
HAL Id: hal-00784400
https://hal.inria.fr/hal-00784400

Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampling solution traces for the problem of sorting
permutations by signed reversals

Christian Baudet, Zanoni Dias, Marie-France Sagot

To cite this version:
Christian Baudet, Zanoni Dias, Marie-France Sagot. Sampling solution traces for the problem of
sorting permutations by signed reversals. Algorithms for Molecular Biology, BioMed Central, 2012, 7
(1), pp.18. �10.1186/1748-7188-7-18�. �hal-00784400�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49821654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00784400
https://hal.archives-ouvertes.fr

Baudet et al. Algorithms for Molecular Biology 2012, 7:18

http://www.almob.org/content/7/1/18

RESEARCH Open Access

Sampling solution traces for the problem of
sorting permutations by signed reversals
Christian Baudet1,2*, Zanoni Dias3 and Marie-France Sagot1,2*

Abstract

Background: Traditional algorithms to solve the problem of sorting by signed reversals output just one optimal

solution while the space of all optimal solutions can be huge. A so-called trace represents a group of solutions which

share the same set of reversals that must be applied to sort the original permutation following a partial ordering. By

using traces, we therefore can represent the set of optimal solutions in a more compact way. Algorithms for

enumerating the complete set of traces of solutions were developed. However, due to their exponential complexity,

their practical use is limited to small permutations. A partial enumeration of traces is a sampling of the complete set of

traces and can be an alternative for the study of distinct evolutionary scenarios of big permutations. Ideally, the

sampling should be done uniformly from the space of all optimal solutions. This is however conjectured to be

♯P-complete.

Results: We propose and evaluate three algorithms for producing a sampling of the complete set of traces that

instead can be shown in practice to preserve some of the characteristics of the space of all solutions. The first

algorithm (RA) performs the construction of traces through a random selection of reversals on the list of optimal

1-sequences. The second algorithm (DFALT) consists in a slight modification of an algorithm that performs the

complete enumeration of traces. Finally, the third algorithm (SWA) is based on a sliding window strategy to improve

the enumeration of traces. All proposed algorithms were able to enumerate traces for permutations with up to 200

elements.

Conclusions: We analysed the distribution of the enumerated traces with respect to their height and average

reversal length. Various works indicate that the reversal length can be an important aspect in genome

rearrangements. The algorithms RA and SWA show a tendency to lose traces with high average reversal length. Such

traces are however rare, and qualitatively our results show that, for testable-sized permutations, the algorithms

DFALT and SWA produce distributions which approximate the reversal length distributions observed with a

complete enumeration of the set of traces.

Keywords: Reversals, Traces, Sampling, Genome rearrangement

Background

Permutations and reversals

When studying genome rearrangements, we can identify

homologousmarkers with the integers 1, . . . , n, with a plus

orminus sign to indicate onwhich strand they lie. By using

this notation, we can represent by a signed permutation

*Correspondence: christian.baudet@univ-lyon1.fr; marie-france.sagot@inria.fr
1Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Universit

Lyon 1, CNRS, UMR5558 Villeurbanne, France
2INRIA Grenoble-Rhône-Alpes, team BAMBOO, 655 avenue de l’Europe, 38334

Montbonnot Cedex, France

Full list of author information is available at the end of the article

the order and the orientation of the genomic markers of

one species in relation to those of another.

A subset of numbers ρ ⊆ {1, . . . , n} is said to be an

interval of a permutation π if there exist i, j ∈ {1, . . . , n},

0 < i ≤ j ≤ n, such that ρ = {|πi|, . . . , |πj|}, where πx is

the element which is in position x of the permutation π .

If we write the elements of different intervals in increas-

ing order (for example, {2, 3, 6, 8}), we can compare them

using lexicographic order.

Two intervals are said to overlap if they intersect but

none is contained in the other. For example, if π =

© 2012 Baudet et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 2 of 17

http://www.almob.org/content/7/1/18

(1,−4, 3, 2,−5,−6), then ρ1 = {1, 3, 4} and ρ2 = {2, 3, 4}

overlap, while ρ3 = {2, 3, 4, 5} and ρ4 = {2, 3} do not.

Given a permutation π and an interval ρ of π ,

we can apply a reversal on π , that is, an operation

which reverses the order and flips the signs of the ele-

ments of ρ. If ρ = {|πi|, . . . , |πj|}, then π ◦ ρ =

(π1, . . . ,πi−1,−πj, . . . ,−πi,πj+1, . . . ,πn). Due to this, we

can use ρ to denote a reversal.

A sequence of k + 1 permutations can be represented

by a sequence π0,π1, . . . ,πk of permutations. In such a

sequence, every pair of consecutive permutations π i and

π (i+1) (0 ≤ i < k) are just one reversal apart (i.e.,

we need just one reversal to transform π i into π (i+1) or

vice-versa).

Sorting permutations by signed reversals

A sequence of reversals ρ1 . . . ρd sorts a permutation π0 if

ρi is an interval of π
0◦ρ1 · · · ρi−1 for all i, and π0◦ρ1 · · · ρd

is the target permutation πd (usually, πd is the iden-

tity permutation ιn = (1, 2, . . . , n)). A shortest sequence

of reversals sorting a permutation is called an optimal

sorting sequence. The length of such a sequence of rever-

sals is called reversal distance, denoted by d(π0,πd) (or

simply d(π0), when πd = ιn). For example, if π0 =

(−3, 2, 1,−4) and πd = ι4, one optimal sorting sequence

is {1}{4}{2}{1, 2, 3} and d(π0,πd) = d(π0) = 4.

The problem of finding an optimal sorting sequence

under this model (henceforward denoted by HP) due to

Hannenhalli and Pevzner [1] is called Sorting Permuta-

tions by Signed Reversals (SPSR) and has been the topic

of a vast literature. The first polynomial algorithm with

complexity O(n4) was proposed in 1999 by Hannenhali

and Pevzner [2]. In 2001, Bergeron presented a quadratic

algorithm [3]. In 2004, Tannier, Bergeron and Sagot devel-

oped the first sub-quadratic algorithm with complexity

O(n3/2
√

log n) [4], while a linear algorithm, by Bader,

Moret, and Yan, can calculate the reversal distance in

linear time [5].

More recently, Swenson et al. [6] proposed an

O(n log n + kn) algorithm for finding one optimal sce-

nario, where k is the number of successive corrections

which must be applied when the algorithm chooses an

unsafe reversal. Swenson et al. showed a permutation fam-

ily where k is �(n) (worst-case for k) and, in this case,

the algorithm is quadratic. However, tests performed by

the authors showed that k generally is a constant smaller

than 1 and independent of the permutation size. Because

of this, the algorithm has, with high probability, execution

time O(n log n) [6].

A more general evolutionary model than the HP model

was proposed by Yancopoulos, Attie and Friedberg [7]

called the Double Cut and Join operation (DCJ). It allows

the study of evolutionary scenarios between genomes

which are composed by one or more chromosomes, either

linear or circular. This universal operation accounts for

reversals, translocations, fusions and fissions. Transposi-

tions and block interchanges are modelled by two DCJ

operations. Bergeron, Mixtacki and Stoye gave a linear

time algorithm to compute the DCJ distance between two

genomes [8]. Braga and Stoye studied the solution space

of the problem of sorting by DCJ and developed an algo-

rithm to count the number of optimal sorting sequences

[9]. Additionally, they demonstrated that any optimal DCJ

sorting sequence can be obtained from another one by

applying replacements of consecutive operations. How-

ever, the problem of finding the shortest number of

replacements is still open and an algorithm to enumerate

all DCJ rearrangement scenarios is currently not available.

Furthermore, the DCJ model appears less relevant then

the classical HP model as it allows for mutations that are

rarely or never observed in biological data (e.g. circular

chromosomes for eukaryotes) [10].

