
HAL Id: hal-00785745
https://hal.inria.fr/hal-00785745

Submitted on 6 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Keys and Pseudo-keys Detection for Web Datasets
Cleansing and Interlinking

François Scharffe, Jérôme David, Manuel Atencia

To cite this version:
François Scharffe, Jérôme David, Manuel Atencia. Keys and Pseudo-keys Detection for Web Datasets
Cleansing and Interlinking. [Contract] scharffe2012b, 2012, pp.18. �hal-00785745�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49820463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00785745
https://hal.archives-ouvertes.fr

Datalift
Un ascenseur pour les données

ANR Contint – ANR-10-CORD-009

D4.1.2 Keys and Pseudo-keys
Detection for Web Datasets
Cleansing and Interlinking

Coordinator: François Scharffe (LIRMM, Université Montpellier 2)
With contributions from: Jérôme David (Université Pierre

Mendès-France) and Manuel Atencia (Université Joseph Fourier)

Quality reviewer: Serena Villata (INRIA)

Reference: Datalift/2011/D4.1.2/v0.2

Project: Datalift ANR Contint ANR-10-CORD-009

Date: December 19, 2012

Version: 0.2

State: preliminary

Destination: public

Deliverable 4.1.2 ANR-10-CORD-009

Executive Summary

This report introduces a novel method for analysing web datasets based on key dependencies.
This particular kind of functional dependencies, widely studied in the field of database theory,
allows to evaluate if a set of properties constitutes a key for the set of data considered.
When this is the case, there won’t be any two instances having identical values for these
properties. After giving necessary definitions, we propose an algorithm for detecting minimal
keys and pseudo-keys in a RDF dataset. We then use this algorithm to detect keys in
datasets published as web data and we apply this approach in two applications: (i) reducing
the number of properties to compare in order to discover equivalent instances between two
datasets, (ii) detecting errors inside a dataset.

2 of 18

Datalift

Document Information

ANR Project
Number

ANR Contint – ANR-10-CORD-009 Acronym Datalift

Full Title Un ascenseur pour les donnes

Project URL http://www.datalift.org/

Document URL

Deliverable Number 4.1.2 Title
Keys and Pseudo-keys Detection for Web Datasets
Cleansing and Interlinking

Work Package Number 4 Title Data interlinking

Date of Delivery Contractual M24 Actual 30-10-2012

Status preliminary final �
Nature prototype � report � dissemination �
Dissemination level public � consortium �

Authors (Partner)
François Scharffe (LIRMM, Université Montpellier 2), Jérôme David (Université
Pierre Mendès-France) and Manuel Atencia (Université Joseph Fourier)

Resp. Author

Name François Scharffe
(LIRMM, Université
Montpellier 2)

E-mail Francois.Scharffe@lirmm.fr

Partner LIRMM

Abstract
(for dissemination)

This report introduces a novel method for analysing web datasets
based on key dependencies.

Keywords
data linking, instance matching, record linkage, co-reference resolution, on-
tology alignment, ontology matching

Version Log

Issue Date Rev No. Author Change

05/09/2012 1 J. Euzenat Set up file and outline

07/11/2012 2 J. David Inserted the content

12/11/2012 3 F. Scharffe A few corrections

3 of 18

Deliverable 4.1.2 ANR-10-CORD-009

Table of Contents

1 Introduction 5

2 Key dependencies 6

3 Algorithm for discovering keys 8
3.1 Details of the algorithm . 8
3.2 Algorithm efficiency and scalability . 8

4 Representing Keys 11

5 Applications 12
5.1 Datasets Interlinking . 12
5.2 Error detection . 14

6 Related Works 16

7 Conclusion 17

References 17

4 of 18

Datalift CHAPTER 1. INTRODUCTION

1. Introduction

The notion of key is fundamental for relational databases.1 Keys allow to uniquely identify
each tuple in a relation. The unicity property of keys is also exploited in order to optimize
data access through the construction of indexes. Usually, keys are identified and chosen by
the relational schema engineer, as part of the schema normalization process. However, there
exist algorithms allowing to detect functional dependencies2 inside a given database [5, 4].

In the semantic web framework, it is only since version 2 of the web ontology language
OWL3 that modelling keys is possible. A key in OWL2 for a given class is a set of properties
allowing to uniquely identify an instance of this class. According to OWL2 semantics4, two
instance having same values for the properties of a key are considered identical. Using keys
thus requires to know in advance the data that will be represented according to this ontology.
This is not compatible with the decentralized publication of datasets on the web.

