Which notion of energy for bilinear quantum systems

Nabile Boussaïd Marco Caponigro Thomas Chambrion

IFAC HLMNLC,August 27-29, 2012

Bilinear quantum systems

- A quantum system evolving on a manifold Ω.
- The state is described by the wave function, a point in some Hilbert space H (usually $L^{2}(\Omega, \mathbf{C})$).
- Every physical quantity is associated with a linear operator on H.
- Dynamics given by the Schrödinger equation

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(-\Delta+V(x)) \psi
$$

Bilinear quantum systems

- A quantum system evolving on a manifold Ω.
- The state is described by the wave function, a point in some Hilbert space H (usually $L^{2}(\Omega, \mathbf{C})$).
- Every physical quantity is associated with a linear operator on H.
- Dynamics given by the Schrödinger equation

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(-\Delta+V(x)) \psi+u(t) W(x) \psi
$$

Bilinear quantum systems

- A quantum system evolving on a manifold Ω.
- The state is described by the wave function, a point in some Hilbert space H (usually $L^{2}(\Omega, \mathbf{C})$).
- Every physical quantity is associated with a linear operator on H.
- Dynamics given by the Schrödinger equation

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(-\Delta+V(x)) \psi+u(t) W(x) \psi
$$

which can be rewritten as $\frac{d}{d t} \psi=\boldsymbol{A} \psi+u(t) B \psi$
A and B are skew-adjoint operators (not necessarily bounded).

Abstract form

$$
\frac{d}{d t} \psi=\boldsymbol{A} \psi+u(t) \boldsymbol{B} \psi
$$

- A skew-adjoint with domain $D(A)$, with eigenvalues $\left(\mathrm{i} \lambda_{n}\right)_{n \in \mathbb{N}}$
- for every u in $\mathbf{R}, A+u B$ skew-adjoint (not necessarily on $D(A)$)
- solutions are well defined for piecewise constant functions

Control of bilinear quantum systems

- Practically finished for finite dimensional H;
- Very badly understood for infinite dimensional H;
- Only one example in infinite dimension for which the attainable set is knwon (Beauchard,Coron, Laurent)
- All the other results deal with approximate controllability

Energy of quantum systems

Energy of a the system in state ψ

$$
E(\psi)=\langle | \boldsymbol{A}|\psi, \psi\rangle:=\|\psi\|_{1 / 2} .
$$

Energy growth

$$
\frac{\mathrm{d} E(\psi)}{d t}=? ?\langle \rangle
$$

Question

Is it possible to compute (bound...) the change of energy knowing only the "size" of u ?

In practice...

Finite dimension

- Many theoretical tools
- Optimization methods
- "Easy" numerics (ODE)

In practice...

Finite dimension

- Many theoretical tools
- Optimization methods
- "Easy" numerics (ODE)

Infinite dimension

- Few theoretical tools
- (In)efficient controls?
- Hard numerics (PDE)

Finite dimension

- Many theoretical tools
- Optimization methods
- "Easy" numerics (ODE)

Infinite dimension

- Few theoretical tools
- (In)efficient controls?
- Hard numerics (PDE)

Recent (spectacular) advances for infinite dimensional bilinear systems: Beauchard '05 '10, Mirrahimi '08, Boscain '09 '11, Nersessyan '09, ... but these difficult results are hardly applicable in practice.

In practice...

Finite dimension

- Many theoretical tools
- Optimization methods
- "Easy" numerics (ODE)

Infinite dimension

- Few theoretical tools
- (In)efficient controls?
- Hard numerics (PDE)

Finite dimensional approximations are necessary.
The underlying Hilbert space is very often infinite dimensional.

In practice...

Finite dimension

- Many theoretical tools
- Optimization methods
- "Easy" numerics (ODE)

Infinite dimension

- Few theoretical tools
- (In)efficient controls?
- Hard numerics (PDE)

Finite dimensional approximations are necessary.
The underlying Hilbert space is very often infinite dimensional.

Question

How can we ensure that the finite dimensional approximations of a bilinear quantum systems actually reflect the behavior of the original infinite dimensional system?