Enumeration of all solutions to the SPSR problem

The traditional SPSR algorithms for the HP model how-

ever output just one optimal sequence of reversals, while

the space of optimal solutions can be huge. Hence, the

solution produced by such algorithms may differ from

the scenario which really occurred during the evolution

of the genome, even when such scenario indeed verifies

some optimality criterion. For instance, the permuta-

tion (−4,−11, 6,−9,−2, 1,−8, 3,−10, 7,−5) has 6345019

optimal solutions.

Deterministic approach

Given a permutation π0 and a target permutation πd,

an optimal 1-sequence is a reversal that, when applied to

π0, produces a permutation π1 such that d(π1,πd) =

d(π0,πd) − 1. In the same way, an optimal i-sequence is a

sequence of i reversals that, when applied to π0, produces

a permutation π i such that d(π i,πd) = d(π0,πd) − i.

In 2003, Siepel proposed an algorithm which calcu-

lates the set of all optimal 1-sequences of a given per-

mutation in time O(n3) [11]. It is thus easy to see that,

by iterating this algorithm, we can obtain the set of all

optimal d(π0,πd)-sequences that sort the permutation

π0 into πd. Recently, Swenson, Badr and Sankoff pre-

sented a quadratic algorithm to enumerate the optimal

1-sequences of a permutation [12].

Probabilistic approach

York, Durret, and Nielsen proposed in 2002 a Bayesian

approach for the problem of inferring the history of

inversions which separate the homologous chromosomes

from two different species [13]. The method is based on a

Markov ChainMonte Carlo (MCMC) approach and mod-

els the occurrence of rearrangement events by a Poisson

process. Additionally, all possible inversions are supposed

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 3 of 17

http://www.almob.org/content/7/1/18

to occur with equal probability and the authors do not

impose the restriction of parsimonious scenarios to the

solutions (i.e. they do not require the sorting sequence to

have minimum size). This was extended in 2004 to include

translocations [14]. In 2003, Mikls proposed an MCMC

approach based on a stochastic model of inversions,

transpositions and inverted transpositions [15].

The methods of Mikls and York et al. were designed

to infer the sequence of rearrangement events that

explain the difference between two species. Larget

et al. developed a method to analyse the complete mito-

chondrial genome rearrangements of 87 metazoa taxa

[16,17]. Their approach used anMCMCmodel to estimate

the phylogeny and ancestral genome arrangements con-

sidering only reversals. This led to the software BADGER.

An MCMC approach was also proposed by Mikls and

Darling in 2009 for sampling parsimonious reversal his-

tories [18]. The method is implemented in the software

MC4Inversion. It uniformly samples the set of all opti-

mal paths and can estimate the total number of optimal

sorting paths.

Traces

Bergeron et al. introduced the concept of traces for the

SPSR problem. This concept allows the organisation of a

set of optimal solutions into classes [19]. If sequences of

reversals are identified as words, Bergeron et al. define a

relation over them: if ρ and θ are reversals (intervals) and

they show no overlap, then the words ρθ and θρ are said

to be equivalent. We say that ρ and θ commute. Based

on this relation, any word that contains the subword ρθ

is equivalent to the same word obtained by replacing ρθ

by θρ. For example, the sequences of reversals (words)

{1}{1, 2, 3}{2, 3, 4} and {1, 2, 3}{1}{2, 3, 4} are equivalent

because the reversals {1} and {1, 2, 3} commute. Inversely,

none of these sequences of reversals is equivalent to

{1}{2, 3, 4}{1, 2, 3} because the reversals {1, 2, 3} and

{2, 3, 4} overlap.

A class of optimal reversal sequences over this relation

is called a trace. Bergeron et al. proposed that for a given

signed permutation π , the set of all optimal solutions is

a union of traces. Thus, traces can be used to produce a

more relevant result to the SPSR problem because they

provide a more compact representation of an enormous

set of solutions.

Normal form of a trace

An element s of a trace T is in its normal form if it can be

decomposed into subwords s = u1| . . . |um such that:

• every pair of elements of a subword ui commute;
• for every element ρ of a subword ui (i > 1), there is

at least one element θ of the subword ui−1 such that

ρ and θ do not commute;

• every subword ui is a nonempty increasing word

under the lexicographic order.

A theorem by Cartier and Foata states that, for any trace,

there is a unique element that is in normal form [20]. This

allows the representation of traces through their normal

forms.

The number of subwords in a trace denotes its height.

The size of a trace T is the number of solutions

which it represents. The trace {1, 2, 4}{3}|{1, 3, 4}|{2, 3, 4}

has height 3 and size 4 because it represents just the

solutions: {3}{1,2,4}{1,3,4}{2,3,4}, {1,2,4}{3}{1,3,4}{2,3,4},

{1,2,4}{1,3,4}{3}{2,3,4}, and {1,2,4}{1,3,4}{2,3,4}{3}.

A trace T that contains an optimal sequence ρ1 . . . ρd
can be represented by a partial ordering of the set PT =

{ρ1, . . . , ρd}. We say that ρi <T ρj if and only if ρi is

always before ρj in the elements of T . For example, in

the trace T = {1, 2, 4}{3}|{1, 3}|{3, 4}, the elements of PT

are {1, 2, 4}, {3}, {1, 3}, and {3, 4}, and the relations are

{1, 2, 4} <T {1, 3}, {1, 3} <T {3, 4}, and {1, 2, 4} <T {3, 4}.

Notice that the reversal {3} is not comparable to the others

by the relation <T because, given that it does not overlap

the other reversals, it can be placed in the sequence before

or after any of them.

The set PT and the relation <T form a partially ordered

set (poset). The width of a trace (or poset) is a maximum

cardinality set of elements of PT that are not comparable

by the relation <T . It is at least (but in general not equal

to) the maximum size of a subsequence ui in the normal

form of a trace.

Tree representation of a set of solution traces

A set of solution traces can be represented using a

sorted tree similar to the one shown in Figure 1 (that

records the traces that sort the permutation π0 =

(−3, 2, 1,−4) into ι4). A node of the tree represents a

set of reversals that is sorted in lexicographic order. The

root node contains the optimal 1-sequences of the orig-

inal permutation. To each reversal ρ of a non-leaf node

is attached a subtree which groups the reversals that

are lexicographically bigger than it or that should be

applied after it. For example, in Figure 1, node A con-

tains the optimal 1-sequences of π0 and the reversal {1}

of node A has a subtree, rooted at node B, attached

to it. Node B contains the optimal 1-sequences of the

permutation π1 obtained after applying the reversal {1}

over π0.

Every path from the root to a node at level i of the tree

gives us an i-trace. An i-trace represents a set of solu-

tions which sort πk into π (k+i) by using the same set

of i reversals, respecting the overlap relationship among

them. If i = d(π0,πd), then we have a trace that sorts the

permutation π0 into πd .

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 4 of 17

http://www.almob.org/content/7/1/18

{2}

{1,2,3}

{1} {1,2,3} {1,2,4} {2} {3} {4}

{4}{2} {4}{2}{1} {1,3,4} {3}

B E

A

{1} {1,2,3} {4} {2}{1,2,3}{1}{1,2,4}

{4}

C

{4}{1,2,3} {2}{1,2,3} {4}{1} {1} {2} {2,3,4} {3} {1,3,4} {1,2,3}{1}

{4}

D

{2} {1,2,3} {1} {2,3,4}{3}

Figure 1 Tree representation of the solution traces of the permutation π = (−3, 2, 1,−4). In this representation, only the values inside of

solid boxes are reversals that effectively are in the structure. The values inside of dashed boxes are reversals which are optimal 1-sequences but,

when combined with their parent trace, lead to traces that were inserted in another branch of the tree. The wide edges show the two traces which

sort the permutation: {1}{1, 2, 3}{2}{4} and {1, 2, 4}{3}|{1, 3, 4}|{2, 3, 4}.

Complete enumeration of solution traces for the

SPSR problem

Braga et al. combined Siepel’s algorithm with the concept

of traces [21] and developed an algorithm for enumerat-

ing all solution traces of a given permutation. As a single

trace can represent a big number of solutions, by enu-

merating traces we can generate a set much smaller than

the complete set of solutions. Moreover, the clustering of

solutions provided by the traces offers to the biologist a

better information on the characteristics of the blocks of

elements of the permutation which are being affected by

the reversals.

