives quite similar results to those obtained in [21, 22]. This is not so much a
surprise (although not a proof, of course) since the numerical approach in these
papers is based on a Γ-convergence approximation (à la Ambrosio-Tortorelli)
which amounts to replace the original fracture model by a damage model.

Section 2 gives a complete description of the Francfort-Marigo damage model
that we briefly summarize now. A smooth body Ω ⊂ Rd (d = 2, 3) is filled with
two elastic phases: the undamaged or “healthy” phase, and the damaged one
which is much weaker. The damaged zone is Ω0 ⊂ Ω, with characteristic func-
tion χ(x), and the healthy zone is the remaining region Ω1 = Ω \ Ω0. The
behavior of such a mixture is assumed to be linearly elastic with a perfect inter-
face (i.e., natural transmission conditions take place at the interface). Starting
from an initial configuration of damaged and healthy phases mixture χinit(x)
and for a given set of loads, the new damaged configuration χopt(x) is obtained
by minimizing a total energy

J(χ) = Jelast(χ) + κ

∫

Ω
χ dV , (1.1)

which is the sum of the elastic energy and a Griffith-like bulk energy for the
creation of the damaged region (where κ > 0 is a material parameter represent-
ing the energy density released at the onset of damage), under an irreversibility
constraint which forbids an initially damaged zone to become healthy anew, i.e.,

χ(x) ≥ χinit(x) .

A quasi-static damage evolution model is then obtained by a time discretization
of the force loading and by applying the previous constrained minimization at
each time step.

For numerical purposes we represent the interface Σ between the damaged
and healthy regions, Ω0 and Ω1 respectively, by a level set function. The level
set method for front propagation, as introduced by S. Osher and J. Sethian [53],
is well-known to be very convenient for this purpose, including the possibility
of topology changes. Here, we take advantage of another feature of the level set
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method, namely the local character of front displacement. In other words, we
do not seek global minimizers of (1.1) but rather local minimizers obtained from
the initial configuration χinit by transporting it using the level set method. Al-
though global minimization is the ultimate goal in many optimization problems
(like, for example, shape optimization [3, 5]), it turns out to be an undesirable
feature in the present problem of damage evolution. Indeed, as explained in
[21], global minimization is mechanically not sound for a quasi-static evolution
problem where meta-stable states should be preferred to globally stable states
attained by crossing a high energy barrier.

In the context of the level set method, at each time step, the new damage
configuration χopt is obtained from the initialization χinit by solving a trans-
port Hamilton-Jacobi equation with a normal velocity which is minus the shape
derivative of the total energy (1.1). Section 3 is devoted to the computation of
such a shape derivative, following Hadamard method of geometric optimization
(see e.g. [3, 41, 49, 62]). Remark that this computation is not standard (and
indeed new in the elasticity context, to the best of our knowledge) since it is
an interface between two materials, rather than a boundary, which is moved
and since the full strain and stress tensors are not continuous through the in-
terface. Note however that, for continuous fields, the derivation with respect
to the shape of an interface is already known, see e.g. [56, 63]. The numerical
algorithm for the level set method is by now standard and is briefly recalled in
Section 6.

One of the inconveniences of the level set method, as well as of most nu-
merical methods for crack propagation, is its inability to nucleate damage and
start a front evolution if there is no initial interface. Therefore, we use another
ingredient to initialize our computations when no initial damaged zone is pre-
scribed. Namely, we use the notion of topological derivative as introduced in
[33, 37, 61], and applied to the case of elastic inclusions in [9, 10, 18] for inverse
problems, and to cracks in [64]. The topological derivative aims at determining
whether it is worth or not nucleating an infinitesimal damage inclusion in the
healthy zone Ω1. This information is complementary to that obtained by shape
variation since, on the one hand, the shape derivative cannot nucleate new in-
clusions and, on the other hand, once an inclusion is created, only the shape
derivative can expand it further on. The notion of topological derivative will be
detailed in Section 4.

The resulting numerical algorithm is somehow similar to previous algorithms
in structural optimization [5, 65]. When the damaged phase is much weaker
than the healthy phase (say, with a 10−3 ratio between the Young moduli) and
for a suitably chosen Griffith energy release parameter κ (which scales like the
inverse of the mesh size ∆x), our numerical results are very similar to those
of [21] which were obtained for a fracture model. Therefore we claim that
our numerical implementation of the Francfort-Marigo damage model is able
to simulate crack propagation. Numerical experiments, including a study of
convergence under mesh refinement, are performed in Section 6. We believe
our approach is simpler and computationally less intensive than other classical
methods for crack propagation [1, 14, 17, 39, 40, 50, 51]. Let us emphasize that
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level-set methods have already been used in fracture mechanics [19, 39, 40],
usually in conjunction with the extended finite element method [47]. However,
one novelty of our work is that we use a single level-set function instead of
two for parametrizing the crack and that the weak damage phase avoids the
use of discontinuous finite elements. After completion of this work we learned
that similar ideas were independently introduced in [15] and [45]. A different
approach, called eigendeformation, was recently proposed in [59]: it uses two
fields, like in [21], and relies on a scaling resembling ours (see (2.11) below).
Eventually Section 7 draw some conclusions on our numerical experiments which
yield comparable but different results from those obtained by the back-tracking
algorithm for global minimization proposed in [20], [22]. Our results, including
some computations in 2d, were announced in [7].

2 The Francfort-Marigo model of damage

2.1 Description of the model

This section gives a comprehensive description of the Francfort-Marigo model
[35] of quasi-static damage evolution for brittle materials. In a smooth domain
Ω ⊂ Rd this damage model is stated as a macroscopic phase transition problem
between a damaged phase occupying a subset Ω0 ⊂ Ω and an healthy phase in
the remaining region Ω1 = Ω\Ω0. To simplify the presentation, in a first step we
consider a static problem starting from a healthy configuration (namely, without
any irreversibility constraint). The characteristic function of Ω0 is denoted by
χ(x). The healthy and damaged phases are both assumed to be linear, isotropic
and homogeneous, so we work in a linearized elasticity framework and the Lamé
tensor of elasticity in Ω is

Aχ = A1(1 − χ) + A0χ,

where 0 < A0 < A1 are the Lamé tensors of isotropic elasticity in the damaged
and healthy regions, respectively, defined by

A0,1 = 2µ0,1I4 + λ0,1I2 ⊗ I2

where I2 and I4 denote the identity 2nd and 4th order tensors, respectively.
The boundary of the body is made of two parts, ∂Ω = ΓD ∪ ΓN , where a

Dirichlet boundary condition uD is imposed on ΓD and a Neumann boundary
condition g is imposed on ΓN . We assume that uD ∈ H1(Ω; Rd), g ∈ L2(∂Ω; Rd)
and we consider also a body force f ∈ L2(Ω; Rd). (Slightly stronger regularity
assumptions on the data f, g, uD will be made in the sequel.) We denote by n
the unit normal vector on ∂Ω. We introduce the affine space of kinematically
admissible displacement fields

V = {u ∈ H1(Ω; Rd) such that u = uD on ΓD}.

As usual, the strain and stress tensors associated to a displacement u write as

e(u) =
1
2
(
∇u + ∇T u

)
, σ(u) = Aχe(u). (2.1)
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The elasticity system reads as
⎧
⎨

⎩

− div (Aχe(uχ)) = f in Ω,
uχ = uD on ΓD,
Aχe(uχ)n = g on ΓN .

(2.2)

It is well-known that (2.2) can be restated as a minimum potential energy
principle, that is, the displacement field uχ ∈ V minimizes in V the energy
functional

Pχ(u) =
∫

Ω

(
1
2
Aχe(u) · e(u) − f · u

)
dV −

∫

ΓN

g · udS ,

i.e.,
Pχ(uχ) = min

u∈V
Pχ(u) .

The Francfort-Marigo model amounts to minimize jointly over u and χ a total
energy which is the sum of the elastic potential energy and of a Griffith-type
energy (accounting for the creation of the damaged region), writing as

J (u,χ) = Pχ(u) + κ

∫

Ω
χ dV , (2.3)

where κ is a positive material parameter which represents the release of elastic
energy due to the decrease of rigidity at the onset of damage and can be inter-
preted as a density of dissipated energy of the damaged region. We call κ the
Griffith energy release parameter. In other words, the Francfort-Marigo model
is based on the minimization over χ ∈ L∞(Ω; {0, 1}) of

J(χ) = J (uχ,χ) = min
u∈V

J (u,χ) . (2.4)

Instead of writing (2.4), we can first minimize in χ and later in u (since (2.3)
is doubly minimized, the order of minimization does not matter). Since χ(x)
takes only the values 0 and 1, the minimization is easy, provided that we know
uχ (which is of course never the case). Indeed, minimizing (2.4) is equivalent to
the following local minimization at each point x ∈ Ω

min
χ∈{0,1}

{1
2
Aχe(uχ) · e(uχ) + κχ}(x),

providing a transition criterion from the healthy to the damaged phase as soon
as the release of elastic energy is larger than the threshold κ. More precisely, a
point x is damaged if and only if

1
2
A1e(uχ) · e(uχ)(x) − 1

2
A0e(uχ) · e(uχ)(x) ≥ κ . (2.5)

After minimization in χ we obtain a non-linear non-convex functional to be
minimized in V

E(u) =
1
2

∫

Ω
min

(
A1e(u) · e(u), A0e(u) · e(u) + 2κ

)
dV (2.6)

−
∫

Ω
f · u dV −

∫

ΓN

g · u dS.
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In truth the Francfort-Marigo model is quasi-static which means that we
consider a sequence of minimization problems of the above type, with an addi-
tional thermodynamic irreversibility constraint. The time is discretized by an
increasing sequence (ti)i≥1, with t1 = 0 and ti < ti+1. At each time ti the loads
are denoted by fi and gi, the imposed boundary displacement is uD,i, the affine
space of kinematically admissible displacement fields is Vi, the characteristic
function of the damaged phase is χi and the corresponding displacement is uχi ,
solution of (2.2) with loads fi and gi and Dirichlet boundary condition uD,i.
The initial damaged zone is given and characterized by χ0.

The model is irreversible which means that a material point x ∈ Ω which is
damaged at a previous time must remain damaged at a later time ti, i.e.,

χi(x) ≥ χi−1(x). (2.7)

Therefore, introducing Ji and Ji, which are defined as (2.3) and (2.4) with the
loads at time ti, the Francfort-Marigo model is a sequence, indexed by i ≥ 1, of
minimization problems

inf
χ∈L∞(Ω;{0,1}),χ≥χi−1

Ji(χ) = inf
u∈Vi,χ∈L∞(Ω;{0,1}),χ≥χi−1

Ji(u,χ) , (2.8)

with minimizers χi and uχi (if any).

2.2 Mathematical properties of the model

The Francfort and Marigo model is ill-posed, namely, there does not exist any
minimizer of (2.8) in most cases. This can easily be seen because (2.8) is equiv-
alent to the minimization of the non-linear elastic energy (2.6) which is not
convex, neither quasi-convex. Actually, one of the main purposes of the semi-
nal paper [35] of Francfort and Marigo was to relax the minimization problem
(2.8) and show the existence of suitably generalized solutions. The relaxation
of (2.8) amounts to introduce composite materials, obtained by a fine mixing
of the two phases, as competitors in the minimization of the total energy. Such
composite materials include the limits, in the sense of homogenization, of mini-
mizing sequences of (2.8): they are characterized by a phase volume fraction in
the range [0, 1] and a homogenized elasticity tensor which is the output of the
microstructure at given volume fractions. It turns out that optimal microstruc-
tures are found in the class of sequential laminates. For further details we refer
to [35] for the first time step and to [34] for the following time steps (where the
irreversibility constraint plays a crucial role). This relaxed approach has been
used for numerical computations of damage evolution in [4].

One drawback of the Francfort-Marigo approach is that it relies on global
minimization, i.e., at each time step ti the functional Ji(u,χ) is globally min-
imized with respect to both variables u and χ. There is no true mechanical
motivation for insisting on global minimization with respect to χ. Because of
global minimization, damage might occur at time step ti in a region far away
from the initially damaged zone at the previous time step ti−1, whereas, in most
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circumstances, it seems more natural from a physical viewpoint to have expan-
sion of the previously damaged area. Therefore, in a quasi-static regime which
may favor metastability effects, it seems reasonable to prefer local minimization
(with respect to χ) instead of global minimization. In the context of fracture
mechanics it was proved in [51] that criticality solutions of the Griffith model are
different from the energy globally minimizing solutions proposed by Francfort
and Marigo.

Unfortunately, for a scalar-valued version of our damage model (antiplane
elasticity), it was recently proved in [38] that local minima are actually global
ones (both in the original setting of characteristic functions or in the relaxed
setting of composite materials, locality being evaluated in the L1(Ω)-norm).
However this last result of [38] does not prevent the possibility of a different
framework in which local minimizers would not be global ones (see, for example,
the notion of ε-stable minimizer in [44]). In the present paper we propose such
a framework based on the notion of front propagation in the original case of a
macroscopic distribution of healthy and damaged phases (i.e., not considering
composite materials). Instead of representing a damaged zone by a characteristic
function χ ∈ L∞(Ω; {0, 1}) we rather introduce the interface Σ between the
healthy and the damaged regions. Admissible variations of this interface are
obtained in the framework of Hadamard method of shape variations [3], [41],
[49], [55], [62] (see Section 3 below). More precisely, the minimization in (2.8)
is restricted to configurations which are obtained by a Lipschitz diffeomorphism
from a reference or an initial configuration. This is a severe restriction of the
space of admissible designs since, for example, all configurations share the same
topology as the reference one. As a consequence there cannot be nucleation of
new damaged zones away from the initial one. This leaves open the possibility of
the existence of local, but not global, minimizers. We shall not prove anything
rigorously on this issue but our numerical simulations indicate that they do
indeed exist. Let us remark that the chosen numerical approach by level sets
allows for topology changes by breaking a damage region in two parts, but never
by creating a new damage region.