Weakly-coupled systems

$$
\frac{d}{d t} \psi=(A+u(t) B) \psi
$$

Definition

(A, B) is weakly-coupled if

Weakly-coupled systems

$$
\frac{d}{d t} \psi=(A+u(t) B) \psi
$$

Definition

(A, B) is weakly-coupled if

- For every $u, A+u B$ is skew-adjoint with domain $D(A)$;

Weakly-coupled systems

$$
\frac{d}{d t} \psi=(A+u(t) B) \psi
$$

Definition

(A, B) is weakly-coupled if

- For every $u, A+u B$ is skew-adjoint with domain $D(A)$;
- A is skew adjoint with discrete spectrum $\left(\mathrm{i} \lambda_{n}\right)_{n}$ and $\lambda_{n} \rightarrow \infty$;

Weakly-coupled systems

$$
\frac{d}{d t} \psi=(A+u(t) B) \psi
$$

Definition

(A, B) is weakly-coupled if

- For every $u, A+u B$ is skew-adjoint with domain $D(A)$;
- A is skew adjoint with discrete spectrum $\left(\mathrm{i} \lambda_{n}\right)_{n}$ and $\lambda_{n} \rightarrow \infty$;
- There exists $k(<1 / 2)$ such that $\|B \psi\| \leq d\left\||A|^{k} \psi\right\|$ for ψ in $D(A)$;
- B can be bounded or unbounded (dominated by some A^{k}, $k \in \mathbf{N}$).

Weakly-coupled systems

$$
\frac{d}{d t} \psi=(A+u(t) B) \psi
$$

Definition

(A, B) is weakly-coupled if

- For every $u, A+u B$ is skew-adjoint with domain $D(A)$;
- A is skew adjoint with discrete spectrum $\left(\mathrm{i} \lambda_{n}\right)_{n}$ and $\lambda_{n} \rightarrow \infty$;
- There exists $k(<1 / 2)$ such that $\|B \psi\| \leq d\left\||A|^{k} \psi\right\|$ for ψ in $D(A)$;
- There exists $C>0$ s. t. $|\Im\langle\boldsymbol{A} \psi, \boldsymbol{B} \psi\rangle| \leq C|\langle\boldsymbol{A} \psi, \psi\rangle|$ for ψ in $D(\boldsymbol{A})$.
- B can be bounded or unbounded (dominated by some A^{k}, $k \in \mathbf{N}$).
- All the systems with discrete spectrum we have encountered in the physics literature are weakly-coupled. (Do you have a counter-example?)

Growth of energy

$$
\frac{d}{d t}|\langle\boldsymbol{A} \psi(t), \psi(t)\rangle| \leq 2|u(t)||\Im\langle\boldsymbol{A} \psi(t), B \psi(t)\rangle| \leq 2 C|u(t)||\langle\boldsymbol{A} \psi(t), \psi(t)\rangle|
$$

Growth of energy

$$
\frac{d}{d t}|\langle A \psi(t), \psi(t)\rangle| \leq 2|u(t)||\Im\langle A \psi(t), B \psi(t)\rangle| \leq 2 C|u(t)||\langle A \psi(t), \psi(t)\rangle|
$$

Energy growth

If (A, B) is weakly-coupled, then, for every control u, for every time t,

$$
|\langle\boldsymbol{A} \psi(t), \psi(t)\rangle| \leq e^{2 C \int_{0}^{t}|u(s)| \mathrm{d} s}|\langle\boldsymbol{A} \psi(0), \psi(0)\rangle| .
$$

The bound on the energy is uniform with respect to u and t, as long as the L^{1} norm of u is in some ball of $L^{1}(\mathbf{R}, \mathbf{R})$.

Growth of energy

$$
\frac{d}{d t}|\langle A \psi(t), \psi(t)\rangle| \leq 2|u(t)||\Im\langle A \psi(t), B \psi(t)\rangle| \leq 2 C|u(t)||\langle A \psi(t), \psi(t)\rangle|
$$

Energy growth

If (A, B) is weakly-coupled, then, for every control u, for every time t,

$$
|\langle\boldsymbol{A} \psi(t), \psi(t)\rangle| \leq e^{2 C \int_{0}^{t}|u(s)| \mathrm{d} s}|\langle\boldsymbol{A} \psi(0), \psi(0)\rangle| .
$$

The bound on the energy is uniform with respect to u and t, as long as the L^{1} norm of u is in some ball of $L^{1}(\mathbf{R}, \mathbf{R})$.