When considering a particular dataset, it will be possible to find out if one or more keys
exist for a given class by analysing properties of this dataset. Given the variable quality
of web data, it will be necessary to tolerate a few instances having same values for the
properties of the key. In that case, we will use the term pseudo-key. Detected keys can then
be associated to the dataset as metadata, for instance by extending the VoID vocabulary [1].

In this paper we propose an algorithm for discovering minimal keys and pseudo-keys in
RDF datasets and we demonstrate the usefulness of this algorithm through two applications
important for the web of data: the discovery of links between two datasets and the detection
of errors in a dataset.

We first formally define the notion of key dependency for an RDF dataset. We then
propose an algorithm for detecting keys (Section 2). Discovering keys is useful for many
interesting applications (Section 5). We propose an application for reducing the number of
properties to compare in order to find equivalence between instances from two datasets. We
then see how pseudo-keys allow the detection of errors by showing redundancies in a dataset.

1This deliverable is an extended version of our EKAW 2012 paper, [2].
2keys are a special case of functional dependencies, see http://en.wikipedia.org/wiki/Functional_

dependency
3http://www.w3.org/TR/owl-overview/
4http://www.w3.org/TR/owl2-semantics/#Keys

5 of 18

http://en.wikipedia.org/wiki/Functional_dependency
http://en.wikipedia.org/wiki/Functional_dependency
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl2-semantics/#Keys

Deliverable 4.1.2 ANR-10-CORD-009

2. Key dependencies

Data representation on the semantic web is realized using the RDF language. In this paper,
we denote the sets of all URIs, blank nodes and literals by U, B and L, respectively. An
RDF triple is a tuple t = 〈s, p, o〉 where s ∈ U ∪B is the subject or instance of t, p ∈ U is
the predicate or property, and o ∈ U ∪ B ∪ L is the object of t. An RDF graph is a set of
RDF triples.

Given an RDF graph G, the sets of subjects, predicates and objects appearing in G are
denoted by sub(G), pred(G) and obj (G), respectively.

Let G be an RDF graph. A predicate p ∈ pred(G) can be seen as a relation between
the subject and object sets of G, i.e., p ⊆ sub(G)× obj (G). It can also be seen as a partial
function between the subject set and the powerset of the object set, i.e., p : sub(G)→ 2obj (G).
This is the formalization that we will follow in this paper. To be more precise,

p(s) = {o ∈ obj (G) : 〈s, p, o〉 ∈ G}

Then, the domain of the predicate p is the set

dom(p) = {s ∈ sub(G) : there exists o ∈ obj (G) with 〈s, p, o〉 ∈ G}

In the following definition we introduce our notions of key and minimal key in an RDF
graph.

Definition 1 Let G be an RDF graph and P ⊆ pred(G). The set of predicates P is a key
in G if for all s1, s2 ∈ sub(G) we have that, if p(s1) = p(s2) for all p ∈ P then s1 = s2. The
set P is a minimal key if it is a key and there exists no set P ′ ⊆ pred(G) such that P ′ is a
key and P ′ ⊂ P .

The above definition is analogous to that one of the relational model in databases. The
first main difference is that, unlike attributes, predicates can take multiple values: if p is a
predicate and s ∈ dom(p), then p(s) is, in general, a non-singleton value set. The second
one is that properties are not necessary defined on the whole set of individuals.

In line with TANE algorithm, given an RDF graph G, our approach lies in building
the partition of sub(G) induced by a set of predicates P . If this partition is made up of
singletons, then P is a key.

Definition 2 Let G be an RDF graph and p ∈ pred(G). The partition induced by the
predicate p is defined by

πp = {p−1(p(s))}s∈dom(p)

Let P = {p1, . . . , pn} ⊆ pred(G). The partition induced by the predicate set P is defined by

πP = {S1 ∩ . . . ∩ Sn}(S1,...,Sn)∈πp1×...×πpn

Lemma 1 Let G be an RDF graph and P ⊆ pred(G). The predicate set P is a key in G if
and only if πP is made up of singletons, i.e., |S| = 1 for all S ∈ πP .

The complexity of finding keys in an RDF graph is polynomial in the number of subjects,
but exponential in the number of predicates. For this, we introduce two criteria to reduce
the search space. First, we discard sets of predicates which share few subjects compared to
the total number of subjects in the graph, as they are not interesting for the applications
we have in mind (Section 5). Second, we restrict ourselves to compute “approximate” keys,
what we call pseudo-keys.