On the other hand, working in the framework of Hadamard method of front
representation does not help at all concerning the existence of (local or global)
minimizers. Once again we are speechless on this issue. Of course, one simple
remedy is to add a surface energy in the minimized total energy

Jreg(u,χ) = Pχ(u) + κ

∫

Ω
χ dV + κ′ TV (χ) , (2.9)

with the total variation norm defined by

TV (χ) = sup
φ∈C1(Ω;Rd)

|φ|≤1 in Ω

∫

Ω
χ divφ dV.

When χ is the characteristic function of a smooth subset Ω0, the number TV (χ)
is also the perimeter of Ω0. A possible justification of this new term in (2.9)
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is to consider a Griffith surface energy on top of the previous Griffith bulk
energy. We call ”regularized” the energy in (2.9) since it is well-known to
admit minimizers χ in the class L∞(Ω; {0, 1}) [13]. In truth, if we mention this
additive surface energy, this is because the unavoidable numerical diffusion of
our computational algorithm has precisely the effect of adding such a surface
energy. For our numerical tests, we shall not rely on (2.9) and rather we use
the standard energy (2.3).

2.3 Goal of the present study

The goal of this paper is to propose and test the following numerical method
for the damage model of Francfort and Marigo. At each time step ti the mini-
mization (2.8) is performed by Hadamard method of shape sensitivity. In other
words, we compute the shape derivative of the objective function Ji with re-
spect to the interface between the healthy and damaged phases and, applying
a steepest descent algorithm, we move this interface in (minus) the direction
of the shape gradient. The minimization of Ji is stopped when the shape gra-
dient is (approximately) zero, i.e., at a stationary point (a local minimizer in
numerical practice) of the objective function. We use a level set approach to
characterize the interface between the healthy and damaged phases. As is well
known, it allows for large deformations of the interface with possibly topology
changes. After convergence at time ti, we pass to the next discrete time ti+1 by
changing the loads and we start a new minimization of Ji+1, taking into account
the irreversibility constraint (2.7). We iterate until a final time tifinal which we
choose when the structure is almost entirely damaged.

We propose two possible ways of initializing our computations. Either we
start from an initial damaged zone χ0 at time t1 = 0, or, in case the initial
structure is not damaged at all, we nucleate a small damaged zone by using
the notion of topological derivative. This nucleation step takes place before we
start the first minimization of J1. In particular, the resulting initial damaged
zone is usually not a local minimizer of the total energy (2.3). We are thus
able to predict damage propagation without prescribing any initial crack as is
commonly done in engineering practice.

Although the considered model has been designed in the framework of dam-
age mechanics, it turns out to be able to accurately describe crack propagation in
some specific regimes. More precisely, when the damaged phase is very weak (its
rigidity A0 is negligible) and the energy release rate is large enough, the results
of our numerical computations are cracks rather than damaged sub-domains.
In other words, the damaged zone is a thin hypersurface with a thickness of a
few mesh cells concentrating along a curve in 2d or a surface in 3d. However,
our model, based on the minimization of (2.3), has no intrinsic lengthscale as
opposed to other fracture models where there is a competition between bulk
(elastic) energy and surface (crack extension) energy [22]. Therefore we must
introduce some characteristic lengthscale in our model if we want to support
our claim that it is able to predict crack propagation. We do this at a numerical
level by requiring that our fracture results are convergent under mesh refine-
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ment, a necessary condition for any reasonable numerical algorithm. To obtain
such a convergence we scale the Griffith bulk energy release parameter κ like
1/∆x, where ∆x is the mesh size which is refined. More precisely, we introduce
a characteristic lengthscale ℓ and we define a new material parameter γ which
can be thought of as a Griffith surface energy release parameter (or fracture
toughness in the language of fracture mechanics)

γ = κℓ . (2.10)

Then, instead of minimizing (2.3), we minimize (assuming, for simplicity, that
there are only bulk forces)

J∆x(u,χ) =
∫

Ω

(
1
2
Aχe(u) · e(u) − f · u

)
dV +

γ

∆x

∫

Ω
χ dV , (2.11)

where γ/∆x has the same physical units than κ. Although (2.11) has been
written in a continuous framework, we are actually interested in its discretized
version for a mesh of size ∆x obtained, for example, with piecewise affine con-
tinuous Lagrange finite elements for u and piecewise constant finite elements for
χ. In other words, rather than (2.11) we consider

J∆x(u∆x,χ∆x) =
∫

Ω

(
1
2
Aχe(u∆x) · e(u∆x) − f · u∆x

)
dV +

γ

∆x

∫

Ω
χ∆x dV ,(2.12)

where the minimization carries over the fields u∆x and χ∆x belonging to the
above finite element spaces (of finite dimension, linked to the mesh size ∆x).
When ∆x goes to zero, we expect that, for a minimizing sequence χ∆x, the last
term of (2.11) converges to a surface energy

lim
∆x→0

γ

∆x

∫

Ω
χ∆x dV = γ

∫

Γ
dS,

where Γ is the crack curve in 2d or surface in 3d. The numerical examples of
Section 6 show that it is indeed the case: the damage zone concentrates around
a surface Γ with a thickness of a few cells ∆x. We believe that the discrete
scaled energies (2.12) converges, in some sense to be made precise, as ∆x and
A0 go to zero, to the fracture model

min
u,Γ

∫

Ω\Γ

(
1
2
A1e(u) · e(u) − f · u

)
dV + γ

∫

Γ
dS (2.13)

where the displacement field u may be discontinuous through the crack Γ. We
are not able to prove such a result which would first require to order the speed
of convergence of ∆x and A0 to zero. Remark however that similar results of
convergence of a sequence of discrete energies to a continuous limit energy have
already been obtained, e.g., in the context of image segmentation for discrete
Mumford-Shah energies [29] or for spin systems [24]. A natural candidate for
the type of convergence of (2.12) to (2.13) would be of course Γ-convergence.
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However, since our numerical approach relies on some type of local minimizers,
whereas Γ-convergence only deals with global minimizers, one should pertain to
a variant of Γ-convergence for ”local minimizers” (a notion to be made precise)
as in the recent works [23], [43], [58]. Although a convergence of (2.12) to (2.13)
would probably be difficult and quite technical to prove, our numerical results
are a clear indication that it may hold true.

This conjectured link between the damage model (2.11) and the fracture
model (2.13) is, of course, reminiscent (but not equivalent) of the numerical
approach in [21], [22] where a fracture model is numerically approximated by a
damage model (based on the Γ-convergence result of [8]).

3 Shape derivative

3.1 On the notion of shape gradient

Shape differentiation is a classical topic [3], [41], [49], [55], [62]. We briefly
recall its definition and main results in the present context. Here, the overall
domain Ω is fixed and we consider a smooth open subset ω ⊂ Ω which may
vary. Denoting by χ the characteristic function of ω, we consider variations of
the type

χθ = χ ◦
(
Id + θ

)
, i.e., χθ(x) = χ

(
x + θ(x)

)
,

with θ ∈ W 1,∞(Ω; Rd) such that θ is tangential on ∂Ω (this last condition
ensures that Ω = (Id + θ)Ω). It is well known that, for sufficiently small θ,
(Id + θ) is a diffeomorphism in Ω.

Definition 3.1 The shape derivative of a function J(χ) is defined as the Fréchet
derivative in W 1,∞(Ω; Rd) at 0 of the application θ → J

(
χ ◦ (Id + θ)

)
, i.e.

J
(
χ ◦ (Id + θ)

)
= J(χ) + J ′(χ)(θ) + o(θ) with lim

θ→0

|o(θ)|
∥θ∥W 1,∞

= 0 ,

where J ′(χ) is a continuous linear form on W 1,∞(Ω; Rd).

Lemma 3.1 ([41], [62]) Let ω be a smooth bounded open subset of Ω and θ ∈
W 1,∞(Ω; Rd). Let f ∈ H1(Ω) and g ∈ H2(Ω) be two given functions. Assume
that Σ is a smooth subset of ∂ω with boundary ∂Σ. The shape derivatives of

J1(ω) =
∫

ω
f dV and J2(Σ) =

∫

Σ
g dS

are J ′
1(ω) =

∫

∂ω
f θ · n dS and

J ′
2(Σ) =

∫

Σ

(
∂g

∂n
+ gH

)
θ · n dS +

∫

∂Σ
g θ · τ dL, (3.1)

respectively, where n is the exterior unit vector normal to ∂ω, H is the mean
curvature and τ is the unit vector tangent to ∂ω such that τ is normal to both
∂Σ and n, and dL is the (d − 2)-dimensional measure along ∂Σ.
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3.2 Main result

To simplify the notations we forget the time index ti in this section. Although
the state equation and the cost function of the Francfort-Marigo model are (2.2)
and (2.4) respectively, we consider a slightly more general setting in this section
(to pave the way to more general models in the future). More precisely, we
consider a state equation

⎧
⎨

⎩

− div (Aχe(uχ)) = fχ in Ω,
uχ = uD on ΓD,
Aχe(uχ)n = gχ on ΓN ,

(3.2)

where
fχ := (1 − χ)f1 + χf0 and gχ := (1 − χ)g1 + χg0

with fk ∈ H1(Ω; Rd) ∩ C0,α(Ω; Rd) and gk ∈ H2(Ω; Rd) ∩ C1,α(Ω; Rd), k = 0 or
1 (0 < α < 1) . We also assume that uD belongs to H2(Ω; Rd) and that the
subset Ω0 (with characteristic function χ) is smooth. Under these assumptions
the solution uχ of (3.2) belongs to H2(Ω0; Rd) and H2(Ω1; Rd) and is of class
C2,α away from the boundary and from the interface. The cost function is taken
as

J(χ) =
1
2

∫

Ω
Aχe(uχ) · e(uχ)dV +

∫

Ω
jχ(x, uχ)dV +

∫

∂Ω
hχ(x, uχ)dS, (3.3)

where
jχ := (1 − χ)j1 + χj0 and hχ := (1 − χ)h1 + χh0

with jk(x, u) and hk(x, u), k = 0, 1, twice differentiable functions with respect
to u, satisfying the following growth conditions

|jk(x, u)| ≤ C(|u|2 + 1), |(jk)′(x, u)| ≤ C(|u| + 1), |(jk)′′(x, u)| ≤ C,
|hk(x, u)| ≤ C(|u|2 + 1), |(hk)′(x, u)| ≤ C(|u| + 1), |(hk)′′(x, u)| ≤ C.

(3.4)
where ′ denotes the partial derivative with respect to u ∈ Rd. To avoid some
unnecessary technicalities we also assume that h1(x, uD(x)) = h0(x, uD(x)) on
ΓD so that the objective function is equal to

J(χ) =
1
2

∫

Ω
Aχe(uχ) · e(uχ)dV +

∫

Ω
jχ(x, uχ)dV +

∫

ΓN

hχ(x, uχ)dS + C

where C is a constant which does not depend on χ.

Remark 3.1 When the imposed displacement on ΓD vanishes, uD = 0, the cost
function of the Francfort-Marigo model simplifies and reduces to a multiple of
the compliance. Indeed, the energy equality for the state equation (2.2) (which
is valid only if uD = 0), namely

∫

Ω
Aχe(uχ) · e(uχ) dV =

∫

Ω
f · uχ dV +

∫

ΓN

g · uχ dS,
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implies that the cost function (2.4) (with jχ = κχ − f · uχ and gχ = −g · uχ)
reduces to

J(χ) = κ

∫

Ω
χ dV − 1

2

(∫

Ω
f · uχ dV +

∫

ΓN

g · uχ dS

)
. (3.5)

Of course, the study of (3.5) is much simpler than that of the general objective
function (3.3). However, since many numerical tests involve non-homogeneous
boundary displacements, uD ̸= 0, we must study (3.3) and not merely (3.5).

We need to introduce the so-called adjoint problem
⎧
⎨

⎩

− div (Aχe(pχ)) = fχ + j′χ(x, uχ) in Ω,
pχ = 0 on ΓD,
Aχe(pχ)n = gχ + h′

χ(x, uχ) on ΓN .
(3.6)

We denote by Σ the interface between the damaged and healthy regions Ω0 and
Ω1. We define n = n0 = −n1 the outward unit normal vector to Σ. We use the
jump notation

[α] = α1 − α0 (3.7)

for a quantity α that has a jump across the interface Σ.
The shape derivative of (3.3) will be an integral on the interface Σ as is clear

from Lemma 3.1. The state uχ and adjoint pχ are continuous on Σ but not all
their derivatives. Actually the tangential components of their deformation ten-
sors are continuous as well as the normal vector of their stress tensors. To make
this result precise, at each point of the interface Σ we introduce a local basis
made of the normal vector n and a collection of unit tangential vectors, collec-
tively denoted by t, such that (t, n) is an orthonormal basis. For a symmetric
d × d matrix M, written in this basis, we introduce the following notations

M =
(

Mtt Mtn

Mnt Mnn

)

where Mtt stands for the (d−1)× (d−1) minor of M, Mtn is the vector of the
(d− 1) first components of the d-th column of M, Mnt is the row vector of the
(d− 1) first components of the d-th row of M, and Mnn the (d, d) entry of M.
Let us recall that dV, dS and dL indicate volume integration in Rd, and surface
(or line, according to the value of d) integration in Rd−1 and Rd−2, respectively.