No large tails

$$
\left\|B\left(1-\pi_{N}\right) \psi(t)\right\| \leq \frac{d e^{C \int_{0}^{t}|u(s)| d s}|\langle\boldsymbol{A} \psi(0), \psi(0)\rangle|}{\lambda_{N}^{1 / 2-k}} .
$$

Good Galerkyn approximation

Compressions of operators

$$
A^{(N)}=\pi_{N} A \pi_{N} \quad B^{(N)}=\pi_{N} B \pi_{N}
$$

Good Galerkyn approximation

Compressions of operators

$$
\begin{gathered}
A^{(N)}=\pi_{N} A \pi_{N} \quad B^{(N)}=\pi_{N} B \pi_{N} \\
B=\left(\begin{array}{llllll}
b_{1,1} & \cdots & b_{1, N} & b_{1, N+1} & \cdots \\
\vdots & & \vdots & b_{N, N+1} & \cdots \\
b_{N, 1} & \cdots & b_{N, N} & b_{0} \\
b_{N+1,1} & \vdots & & b_{N+1, N+1} & \cdots \\
\vdots & & \vdots & \\
B^{(N)}=\left(\begin{array}{lll|ll}
b_{1,1} & \cdots & b_{1, N} & 0 & \cdots \\
\vdots & & \vdots & \vdots & \\
b_{N, 1} & \cdots & b_{N, N} & 0 & \cdots \\
\hline 0 & \cdots & \cdots & 0 & 0 \\
\vdots & & & \vdots &
\end{array}\right)
\end{array},\right.
\end{gathered}
$$

Good Galerkyn approximation

Compressions of operators

$$
A^{(N)}=\pi_{N} A \pi_{N} \quad B^{(N)}=\pi_{N} B \pi_{N}
$$

$t \mapsto X^{(N)}(t, 0) x(0)$ is the solution of $\frac{d}{d t} x(t)=\left(A^{(N)}+u(t) B^{(N)}\right) x(t)$.

Good Galerkyn approximation

Compressions of operators

$$
A^{(N)}=\pi_{N} A \pi_{N} \quad B^{(N)}=\pi_{N} B \pi_{N}
$$

$t \mapsto X^{(N)}(t, 0) x(0)$ is the solution of $\frac{d}{d t} x(t)=\left(A^{(N)}+u(t) B^{(N)}\right) x(t)$.

$$
\frac{d}{d t} \pi_{N} \psi(t)=A^{(N)} \pi_{N} \psi(t)+u(t) B^{(N)} \pi_{N} \psi(t)+u(t) \pi_{N} B\left(1-\pi_{N}\right) \psi(t)
$$

Good Galerkyn approximation

Compressions of operators

$$
A^{(N)}=\pi_{N} A \pi_{N} \quad B^{(N)}=\pi_{N} B \pi_{N}
$$

$t \mapsto X^{(N)}(t, 0) x(0)$ is the solution of $\frac{d}{d t} x(t)=\left(A^{(N)}+u(t) B^{(N)}\right) x(t)$.

$$
\frac{d}{d t} \pi_{N} \psi(t)=A^{(N)} \pi_{N} \psi(t)+u(t) B^{(N)} \pi_{N} \psi(t)+u(t) \pi_{N} B\left(1-\pi_{N}\right) \psi(t)
$$

$$
\pi_{N} \psi(t)=X^{(N)}(t, 0) \pi_{N} \psi(0)+\int_{0}^{t} X^{(N)}(t, s) \pi_{N} B\left(1-\pi_{N}\right) \psi(s) u(s) \mathrm{d} s
$$

Good Galerkyn approximation

Compressions of operators

$$
A^{(N)}=\pi_{N} A \pi_{N} \quad B^{(N)}=\pi_{N} B \pi_{N}
$$

$t \mapsto X^{(N)}(t, 0) x(0)$ is the solution of $\frac{d}{d t} x(t)=\left(A^{(N)}+u(t) B^{(N)}\right) x(t)$.

$$
\frac{d}{d t} \pi_{N} \psi(t)=A^{(N)} \pi_{N} \psi(t)+u(t) B^{(N)} \pi_{N} \psi(t)+u(t) \pi_{N} B\left(1-\pi_{N}\right) \psi(t)
$$

$$
\pi_{N} \psi(t)=X^{(N)}(t, 0) \pi_{N} \psi(0)+\int_{0}^{t} X^{(N)}(t, s) \pi_{N} B\left(1-\pi_{N}\right) \psi(s) u(s) \mathrm{d} s
$$

Good Galerkyn approximation

If (A, B) is weakly-coupled, then, for every $\varepsilon, K>0$, there exists N such that

$$
\|u\|_{L^{1}}<K \Longrightarrow\left\|\psi(t)-X^{(N)}(t, 0) \pi_{N} \psi(0)\right\|<\varepsilon
$$