Considering some biological criteria, constraints can

be applied in the selection of the reversals during the

process of enumeration. Thus, the size of the output

can be reduced [21,22]. For example, common intervals

between two permutations can be used to model clusters

of co-localised genes. These clusters are intervals of the

genomes which are composed by the same genes but not

necessarily in the same order and orientations. In this con-

text, we can determine a biological constraint that forbids

or imposes a maximum number of reversals that break

this type of intervals.

The algorithm proposed by Braga et al. explores the tree

of solution traces in breadth-first manner and adopts a

complex data structure to keep the intermediary infor-

mation into the main memory and disk [23]. Due to the

strategy adopted in this algorithm, in this text we shall

refer to it as the Breadth-First Algorithm or BFA for short.

In a previous work, instead of exploring the universe

of solutions in breadth-first manner, we adopted a depth-

first strategy to explore the branches of the tree of solution

traces [24]. This Depth-First Algorithm (or DFA for short)

makes use of a stack structure to keep the intermediary

data on the main memory only. With this solution, we

greatly reduced the amount of data which must be kept

in the main memory and we eliminated the disk accesses.

However, this algorithm cannot be used with most of

the biological constraints developed by Braga et al., and

cannot compute the total number of solutions that is

represented by the set of traces.

The time complexity of the BFA algorithm is

O(Nnkmax+4), where kmax is the maximum width of a

trace and N is the number of traces of solutions [21]. The

complexity of the DFA algorithm is O(Nn42n) [25].

Recently, Badr, Swenson and Sankoff adapted the two

algorithms of trace enumeration [25]. The strategy con-

sists in grouping i-traces according to the permutation

that they produce when their sequences of reversals are

applied to the original permutation. As many traces can

produce the same intermediary permutation, by group-

ing them, the authors avoid unnecessary computations.

Instead of generating the set of optimal 1-sequences for

every i-trace, they compute this set just for the interme-

diary permutation which groups a set of i-traces. Despite

the gain of 70% over the execution time of the BFA algo-

rithm and 50% over the DFA algorithm, the methods

proposed by Badr, Swenson and Sankoff use a consider-

able amount of the main memory to keep the groups of

i-traces and permutations.

Partial enumeration of solution traces for the

SPSR problem

Although sets of traces are smaller than their equiva-

lent sets of solutions, the number of traces also increases

exponentially with the size of the permutations and their

reversal distance. Thus, for big permutations (n ≥ 15),

the time necessary to produce the complete set of traces

makes impracticable any analysis.

For big permutations, instead of enumerating the com-

plete set of traces, we could study alternative evolutionary

scenarios by producing a sampling of this set. We call

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 5 of 17

http://www.almob.org/content/7/1/18

this sampling a “Partial Enumeration of Traces” and, in

this work, we propose three new algorithms for doing this

sampling.

New algorithms

The three algorithms were designed to enumerate traces

while a given execution time limit is not reached. The

first (RA) is very simple and constructs the traces through

a random selection of reversals in the list of optimal 1-

sequences. The second algorithm (DFALT) represents a

slight modification of the DFA algorithm. Finally, the last

algorithm (SWA) is more elaborate and makes uses of a

sliding window strategy to improve the enumeration of

traces.

We implemented the proposed algorithms and tested

themwith sets of random permutations.While processing

small permutations, the DFALT algorithm is able to sam-

ple a number of traces higher than the ones obtained by

the other solutions. However, as the size of the permuta-

tions increases, the algorithm SWA outperforms the others

with respect to the number of enumerated traces.

Quality of sampling

To demonstrate that the sampling is from the uniform

distribution and to determine the time that is necessary

to obtain a good sampling are not easy tasks. Indeed,

it has been conjectured that this is ♯P-complete [10]. It

may however be enough in some cases to show that the

sampling preserves in practice a characteristic that is bio-

logically relevant. One such characteristic is the average

length of the reversals in optimal scenarios. Indeed, the lit-

erature contains studies of genomes that appear subjected

to reversals of mainly small or intermediate sizes [26-29].

In this context, sampling traces whose average reversal

length follows a distribution statistically similar to the dis-

tribution observed for the complete set of traces can be

important to validate or invalidate an a posteriori biologi-

cal interpretation. We could qualitatively show that when

we increase the execution time, the DFALT and SWA algo-

rithms obtain sets whose distributions of traces do tend

to approach the distributions observed for the complete

set of traces as concerns the average reversal length of the

traces, and also the height.

Methods

State of Art – Algorithms for traces enumeration

Before introducing the algorithms for partial enumeration

of traces, in this section we make a quick presentation of

the algorithms which were designed for the enumeration

of the complete set of solution traces.

Breadth-first algorithm – BFA

Braga et al. proposed the first algorithm for enumeration

of solution traces [21]. This explores the tree of solution

traces in a breadth-first manner.

First, the algorithm lists the set of optimal 1-sequences

of the original permutation π0. These optimal 1-

sequences are equivalent to a list of 1-traces of the permu-

tation π0.

Then at each iteration i (1 < i ≤ d(π0,πd)), the algo-

rithm applies each (i − 1)-trace t on π0 to produce a new

permutation π (i−1) (i.e. π (i−1) = π0◦t). The list of optimal

1-sequences of π (i−1) is thus obtained, and each reversal

of this list is added to the (i − 1)-trace t to generate a new

set of i-traces.

When the algorithm finishes to process level i =

d(π0,πd), all traces which sort π0 into πd have been

enumerated.

Depth-first algorithm – DFA

A depth-first strategy was adopted by Baudet and Dias to

explore the tree of solution traces [24].

The algorithm makes use of a stack structure to handle

the data produced during the process. Each level of the

stack has a list of reversals sorted in lexicographic order.

Additionally, the sequence of reversals constructed with

the first reversal of each level, from the bottom to the top

of the stack, represents the current i-trace.

First, the list of optimal 1-sequences of the permuta-

tion π0 is pushed into the first level of the stack. While

the stack is not empty, the algorithm gets the current i-

trace t and applies it to the permutation π0 to produce the

permutation π i. Each reversal ρ of the list of optimal 1-

sequences of π i is added to the list that will be pushed into

the top of the stack only when it is the last reversal of the

(i + 1)-trace t′ = t + ρ. If the reversal ρ does not appear

in the last position of the (i + 1)-trace t′, it means that

it belongs to another branch of the tree of solution traces

and, therefore, it can be ignored.

When the stack reaches the level i = d(π0,πd), the

algorithm outputs the current trace t and removes from

the list the reversal that is on the top of the stack. Every

time the top of the stack contains an empty list, the algo-

rithm pops it and removes the first reversal of the list that

is in the new top. The algorithm finishes when the stack

becomes empty.

BFA and DFAwith permutation grouping

During the enumeration of traces which sort π0 into πd,

different i-traces can sort π0 into the same intermediary

permutation π i. Based on this observation, Badr, Swenson

and Sankoff adapted the BFA and DFA algorithms to

speed-up the trace enumeration [25].

The strategy consists in grouping i-traces according to

the permutation that they produce when their sequences

of reversals are applied to the original permutation.

Instead of computing sets of optimal 1-sequences for

every i-trace, this procedure is performed only for each

intermediary permutation which appears on the level i.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 6 of 17

http://www.almob.org/content/7/1/18

Tests performed by the authors show that, on average,

this change in the algorithms results in a gain of 70%

and 50%, respectively, over the total execution time of the

algorithms BFA and DFA.

New algorithms – Partial enumeration of traces

Due to the exponential nature of the set of solutions, the

algorithms that sort all solution traces are not suited for

processing big permutations.

With the objective of calculating alternative evolution-

ary scenarios for big permutations, we developed three

different algorithms that perform a partial enumeration of

the complete set of solution traces of a given permutation.