Lemma 3.2 Let e and σ denote the strain and stress tensors of the solution to
the state equation (3.2) or adjoint state equation (3.6). All components of σnt,
σnn, and ett are continuous across the interface Σ (assumed to be smooth) while
all other entries have jumps through Σ, rewritten in terms of these continuous
quantities as
⎧
⎪⎪⎨

⎪⎪⎩

[enn] = [(2µ + λ)−1]σnn − [λ(2µ + λ)−1] trett

[etn] = [(2µ)−1]σtn

[σtt] = [2µ]ett + ([2µλ(2µ + λ)−1] trett + [λ(2µ + λ)−1]σnn)Id−1
2

(3.8)
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where Id−1
2 is the identity matrix of order d − 1.

Proof. By standard regularity theory, on both sides of the smooth interface Σ
the solution, as well as its deformation and stress tensors e and σ, are smooth.
This implies that the continuity of the displacement through the interface yields
the continuity of ett. The transmission condition implies that σtn and σnn are
also continuous on the interface. The other quantities have jumps (3.8) which
are computed through the strain-stress relation (2.1). !

Theorem 3.1 Let Ω be a smooth bounded open set, Σ be a smooth hypersurface
in Ω, γ = Σ ∩ ΓN and θ ∈ W 1,∞(Ω; Rd). The shape derivative in the direction
θ of the objective function J(χ), as given by (3.3), is

J ′(χ)(θ) =
∫

Σ
D(x) θ · n dS

+
∫

Σ

(
(f0 − f1) · pχ + (j0 − j1)(x, uχ)

)
θ · n dS

+
∫

γ

(
(g0 − g1) · pχ + (h0 − h1)(x, uχ)

)
θ · τ dL

(3.9)

with

D(x) = −[
1

(λ+ 2µ)
]σnn(uχ)σnn(pχ) − [

1
µ

]σtn(uχ) · σtn(pχ)

+ [2µ] ett(uχ) · ett(pχ) + [
2λµ

(λ+ 2µ)
] trett(uχ) trett(pχ)

+ [
λ

(λ + 2µ)
] (σnn(uχ) trett(pχ) + σnn(pχ) trett(uχ))

+ [
1

2(λ+ 2µ)
] (σnn(uχ))2 + [

1
2µ

] |σtn(uχ)|2 − [µ] |ett(uχ)|2

− [
λµ

λ+ 2µ
] ( trett(uχ))2 − [

λ

λ+ 2µ
]σnn(uχ) trett(uχ),

(3.10)

where uχ and pχ are the solutions of the state equation (3.2) and adjoint equation
(3.6), respectively, and where the brackets denotes the jump as defined by (3.7).
Equivalently, D(x) can be rewritten as

D(x) = −σnn(uχ)[enn(pχ)] + ett(uχ) · [σtt(pχ)] − 2[etn(uχ)] · σtn(pχ)

+
1
2

(
σnn(uχ)[enn(uχ)] − ett(uχ) · [σtt(uχ)] + 2σtn(uχ) · [etn(uχ)]

)
.

(3.11)

Remark 3.2 A formula, partially symmetric to (3.11), holds true

D(x) = −σnn(pχ)[enn(uχ)] + ett(pχ) · [σtt(uχ)] − 2[etn(pχ)] · σtn(uχ)

+
1
2

(
σnn(uχ)[enn(uχ)] − ett(uχ) · [σtt(uχ)] + 2σtn(uχ) · [etn(uχ)]

)
.

(3.12)
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The main interest of (3.11), or (3.12), compared to (3.10), is that it does not
involve jumps of the Lamé coefficients which blow up when the damaged phase
degenerate to zero.

Indeed, it is interesting to investigate the limit of the shape derivative in
Theorem 3.1 when A0 converges to zero. In such a case, we recover previously
known formulas, used in shape optimization [3], [41], [62]. As A0 tends to zero,
it is well known that, on the interface Σ, the normal stress σn = (σtn,σnn) con-
verges also to zero, while the deformation tensor e remains bounded. Therefore,
the limit formula of (3.11), or (3.12), is

D(x) = ett(uχ) · σtt(pχ) − 1
2
ett(uχ) · σtt(uχ). (3.13)

The proof of Theorem 3.1 is given in the next subsection (except some tech-
nical computations which are postponed to Appendix A). Similar results in the
conductivity setting (scalar equations) appeared in [16], [42], [54].

Let us now restate Theorem 3.1 for the Francfort-Marigo cost function, in
which case we have

jk(x, u) = −fk · uk + κδk0 and hk(x, u) = −gk · uk

where δk0 is the Kronecker symbol, equal to 0 if k = 1 and to 1 if k = 0. It
turns out that the problem is self-adjoint, i.e., there is no need of an adjoint
state. More precisely, in this context we find that pχ = 0. We further simplify
the previous Theorem 3.1 by taking forces which are the same in the damaged
and healthy regions, i.e., f0 = f1 and g0 = g1. Then, we obtain

Corollary 3.1 Let f0 = f1 and g0 = g1. The shape derivative of (2.4) in the
direction θ is

J ′(χ)(θ) =
∫

Σ
D(x) θ · n dS

with

D(x) = κ+
1
2

(
σnn(uχ)[enn(uχ)]−ett(uχ)·[σtt(uχ)]+2σtn(uχ)·[etn(uχ)]

)
. (3.14)

Furthermore, if A0 ≤ A1, then
(
D(x) − κ

)
≤ 0 on Σ.

The last result of Corollary 3.1 implies that, upon neglecting the Griffith
energy release rate, i.e. taking κ = 0, one should take θ · n ≥ 0 to get a
negative shape derivative. In other words, the damaged phase should fill the
entire domain in order to minimize the energy functional (2.4) (which is clear
from the minimization (2.5)).
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3.3 The Lagrangian approach to shape differentiation

This section is devoted to the proof of Theorem 3.1 by means of a Lagrangian
method which, in the context of shape optimization, is described in e.g. [3], [5],
[28]. It amounts to introduce a Lagrangian which, as usual, is the sum of the
objective function and of the constraints multiplied by suitable Lagrange multi-
pliers. In shape optimization the state equation is seen as a constraint and the
corresponding Lagrange multiplier is precisely the adjoint state at optimality.
The shape derivative J ′(χ)(θ) is then obtained as a simple partial derivative
of the Lagrangian L. This approach is also very convenient to guess the exact
form of the adjoint problem.

In the present setting it is the shape of the subdomains Ω0 and Ω1 which
is varying, or equivalently the interface Σ. Differentiating with respect to the
position of this interface is more complicated than differentiating with respect
to the outer boundary as in usual shape optimization problems. The additional
difficulty, which was recognized in [54] (see also [16], [42]) is that the solution uχ

of the state equation (3.2) is not shape differentiable in the sense of Definition
3.1. The reason is that some spatial derivatives of uχ are discontinuous at
the interface (because of the jump in the material properties): thus, when we
additionally differentiate with respect to the position of Σ, we obtain that those
spatial derivatives of u′

χ(θ) have a part which is a measure concentrated on
the interface, and consequently u′

χ(θ) ”escapes” from the functional space V
in which we differentiate. The remedy is simply to rewrite the state equation
(3.2) as a transmission problem. We thus introduce the restrictions u0 to Ω0,
and u1 to Ω1, of the solution uχ of (3.2). In other words, they satisfy uχ =
(1 − χ)u1 + χu0 and are solutions of the transmission problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− div
(
A1e(u1)

)
= f1 in Ω1

u1 = uD on Γ1
D = ΓD ∩ ∂Ω1

A1e(u1)n1 = g1 on Γ1
N = ΓN ∩ ∂Ω1

u1 = u0 on Σ = ∂Ω0 ∩ ∂Ω1

A1e(u1)n1 + A0e(u0)n0 = 0 on Σ

(3.15)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− div
(
A0e(u0)

)
= f0 in Ω0

u0 = uD on Γ0
D = ΓD ∩ ∂Ω0

A0e(u0)n0 = g0 on Γ0
N = ΓN ∩ ∂Ω0

u0 = u1 on Σ
A0e(u0)n0 + A1e(u1)n1 = 0 on Σ

, (3.16)

which is equivalent to (3.2). Recall that n = n0 = −n1 denotes the outward
unit normal vector to the interface Σ.

Introducing the notations σi(vi) = Aie(vi) and σi(qi) = Aie(qi), the general
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Lagrangian is defined as

L(v1, v0, q1, q0, Σ) =
∫

Ω1

[
j1(x, v1) +

1
2
σ1(v1) · e(v1) − σ1(v1) · e(q1) + f1 · q1

]
dV

+
∫

Ω0

[
j0(x, v0) +

1
2
σ0(v0) · e(v0) − σ0(v0) · e(q0) + f0 · q0

]
dV

+
∫

Γ0
N

[
g0 · q0 + h0(x, v0)

]
dS +

∫

Γ1
N

[
g1 · q1 + h1(x, v1)

]
dS

− 1
2

∫

Σ

(
σ1(v1) + σ0(v0)

)
n · (q1 − q0)dS

− 1
2

∫

Σ

(
σ1(q1) + σ0(q0)

)
n · (v1 − v0)dS

+
1
2

∫

Σ

(
σ1(v1) + σ0(v0)

)
n · (v1 − v0)dS, (3.17)

where q0 and q1 play the role of Lagrange multiplier or, at optimality, of the
adjoint state p0 and p1(on the same token, at optimality v0, v1 are equal to
u0, u1). The functions v0, v1 satisfy non homogeneous Dirichlet boundary con-
ditions and belong to the affine space V , while the other functions q0, q1 vanishes
on ΓD and thus belong to the vector space V0 defined as

V0 = {u ∈ H1(Ω; Rd) such that u = 0 on ΓD}.

Of course, differentiating the Lagrangian with respect to q0 and q1, and equaling
it to 0, provides the state equations (3.15) and (3.16). The next result states
that differentiating the Lagrangian with respect to v0 and v1, and equaling it
to 0, yields the adjoint equation.

Lemma 3.3 The optimality condition

∂L
∂v1

(u1, u0, p1, p0,χ) =
∂L
∂v0

(u1, u0, p1, p0,χ) = 0

for variations in V0 is equivalent to the adjoint problem (3.6).

Proof. This is a classical computation [3], [28], [54] which we do not detail.
Differentiating the Lagrangian with respect to v0 and v1 and equaling it to zero
yields

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− div
(
Aie(pi)

)
= j′i(x, ui) − div

(
Aie(ui)

)
in Ωi

pi = 0 on Γi
D

Aie(pi)ni = h′
i(x, ui) + Aie(ui)ni on Γi

N
p0 = p1 on Σ
A0e(p0)n = A1e(p1)n on Σ

(3.18)

which is equivalent to (3.6). !
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As we already said, the solution uχ of (3.2) is not shape differentiable. How-
ever its Lagrangian or transported counterpart, namely θ → uχ◦(Id+θ)◦(Id+θ),
is actually differentiable by a simple application of the implicit function theorem
(see chapter 5 in [41]). As a consequence, upon a suitable extension outside Ωi,
the solution ui of (3.15-3.16) are indeed shape differentiable.

Lemma 3.4 The solutions u1 of (3.15) and u0 of (3.16) are shape differen-
tiable.

The main interest of the Lagrangian is that its partial derivative with respect
to the shape χ, evaluated at the state uχ and adjoint pχ, is equal to the shape
derivative of the cost function.

Lemma 3.5 The cost function J(χ) admits a shape derivative which is given
by

J ′(χ)(θ) =
∂L
∂χ

(u1, u0, p1, p0,χ)(θ), (3.19)

where (u1, u0, p1, p0) are the solutions of the state equation (3.15-3.16) and ad-
joint equation (3.18).

Proof. This is again a classical result [3], [28] which we briefly recall. We start
from the identity

J(χ)(θ) = L(u1, u0, q1, q0,χ) (3.20)

where q1, q0 are any functions in V . We differentiate (3.20) with respect to the
shape. By virtue of Lemma 3.4 we obtain

J ′(χ)(θ) =
∂L
∂χ

(u1, u0, q1, q0,χ)(θ) + ⟨ ∂L
∂v0,1

(u1, u0, q1, q0,χ),
∂u0,1

∂χ
(θ)⟩. (3.21)

The notation ∂L
∂χ means that it is a shape partial derivative, i.e., we differentiate

L in the sense of Definition 3.1 while keeping the other arguments (u1, u0, q1, q0)
fixed. Taking now (q1, q0) = (p1, p0) cancels the last term in (3.21) because it is
the variational formulation of the adjoint problem by virtue of Lemma 3.3. We
thus obtain (3.19). !

To finish the proof of Theorem 3.1 it remains to compute the partial shape
derivative of the Lagrangian. It is a conceptually simple application of Lemma
3.1 which, nevertheless, is quite tedious. Therefore the proof of the following
Lemma is postponed to Appendix A.

Lemma 3.6 The partial shape derivative of the Lagrangian

∂L
∂χ

(u1, u0, p1, p0,χ)(θ),

is precisely equal to the right hand side of (3.9).
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4 Topological derivative

The aim of this section is to evaluate the sensitivity of the cost function to the
introduction of an infinitesimal damaged region ωρ inside the healthy region
Ω1. In theory the shape of the smooth inclusion can be arbitrary. However, for
practical and numerical purposes it will be assumed to be a ball in Rd.