Examples

General explicit formula (can be improved in most of the examples)

$$
\sqrt{\lambda_{N+1}}>\frac{K d e^{C K}|\langle\boldsymbol{A} \psi(0), \psi(0)\rangle|}{\varepsilon}
$$

Rotation of a planar molecule

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=-\Delta \psi(\theta, t)+u(t) \cos \theta \psi(\theta, t) \quad \theta \in S O(2)
$$

For $\psi(0)=$ ground state, $K=3$ and $\varepsilon=10^{-4}, N=14$.

Harmonic oscillator

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=\left(-\Delta+x^{2}\right) \psi(x, t)+u(t) x \cdot \psi(x, t) \quad x \in \mathbf{R}
$$

For $\psi(0)=$ ground state, $K=3$ and $\varepsilon=10^{-4}, N=420$.

Application: RWA is valid for infinite dimensonal spaces

Assume that $(1,2)$ non degenerate transition of (A, B)

Application: RWA is valid for infinite dimensonal spaces

Assume that $(1,2)$ non degenerate transition of (A, B)

- $\lambda_{j}-\lambda_{k} \neq \lambda_{2}-\lambda_{1}$ if $(j, k) \neq(1,2)$;
- $b_{1,2} \neq 0$.

Application: RWA is valid for infinite dimensonal spaces

Assume that $(1,2)$ non degenerate transition of (A, B) and $u(t)=\cos \left(\left|\lambda_{2}-\lambda_{1}\right| t\right)$. Define $u_{n}=u / n$ and $T^{*}=\pi / 2$.

Application: RWA is valid for infinite dimensonal spaces

Assume that $(1,2)$ non degenerate transition of (A, B) and $u(t)=\cos \left(\left|\lambda_{2}-\lambda_{1}\right| t\right)$. Define $u_{n}=u / n$ and $T^{*}=\pi / 2$.

Finite dimensional Rotating Wave Approximation

If $\psi_{n}(0)=\phi_{1}$, then $\left|\left\langle\psi_{n}\left(n T^{*}\right), \phi_{2}\right\rangle\right|$ tends to one as n tends to infinity.

Application: RWA is valid for infinite dimensonal spaces

Assume that $(1,2)$ non degenerate transition of (A, B) and $u(t)=\cos \left(\left|\lambda_{2}-\lambda_{1}\right| t\right)$. Define $u_{n}=u / n$ and $T^{*}=\pi / 2$.

Finite dimensional Rotating Wave Approximation

If $\psi_{n}(0)=\phi_{1}$, then $\left|\left\langle\psi_{n}\left(n T^{*}\right), \phi_{2}\right\rangle\right|$ tends to one as n tends to infinity.

Infinite dimensional Rotating Wave Approximation

If (A, B) is weakly coupled and $\psi_{n}(0)=\phi_{1}$, then $\left|\left\langle\psi_{n}\left(n T^{*}\right), \phi_{2}\right\rangle\right|$ tends to one as n tends to infinity.

Application: RWA is valid for infinite dimensonal spaces

Assume that $(1,2)$ non degenerate transition of (A, B) and $u(t)=\cos \left(\left|\lambda_{2}-\lambda_{1}\right| t\right)$. Define $u_{n}=u / n$ and $T^{*}=\pi / 2$.

Finite dimensional Rotating Wave Approximation
If $\psi_{n}(0)=\phi_{1}$, then $\left|\left\langle\psi_{n}\left(n T^{*}\right), \phi_{2}\right\rangle\right|$ tends to one as n tends to infinity.

Infinite dimensional Rotating Wave Approximation

If (A, B) is weakly coupled and $\psi_{n}(0)=\phi_{1}$, then $\left|\left\langle\psi_{n}\left(n T^{*}\right), \phi_{2}\right\rangle\right|$ tends to one as n tends to infinity.

This is not the best way to justify infinite dimensional RWA!
Much more general proofs are availabe.

Conclusion

Conclusion

- Approximation procedure with an error bound depending only upon the L^{1} norm of the control.
- Valid for most (all?) of the physical systems with discrete spectrum.
- May be used for numerical or theoretical investigations.

Future works

- Generalization to systems with mixed spectrum (done for bounded $B)$.
- Generalization to open systems.
- What is the smallest time needed to steer a system to given target?