The proposed algorithms output traces while they do

not reach the stopping criterion which, in our case, is a

given execution time limit.

Random algorithm – RA

A very simple solution for the partial enumeration of

traces is to construct random traces.

Let π0 be the original permutation and πd the target

permutation. This method consists in generating a trace

through the random selection of a reversal among those

in the set of optimal 1-sequences of each permutation π i

which is between π0 and πd (0 ≤ i < d = d(π0,πd)).

This process is repeated while the execution time limit is

not reached.

Depth-first algorithm limited by time – DFALT

The algorithm DFA explores the tree of solution traces

branch by branch. Moreover, every time it reaches a leaf

node, it outputs a new trace. Consequently, another sim-

ple alternative to producing a set of traces is to use

the algorithm DFA and introduce a verification over the

elapsed time to interrupt its execution when the time limit

is reached.

Observe that the same procedure cannot be adapted to

the algorithm BFA. As it outputs the enumerated traces

only when it reaches the last level, the necessary time limit

to output at least one trace would be very close to the time

required to enumerate all traces.

Slidingwindow algorithm – SWA

Let πk be an intermediary permutation that is obtained

after applying the first k reversals of an optimal sequence

of reversals which transforms π0 into πd (1 ≤ k < d =

d(π0,πd)). In this context, we can define the k-traceX and

the l-trace Y , where l = d − k. X and Y are, respectively,

the traces which represent all solutions that transform π0

into πk and, πk into πd .

If we get the reversals of Y and add each one of them,

sequentially, to X, we produce a trace Z that trans-

forms π0 into πd . For example, Figure 2 shows a sequence

of reversals which optimally sorts the permutation

π0 = (−7,+8,−3,+3,+6,−5,−1,+4) into the per-

mutation π8 = (+1,+2,+3,+4,+5,+6,+7,+8). The

4-trace A = {1,−, 6, 8}{1,−, 3, 5, 6}{8}|{1,−, 7} represents

a solution trace which transforms π0 into the inter-

mediary permutation π4. In the same way, the 4-trace

C = {2, 5, 6}{3, 4}{6}|{3,−, 6} represents a solution trace

which transforms π4 into π8. By adding each rever-

sal of C into the trace A, we build the 8-trace AC =

{1,−, 6, 8}{1,−, 3, 5, 6}{2, 5, 6}{6}{8}|{1,−, 7}{3, 4}|{3,−, 6}

which sorts π0 into π8.

This strategy of combining small traces to construct a

bigger one can be used in a sliding window algorithm. The

set of all intermediary permutations which is produced by

an optimal sequence of reversals is processed by a window

of size w that produces sets of k-traces (1 ≤ k ≤ w) which

transform: π0 into π1, π0 into π2, . . ., π0 into π (w−1), π0

into πw, π1 into π (w+1), π2 into π (w+2), . . ., π (d−w) into

πd , π (d+1−w) into πd , . . ., π (d−1) into πd.

After that, these sets of k-traces (1 ≤ k ≤ w) can be

combined in the following way:

• 1-traces that transform π0 into π1 with w-traces that

transform π1 into π (w+1) to generate (w + 1)-traces

which transform π0 into π (w+1);
• 2-traces that transform π0 into π2 with w-traces that

transform π2 into π (w+2) to generate (w + 2)-traces

which transform π0 into π (w+2);
• . . .

• (d − 1)-traces that transform π0 into π (d−1) with

1-traces that transform π (d−1) into πd to generate

d -traces which transform π0 into πd .

The first step of this algorithm consists in generating

a random set of intermediary permutations. To do this,

we can adapt the algorithm RA to return the list of all

intermediary permutations (π i, 0 ≤ i ≤ d).

To produce the set of all k-traces (1 ≤ k ≤ w)

that transform π i into π (i+k), we can use the algorithm

DFA.

In our example of Figure 2, the algorithm DFA

would output the 4-traces A = {1,−, 6, 8}{1,−, 3, 5, 6}

{8}|{1,−, 7} and B = {1,−, 3, 5,−, 8}{4}{7}|{4, 7, 8}, which

transform π0 into π4, and the 4-traces C = {2, 5, 6}

{3, 4}{6}|{3,−, 6} and D = {2}{2,−, 4, 6}{5}|{2,−, 5},

which transform π4 into π8. With the combination of

these 4-traces, we can obtain four 8-traces which trans-

form π0 into π8 passing by the intermediary permutation

π4 (AC,AD,BC, and BD).

Tests

The algorithm BFA was implemented in Java by Braga

[30]. Starting from this Java source code, we implemented

the algorithm DFA in order to adopt the same Java Objects

that were used by Braga. The algorithms RA, DFALT, and

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 7 of 17

http://www.almob.org/content/7/1/18

4

−7 +8 −3 +2 +6 −5 −1 +4

−7 −4 +1 +5 −6 −2 +3 −8

−7 −4 −3 +2 +6 −5 −1 −8

+1 +5 −6 −2 +3 +4 +7 −8

+1 +5 −6 −2 +3 +4 +7 +8

+1 +2 +6 −5 +3 +4 +7 +8

+1 +2 −6 −5 +3 +4 +7 +8

+1 +2 −4 −3 +5 +6 +7 +8

+1 +2 +3 +4 +5 +6 +7 +8

{1,−,6,8}

{1,−,3,5,6}

{1,−,7}

{8}

{2,5,6}

{6}

{3,−,6}

{3,4}

A = {1,−,6,8}{1,−,3,5,6}{8}|{1,−,7}

A = {1,−,6,8}{1,−,3,5,6}{8}|{1,−,7}

D = {2}{2,−,4,6}{5}|{2,−,5}

B = {1,−,3,5,−,8}{4}{7}|{4,7,8}

C = {2,5,6}{3,4}{6}|{3,−,6}

C = {2,5,6}{3,4}{6}|{3,−,6}

BC = {1,−,3,5,−,8}{2,5,6}{4}{6}{7}|{4,7,8}|{3,4}{3,−,6}

AC = {1,−,6,8}{1,−,3,5,6}{2,5,6}{6}{8}|{1,−,7}{3,4}{3,−,6}

AD = {1,−,6,8}{1,−,3,5,6}{2}{5}{8}|{1,−,7}{2,−,4,6}|{2,−,5}

BD = {1,−,3,5,−,8}{2}{4}{5}{7}|{4,7,8}|{2,−,4,6}|{2,−,5}

π

π

π

π

π

π

π

π

π

π

π

π π

π

π

0

1

2

3

4

5

6

7

8

0

4

0 8

8

Figure 2 Building a 8-trace with 4-traces. This schema shows a sequence of reversals that optimally sorts π0 = (−7,+8,−3,+2,+6,−5,−1,+4)

into π8 = (+1,+2,+3,+4,+5,+6,+7,+8). This sequence of reversals is represented by the 8-trace {1,−, 6, 8}{1,−, 3, 5, 6}{2, 5, 6}{6}{8}|{1,−, 7}

{3, 4}|{3,−, 6}. This 8-trace can be obtained by the application of the reversals of the 4-trace C = {2, 5, 6}{3, 4}{6}|{3,−, 6} (it sorts π4 into π8) to the

sequence of reversals of the 4-trace A = {1,−, 6, 8}{1,−, 3, 5, 6}{8}|{1,−, 7} (it sorts π0 into π4). The algorithm DFA can be used to obtain the two

4-traces which sort π0 into π4 and the two 4-traces which sort π4 into π8 . Combining these 4-traces, we obtain all 8-traces of solutions which sort

π0 into π8 and have π4 as an intermediary permutation.

SWA were also implemented under the same Java package

structure.

The tests were performed on an Intel Pentium 4 HT

3.0 GHz with 2.0 GB of RAM running Ubuntu. To avoid

the influence of swap operations on the performance of

the structures, we limited the maximum memory that the

Java Virtual Machine could allocate to 1.0 GB (parameter

-Xmx1024m).