4.1 Main result

Let ω be a smooth open subset of Rd. Let ρ > 0 be a small positive parameter
which is intended to go to zero. For a point x0 ∈ Ω1 we define a rescaled
inclusion

ωρ = {x ∈ Rd :
x − x0

ρ
∈ ω}, (4.1)

which, for small enough ρ is strictly included in Ω1 and disconnected from
Ω0. The total damaged zone is thus Ω0

ρ := Ω0 ∪ ωρ and the healthy phase is
Ω1

ρ := Ω \ Ω0
ρ. Let χρ,χ,χωρ

denote the characteristic functions of Ω0
ρ, Ω0 and

ωρ, respectively (verifying χρ = χ+ χωρ
). In the sequel, in order to distinguish

integration in the variables x and y := x−x0
ρ , the symbol dV will sometimes be

replaced by dV (y) or dV (η) (where η is a dummy variable similar to y).
Let us recall the notations for the non-perturbed domain Ω = Ω0 ∪ Ω1 (i.e.,

without the damage inclusion). The cost function then writes as

J(χ) =
1
2

∫

Ω
Aχe(uχ) · e(uχ)dV +

∫

Ω
jχ(x, uχ)dV +

∫

∂Ω
hχ(x, uχ)dS, (4.2)

where jχ = j0χ+j1(1−χ), hχ = h0χ+h1(1−χ), and the so-called “background”
solution” uχ solves the state equation (3.2) on Ω = Ω0 ∪Ω1. As in the previous
section, we assume that the integrands j0, j1(x, u) and h0, h1(x, u) are twice
differentiable functions with respect to u, satisfying the growth conditions (3.4).
Moreover, let us recall that the so-called “background” dual solution pχ solves
the adjoint problem (3.6) on Ω = Ω0 ∪ Ω1.

On the perturbed domain Ω = Ω0
ρ ∪ Ω1

ρ, the cost function is

J(χρ) =
1
2

∫

Ω
Aχρe(uχρ) · e(uχρ)dV +

∫

Ω
jχρ(x, uχρ)dV +

∫

∂Ω
hχ(x, uχρ)dS,

because χρ ≡ χ, and thus hχρ ≡ hχ, on ∂Ω (the inclusion ωρ is away from the
boundary), and where uχρ solves

⎧
⎨

⎩

− div
(
Aχρe(uχρ)

)
= f in Ω

uχρ = uD on ΓD

Aχρe(uχρ)n = g on ΓN

(4.3)

with Aχρ = A0χρ + A1(1 − χρ), the Lamé tensor of the material with the
inclusion.
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Definition 4.1 If the objective function admits the following so-called topolog-
ical asymptotic expansion for small ρ > 0:

J(χρ) − J(χ) − ρdDJ(x0) = o(ρd),

then the number DJ(x0) is called the topological derivative of J at x0 for the
inclusion shape ω.

The main result of this section is the following theorem.

Theorem 4.1 The topological derivative DJ(x0) of the general cost function
(4.2), evaluated at x0 for an inclusion shape ω, has the following expression:

DJ(x0) := Me(uχ)(x0) · e(pχ)(x0) − 1
2
Me(uχ)(x0) · e(uχ)(x0)

+ |ω|(j0 − j1)(x0, uχ(x0)), (4.4)

where uχ and pχ are the solution to the primal and dual problems (3.2) and
(3.6), respectively, and where M is the so-called elastic moment tensor as defined
below by (4.10). Moreover, M is positive if [A] is positive, and negative if [A]
is negative.

In the case of our damage model, the cost function is (2.4), i.e., jχ(x, uχ) =
κχ − f · uχ and hχ(x, uχ) = −g · uχ. The problem is then known to be self-
adjoint, i.e., the adjoint pχ is equal to 0. In such a case Theorem 4.1 simplifies
as follows.

Corollary 4.1 The topological derivative of the cost function (2.4) at x0 for an
inclusion shape ω is

DJ(x0) := |ω|κ− 1
2
Me(uχ)(x0) · e(uχ)(x0), (4.5)

where uχ is the background solution of (3.2) and M is the elastic moment tensor
defined below by (4.10).

In 2d, the elastic moment tensor M for a unit disk-inclusion ω has been
computed in [11]. The topological derivative (4.5) for a disk-inclusion is:

DJ(x0) = πκ− 2π
µ1[µ](λ1 + 2µ1)

λ1(µ0 + µ1) + µ1(µ1 + 3µ0)
e(uχ) · e(uχ)(x0)

+
π

2

(
− (λ1 + 2µ1)[λ+ µ]

λ0 + µ0 + µ1
+ 2

µ1[µ](λ1 + 2µ1)
λ1(µ0 + µ1) + µ1(µ1 + 3µ0)

)
tre(uχ) tre(uχ)(x0).

In 3d, the elastic moment tensor M for a unit ball-inclusion ω has also been
computed in [12]. The topological derivative (4.5) for a ball-inclusion is:

DJ(x0) =
4π
3
κ− 2π

3b

(
2[µ]e(u) · e(u) +

[λ]b − 2[µ]a
(3a + b)

tre(u) tre(u)
)

,
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with ν1 =
λ1

2(λ1 + µ1)
and

a := −5µ1ν1[λ] − λ1[µ]
15λ1µ1(1 − ν1)

, b :=
15µ1(1 − ν1) − 2[µ](4 − 5ν1)

15µ1(1 − ν1)
> 0.

In order to prove Theorem 4.1 we need several technical tools detailed in the
next subsections.

4.2 Elastic moment tensor

The goal of this subsection is to define the elastic moment tensor as a 4th
order tensor expressing the leading behaviour in the far field of wξ, solution to
the canonical problem (4.9) of a unit damage inclusion ω in a uniform healthy
background.

We introduce a microscopic variable y = x−x0
ρ in order to rescale the problem

with a unit inclusion ω. This rescaling, centered on the inclusion, in the limit
as ρ goes to zero, transforms the elasticity problem posed on Ω in a problem
posed on Rd. The symbols ey, divy etc. are used to specify the derivation w.r.t.
y.

We begin by recalling the Green tensor for linear elasticity in a uniform
infinite material.

Notations 4.1 (Green tensor of elasticity) The fundamental tensor of lin-
ear elasticity Γ := (Γij)1≤i,j≤d reads:

Γij(y) :=

⎧
⎪⎨

⎪⎩

− α

4π
δij

|y|d−2
− β

4π
yiyj

|y|d if d ≥ 3

α

2π
δij ln |y|− β

2π
yiyj

|y|2 if d = 2
, (4.6)

where

α =
1
2

(
1
µ1

+
1

2µ1 + λ1

)
and β =

1
2

(
1
µ1

− 1
2µ1 − λ1

)
.

The component Γij represents the ith Cartesian component of the fundamental
solution in the free-space with a unit Dirac load δ0 at the origin in the direction
of vector −ej, that is,

− div

(
A1ey(

d∑

i=1

Γijei)

)
= −ejδ0, (4.7)

where ek denotes the kth element of the canonical basis of Rd.
We introduce the following Hilbert space (so-called Deny-Lions or Beppo-

Levi space)

W := {w ∈ H1
loc(Rd; Rd) such that e(w) ∈ L2(Rd; Rd×d)}, (4.8)
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equipped with the scalar product of L2(Rd) for the deformation tensor e(w),
which is well adapted to elasticity problems posed in the whole space Rd. For
any symmetric matrix ξ we introduce wξ(y), solution to the canonical problem

{
− divy

(
Aχω

ey(wξ)
)

= − divy (χω [A]ξ) in Rd,
wξ ∈ W,

(4.9)

which is easily seen to be well-posed. The fact that wξ belongs to W implies
it has some decay properties at infinity (by embedding of W in some Lebesgue
space, see [32], [2]). We shall not dwell on them since Lemma 4.1 below improve
these decay properties.

Lemma 4.1 (Far field expression) The solution wξ of the canonical problem
(4.9) has the following pointwise behavior at infinity:

wξ = −∂pΓq(y)Mpqklξkl + O(|y|−d) as |y| → ∞, (4.10)

where Γq := Γkqek is the fundamental Green’s tensor of linear elasticity of the
healthy material, and M is the 4th order elastic moment tensor with respect to
inclusion ω, independent of ξ, defined by

M = [A] (N + |ω|I4) (4.11)

with a 4th order tensor N defined by

Nξ :=
∫

ω
ey(wξ)dV (y). (4.12)

Remark 4.1 Lemma 4.1 tells us that, because the right hand side in (4.9) has
zero average, wξ behaves like O(|y|−d+1) at infinity. The interest of the canon-
ical problem for us is that, by denoting ξ0 = e(uχ)(x0), we shall prove in some
sense

uχρ(x) ≈ uχ(x) + ρwξ0(
x − x0

ρ
).

Remark 4.2 The elastic moment tensor M as defined by (4.11) is exactly the
same tensor as introduced in [9] and [11] (by means of layer potential techniques)
or in [27] (by means of a variational approach in the conductivity setting).

Proof of Lemma 4.1. Let us consider an inclusion ω located in the free-
space Rd and introduce a smooth open set U strictly containing ω and a cut-off
function ϕ ∈ C∞(Rd) such that ϕ ≡ 0 on ω, ϕ ≡ 1 on Rd \ U . We define a
function f(y) by

f := − divy

(
Aχω

e(ϕwξ)
)
, (4.13)

which has compact support in U because of (4.9) and the fact that ϕ ≡ 1 on
Rd \ U . Since ϕ ≡ 0 on ω we deduce that

{
− divy

(
A1ey(ϕwξ)

)
= f in Rd,

ϕwξ ∈ W,
. (4.14)
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We can thus use the Green tensor to compute the kth component of the solution
of (4.14)

ϕ(y)ek · wξ(y) = −
∫

Rd

Γkq(y − η)fq(η)dV (η). (4.15)

It turns out that
∫

Rd

f(y)dV (y) =
∫

U
f(y)dV (y) = −

∫

∂U
Aχω

e(ϕwξ)ndS(y) =

= −
∫

U
div
(
Aχω

e(wξ)
)
dV (y)

(4.9)
= −

∫

U
div(χω [A]ξ)dV (y)

= −
∫

∂U
χω [A]ξn dS(y) = 0

with n denoting the usual normal unit vector to ∂U . By Taylor expansion of
the Green function Γkq(y− η) in terms of Γkq(y) and its derivatives, taking into
account that f has zero average and compact support in U , and since ϕ ≡ 1
away from U , (4.15) yields that

ek · wξ(y) = ∂pΓkq(y)
∫

Rd

ηpfq(η)η + O(|y|−d). (4.16)

Let us now evaluate
∫

Rd ηpfq(η)dV (η) that for the sake of calculus is rewritten
as
∫

Rd Bpqη · f(η)dV (η), where Bpq := eq ⊗ ep is a second order tensor. By
(4.13) and since A1 = Aχω

on ∂U ,
∫

U
Bpqη · f(η)dV (η) =

∫

U
Aχω

e(ϕwξ) · e(Bpqη)dV (η) −
∫

∂U
Aχω

e(ϕwξ)n · BpqηdS(η)

=
∫

U
A1e(ϕwξ) · e(Bpqη)dV (η) −

∫

∂U
A1e(ϕwξ)n · BpqηdS(η)

= −
∫

U
div
(
A1e(Bpqη)

)
︸ ︷︷ ︸

=0

ϕwξdV (η) +
∫

∂U
A1e(Bpqη)n · ϕwξdS(η)

−
∫

∂U
A1e(ϕwξ)n · BpqηdS(η)

=
∫

∂U

(
Aχω

e(Bpqη)n · wξ − Aχω
e(wξ)n · Bpqη

)
dS(η)

=
∫

U
div
(
Aχω

e(Bpqη)
)

︸ ︷︷ ︸
=div(−χω [A]Bpq)

·wξdV (η) −
∫

U
div
(
Aχω

e(wξ)
)

︸ ︷︷ ︸
= div(χω [A]ξ)

·BpqηdV (η)

=
∫

ω
[A]Bpq · e(wξ)dV (η) +

∫

ω
[A]ξ · BpqdV (η)

= [A]Bpq ·
∫

ω
(e(wξ) + ξ) dV (η). (4.17)

Introducing Mijkl defined as

Mijkl := [A]ijmn (N + |ω|I4)mnkl (4.18)
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we obtain (4.10). !

Lemma 4.2 (Symmetry and signature of M) The elastic moment tensor
M , defined by (4.11), is symmetric and positive if A0 < A1 while negative if
A0 > A1.

Proof of Lemma 4.2. Let us multiply (4.9) by the solution wξ′ for another
symmetric tensor ξ′, integrate by parts and observe that, by the symmetry
property of the left hand side, we have

∫

Rd

Aχω
e(wξ) · e(wξ′)dV = [A]ξ · Nξ′ = [A]ξ′ · Nξ

= [A]N · ξ ⊗ ξ′ = [A]N · ξ′ ⊗ ξ, (4.19)

the symmetry of [A]N and hence of M immediately follows. Take ξ = ξ′ in
(4.19), then [A]N is clearly positive. Therefore if [A] > 0, then M is obviously
positive. Assume now that [A] < 0. The solution wξ of (4.9) is the minimizer
of the following energy

I(w) =
1
2

∫

Rd

Aχω
e(w) · e(w)dV −

∫

Rd

χω [A]ξ · e(w)dV

and its minimal value is, by (4.12), I(wξ) = − 1
2 [A]Nξ · ξ. On the other hand as

soon as we rewrite

Aχω
e(w) · e(w) = −χω [A]e(w) · e(w) + A1e(w) · e(w)

we obtain the lower bound I−(w):

I(w) ≥ I−(w) := −1
2

∫

Rd

χω [A]e(w) · e(w)dV −
∫

Rd

χω [A]ξ · e(w)dV.

It is easily seen that e(w) = −ξ is a critical point in ω of the above lower bound,
which, by the negative character of [A], turns out to be the unique minimizer,
thereby providing the minimal value 1

2 |ω|[A]ξ · ξ. Thus we deduce that

|ω|[A]ξ · ξ ≤ −[A]Nξ · ξ

which implies the desired result M < 0. !