6 of 18

Datalift CHAPTER 2. KEY DEPENDENCIES

Definition 3 Let G be an RDF graph and P ⊆ pred(G). The support of P in G is defined
by

supportG(P) =
1

|sub(G)|

∣∣∣ ⋂
p∈P

dom(p)
∣∣∣

The predicate set P fulfills the minimum support criterion if support(P) ≥ λs where λs ∈
[0, 1] is a given support threshold.

Definition 4 Let G be an RDF graph and P ⊆ pred(G). The predicate set P is a pseudo-
key in the graph G with discriminability threshold λd if

|{S ⊆ sub(G)|S ∈ πP and |S| = 1}|
|πP |

≥ λd

7 of 18

Deliverable 4.1.2 ANR-10-CORD-009

3. Algorithm for discovering keys

The minimal key discovery algorithm in a RDF graph uses the partition representation and
the same level-based search strategy (breadth first) as the functional dependancies discovery
algorithm TANE [4]. There are two advantages in this approach. It allows to prune the
search space and to reduce the cost for computing partitions. To prune the search space, we
ignore any set of predicates which includes:

• a key, a pseudo-key;

• a subset having a support lower than the threshold;

• a subset in which a functional dependency holds.

Contrary to the TANE algorithm, we introduces a support threshold. This is useful
because in rdf datasets, properties are not necessary instanciated for each individual. But,
in counterpart, the optimization consisting in stripping partition [4] (removing singleton sets)
can not be used. Finally, since the goal of the algorithm is to find keys only, there is not
need to test exhaustively all the functional dependencies.

3.1 Details of the algorithm

Algorithm 1 works as follows. For each predicate set c tested at the previous iteration
(candidates), it tests each new set formed by the union of c and one of the predicates PG
(not in c). If this new set is a key or a pseudo-key it is then added to the key set. If this set
is not a key but its support is greater that the threshold value and no functional dependency
holds over this set, it is then kept for the next iterations (i.e. added to list nextCandidates).
The iterations continue until there is no more predicate set in candidates.

In order to avoid any non-minimal key generation or considering predicates with a too low
support, the algorithm uses a set of blacklists (skipLists). The principle is the following:
when the union of a candidate c and a predicate p has generated a key or pseudo-key, if
there is some functional dependency over this set, or if this set has a support lower than the
threshold, then the candidate c is added to the exclusion list of the predicate p. Each time
a new set is generated from a candidate c′ and predicate p, we verify if c′ does contain a
subset excluded for p.

Algorithm 1 as described does not detect keys on a given class, but analyses valid keys
on the entire graph. In order to obtain keys for class, it is sufficient to execute it on the
subgraph containing only instances of the considered class: Gc = {〈s, p, o〉 ∈ G :< s, rdf :
type, c >∈ G}.

3.2 Algorithm efficiency and scalability

The key and pseudo-key discovery algorithm was implemented in Java. In order to allow
scalability, many intermediary results (the partitions) are stored on disk. Moreover, datasets
are locally stored on disk and indexed using Jena TDB1.

We have run the algorithm on a quad-core Intel(R) Xeon(R) E5430 @ 2.66GHz computer
with 8GO memory. Table 3.1 gives the amount of time needed (computation+disk access)
for computing all keys and pseudo-keys for every class successively taken in the datasets.

1http://incubator.apache.org/jena/documentation/tdb/

8 of 18

http://incubator.apache.org/jena/documentation/tdb/

Datalift CHAPTER 3. ALGORITHM FOR DISCOVERING KEYS

Algorithm 1 Key discovery in a graph G

predicates← PG
candidates← {∅}
parts← ∅
skipLists← {∅}
while |candidates| > 0 do

nextCandidates← ∅
for all c ∈ candidates do

firstIdx← max(predicates.indexOf(c[c.length− 1]), 0)
for i = firstIdx→ predicates.length do

if 6 ∃l s.t. l ∈ skipLists[predicates[i]] ∧ l ⊆ c then
P ← c ∪ predicates[i]
parts[P]← π(parts[c], parts[predicates[i]])
if key(part[P]) ∨ pseudo key(part[P], λr) then

keys← ∪{P}
skipLists[predicates[i]]← ∪{c}

else if support(P) < λs or ∃a ∈ P s.t. π(P) = π(P − {a}) then
skipLists[predicates[i]]← ∪{c}

else if i < predicates.length− 1 then
nextCandidates← ∪{P}

end if
end if

end for
candidates← nextCandidates

end for
end while

9 of 18

Deliverable 4.1.2 ANR-10-CORD-009

triple # classes # properties # instances # keys # pseudo-keys runtime

DBPedia 13,8 M 250 1,100 1,668,503 2,945 6,422 179’48”