During the tests we collected the maximum amount

of main memory used by the algorithms. The memory

was measured through a separated thread that at regular

intervals collected the memory used by the Java Virtual

Machine (Object Runtime: methods totalMemory()

and freeMemory()).

Random permutations were generated to test the algo-

rithms. Since the package implemented by Braga does not

work with permutations that have hurdles, the generated

permutations should have no hurdles. The decision to

ignore hurdles is based on the very small probability of

finding them in random permutations [31].

Given a number n of elements and a reversal distance

d, starting from the identity permutation ιn = πd , a

random permutation is generated through the applica-

tion of successive reversals in the following way: while

there is more than one adjacency (pair of elements which

appear together with the same relative orientations in the

current and target permutations) in the permutation π i,

two adjacencies are chosen at random and their posi-

tions are used to define the reversal ρi; otherwise, two

positions of the permutation are chosen at random to

define ρi. After applying ρi to π i to obtain π (i−1), we ver-

ify if either d(π (i−1),πd) < d(π i,πd) or π (i−1) contains

hurdles. If one of these conditions are observed, we dis-

card π (i−1) and generate a new random reversal ρi to

apply to π i. The process finishes when we produce the

permutation π0.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 8 of 17

http://www.almob.org/content/7/1/18

Results and discussions

Evaluating the time necessary to enumerate all traces

Before performing comparative tests with the three pro-

posed algorithms (RA, DFALT, and SWA), we evaluated the

average time which is necessary to enumerate all traces

of a given permutation. The objective here is to show the

exponential behaviour of the sizes of the sets of traces,

depending on the number of elements of the permutations

and their reversal distances, and to collect information

to determine the time limits that will be used to evalu-

ate the proposed algorithms. We shall see later how to

choose such a time limit in general, or some other stop

criterion.

We created sets of 500 random linear and circular per-

mutations with, respectively, 10 and 15 elements with

reversal distances between 4 and 13. These values were

chosen because they allow the total enumeration of traces,

for the set of 500 permutations, in a reasonable time. For

example, just the set (n = 15, d(π) = 13) required three

days to be processed. For each permutation, we enumer-

ated all traces with the algorithm DFA, and we collected

the execution time. For each set of permutations, we cal-

culated the average number of traces and the average

execution time. Figures 3 and 4 show the plots which were

produced with the collected values.

The algorithm DFA was chosen because it is faster than

the algorithm BFA. We could also adopt the algorithm

DFA with a permutation grouping that reduces the total

execution time by 50%. However, the permutation group-

ing routine requires a big amount of main memory to

keep the associations between intermediary permutations

and i-traces. Additionally, the results of the work of Badr,

Swenson and Sankoff (Figure 3 [25]) show that the adapted

version of the algorithm DFA outperforms the basic ver-

sion only when the permutations have reversal distance

bigger than 8. As our testing environment had a limited

amount ofmainmemory, we opted to use instead the basic

version of the algorithm DFA.

Figure 3 shows that the number of traces grows expo-

nentially with the number of elements and with the rever-

sal distance. For a same reversal distance, we can see that

the number of traces grows with the ratio d(π)/n. For

example, when we fix the value 9 for the reversal dis-

tance, permutations with 10 elements have on average

more traces than permutations with 15 elements. The

same observations made for Figure 3 can be applied to

Figure 4, and this means that the time is proportional to

the number of traces which must be enumerated.

The average amount of traces observed for circular

permutations is bigger than the one observed for linear

permutations with the same reversal distance. For every

reversal in a linear permutation, there exists two equiva-

lent reversals in the corresponding circular permutation.

Thus, circular permutations have a higher number of

optimal solutions than linear permutations. This charac-

teristic is indicated by the curves of Figure 3.

Number of enumerated traces versus execution time

To evaluate the proposed algorithms, we decided to adopt

a set of permutations which lead to an average execu-

tion time that is neither too short, nor too long. As the

behaviour of linear and circular permutations are similar,

we opted for performing tests only with linear permuta-

tions. Based on these criteria, we chose the set (n = 15,

4 6 8 10 12

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

Reversal distance

N
u

m
b

e
r

o
f

tr
a

c
e

s

10 − linear

10 − circular

15 − linear

15 − circular

Figure 3 Average number of traces. Sets of 500 random permutations (linear and circular) with 10 and 15 elements and different reversal

distances were processed with the algorithm DFA. For each set, we calculated the average number of traces.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 9 of 17

http://www.almob.org/content/7/1/18

4 6 8 10 12

0
.2

0
.5

2
.0

5
.0

2
0

.0
1

0
0

.0
5

0
0

.0

Reversal distance

T
im

e
 i
n

 s
e

c
o

n
d

s

10 − linear

10 − circular

15 − linear

15 − circular

Figure 4 Average execution time. Sets of 500 random permutations (linear and circular) with 10 and 15 elements and different reversal distances

were processed with the DFA algorithm. For each set, we calculated the average execution time. The horizontal dotted line indicates 30 seconds.

d(π) = 12) which leads to an average execution time of,

approximately, 30 seconds.

We processed the selected set of permutations with the

algorithms RA, DFALT, and SWA. In the case of the algo-

rithm SWA, we adopted the values 4, 5 and 6 for the

parameter window size. These values were chosen with

the aim of obtaining a compromise between the num-

ber of enumerated w-traces and the time lost with the

dead branches. To facilitate the description along the text,

we shall refer to these algorithms as, respectively, SWA4,

SWA5, and SWA6.

First, for each permutation P, we got the set of all its

traces and we counted the number of traces that have

height H (2 ≤ H ≤ 12). We also counted the number of

traces that have average reversal length R (2 ≤ R ≤ 11).

Considering that the average time to process the per-

mutations of the selected set is 30 seconds, we used the

algorithms with the following time limits: 6, 12, 18, 24,

30, and 36 seconds. Each permutation P was processed by

each pair (algorithm A, time limit T). For each of these

executions, we calculated the percentage of all traces of

height H (resp., average reversal length R) of the permu-

tation P that we sampled with the algorithm A within the

time limit T.

Finally, for each pair (A, T), we calculated for the set

of 500 random permutations the average percentage of all

traces of height H (average reversal length R) that were

enumerated by A within the time limit T. The plots in

Figures 5 and 6 show the collected data for the parameters

H and R respectively.

Among the proposed solutions, the algorithm DFALT is

the only one which is deterministic. Figures 5 and 6 show

that the increment of the execution time corresponds to a

gradual increase in the number of enumerated traces.

For the non-deterministic algorithms, Figures 5 and 6

show also a gradual increment in the number of enumer-

ated traces. However, these algorithms do not present a

good capacity for sampling traces that have high height

or high average reversal length. We can see that the algo-

rithm RA has the worst results and the algorithm SWA6

has the best results among the non-deterministic algo-

rithms. Notice however that, as we shall see later, since the

number of traces with high height or high average rever-

sal length are rare in general, this will not affect much the

observed distributions of such parameters for the partial

enumeration of traces relatively to a full enumeration.

The lower the height of a trace, the higher is the num-

ber of solutions that it represents. This happens because,

when we have a small number of overlaps among the

reversals, we have a higher number of possible combina-

tions for the sequence of reversals. The same observation

can be made for traces that have a small value for the aver-

age of the reversal length. When the reversals have small

size, the probability of overlap among them decreases and,

consequently, the number of solutions that can be repre-

sented by the traces increases. Thus, randomly, we have

a bigger chance of producing a trace with low height or

low average reversal length. This explains the behaviour

shown by the non-deterministic algorithms in Figures 5

and 6.

Processing big permutations

The average time to process this set of permutations (n =

15, d = 12) is just 30 seconds. It is a set of permutations

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 10 of 17

http://www.almob.org/content/7/1/18

Figure 5 Average percentage of traces with height Hwhich were calculated by each algorithm. A set of 500 random permutations with

n = 15 and d(π) = 12 were processed by RA, DFALT, SWA4, SWA5, and SWA6. The following time limits were imposed to the algorithms: 6, 12, 18,

24, 30, and 36 seconds. For each triplet (A, H, T), we calculated the average percentage of traces with height H shown by the 500 permutations in

the execution of algorithm A inside of the time limit T . In each plot, the axes x, y, and z represent, respectively, the heights, the algorithms and, the

average percentage values.

whose traces can be easily enumerated. Nonetheless, these

algorithms were developed with the objective of enumer-

ating traces of big permutations which demand a huge

processing time.