4.3 Asymptotic analysis in the perturbed domain

This subsection is aimed at comparing the solutions of elasticity problems in the
perturbed and non-perturbed domains. We define the difference v := uχρ − uχ

between the perturbed (uχρ) and the background (uχ) displacement fields. The
equation satisfied by v is

⎧
⎪⎨

⎪⎩

− div
(
Aχρe(v)

)
= − div

(
χωρ

[A]e(uχ)
)

in Ω
v = 0 on ΓD

Aχρe(v)n = 0 on ΓN

. (4.20)
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Let us introduce a tensor ξ0 := e(uχ)(x0) and let wξ0 (y) be the solution of (4.9)
for ξ = ξ0. We define a rescaled function wρ

ξ0
(x) := ρwξ0(

x−x0
ρ ) which is a

solution to

− div
(
Aχρe(wρ

ξ0
)
)

= − div
(
[A]χωρ

e(uχ)(x0)
)

in Ω,

satisfying non-homogeneous, but small, boundary conditions. This function wρ
ξ0

is the leading term of a so-called inner asymptotic expansion for v as stated by
the following Lemma.

Lemma 4.3 For any cut-off function θ ∈ C∞
c (Ω) such that θ ≡ 1 in a neigh-

borhood U of x0, there exists a constant C > 0 independent of ρ such that we
have

v = θwρ
ξ0

+ δ, (4.21)

with

||δ||H1(Ω) ≤ Cρd/2+1. (4.22)

Moreover

||wρ
ξ0
||L2(Ω) ≤ C

{
ρ2
√

log ρ if d = 2
ρd/2+1 if d ≥ 3 and ||e(wρ

ξ0
)||L2(Ω) ≤ Cρd/2.(4.23)

Remark 4.3 In the vicinity of the inclusion ωρ, we have θ ≡ 1 for sufficiently
small ρ, and (4.21) can be restated as

v(x) = ρwξ0

(
x − x0

ρ

)
+ oH1(ρ),

which is an inner asymptotic expansion for v, solution of (4.20). The L2-norms
of δ and wρ

ξ0
are of the same order (at least for d ≥ 3) but the L2-norm of ∇δ

is smaller by a factor ρ than that of ∇wρ
ξ0

, which explains the o(ρ) remainder
in the above approximation of v.

Proof of Lemma 4.3. The estimates (4.23) on wρ
ξ0

are simply obtained by
rescaling and by the decay properties of wξ0 . We obtain

||e(wρ
ξ0

)||2L2(Ω) =
∫

Ω
|ey(wξ0)(

x

ρ
)|2dV = ρd

∫

Ω/ρ
|ey(wξ0)(y)|2dV (y) ≤ Cρd.

Similarly

||wρ
ξ0
||2L2(Ω) = ρ2

∫

Ω
|wξ0 (

x

ρ
)|2dV = ρd+2

∫

Ω/ρ
|wξ0(y)|2dV (y).

However, Lemma 4.1 tells us that the behaviour at infinity of wξ0 is such that
it does not belong to L2(Rd) but is of the order of O(|y|−d+1). Therefore, using
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the radial coordinate r = |y| yields

||wρ
ξ0
||2L2(Ω) ≤ Cρd+2

∫

Ω/ρ

1
1 + |y|2(d−1)

dV (y) ≤ Cρd+2

∫ 1/ρ

1

dr

rd−1

≤ C

{
ρ4| log ρ| if d = 2
ρd+2 if d ≥ 3 (4.24)

which is the desired result. Furthermore, since wξ0 = O(|y|−d+1) and ∇wξ0 =
O(|y|−d) at infinity, we also deduce by rescaling that

∥wρ
ξ0
∥L∞(Ω\U) ≤ Cρd and ∥∇wρ

ξ0
∥L∞(Ω\U) ≤ Cρd. (4.25)

We now write the equation satisfied by δ :
⎧
⎪⎨

⎪⎩

− div
(
Aχρe(δ)

)
= − div

(
[A]χωρ

(e(uχ)(x) − e(uχ)(x0))
)

+ g in Ω
δ = 0 on ΓD

Aχρe(δ)n = 0 on ΓN

,(4.26)

where

g = div
[
Aχρe(θwρ

ξ0
)
]
− θ div

[
χωρ

[A]e(uχ)(x0)
]
. (4.27)

Let us multiply (4.26) and (4.27) by δ and integrate by parts, in such a way
that

C||e(δ)||2L2(Ω) ≤
∣∣∣∣
∫

Ω
Aχρe(δ) · e(δ)dV

∣∣∣∣ ≤
∫

ωρ

∣∣∣[A] (e(uχ)(x) − e(uχ)(x0)) · e(δ)
∣∣∣dV

+
∣∣∣∣

∫

Ω
g · δdV

∣∣∣∣ . (4.28)

for C > 0. Let us remark that, away from the interface between the two phases,
uχ is of class C2,α for some α > 0 (since we assume the forces to be of class
C0,α). Furthermore, the inclusion ωρ is smooth, so the C2,α regularity of uχ

holds up to the interface in the inclusion, and hence

|e(uχ)(x) − e(uχ)(x0)| ≤ Cρ in ωρ, (4.29)

which implies
∫

ωρ

∣∣∣[A] (e(uχ)(x) − e(uχ)(x0)) · e(δ)
∣∣∣dV ≤ Cρd/2+1||e(δ)||L2(Ω). (4.30)

Moreover by (4.27), it results that
∫

Ω
g · δdV = −

∫

Ω
Aχρe(θwρ

ξ0
) · e(δ)dV +

∫

Ω
χωρ

[A]e(uχ)(x0) · e(θδ)dV

= −
∫

Ω
Aχρe(θwρ

ξ0
) · e(δ)dV +

∫

Ω
Aχρe(wρ

ξ0
) · e(θδ)dV

=
∫

Ω
Aχρ

(
e(wρ

ξ0
) · (δ ⊗∇θ)s − e(δ) · (wρ

ξ0
⊗∇θ)s

)
dV, (4.31)
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where the superscript “s” stands for the symmetric part. Hence, since ∇θ
vanishes on a neighborhood U of ωρ, by Korn inequality and by estimates (4.25),
it follows that
∣∣∣∣
∫

Ω
g · δdV

∣∣∣∣ ≤ C
(
||wρ

ξ0
||L∞(Ω\U) + ||e(wρ

ξ0
)||L∞(Ω\U)

)
||∇θ||L2(Ω\U)||e(δ)||L2(Ω)

≤ Cρd||e(δ)||L2(Ω). (4.32)

Therefore, by (4.28)-(4.32) and since d/2+ 1 ≤ d for d ≥ 2, the following global
estimate holds

||e(δ)||L2(Ω) ≤ C
(
ρd + ρd/2+1

)
≤ Cρd/2+1, (4.33)

completing the proof by Korn and Poincaré inequalities. !

Similarly, we shall need a comparison between the perturbed and background
adjoints. However, the adjoint in the perturbed domain (with an inclusion) is
not the standard one. Rather, we introduce a slightly different adjoint problem

⎧
⎨

⎩

− div
(
Aχρe(p̃χρ)

)
= fχ + j′χ(x, uχ) in Ω

p̃χρ = 0 on ΓD

Aχρe(p̃χρ)n = gχ + h′
χ(x, uχ) on ΓN

(4.34)

whose solution p̃χρ depends on the inclusion since the Lamé tensor Aχρ corre-
sponds to the perturbed domain Ω = Ω0

ρ ∪ Ω1
ρ. Nevertheless, p̃χρ is different

from pχρ , defined by (3.6) with χρ instead of χ, because the right hand side of
(4.34) depends only on χ and not on χρ.

We define the difference between the above perturbed adjoint and the ”true”
background adjoint, q := p̃χρ − pχ, which is the solution of

⎧
⎪⎨

⎪⎩

− div
(
Aχρe(q)

)
= − div

(
χωρ

[A]e(pχ)
)

in Ω
q = 0 on ΓD

Aχρe(q)n = 0 on ΓN

. (4.35)

We introduce the tensor ξ′0 := e(pχ)(x0) and the rescaled function wρ
ξ′
0
(x) :=

ρwξ′
0
(x−x0

ρ ) which is the leading term of an inner asymptotic expansion for q.
Lemma 4.3 can then be generalized as follows.

Lemma 4.4 For any cut-off function θ ∈ C∞
c (Ω) such that θ ≡ 1 in a neigh-

borhood U of x0, there exists a constant C > 0 independent of ρ such that we
have

q = θwρ
ξ′
0

+ δ,

with

||δ||H1(Ω) ≤ Cρ1+d/2. (4.36)

Moreover

||wρ
ξ′
0
||L2(Ω) ≤ C

{
ρ2
√

log ρ if d = 2
ρd/2+1 if d ≥ 3 and ||e(wρ

ξ′
0
)||L2(Ω) ≤ Cρd/2.
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4.4 Proof of Theorem 4.1

We combine the ingredients of the two previous subsections to prove Theorem
4.1 on the topological derivative. Let us recall that we assume the integrands
of the objective function, j0, j1(x, u) and h0, h1(x, u), to be C2 functions with
respect to u with adequate growth conditions.

Recalling that hχρ ≡ hχ on ∂Ω because the inclusion does not touch the
boundary, we write a second-order Taylor expansion of the objective function

J(χρ) =
1
2

∫

Ω
Aχe(uχ + v) · e(uχ + v)dV − 1

2

∫

ωρ

[A]e(uχ + v) · e(uχ + v)dV

+
∫

Ω
jχ(uχ + v)dV +

∫

∂Ω
hχ(uχ + v)dS +

∫

ωρ

(j0 − j1)(uχ + v)dV

= J(χ) +
∫

Ω
Aχe(uχ) · e(v)dV +

1
2

∫

Ω
Aχe(v) · e(v)dV

− 1
2

∫

ωρ

[A]
(
e(uχ) · e(uχ) + 2e(uχ) · e(v)

)
dV − 1

2

∫

ωρ

[A]e(v) · e(v)dV

+
∫

Ω
j′χ(x, uχ) · vdV +

∫

∂Ω
h′

χ(x, uχ) · vdS +
∫

ωρ

(j0 − j1)(uχ)dV

+
1
2

∫

Ω
j′′χ(uχ)v · vdV +

1
2

∫

∂Ω
h′′

χ(uχ)v · vdS

+
∫

ωρ

(j0 − j1)′(uχ) · vdV +
1
2

∫

ωρ

(j0 − j1)′′(uχ)v · vdV, (4.37)

where uχ = uχ + ζv with 0 < ζ < 1. From assumption (3.4) we know that j′′χ
and h′′

χ are bounded on Ω and thus
∣∣∣∣

∫

Ω
j′′χ(uχ)v · v dV

∣∣∣∣ ≤ C∥v∥2
L2(Ω) ≤ o(ρd)

and, since v = δ on ∂Ω,
∣∣∣∣
∫

∂Ω
h′′

χ(uχ)v · vdS

∣∣∣∣ =
∣∣∣∣
∫

∂Ω
h′′

χ(uχ)δ · δdS

∣∣∣∣ ≤ C∥δ∥2
H1(Ω) ≤ o(ρd)

by Lemma 4.3. A similar estimate holds for the last term of (4.37). The penul-
timate term is bounded by

∣∣∣∣∣

∫

ωρ

(j0 − j1)′(uχ) · vdV

∣∣∣∣∣ ≤ Cρd/2
(
∥uχ∥L∞(ωρ) + 1

)
∥v∥L2(Ω) ≤ o(ρd)

because the background solution uχ is smooth on ωρ (it does not ”see” the
inclusion). Thus, the two last lines of (4.37) are small of the order of o(ρd).
All other terms in (4.37) contribute to the final result, formula (4.4). First, by
rescaling and continuity of uχ on ωρ, we have

∫

ωρ

(j0 − j1)(uχ)dV = ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd).
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Similarly, by continuity of e(uχ), using the notation ξ0 = e(uχ)(x0), and since
v = θwρ

ξ0
+ δ with θ ≡ 1 in ωρ, we deduce

1
2

∫

ωρ

[A]
(
e(uχ) · e(uχ) + 2e(uχ) · e(v)

)
d =

ρd

2

∫

ω
[A]
(
ξ0 · ξ0 + 2ξ0 · ey(wξ0)

)
dV (y)

+
∫

ωρ

[A]e(uχ) · e(δ)dV + o(ρd).

Using again the continuity of e(uχ) in ωρ and (4.36), we bound the last term
∣∣∣∣∣

∫

ωρ

[A]e(uχ) · e(δ)dV

∣∣∣∣∣ ≤ Cρd+1.

Second, from the variational formulation of (4.20) we get

1
2

∫

Ω
Aχe(v) · e(v)dV − 1

2

∫

ωρ

[A]e(uχ(v) · e(v)dV =
1
2

∫

Ω
Aχρe(v) · e(v)dV

=
1
2

∫

ωρ

[A]e(uχ) · e(v)dV =
ρd

2

∫

ω
[A]ξ0 · ey(wξ0)dV (y) + o(ρd),

where we have again replaced v by wρ
ξ0

+ δ in ωρ and neglected the δ term.
Third, from (3.2) we have

∫

Ω
Aχe(uχ) · e(v) dV =

∫

Ω
fχ · v dV +

∫

∂Ω
gχ · vdS.