DrugBank 0,77 M 8 119 19,693 285 2,755 6’58”

DailyMed 0,16M 6 28 10,015 3 1,168 1’46”

Sider 0,19M 4 11 2,674 11 3 5”

Table 3.1: Datasets size, number of keys and pseudo-keys found, and computation time

The algorithm was parametrized with a support threshold λs = 0.1 and a discriminability
threshold λd = 0.99.

Table 3.1 shows that computation time strongly depends on the number of keys found
but is less sensible to datasets size. This is in line with the exponential complexity of the
algorithm with regard to the number of properties. Even though computation times prevent
an interactive usage, they show the approach can be generalized for very large datasets. In
the Sider dataset, the computation time is very low. This can be explained because most of
properties in sider are keys.

10 of 18

Datalift CHAPTER 4. REPRESENTING KEYS

4. Representing Keys

Once computed, keys and pseudo-keys constitute a new body of knowledge that can be
linked to the dataset as part of its metadata. We present in this section a small vocabulary
allowing to represent keys and pseudo-keys in RDF. This vocabulary gives an alternative to
the owl:hasKey property. As seen in Section 1, OWL keys expressed on the ontology imply
that every dataset using the class must respect this key. When a key is not general enough
to be applied to every datasets, it can be more convenient to attach it at the dataset level
instead. Keys can be computed by analysing the dataset using an algorithm like the one
introduced in this paper.

A convenient vocabulary to attach metadata to RDF datasets is the Vocabulary of Inter-
linked Datasets (VoID [1]). In particular, VoiD defines the class void:Dataset to represent
datasets. Keys can thus be attached to datasets using this class as a hook.

The “Keys vocabulary” contains 1 class: Key, and 8 properties:

isKeyFor link a key to a VoID dataset.

hasKey indicates a key for a given class

property a property belonging to a key

nbProp the number of properties in a key

support support for a key as defined in Section 2

discriminability discriminability threshold for a key as defined in Section 2

instanceCount the number of instances for a class in the dataset

hasException subjects violating the key (in case of a pseudo-key).

This vocabulary is illustrated in the Figure 4.1 below. Keys computed for diverse
datasets, including DBPedia, are published according to this vocabulary and available as
linked-data on our server.1

1http://data.lirmm.fr/keys/

key:inContext

key:hasKey key:property

key:nbProp

key:support
key:discriminability

key:instanceCount

rdfs:Class

void:Dataset

rdf:Propertykey:Key

rdfs:Literal
key:hasException

Figure 4.1: Key vocabulary

11 of 18

Deliverable 4.1.2 ANR-10-CORD-009

5. Applications

5.1 Datasets Interlinking

In the context of the Datalift project1[7] we are building a platform for publishing raw data
available in a structured format (CVS, XML, relational database) on the web of data. We
have identified the following four necessary steps towards having a dataset published on the
web according to the linked-data principles: (1) the selection of a vocabulary for describing
the data, (2) the convertion of the raw data into RDF according to the selected vocabulary,
(3) the publication of the data on a server providing content negociation, URI de-referencing
and a SPARQL endpoint, and finally (4) the interlinking of the published data with other
datasets available on the web. In this context, we are focusing on developing a method
allowing to link data in an automated fashion.

The data linking problem is the following: given two datasets, how to find out what are
the equivalent instances between them, that is what are the instances that represent the
same real-world objects ? This problem is described in details in [3].

Our approach is based on the following process [8]: in a first step ontologies of both
datasets are aligned. In a second step a set of properties is selected in order to minimize
the number of comparisons required to identify similar instances. In a third step, similarity
measures most fitting for comparing properties values are assigned to each property pair.
These three steps allow to parametrize a tool that will compare instances. Many tools can
be used for this task, for example [12, 6, 9]. If the first step can partly be automated, the
last two need a large amount of manual input.