To check whether they were capable of doing this, we

created sets of 100 random permutations with a number

of elements varying between 40 and 200 and a reversal

distance d = ⌈(n + 1)/2⌉. Each permutation was pro-

cessed by each proposed algorithm with a time limit of

60 seconds. For each execution, we collected the number

of enumerated traces and the maximum amount of mem-

ory used by the algorithm. Figures 7 and 8 show, for each

algorithm and for each value of n respectively, the average

number of enumerated traces and the average memory

usage observed during the executions of each set of 100

permutations.

We can see in Figure 7 that the number of traces that

are enumerated by DFALT decreases as the size of the

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 11 of 17

http://www.almob.org/content/7/1/18

Figure 6 Average percentage of traces with average reversal length Rwhich were calculated by each algorithm. A set of 500 random

permutations with n = 15 and d(π) = 12 were processed by RA, DFALT, SWA4, SWA5, and SWA6. The following time limits were imposed to the

algorithms: 6, 12, 18, 24, 30, and 36 seconds. For each triplet (A, R, T), we calculated the average percentage of traces with average reversal length R

shown by the 500 permutations in the execution of algorithm A inside of the time limit T. In each plot, the axes x, y, and z represent, respectively, the

reversal lengths, the algorithms and, the average percentage values.

permutations increases. This phenomenon is associated

with the time that this algorithm spends processing dead

branches in the tree of traces.

RA has a curve very similar to the one shown by

DFALT but its shape has a different explanation. When we

increase the number of elements of the permutation and,

consequently, the initial reversal distance, we have that the

time that is spent on the analyses of the breakpoint graph

to find an optimal 1-sequence also grows. Because of this,

the number of traces which are enumerated by the algo-

rithm RA decreases when we increase the initial reversal

distance of the permutations.

The reason that makes the algorithm RA lose in perfor-

mance does not affect the SWA algorithm. Even with an

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 12 of 17

http://www.almob.org/content/7/1/18

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 40 60 80 100 120 140 160 180 200

N
u
m

b
e
r

o
f
tr

a
c
e
s

n = permutation size

Average number of traces

DFALT RA SWA4 SWA5 SWA6

Figure 7 Average number of traces produced by each algorithm in 60 seconds. Sets of 100 random permutations with 40 ≤ n ≤ 200 and

d(π) = ⌈(n+ 1)/2⌉ were generated and processed with the algorithms RA, DFALT, SWA4, SWA5, and SWA6 during a time limit of 60 seconds. The

plot shows the average number of traces produced by each algorithm for each set of permutations.

increment of the initial reversal distance, SWA is all the

time concerned with the enumeration of k-traces (1 ≤

k ≤ w). As w is usually small, SWA does not lose in

performance when producing optimal 1-sequences.

Another advantage of the sliding window strategy is

that it produces all k-traces that transform π i into π (i+k).

Because of this, we profit from all the structures that are

created for the generation of the optimal 1-sequences. In

the case of the algorithm RA, even if we avoid to gener-

ate all structures, the created ones are partially explored

because just one reversal is considered for each interme-

diary permutation.

Figure 7 shows that the algorithm SWA is able to enu-

merate more traces than the other two algorithms when

the same time limit is imposed. For permutations with

up to 120 elements, the algorithm SWA6 enumerates the

0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 40 60 80 100 120 140 160 180 200

M
e
m

o
ry

 i
n
 m

e
g
a
b
y
te

s

n = permutation size

Average maximum memory used

DFALT RA SWA4 SWA5 SWA6

Figure 8Maximum amount of main memory used by the partial enumeration algorithms. Sets of 100 random permutations with

40 ≤ n ≤ 200 and d(π) = ⌈(n+1)/2⌉were generated and processedwith the algorithmsRA, DFALT, SWA4, SWA5, and SWA6 during a time limit of

60 seconds. The plot shows the average maximum amount of main memory used by the algorithms while processing each set of 100 permutations.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 13 of 17

http://www.almob.org/content/7/1/18

highest number of traces. For bigger permutations, the

algorithm SWA5 outperforms the algorithm SWA6.

We can see in Figure 7 that the algorithms SWA5 and

SWA6 present curves that have a parabolic shape. The

number of enumerated traces grows up to a given point,

and then starts to decrease. The explanation for this

behaviour lies in the process of combining the i-traces and

the k-traces. When we combine x i-traces with y k-traces,

we can create up to x × y (i + k)-traces (some of the gen-

erated traces can appear more than once). Thus, if the

reversal distance of the original permutation increases,

the number of combinations (i-traces + k-traces) and the

time that is spent on them also increases.

Generally, a set of 6-traces is bigger than a set of 5-traces

and much bigger than a set of 4-traces. As a consequence,

we can see that the algorithm SWA6 initially enumerates

many more traces but the reduction in the performance

also starts earlier than for the other two tested values of

window.

Figure 8 shows that RA and DFALT have a small varia-

tion in the average memory and that the algorithm SWA

consumes more memory. While SWA4 has a more stable

memory usage, SWA5 and SWA6 have an ascending curve

of memory usage.

While the random algorithms can eventually produce

the same trace more than once, DFALT outputs every

trace just once. Because of this, when using DFALT, we

can print the traces avoiding to keep them inmemory with

the purpose of controlling duplicated traces.

The higher memory usage of RA is related to the inter-

val where it outputs more traces. When the number of

enumerated traces decreases, the amount of space that we

need to keep the traces in memory also diminishes. As a

consequence, memory consumption reaches a level that is

low enough for the maintenance of the objects which are

being used to produce the enumeration.

In the case of the algorithm SWA, we have to keep in

memory the sets of traces which were enumerated and

the set of traces which are going to be combined. To

reduce memory consumption, we could print all enu-

merated traces but, as a result of this, we must add a

post-processing step to eliminate the duplicate traces.

Evaluating the quality of the sampling

Whenwe perform a sampling of a big set of elements, usu-

ally we must verify whether the result is unbiased. This

implies checking if the output of the algorithms covers the

space of solutions uniformly. This task has been conjec-

tured to be ♯P-complete [10]. We therefore addressed this

issue in a different way, and tried instead to show that the

sampling strategies developed preserved in practice some

important characteristic of the set of all optimal solutions.

The characteristics in this case are the average reversal

length of the traces, and also the height.

We considered the set of 500 random permutations with

n = 15 and d = 12 and, for each permutation P, we calcu-

lated the ratios (number of enumerated traces with height

H / total number of enumerated traces of P) and (number

of enumerated traces with average reversal length R / total

number of enumerated traces of P), using the complete set

of traces (Total) and the outputs of the executions of

each algorithm. For each permutation, we thus have the

distribution of its traces according to the height, and to

the average reversal length of the traces.

For each pair (algorithm A, time limit T) and for the

set Total, we calculated the average ratio for each value

of H and R over all 500 permutations. Figures 9 and 10

show the curves of the average ratio values obtained for,

respectively, the parameters height and average reversal

length.

Finally, to compare the distributions of height and

reversal values obtained for the set Total with the dis-

tributions obtained by the algorithms, we performed a

Kolmogorov-Smirnov test. As the sets of traces are very

big (millions of traces), we generated for the set Total

and for each pair (A, T) distributions of 5000 values

(height or average reversal length) respecting the average

ratios observed on the 500 permutations. These generated

distributions were compared with the statistical test.