Thus, the Taylor expansion (4.37) of the objective function is rewritten

J(χρ) = J(χ) +
∫

Ω

(
fχ + j′χ(x, uχ)

)
· v dV +

∫

∂Ω

(
gχ + h′

χ(x, uχ)
)
· vdS

− ρd

2

∫

ω
[A]
(
ξ0 · ξ0 + ξ0 · ey(wξ0 )

)
dV (y)

+ ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd). (4.38)

By Lemma 4.1 we know that

−ρ
d

2

∫

ω
[A]
(
ξ0 · ξ0 + ξ0 · ey(wξ0)

)
dV (y) = −ρ

d

2
Mξ0 · ξ0.

It remains to show that the two first integrals in the right hand side of (4.38)
are of order O(ρd) and find formula (4.4) for the topological derivative. To do
so, we use the adjoint problems (4.34) and (4.35) as follows. Multiplying (4.34)
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by v and (4.20) by p̃χρ we obtain
∫

Ω

(
fχ + j′χ(x, uχ)

)
· vdV +

∫

∂Ω

(
gχ + h′

χ(x, uχ)
)
· vdS =

∫

Ω
Aχρe(p̃χρ) · e(v)dV

=
∫

ωρ

[A]e(uχ) · e(p̃χρ)dV =
∫

ωρ

[A]e(uχ) · e(pχ + q)dV

=
∫

ωρ

[A]e(uχ) · e(pχ + θwρ
ξ′
0

+ δ)dV

= ρd

∫

ω
[A]ξ0 ·

(
ξ′0 + ey(wξ′

0
)
)
dV (y) + o(ρd)

= ρdMξ0 · ξ′0 + o(ρd),

by application of Lemma 4.4, rescaling, using the continuity of e(uχ) and e(pχ)
in ωρ and thanks to the formula for M in Lemma 4.1 (recall that ξ′0 = e(pχ)(x0)).
Eventually we have proved

J(χρ) = J(χ) − ρd

2
Mξ0 · ξ0 + ρdMξ0 · ξ′0 + ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd),

which is precisely formula (4.4). This achieves the proof of Theorem 4.1 since
the properties of M have been proved in Lemma 4.2.

5 Computational algorithm

The main task is to compute, for each discrete time ti, i ≥ 0, a minimizer χi

of the Francfort-Marigo model (2.8). As we already said, we are interested in
local minima. Our notion of local minima is numerical in essence, that is, we
minimize (2.8) with a gradient descent algorithm in the level set framework.
A minimum is thus local in the sense of perturbations of the location of the
interface Σ. Our algorithm is made of two nested loops:

(i) an outer loop corresponding to the increasing sequence of discrete times
ti, i ≥ 0,

(ii) an inner loop of gradient iterations for the minimization of the functional
(2.8) at each fixed time step ti.

The irreversibility constraint (2.7) on the damaged zone is taken into account
in the outer loop (i), whereas the inner loop (ii) is purely numerical and is not
subject to this irreversibility constraint between two successive iterates of (ii).
The inner loop is performed with the level set method of Osher and Sethian
[53] that we now briefly describe (it is very similar with its application in the
context of shape optimization [5], [65]).

In the fixed bounded domain Ω, uniformly meshed once and for all, we
parametrize the damaged zone Ω0 by means of a level set function ψ such that

⎧
⎨

⎩

ψ(x) = 0 ⇔ x ∈ Σ,
ψ(x) < 0 ⇔ x ∈ Ω0,
ψ(x) > 0 ⇔ x ∈ Ω1.
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The normal n to the damaged region Ω0 is recovered as ∇ψ/|∇ψ| and the mean
curvature H is given by the divergence of the normal divn. These quantities are
evaluated by finite differences since our mesh is uniformly rectangular. Although
n and H are theoretically defined only on Σ, the level-set method allows to define
easily their extension in the whole domain Ω.

Following the minimization process, the damaged zone is going to evolve
according to a fictitious time s which corresponds to descent stepping and has
nothing to do with the ”real” time ti in the outer loop (i). As is well-known, if
the shape is moving with a normal velocity V , then the evolution of the level-set
function is governed by a simple Hamilton-Jacobi equation [52], [60],

∂ψ

∂s
+ V|∇ψ| = 0, (5.1)

which is posed in the whole body Ω, and not only on the interface Σ, when
the velocity V is known everywhere. We now explain how we derive V for our
specific problem.

For the minimization of (2.8) we use the shape derivative given by (3.9),

J ′(χ)(θ) =
∫

Σ
D θ · n dS, (5.2)

where the integrand D(x) ∈ L2(Σ) is given by Theorem 3.1 and θ ∈ W 1,∞(Ω; Rd)
in any admissible direction of derivation. Since only the normal component of
θ plays a role in (5.2), we always look for a normal vector field, i.e., we restrict
our attention to

θ = v n with a scalar field v ∈ W 1,∞(Ω). (5.3)

The velocity V is going to be chosen as an “optimal” direction of derivation, v,
such that

J ′(χ)(V n) =
∫

Σ
DV dS ≤ 0. (5.4)

The simplest choice V = −D, which enforces (5.4) and is commonly used in
structural optimization [5], is not satisfactory in the present situation, since D
is defined as a jump on Σ only, without natural extension over Ω. We therefore
suggest another choice based on the identification of the duality product between
J ′(χ) and v (recalling that θ = v n) with the usual scalar product in H1(Ω). In
other words we represent J ′(χ) by a scalar field (−V) ∈ H1(Ω) such that, for
any test function v,

J ′(χ)(v n) = −
∫

Ω
(∇V ·∇v + Vv) dV. (5.5)

Combining (5.2) and (5.5), and requiring the descent condition (5.4), we choose
the velocity V in (5.1) as the unique solution in H1(Ω) of the variational for-
mulation

∫

Ω
(∇V ·∇v + Vv) dV = −

∫

Σ
D v dS ∀ v ∈ H1(Ω). (5.6)
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Solving (5.6) to compute a shape derivative is a usual trick in shape optimization
for regularizing derivatives [3], [55]. However, (5.6) is used here mostly for
extending the “natural” velocity D away from the interface Σ. In practice we
add a small positive coefficient (linked to the mesh size) in front of the gradient
term in (5.6) in order to limit the regularization and the spreading of the velocity
around the interface.

For numerical purpose, as explained in [5], the surface integral in the right
hand side of (5.6) is written as a volume integral

∫

Σ
D v dS =

∫

Ω
δΣ D v dV, (5.7)

where the Dirac mass function δΣ is approximated by

δϵ
Σ =

1
2
|∇(sϵ(ψ))|

with the following approximation of the sign function

sϵ(x) =
ψ(x)√

ψ(x)2 + ϵ2
,

where ϵ > 0 is a small parameter chosen in order to spread the integration over
a few mesh cells around the interface. The integrand D, being actually a jump
[E ] of a discontinuous quantity E (see formulae (3.11) or (3.12)), requires also
some special care. In (5.7) we replace D = [E ] by

Dapprox = [E ]approx = 2 ((1 − χ)E − χE)

where χ is the characteristic function of the damaged phase (numerically it is
always equal to 0 or 1 except in those cells cut by the interface where it is
interpolated by the local proportion of damaged phase in the cell). The factor
2 in the above formula takes into account the fact that

∫

Ω
δϵ
Σχ dV ≈ 1

2

∫

Σ
dS.

In our numerical experiments we use formula (3.11) and not (3.10) because the
latter one exhibits singular jumps when the damaged phase is very weak (which
is the case for our simulations of crack propagation). Of course, in the case of a
degenerate (zero) damaged phase we can use the limit formula given by Remark
3.2 which are of course much simpler (we did so in our previous publication [7]).

Remark 5.1 Note that the same problem of computing a jump of a discontin-
uous quantity at an interface was independently addressed in [45]. This work is
also relying on the level set method and is applied to the Mumford-Shah func-
tional in image segmentation. It can also be applied to fracture mechanics and,
as our proposed approach, it relies on a fattening of the fracture path.
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Our proposed algorithm for the inner loop (ii) is an iterative method, struc-
tured as follows:

1. Initialization of the level set function ψ0 as the signed distance to the
previous damaged interface Σi corresponding to the characteristic function
χ0 ≡ χi.

2. Iteration until convergence, for k ≥ 0:

(a) Computation of the state uk by solving a problem of linear elasticity
with coefficients Aχk = (1 − χk)A1 + χkA0.

(b) Deformation of the interface by solving the transport Hamilton-Jacobi
equation (5.1). The new interface Σk+1 is characterized by the char-
acteristic function χk+1 or the level-set function ψk+1 solution of
(5.1) after a pseudo-time step ∆sk starting from the initial condition
ψk(x) with velocity Vk computed through (5.6) in terms of uk. The
pseudo-time step ∆sk is chosen such that J(χk+1) ≤ J(χk).

(c) Irreversibility constraint: we replace χk+1 by max(χk+1,χ0) where
χ0 ≡ χi corresponds to the damaged zone at the previous iteration
of the outer loop (i).

At each iteration of above the inner loop, for stability reasons, we also reini-
tialize the level-set function ψ [52], [60]. This is crucial because the integrand D
of the shape derivative involves normal and tangential components of stress or
strain tensors, which requires a precise evaluation of the normal n by formula
∇ψ/|∇ψ|. Actually it turns out that this reinitialization step must be much
more precise in the present context than for shape optimization [5]. Indeed,
a poor reinitialization can influence the propagation of the damage zone. We
therefore use a trick suggested in [57] for an increased accuracy of the second-
order reinitialization process. The Hamilton-Jacobi equation (5.1) is solved by
an explicit second order upwind scheme on a Cartesian grid. The boundary
conditions for ψ are of Neumann type. Since this scheme is explicit in time, its
time step is given by a CFL condition. In numerical practice we often take the
descent step ∆sk of the order of the Hamilton-Jacobi time step which stabilizes
the damage evolution.

6 Simulation results

Otherwise explicitly mentioned, all our numerical experiments are performed
with a healthy material having Young modulus E1 = 1000 and Poisson ratio
ν1 = 0.3 (white material on the pictures). The damaged phase (black material
on the pictures) has always Poisson ratio ν0 = 0.3 (the fact that ν0 = ν1

does not matter) but has different Young modulus in different places. More
precisely, in Subsection 6.1 we consider a moderately weak damaged phase with
E0 = 500, while in the next subsections the damage phase is assumed to be
almost degenerate, i.e. E0 = 10−3: this last case corresponds to a limit where
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our model behaves almost like a brittle fracture model. Actually some models
of fracture mechanics [36] are approximated by Γ-convergence techniques [21],
[22], which is similar in spirit to a damage model. Therefore it is not surprising
that our damage model can predict crack propagation.

In the sequel we call critical load the value of the applied displacement for
which the damage region has completely crossed the computational domain
(meaning failure of the structure), and initiation load the first value for which
the damage zone departs from its initialization. All other intermediate load
values are called subcritical, while values above the critical one are called super-
critical.

In order to validate our method, two types of numerical experiments are
done. On the one hand, for simple problems we check convergence under various
refinements of the mesh size, of the time step, etc. On the other hand, we
compare our results with a variety of existing benchmarks tested by laboratory
experiments or other numerical methods.

6.1 2d damage simulation

(a) Initial load (b) Critical load (c) Supercritical load

Figure 1: Mode I damage for the 320×320 mesh with 100 time steps. Initial con-
figuration with an imposed displacement of 0.02 (a) critical load at an imposed
displacement of 0.06 (b) and supercritical load with an imposed displacement
of 0.072 (c).

The numerical experiments with a moderately weak damaged phase, E0 =
500, are easier to perform that the ones with a degenerate phase but their results
are mechanically less interesting. Therefore we content ourselves with a single
experiment, namely a mode I traction (Fig. 1) in a square box of size 1 with a
Griffith energy release parameter κ = 1. The imposed vertical displacement at
the bottom is increased from 0.02 to 0.08 on a given time interval and shown as
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abscissa in the figures. In order to study convergence under mesh refinement,
four different meshes are used: 280 × 280 (coarse), 320 × 320 (intermediate 1),
400×400 (intermediate 2), 452×452 (fine). Similarly, for convergence under time
step refinement, we divide the time interval successively in 100, 200 and 400 time
steps. Fig. 1 displays the result for the 320 × 320 mesh with 100 time steps.
There are no subcritical loads: the initiation load coincides with the critical
load which means that, not only the appearance of damage is sudden, but the
structure completely fails in just one load displacement increment. Fig. 2 shows
that the results are convergent under mesh refinements. The curves are almost
identical and the position of the critical load is clearly converging as the mesh
is refined. Fig. 3 is concerned with convergence under time-step refinement.
In particular, the critical loads for the three time refinements show very good
agreement, meaning that our quasi-static numerical model seems to converge to
a time-continuous model as the time step tends to zero.

The cost function (2.4), which is minimized at each time step, is the sum of
the Griffith or damage energy and of the elastic energy. The damage energy,
displayed on Fig. 2a, is discontinuous and increases abruptly at the critical load.
Similarly, the elastic energy, displayed on Fig. 2b, is discontinuous decreasing at
the critical load, which corresponds to the release of energy produced by damage.
However, by comparison, the cost function, displayed on Fig. 2c, seems to be
roughly continuous with respect to time (there is a small bump at the critical
load).

Eventually, we have checked the following formula for the dissipation of
energy (see Theorem 4.1 in [34])

min
u,χ

J (u,χ)(T ) − min
u,χ

J (u,χ)(0) =
∫ T

0

∫

ΓD

(σn) · duD

dt
(t) dS dt (6.1)

where J is defined by (2.3) and uD is the applied displacement. In the absence of
any other applied load, formula (6.1) expresses the conservation of total energy.
If we plot the right hand side of (6.1), we obtain exactly the cost function on
the left hand side with a numerical precision of the order of 10−6.

6.2 2d fracture with mode I loading

We now switch to a very weak damage phase, E0 = 10−3, in order to mimic
crack propagation. Here the Griffith energy release parameter is κ = 3.5. We
perform the same mode I traction experiment as in Subsection 6.1 with the same
parameter values otherwise explicitly specified. For a mesh of size 320 × 320,
with an initial crack having a width of 8 mesh cells, a height of 16, and for 100
time steps, when the imposed vertical displacement at the bottom is increased
from 0.005 to 0.05, we obtain a crack which breaks the structure in just one
time increment (see Fig. 4). For all other values of the parameters, the same
qualitative behavior is observed: the initial and critical loads are the same for
a mode I crack.

We then investigate the convergence under time-step refinement (Fig. 5).
The imposed vertical displacement at the bottom is increased from 0.005 to
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(a) Damage energy.

0.02 0.03 0.04 0.05 0.06 0.07 0.08

1

2

0.5

1.5

coarse

intermediate1, intermediate2 and fine

(b) Elastic energy.

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3

coarse

intermediate1, intermediate2 and fine

(c) Cost function.

Figure 2: Mode I damage experiment: variations of various energies as functions
of the imposed displacement. Griffith energy (a), elastic energy (b) and cost
function (c) for four different mesh refinements with 100 time steps.
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Figure 3: Mode I damage experiment: cost function with respect to the imposed
displacement for the 320× 320 mesh and for 100, 200 and 400 time steps.

(a) Initial crack (b) Critical load

Figure 4: Mode I crack: initial configuration (a) and critical load at 0.0028 (b).
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0.05. The time interval is successively divided in 100, 200 and 400 time steps.
The mesh is of size 320 × 320 with an initial crack having a width of 8 mesh
cells. On Fig. 5 the values of the critical loads are obviously converging as ∆t
goes to zero. Therefore we believe that our quasi-static numerical model, as
applied to “crack-like” damage, also converges to a time-continuous model as
the time step tends to zero.

0.01 0.02 0.03 0.04 0.050.005 0.015 0.025 0.035 0.045
0

0.1

0.2

0.3

0.4

0.05

0.15

0.25

0.35

100, 200 and 400

Figure 5: Time-step refinement for the mode I crack: cost function with respect
to the imposed displacement for three time refinements.

We now perform three different test cases of convergence under mesh refine-
ment with four meshes for each test (see Figs. 6, 7, 8). The four different meshes
are: 280× 280 (coarse), 320× 320 (intermediate 1), 400× 400 (intermediate 2),
452 × 452 (fine). From these three refinement processes, only the last one is
fully satisfactory but the two previous ones are illuminating so we keep them in
our exposition.

In the first case (Fig. 6), the given initial crack has a constant width. In
other words, the number of cells in a cross-section of the initial crack is 6, 8, 10
and 12 respectively for the four different meshes. The initial crack tip is slightly
rounded for the finer meshes in order to avoid the appearance of sharp corners.
The imposed vertical displacement at the bottom is increased from 0.005 to
0.05. On Fig. 6 we observe that the value of the critical load is decreasing as
the mesh is refined and does not seem to converge (especially when compared
to the damage case in Fig. 2). Similarly, the value of the cost function at the
critical load is decreasing with finer meshes because a thinner crack (on a finer
mesh) costs less Griffith energy. Therefore, contrary to the damage experience
of Subsection 6.1, no mesh convergence can be claimed in this first experiment.
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Figure 6: First mesh convergence test for the mode I crack: cost function with
respect to the imposed displacement for various meshes and with 100 time steps.

In the second case (Fig. 7), we anticipate that a crack should have a thickness
of the order of a few cells ∆x when ∆x goes to zero. Therefore, whatever the
value of ∆x, the initial crack is chosen with a width of two cells only, which
means that the initial crack is thinner and thinner as the mesh is refined. The
imposed vertical displacement at the bottom is now increased from 0.005 to
0.05. Refinements with respect to the mesh size are shown on Fig. 7. The
critical load again occurs sooner for finer meshes, thereby indicating that there
is no convergence under mesh refinement.

In the third case (Fig. 8), we replace the minimization of (2.4) by that
of the scaled cost function (2.11) in an attempt to show that there is indeed
convergence under mesh refinement. In other words we replace the Griffith
energy release parameter κ by its scaled version γ

∆x = κℓ
∆x where ∆x is the mesh

size. We again choose E0/E1 = 10−6 and take ℓ = 1/320 (so that ℓ/∆x = 1
for the “intermediate 1” mesh). In practice, this scaling implies that it is more
difficult to create damage for finer meshes, a phenomenon that should balance
the opposite effect displayed in the two previous cases. As explained in Section
2.3 this scaling is precisely designed so the scaled Griffith energy converges to
a surface energy when ∆x goes to zero. On Fig. 8 we check that the critical
loads are converging, so we claim that mesh convergence is observed with this
particular scaling of κ.

Eventually, we have again checked the balance of energy expressed in (6.1):
the cost function perfectly matches the time integral of the dissipated energy
(i.e. the the right hand side of (6.1)), up to a numerical precision of the order
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Figure 7: Second mesh convergence test for the mode I crack: cost function
with respect to the imposed displacement for various meshes and with 100 time
steps.
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Figure 8: Third mesh convergence test for the mode I crack: cost function
(2.11) with respect to simultaneous mesh, crack and κ refinements for 100 time
steps.
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of 10−6.

6.3 2d fracture with mode II loading

We now turn to another crack experiment with a mode II loading. The di-
mensions of the computational domain are the same as in the above mode I
experiments. The weak damage phase is again E0 = 10−6 while the imposed
horizontal displacement at the bottom is here increased from 0.1 to 1.0 on a
given time interval. On Figs. 9a and 9b the initial and critical cracks are shown
for the 320× 320 mesh. We emphasize that “critical” has not exactly the same
meaning here as for the mode I crack: the mode II crack does not actually
break the structure. The crack stops just a few cells before reaching the oppo-
site boundary and does not move anymore as the load increases. This longest
crack configuration is called critical. However, fracture is here again brutal in
the sense that the initiation load coincides with the critical load. On Fig. 9 we
can see that the mode II loading yields a branching of the crack. By symmetry
and since the model is linearized elasticity the two crack branches are symmetric,
one in compression and the other in traction. It means that another mechanical
model taking into account the non-interpenetration of material would produce
only the branch under traction, i.e., the lips of which are opening under the
load, as it can be observed in physical experiments.

Four different meshes are used: 280× 280 (coarse), 320× 320 (intermediate
1), 400×400 (intermediate 2), 452×452 (fine). In our experiment (Fig. 10), we
minimize the scaled version (2.11) of the cost function, i.e., κ is replaced by κℓ

∆x ,
and the crack width is always exactly two mesh cells. Convergence under mesh
refinement is clearly obtained. Even more, the two finest mesh curves almost
coincide.

(a) Initial crack (b) Critical load

Figure 9: Mode II crack experiment: initial configuration (a) and critical load
at 0.49 (b).
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Figure 10: Mode II crack test: cost function (2.11) with respect to simultaneous
mesh, crack and κ refinements for 100 time steps.

6.4 Bittencourt’s drilled plate

This test case has been proposed in [17] where we found all the required nu-
merical values of the parameters. It has been reproduced in many other works,
including [19, 14]. The Young modulus of the healthy phase is 3000 and its Pois-
son ratio 0.35. The damaged phase has a Young modulus 3.10−3 and the same
Poisson ratio. The value of the Griffith energy release parameter is κ = 0.0014.
Contrary to all other numerical simulations in this paper, the present experi-
ment has been performed with a given fixed applied force instead of a sequence
of increasing displacements. The vertical unit load is applied on a single con-
centrated point of the upper body boundary. The value of the Griffith energy
release parameter κ is such that this applied unit load is critical, i.e. a single
time step produces the cracks displayed on Figs. 11a and 11b for two different
crack initializations. The distance from the left face to the initial crack is de-
noted by a, while b is the initial crack length. The 3 holes carry a Neumann
boundary condition. We use a non-uniform rectangular mesh of size 470 × 800
which is more refined in the vicinity of the holes. These two results are in good
agreement with laboratory experiment of [17], although that of Fig. 11a shows
a slightly different crack path near the second hole.

6.5 Coalescence of multiple cracks

This experiment is made on a pre-cracked sample (of size 1.6 × 2.2) with a
vertical imposed displacement along the vertical sides (corresponding to a mode
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(a) first case a = 6, b = 1.5

(b) second case a = 5, b = 1

Figure 11: The two Bittencourt’s experiments:(a) first case a = 6, b = 1.5, (b)
second case a = 5, b = 1,

II type loading). The healthy material has Young modulus E1 = 1 and Poisson
ratio ν1 = 0.3, the damaged phase has the same Poisson ratio but a smaller
Young modulus E0 = 10−3. The value of the Griffith energy release parameter
is κ = 10−7. The imposed vertical displacement is increased from 0.001 to 0.005
with 100 time steps. The critical load is attained at 0.0014. Two different
meshes are shown on Fig. 12.

6.6 Traction experiment on a fiber reinforced matrix

We perform a test case proposed in [21] where all precise values of the param-
eters can be found. The setting of Fig. 14a is the following. A unit vertical
displacement is exerted on the upper layer of the solid which is also clamped at
its midpoint to avoid translations and rotations. The fiber (grey inclusion on
Fig. 14a) is also clamped. The healthy material has Young modulus E1 = 1000
and Poisson ratio ν1 = 0.3, the damaged phase has the same Poisson ratio but
a much smaller Young modulus E0 = 10−3. The value of the Griffith energy
release parameter is κ = 8000. Excellent agreement with the numerical results
of [21] are observed. Let us emphasize that this experiment is the only one
using the topological derivative to initiate the damaged zone: the map of the
topological gradient at the initialization is displayed on Fig. 13. More precisely,
the initial body is completely healthy without any damage: the applied load
is gradually increased, until damage appears because the topological derivative
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(a) Initial cracks (b) Coarse mesh, 160×220
cells

(c) Fine mesh, 320 × 440
cells

Figure 12: Multiple crack experiment with a mode II loading.

becomes negative. Once the damaged zone has been initialized we use our shape
gradient method to propagate the crack without further use of the topological
gradient. The final crack on Fig. 14 is very similar to that computed in [21].

There is a subtle point here in the use of the topological derivative. Such a
notion is well defined for the cost function (2.3) which features a bulk Griffith-
type energy. However, it is not possible to define a topological derivative for the
cost function (2.13) which has a surface Griffith energy. Indeed, surface energy
asymptotically dominates bulk energy for small inclusions and no balance can
be established. In other words the notion of topological derivative makes sense
in our damage model but is irrelevant for fracture models.

Note also that the initialization pattern suggested by the topological deriva-
tive (which is necessarily small by definition) is not a local minimizer of the cost
function. Thus, such an initialization is difficult to compare with other ones
in the literature and its small extension is not a contradiction with theoretical
results [30] stating that an initial crack (minimizing the cost function) cannot
be too small.

Therefore we now compare different (ten) initializations for the same prob-
lem. The first initialization is that given by the topological gradient and already
displayed on Figure 14b. The nine other ones, displayed on Figure 15, are in-
creasingly larger cracks obtained as intermediate inner iterates in the previous
computation (they are therefore not local minimizers of the cost function). The
larger cracks of Figure 15 are very similar to the initial crack pattern in [22]. For
each of these initial cracks we restarted the crack evolution from a zero imposed
displacement which is then gradually increased. The evolutions of the elastic
energy, the Griffith energy and the cost function, when the imposed displace-
ment is increased, are shown on Figure 16. One can clearly see the importance
of the initialization, a well-known fact in the minimization of non-convex ener-
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Figure 13: Fiber-reinforced matrix: isocontours of the topological derivative at
the initialization.

gies. The idea of restarting the minimization at smaller loading parameters from
an intermediate crack solution at a larger loading parameter has already been
exploited in the so-called back-tracking algorithm of [20], [22] for global mini-
mization. Of course, the larger the initial crack is, the smaller is the critical load.
Interestingly enough we found that, for the 4th up to the 10th initializations,
part of the crack evolution is smooth with respect to the loading parameter.
This is actually the only occurrence in our numerical tests of a continuous crack
evolution: all other examples feature a brutal fracture process. This smooth
behavior is very similar to that obtained in [22] (see Figures 31 and 32 on page
92). On Figure 17, for the 5th initialization, we plot the two crack patterns
obtained for the values 0.28 and 0.44 of the imposed displacement: in between
the crack evolution is continuous.

6.7 3d mode 1, mode 2 and mode 3 cracks

We eventually conclude our numerical tests by performing the 3 different mode
loadings in 3d with boundary conditions (imposed displacements) shown on
Fig. 18. We work with a cubic domain of size 1×1×1 meshed with 80×80×80
cubic cells: its left back face (circles) is fixed while a uniform displacement of
modulus 0.04 is applied on its right front face. The healthy material has Young
modulus E1 = 104 and Poisson ratio ν1 = 0.3, the damaged phase has the same
Poisson ratio but a smaller Young modulus E0 = 1. The value of the Griffith
energy release parameter is κ = 1. The initial and final cracks are shown on
Fig. 19.

For this large test case (involving around 1.56 × 106 degrees of freedom)
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(a) Initial healthy fiber-reinforced ma-
trix.

(b) Initial damage nucleated by the
topological derivative.

(c) Final crack.

Figure 14: Fiber-reinforced matrix: an example of crack initiation by the topo-
logical derivative.
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(a) 2nd initialization. (b) 3rd initialization. (c) 4th initialization.

(d) 5th initialization. (e) 6th initialization. (f) 7th initialization.

(g) 8th initialization. (h) 9th initialization. (i) 10th initialization.

Figure 15: Fiber-reinforced matrix: different crack initializations.
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(a) Elastic energy.
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(c) Cost function.

Figure 16: Elastic energy, Griffith energy and cost function, as a function of
the imposed displacement, for the ten initializations of Figure 15. The first
initialization corresponds to the largest critical load (or discontinuity) and the
the critical load is decreasing with the label of the initialization.
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(a) Crack pattern for an imposed dis-
placement 0.28.

(b) Crack pattern for an imposed dis-
placement 0.44.

Figure 17: Fiber-reinforced matrix: two crack patterns for the 5th initialization
at the beginning and at the end of a smooth evolution.

(a) Mode I loading. (b) Mode II loading.

(c) Mode III loading.

Figure 18: Boundary conditions for the modes I, II and III in 3d.
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we use a sparse parallel direct linear solver for solving the elasticity system,
requiring 40GB of memory and 15 minutes on 8 Intel Xeon processors. Each
of these 3d computations requires of the order of 150 and 200 iterations, i.e.
solutions of the elasticity system, so the overall CPU time is about two days.