For the parameter height, the distributions produced for

the pairs (DFALT, 36s), (DFALT, 30s) and (DFALT, 24s)

were considered to be similar (or almost similar) to the

distribution of the set Total with p-values, respectively,

equal to 0.94, 0.46 and 0.04. In the case of the parame-

ter average reversal length, the distributions produced for

the pairs (DFALT, 36s), (DFALT, 30s), (DFALT, 24s) and

(SWA6, 36s) were considered to be similar (or almost sim-

ilar) to the distribution of the set Total with p-values,

respectively, equal to 0.71, 0.25, 0.03 and 0.02.

The curves of the proposed algorithms exhibit different

levels of approximation to the reference curve (Total)

depending on the time limit imposed. The algorithm RA

enumerates less traces and, consequently, is more distant

from the reference curve. On the other hand, the algo-

rithm DFALT enumerates more traces and has the best

approximation to this curve. Considering the executions

of the algorithm SWA, we have that SWA6 is the one that is

closer to the reference curve.

Qualitatively, we can see that except for algorithm RA,

the distribution curves tend to approximate the reference

curve as we increase the time limit. This may give an indi-

cation that the algorithms DFALT and SWA can produce

unbiased sets of traces with respect to the distribution of

the height and average reversal length.

Naturally, as the time limit gets closer to the total time

necessary to enumerate all traces, we expect that the algo-

rithm DFALT gets closer to the distribution observed with

the complete set. This is confirmed by the statistical test.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 14 of 17

http://www.almob.org/content/7/1/18

2 4 6 8 10 12

0
.0

0
0

.1
0

0
.2

0
0

.3
0

a) 6 seconds

Height

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10 12

0
.0

0
0

.1
0

0
.2

0
0

.3
0

b) 12 seconds

Height

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10 12

0
.0

0
0

.1
0

0
.2

0
0

.3
0

c) 18 seconds

Height

A
ve

ra
g

e
 r

a
tio

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10 12

0
.0

0
0

.1
0

0
.2

0
0

.3
0

d) 24 seconds

Height

A
ve

ra
g

e
 r

a
tio

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10 12

0
.0

0
0

.1
0

0
.2

0
0

.3
0

e) 30 seconds

Height

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10 12

0
.0

0
0

.1
0

0
.2

0
0

.3
0

f) 36 seconds

Height

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

Figure 9 Average ratio distribution of the traces according to their heights. Using the set of 500 random permutations with n = 15 and

d(π) = 12, we calculated the average ratio distribution, according to the trace height, of the complete set of traces. This procedure was repeated

for each pair (algorithm A, time limit T).

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 15 of 17

http://www.almob.org/content/7/1/18

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

a) 6 seconds

Reversal Size

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

b) 12 seconds

Reversal Size

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

c) 18 seconds

Reversal Size

A
ve

ra
g

e
 r

a
tio

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

d) 24 seconds

Reversal Size

A
ve

ra
g

e
 r

a
tio

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

e) 30 seconds

Reversal Size

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

f) 36 seconds

Reversal Size

A
ve

ra
g

e
 r

a
ti
o

RA

SWA4

SWA5

SWA6

DFLAT

Total

Figure 10 Average ratio distribution of the traces according to their average reversal length. Using the set of 500 random permutations with

n = 15 and d(π) = 12, we calculated the average ratio distribution, according to the average reversal length, of the complete set of traces. This

procedure was repeated for each pair (algorithm A, time limit T).

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 16 of 17

http://www.almob.org/content/7/1/18

In the case of the non-deterministic algorithms, we can-

not guarantee that the sampling will have the same prop-

erty for small or big permutations. Nonetheless, Figures 9

and 10 show that the curve SWA6 gets gradually closer to

the reference curve. Specifically in the case of the average

reversal length, the Kolmogorov-Smirnov test confirms

that the distribution of traces enumerated by the pair

(SWA6, 36s) approximates the reference curve, with a

p-value of 0.02.

Conclusions

In this work, we proposed three different algorithms for

the partial enumeration of traces: RA, DFALT, and SWA.

Designed for processing big permutations, all proposed

algorithms are able to do a partial enumeration of traces

for permutations which cannot be processed by the actual

algorithms for total trace enumeration, that is, BFA and

DFA with or without permutation grouping.

The algorithms DFALT and SWA are based on the algo-

rithm DFA. Thus, they inherited the inability of working

with most of the biological constraints implemented by

Braga et al. [21,22]. However, the algorithm RA can be

easily adapted to consider these constraints.

Among the three proposed solutions, the algorithm SWA

is capable of producing a number of traces higher than

the ones produced by the other two algorithms when the

same time limit is imposed during the processing of big

permutations.

During our tests, we worked with time limits between 6

and 60 seconds. However, it is not an easy task to deter-

mine the time limit which should be used to produce a

good sampling of the total space of traces which sort a

given permutation.

One alternative could be to adopt other types of stop-

ping criteria. For example, the algorithm could stop after

achieving a fixed number of enumerated traces, or a fixed

number of repeated traces (traces which were already enu-

merated). Nevertheless, these kind of criteria would be

subjected to the same problems as the time limit crite-

rion with respect to the guarantee of obtaining a uniform

sampling.

A more advanced solution could involve a detailed anal-

ysis of the space of solutions of traces to determine a way

of calculating the expected total number of traces. As a by-

product, we could determine a percentage of the expected

number of traces and use it as a stopping criterion.

In our tests, we could observe that the number of traces

grows exponentially according to the ratio d/n. Never-

theless, to predict the number of traces which sort a

permutation is an open question which requires more

investigation. A deeper study about the characteristics

of the permutations must be conducted with the aim of

obtaining, if possible, a formula to calculate the expected

number of traces of a permutation. In this direction,

the results obtained by Braga and Stoye when analysing

the solution space of sorting by DCJ operations [9] may

provide some insights.

The difficulty of analysing the quality of the sampling

for big permutations is that, for now, we are capable nei-

ther to calculate the expected total number of traces, nor

to predict the general distribution of the complete set of

traces just by looking at the permutation. The software

MC4Inversion, written byMikls andDarling [18], could

be used to estimate a lower bound for the number of

traces. To do this, we could get the estimated number of

optimal solutions given by the software and divide it by

d(π0,πd)!. In this estimation, we assume that every trace

contains only non-overlapping reversals. Obviously, this

is not true and, in fact, the real number of traces can be

much higher than this estimated lower bound.

We conducted tests with small permutations and we

could see that the sets of traces partially enumerated by

the algorithms DFALT and SWA have distributions that get

closer to the distribution observed for the complete set

of traces when we increase the time limit. This may give

an indication that these algorithms can produce unbiased

sets of traces, at least in relation to the distribution of

height and average reversal length.

The height of a trace does not have a direct biological

meaning but it provides some evidence of the complexity

of the solutions that it represents. Traces with high height

group solutions that have a high number of reversal over-

laps. For example, some groups of bacteria evolve mainly

through symmetrical or almost-symmetrical reversals rel-

atively to the replication terminus. In this case, we could

expect that the occurrence of small reversals contained

inside big ones exhibits a ratio bigger than the one

observed when the position of the reversals are not

restricted. As a consequence, we would then also expect

the solution traces to have low height values.

The average reversal length can be an important aspect

in genome rearrangements. The algorithms RA and SWA

show a tendency for losing traces that have high aver-

age reversal length. However, if we know that the target

genome is subjected to reversals of small or intermediate

sizes [26-29], the deficiency of these algorithms becomes

a minor issue.

Independently of a biological meaning, the parameters

height and average reversal length represent measures

that are easy to compute and that can be used in the

evaluation of the quality of a sampling.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

Implementation and test analyses were performed by CB. All authors

participated in the discussions. The manuscript was written by CB with major

contributions by MFS and ZD. All authors read and approved the final

manuscript.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 17 of 17

http://www.almob.org/content/7/1/18

Acknowledgements

Christian Baudet was supported by CAPES – Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior (BEX 4676/08-4) and is

currently supported by the ANR project MIRI, ANR-08-BLAN-0293-01. Zanoni

Dias is partially sponsored by CNPq – Conselho Nacional de Desenvolvimento

Cientı́fico e Tecnológico (483177/2009-1 and 473867/2010-9).