(a) Initial crack. (b) Mode I crack.

(c) Mode II crack. (d) Mode III crack.

Figure 19: Initial and final cracks for the modes I, II and III in 3d.

7 Concluding remarks

We have proposed a numerical method, based on the Francfort-Marigo damage
model and using a single level set function with standard finite elements, for the
simulation of damage evolution and crack propagation. Our method is comput-
ing a class of local minimizers of the Francfort-Marigo energy. The crack paths
predicted by our numerical experiments are in excellent qualitative agreement
with previous results in the literature. However, the quasi-static evolutions of
the elastic energy, Griffith-type damage energy and total cost function are dif-
ferent from those we found in [22] (using global minimization), and in [51] (using
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criticality). First, cracks often break the structure in a single time increment:
fracture is thus a brutal process in most of our computations, which is not the
case in [22], [51]. Second, as opposed to the global minimization approach of
[22], the cost function (which is the sum of the elastic and damage energies) is
not continuous in time: at the critical load (when the structure breaks down)
some energy is thus dissipated. This phenomenon seems to be featured by all
local minimization approaches and is usually interpreted as the necessity of
including kinetic effects in the model.

The ill-posed character of the minimization problem (2.4) or (2.11) (which
do not admit minimizers, in general) manifests itself in various aspects. First,
as already said, we rarely found a local minimizer in our numerical tests unless
the structure was broken (fracture is a brutal process). The only exception is
the fiber reinforced matrix test of Section 6.6 where a larger than usual ini-
tial crack allows us to obtain a smooth evolution of the crack, similar to that
obtained in [22]. Second, our numerical results are quite sensitive to some im-
plementation issues. For example, it is necessary to use the complete shape
derivative formulas (3.9) (which features the two phases) and not their simpler
limit (3.13), obtained when the damaged phase is assumed to have zero rigidity,
otherwise the minimization of the cost function is less complete and the values
of the initiation or critical loads may be wrong. Another important issue is the
reinitialization process which must be precise enough so that the normal and
tangent vectors to the interface between the two phases are always accurately
computed while the interface itself does not move at all during reinitialization
(otherwise it would contradict the irreversibility constraint).

An interesting open problem is to prove the conjectured convergence of the
discrete scaled energy (2.12) towards the fracture model (2.13). A natural ex-
tension of our work is to handle a non-interpenetration condition so that cracks
under compression do not propagate. We have used standard Q1 finite elements
for solving the linear elasticity system which features a large variation of the
Young modulus between the two phases. It would be interesting to study if
extended finite element methods (XFEM, see e.g. [39], [40]) would improve the
numerical precision at a not too large expense in CPU cost. Of course, we should
also perform more realistic test cases and make precise comparisons with both
physical experiments and other codes, including a study of CPU cost. Even-
tually let us mention that shape optimization for minimizing the risk of crack
propagation is also a promising field to investigate, following [48].

A Computation of the shape derivative

This appendix is devoted to the proofs of Lemma 3.6 and Corollary 3.1. We
begin with Lemma 3.6 which furnishes the partial shape derivative of the La-
grangian. To prove it we use Lemma 3.1. On the one hand, the derivatives
of integrals on Ω0,1 are simple. On the other hand, the interface Σ is either a
closed surface without boundary or a surface which meets the outer boundary
∂Ω: in both cases the derivative of an integral on Σ has no contribution on
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its boundary ∂Σ as in (3.1). Eventually, even if the surfaces Γ0,1
N are subset

of the fixed boundary ΓN , they can vary tangentially to ΓN , so the derivatives
of integrals on Γ0,1

N are made of the sole boundary term on γ = ∂Γ0,1
N in (3.1).

Therefore, the partial shape derivative of L is

<
∂L
∂χ

,φ > =
∫

Σ

(
σ1(u1) · e(p1) − σ0(u0) · e(p0)

)
θ · ndS

+
∫

Σ

(
−f1 · p1 + f0 · p0 − j1(u1) + j0(u0)

)
θ · ndS

+
1
2

∫

Σ

(
σ0(u0) · e(u0) − σ1(u1) · e(u1)

)
θ · ndS

− 1
2

∫

Σ

(
∂

∂n
+ H

)( (
σ1(u1)n + σ0(u0)n

)
· (p1 − p0)

)
θ · ndS

− 1
2

∫

Σ

(
∂

∂n
+ H

)( (
σ1(p1)n + σ0(p0)n

)
· (u1 − u0)

)
θ · ndS

+
1
2

∫

Σ

(
∂

∂n
+ H

)( (
σ1(u1)n + σ0(u0)n

)
· (u1 − u0)

)
θ · ndS

+
∫

γ

(
g0 · p0 − g1 · p1 + h0(u0) − h1(u1)

)
θ · τdL, (A.1)

where H denotes the mean curvature and τ is the external unit vector normal
to γ = ∂ΓN and n. Since u0 = u1 and p0 = p1 on Σ, the terms involving the
curvature vanish on Σ. Similarly the normal component of the stress tensors
are continuous through Σ. Thus, (A.1) simplifies in

<
∂L
∂χ

,φ > =
∫

Σ

(
σ1(u1) · e(p1) − σ0(u0) · e(p0)

)
θ · ndS

+
∫

Σ

1
2
(
σ0(u0) · e(u0) − σ1(u1) · e(u1)

)
θ · ndS

−
∫

Σ
σ(u)n · ∂(p1 − p0)

∂n
θ · ndS

−
∫

Σ
σ(p)n · ∂(u1 − u0)

∂n
θ · ndS

+
∫

Σ
σ(u)n · ∂(u1 − u0)

∂n
θ · ndS

−
∫

Σ

(
(f1 − f0) · p + j1(u) − j0(u)

)
θ · ndS

−
∫

γ

(
(g1 − g0) · p + h1(u) − h0(u)

)
θ · τdL, (A.2)

where u, p,σ(u)n,σ(p)n denotes the continuous quantities at the interface. The
two last lines of (A.2) are expressed only in terms of continuous quantities
through the interface, but not the five first lines that we must rewrite, using
Lemma 3.2, as an explicit expression in terms of continuous functions at the
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interface and jumps of the Lamé coefficients. (In the following computations, the
symbol · will denote, according to the context, either a scalar product between
two vectors, or between two matrices.)

Let us compute the integrand in the first term of the right hand side of (A.2).
In the local orthonormal basis (t, n) (adapted to the interface Σ and introduced
in Lemma 3.2) the following decomposition holds

σ1(u1) · e(p1) = σ1
nn(u1)enn(p1) + 2σ1

tn(u1) · etn(p1) + σ1
tt(u

1) · ett(p1).

From Lemma 3.2 it rewrites as

σ1(u1) · e(p1) =
1

λ1 + 2µ1
σ1

nn(u1)
(
σ1

nn(p1) − λ1 trett(p1)
)

+
1
µ1
σ1

tn(u1) · σ1
tn(p1)

+
[
2µ1ett(u1) +

λ1

λ1 + 2µ1

(
2µ1 trett(u1) + σ1

nn(u1)
)
Id−1
2

]
· ett(p1)

=
1

λ1 + 2µ1
σ1

nn(u1)σ1
nn(p1) +

1
µ1
σ1

tn(u1) · σ1
tn(p1)

+ 2µ1ett(u1) · ett(p1) +
2λ1µ1

λ1 + 2µ1
trett(u1) trett(p1).

A similar computation with the index 0 instead of 1 yields the difference

σ1(u1) · e(p1) − σ0(u0) · e(p0) = [
1

λ+ 2µ
]σnn(u)σnn(p)

+[
1
µ

]σtn(u) · σtn(p) + [2µ]ett(u) · ett(p) + [
2λµ

λ+ 2µ
] trett(u) trett(p)

which is expressed, as desired, only in terms of continuous functions at the
interface. On the same token we deduce

σ0(u0) · e(u0) − σ1(u1) · e(u1) = [
−1

λ+ 2µ
] (σnn(u))2

−[
1
µ

]|σtn(u)|2 − [2µ]|ett(u)|2 − [
2λµ

λ+ 2µ
] ( trett(u))2 .

We now consider the integrand of the third, fourth of fifth line of (A.2). We
use the following identity for two displacements v and q

if q = 0 on Σ, then σ(v)n · ∂q

∂n
= 2(σ(v)n) · (e(q)n) − σnn(v)enn(q) on Σ.
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We obtain

σ(u)n · ∂(p1 − p0)
∂n

= 2(σ(u)n) · (e(p1)n − e(p0)n) − σnn(u)
(
enn(p1) − enn(p0)

)

= [
2

λ+ 2µ
]σnn(u)σnn(p)

− [
2λ

λ+ 2µ
]σnn(u) trett(p) + [

1
µ

]σtn(u) · σtn(p)

− [
1

λ+ 2µ
]σnn(u)σnn(p) + [

λ

λ+ 2µ
]σnn(u) trett(p)

= [
1

λ+ 2µ
]σnn(u)σnn(p) + [

1
µ

]σtn(u) · σtn(p)

− [
λ

λ+ 2µ
]σnn(u) trett(p). (A.3)

We get a similar expression for σ(p)n · ∂(u1−u0)
∂n and σ(u)n · ∂(u1−u0)

∂n . Summing
up these contributions we deduce that the integrand of the five first lines of the
right hand side of (A.2) is

D(x) = − [
1

λ+ 2µ
]σnn(u)σnn(p) − [

1
µ

]σtn(u) · σtn(p) + [2µ]ett(u) · ett(p)

+ [
2λµ

λ+ 2µ
] trett(u) trett(p) + [

λ

λ+ 2µ
] (σnn(u) trett(p) + σnn(p) trett(u))

+ [
1

2(λ+ 2µ
)](σnn(u))2 + [

1
2µ

]|σtn(u)|2 − [µ]|ett(u)|2

− [
λµ

λ+ 2µ
]( trett(u))2 − [

λ

λ+ 2µ
]σnn(u) trett(u)

which is precisely formula (3.10). Using the relations (3.8) between e and σ
(see Lemma 3.2) we easily deduce (3.11) from (3.10), which finishes the proof
of Lemma 3.6. !

Proof of Corollary 3.1. The Francfort-Marigo objective function is obtained
for jk(u) = −fk · u + κδk0 and hk(u) = −gk · u. We deduce that j′k(u) = −fk

and h′
k(u) = −gk, and thus that the adjoint state vanishes pχ = 0. If we further

assume that f0 = f1 and g0 = g1, the shape derivative reduces to

J ′(χ)(θ) =
∫

Σ
D(x) θ · n dS

with

D(x) = [
1

2(λ+ 2µ)
](σnn(uχ))2 + [

1
2µ

]|σtn(uχ)|2 − [µ]|ett(uχ)|2

− [
λµ

(λ+ 2µ)
]( trett(uχ))2 − [

λ

(λ+ 2µ)
]σnn(uχ) trett(uχ). (A.4)
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Assumption A0 ≤ A1 is equivalent to [µ] ≥ 0 and [κ] ≥ 0 with κ := λ +
2
d
µ,

the bulk modulus. Since σtn(u) only appears as a square product in (A.4), it
suffices to check that the combination of all other terms is indeed negative, that
is,

[
1

λ+ 2µ
](σnn(u))2 − [2µ]|ett(u)|2 − [

2λµ

λ+ 2µ
]( trett(u))2 (A.5)

− [
2λ

λ+ 2µ
]σnn(u) trett(u) ≤ 0.

Since ( trett(u))2 ≤ (d − 1)|ett(u)|2 (where d = 2, 3 is the space dimension) the
left hand side of (A.5) is bounded from above by

[
1

λ+ 2µ
]σnn(u)2 − [

2µ

d − 1
+

2λµ

λ+ 2µ
]( trett(u))2 − [

2λ
λ+ 2µ

]σnn(u) trett(u),(A.6)

which writes in term of κ and µ as

[
d

dκ + 2(d − 1)µ
]σnn(u)2 − d

d − 1
[

2dκµ

dκ + 2(d − 1)µ
] tr2ett(u)

− 2[
dκ − 2µ

dκ + 2(d − 1)µ
]σnn(u) trett(u).

Since, by assumption A0 ≤ A1, we have

[
d

dκ + 2(d − 1)µ
] ≤ 0 and [

2dκµ

dκ + 2(d − 1)µ
] ≥ 0,

the quadratic form (A.6) is negative if and only if

[
dκ − 2µ

dκ + 2(d − 1)µ
]2 ≤ − d

d − 1
[

d

dκ + 2(d − 1)µ
][

2dκµ

dκ + 2(d − 1)µ
]. (A.7)

Introducing the new variables κ′ =
dκ
2

and µ′ = (d − 1)µ, (A.7) is equivalent
to

[
1

κ′ + µ′ ][
κ′µ′

κ′ + µ′ ] ≤ − 1
d2

[
(d − 1)κ′ − µ′

κ′ + µ′ ]2 = −1
4
[
κ′ − µ′

κ′ + µ′ ]
2. (A.8)

A brute force computation shows that (A.8) holds true. !
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in Computer Science 41, pp.54-62, Springer Verlag, Berlin (1976).

[50] Negri, M., A finite element approximation of the Griffith’s model in frac-
ture mechanics, Numer. Math. 95, pp.653-687 (2003).

[51] Negri, M., Ortner, Ch., Quasi-static crack propagation by Griffith’s crite-
rion, M3AS, 18, pp.1895-1925 (2008).

[52] Osher S., Fedkiw R., Level set methods and dynamic implicit surfaces,
Applied Mathematical Sciences, 153, Springer-Verlag, New York (2003).

[53] Osher, S., Sethian, J.A., Front propagating with curvature dependent
speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys.
78, pp.12-49 (1988).
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