This work is also supported by the ERC Advanced Grant SISYPHE awarded to

Marie-France Sagot, INRIA, France.

Author details
1Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Universit

Lyon 1, CNRS, UMR5558 Villeurbanne, France. 2 INRIA Grenoble-Rhône-Alpes,

team BAMBOO, 655 avenue de l’Europe, 38334 Montbonnot Cedex, France.
3 Institute of Computing, University of Campinas, Campinas - SP, Brazil.

Received: 8 February 2012 Accepted: 1 June 2012

Published: 15 June 2012

References

1. Hannenhalli S, Pevzner PA: Transforming Men into Mice (Polynomial

Algorithm for Genomic Distance Problem). In FOCS IEEE Computer

Society; 1995:581–592.

2. Hannenhalli S, Pevzner PA: Transforming Cabbage into Turnip:

Polynomial Algorithm for Sorting Signed Permutations by

Reversals. Journal of the ACM 1999, 46:1–27.

3. Bergeron A: A Very Elementary Presentation of the

Hannenhalli-Pevzner Theory. In Proceedings of the 12th Annual

Symposium of the Combinatorial Pattern Matching (CPM’2001), Volume 2089

of Lecture Notes in Computer Science. Jerusalem, Israel;

2001:106–117.

4. Tannier E, Bergeron A, Sagot MF: Advances on sorting by reversals.

Discrete Applied Mathematics 2007, 155:881–888.

5. Bader DA, Moret BME, Yan M: A Linear-Time Algorithm for Computing

Inversion Distance Between Signed Permutations with an

Experimental Study. Journal of Computational Biology 2001,

8(5):483–491.

6. Swenson KM, Rajan V, Lin Y, Moret BME: Sorting Signed Permutations

by Inversions inO(n logn) Time. Journal of Computational Biology

2010, 17(3):489–501.

7. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic

permutations by translocation, inversion and block interchange.

Bioinformatics 2005, 21(16):3340–3346.

8. Bergeron A, Mixtacki J, Stoye J: A new linear time algorithm to

compute the genomic distance via the double cut and join distance.

Theoretical Computer Science 2009, 410:5300–5316.

9. Braga MDV, Stoye J: The Solution Space of Sorting by DCJ. Journal of

Computational Biology 2010, 17(9):1145–1165.

10. Miklós I, Tannier E: Bayesian sampling of genomic rearrangement

scenarios via double cut and join. Bioinformatics 2010,

26(24):3012–3019.

11. Siepel AC: An Algorithm to Enumerate Sorting Reversals. Journal of

Computational Biology 2003, 10(3-4):575–597.

12. Swenson KM, Badr G, Sankoff D: Listing all sorting reversals in

quadratic time. Algorithms for Molecular Biology 2011,

6:11.

13. York TL, Durrett R, Nielsen R: Bayesian Estimation of the Number of

Inversions in the History of Two Chromosomes. Journal of

Computational Biology 2002, 9(6):805–818.

14. Durrett R, Nielsen R, York TL: Bayesian Estimation of Genomic

Distance. Genetics 2004, 166:621–629.

15. Miklós I:MCMC genome rearrangement. Bioinformatics 2003,

19(Suppl. 2):ii130–ii137.

16. Larget B, Simon DL, Kadane JB, Sweet D: A Bayesian Analysis of

Metazoa Mitochondrial Genome Arrangements.Molecular Biology

and Evolution 2005, 22(3):486–495.

17. Larget B, Kadane JB, Simon DL: A Bayesian approach to the estimation

of ancestral genome arrangements.Molecular Phylogenetics and

Evolution 2005, 36:214–223.

18. Miklós I, Darling AE: Efficient Sampling of Parsimonious Inversion

Histories with Application to Genome Rearrangement in Yersinia.

Genome Biology and Evolution 2009, 1:153–164.

19. Bergeron A, Chauve C, Hartman T, Saint-Onge K: On the Properties of

Sequences of Reversals that Sort a Signed Permutation.

In Proceedings of the JOBIM 2002. Saint Malo; 2002:99–108.

20. Cartier P, Foata D: Problèmes combinatoires de commutation et

réarrangements. No. 85 in Lecture Notes in Mathematics. Berlin:

Springer-Verlag; 1969.

21. Braga MDV, Sagot MF, Scornavacca C, Tannier E: Exploring the solution

space of sorting by reversals with experiments and an application

to evolution. Transactions on Computational Biology and Bioinformatics

2008, 5(3):348–356.

22. Braga MDV, Gautier C, Sagot MF: An asymmetric approach to preserve

common intervals while sorting by reversals. Algorithms for Molecular

Biology 2009, 4:16.

23. Braga MDV: Exploring the Solution Space of Sorting by Reversals When

Analyzing Genome Rearrangements. France: Université Lyon 1; 2008.

24. Baudet C, Dias Z: An Improved Algorithm to Enumerate All Traces

that Sort a Signed Permutation by Reversals. In Proceedings of the 25th

SymposiumOn Applied Computing (ACM SAC 2010). Sierre, Switzerland

2010: [5 pages, Bioinformatics Track]

25. Badr G, Swenson K, Sankoff D: Listing All Parsimonious Reversal

Sequences: NewAlgorithms and Perspectives. In Proceedings of the 8th

Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG

2010), Volume 6398 of Lecture Notes in Bioinformatics. Edited by Tannier E.

Ottawa, Canada: Springer-Verlag Berlin Heidelberg; 2010:39–49.

26. Lefebvre JF, El-Mabrouk N, Tillier E, Sankoff D: Detection and validation

of single gene inversions. Bioinformatics 2003, 19:i190–i196.

27. Cáceres M, Barbadilla A, Ruiz A: Recombination Rate Predicts Inversion

Size in Diptera. Genetics 1999, 153:251–259.

28. Darling AE, Miklós I, Ragan MA: Dynamics of Genome Rearrangement

in Bacterial Populations. PLOS Genetics 2008, 4(7):1–16.

29. Sankoff D, Lefebvre JF, Tillier E, Maler A, El-Mabrouk N: The Distribution

of Inversion Lengths in Bacteria. In Proceedings of the 2nd Annual

RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG 2004),

Volume 3388 of Lecture Notes in Bioinformatics. Edited by Lagergren J.

Bertinoro, Italy: Springer-Verlag Berlin Heidelberg; 2005:97–108.

30. Braga MDV: baobabLuna: the solution space of sorting by reversals.

Bioinformatics 2009, 25(14):1833–1835. [Applications Notes].

31. Swenson KM, Lin Y, Rajan V, Moret BM: Hurdles Hardly Have to Be

Heeded. In Proceedings of the International Workshop on Comparative

Genomics (RECOMB-CG’08) Volume 5267 of Lecture Notes in Computer

Science. Paris; 2008:241–251.

doi:10.1186/1748-7188-7-18
Cite this article as: Baudet et al.: Sampling solution traces for the problem
of sorting permutations by signed reversals. Algorithms forMolecular Biology
2012 7:18.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Permutations and reversals
	Sorting permutations by signed reversals
	Enumeration of all solutions to the SPSR problem
	Deterministic approach
	Probabilistic approach

	Traces
	Normal form of a trace
	Tree representation of a set of solution traces

	Complete enumeration of solution traces for the SPSR problem
	Partial enumeration of solution traces for the SPSR problem
	New algorithms
	Quality of sampling

	Methods
	State of Art – Algorithms for traces enumeration
	Breadth-first algorithm – BFA
	Depth-first algorithm – DFA
	BFA and DFA with permutation grouping

	New algorithms – Partial enumeration of traces
	Random algorithm – RA
	Depth-first algorithm limited by time – DFALT
	Sliding window algorithm – SWA

	Tests

	Results and discussions
	Evaluating the time necessary to enumerate all traces
	Number of enumerated traces versus execution time
	Processing big permutations
	Evaluating the quality of the sampling

	Conclusions
	Competing interests
	Author's contributions
	Acknowledgements
	Author details
	References