We propose here to use the key discovery algorithm in order to automate the second step
selecting the minimal set of properties necessary for comparing instances. With that goal we
execute the algorithm on the two datasets to be interlinked in order to compute every existing
key in each dataset. We then select the smallest common key for the two datasets. Two
keys are equivalent if they contain the same set of properties. We also consider properties
linked using an alignment specifying their equivalence. We give below an illustration of this
process on the two datasets Drugbank and Sider.

Drugbank2 and Sider3 are two databases on drugs. We want to interlink drugs, described
by classes drugbank:drugs and sider:drugs. The datasets contain respectively 4772 and 924
drugs in their RDF versions4 described by respectively 108 and 10 properties.

In this example, our approach consists in computing the smallest property set necessary
to identify drugs shared by the two datasets. Execution of Algorithm 1 returns keys given
in Table 5.0(a) and Table 5.0(b), ordered by decreasing support.

Analysis of these keys reveals the following: property rdfs:label is key for the two
datasets. This property is thus a potential candidate for interlinking the datasets. Also,
properties drugbank:genericName and sider:drugName are also candidates as they are keys in
both datasets and they are equivalent properties. Finally, we can remark that foaf:page

is also key in the two datasets, each drug having its web page in each dataset. But this
property cannot be used for interlinking as the URL of these pages are not comparable,
and it will be impossible to compute a similarity between drugs by comparing values of this
property.

1Datalift Project (ANR-10-CORD-009). http://datalift.org
2http://www.drugbank.ca/
3http://sideeffects.embl.de/
4See http://www4.wiwiss.fu-berlin.de/drugbank and http://www4.wiwiss.fu-berlin.de/sider/

12 of 18

http://datalift.org
http://www.drugbank.ca/
http://sideeffects.embl.de/
http://www4.wiwiss.fu-berlin.de/drugbank
http://www4.wiwiss.fu-berlin.de/sider/

Datalift CHAPTER 5. APPLICATIONS

(a) Drugbank:drugs

Properties of the key Support

foaf:page 1

db:genericName 1

db:primaryAccessionNo 1

db:updateDate 1

rdfs:label 1

db:limsDrugId 1

db:smilesStringCanonical

db:drugType

db:pubchemCompoundId

db:creationDate 0.928

db:pubchemCompoundId

db:drugType

db:creationDate

db:smilesStringIsomeric 0.928

db:pubchemSubstanceId 0.922

(b) Sider:drugs

Properties of the key Support

si:siderDrugId 1

si:drugName 1

foaf:page 1

rdfs:label 1

si:stitchId 1

si:sideEffect 0.965

rdfs:seeAlso 0.848

Table 5.1: Examples of discovered keys

13 of 18

Deliverable 4.1.2 ANR-10-CORD-009

Figure 5.1: Error detection using keys: workflow

Properties of the key Support

http://dbpedia.org/ontology/deathDate

http://dbpedia.org/ontology/birthDate 0.203

http://dbpedia.org/ontology/deathDate

http://dbpedia.org/ontology/deathPlace 0.216

http://xmlns.com/foaf/0.1/name

http://dbpedia.org/ontology/birthPlace 0.442

http://xmlns.com/foaf/0.1/surname

http://purl.org/dc/elements/1.1/description 0.459

http://dbpedia.org/ontology/deathPlace

http://dbpedia.org/ontology/birthDate 0.480

Table 5.2: Key detection for the class DBPedia:Person

We could thus automate the key selection step for interlinking datasets. The above
example is simple as the discovered keys only have one property. In practice, it is possible
that multiple keys of varying size will be returned by the algorithm. A strategy for selecting
the most relevant keys will thus be needed.

5.2 Error detection

Experimenting the algorithm introduced in this paper lead us to consider another application:
the detection of errors in a dataset. When slightly relaxing the notion of keys by decreasing
the discriminability threshold λd in order to detect pseudo-keys, we see appearing keys that
are valid for most instances but are not keys for a small number of instances. Observation
of these instances reveals the presence of duplicates or errors in the dataset. In order to
find errors, we transform pseudo-keys found in that way into SPARQL queries to retrieve
only instances having the same values for the properties of the key5. We then use the query
results as a basis for error correction. This workflow is illustrated Figure 5.1.

We have applied this method on the 244 classes of DBPedia dataset using the algorithm
introduced in this paper. We give below an example of pseudo-keys obtained for the class
dbpedia:Person computed with a minimal support λs = 0.2 and a discriminability threshold
λd = 0.999. Table 5.2 shows computed keys and their support.

First row of this table indicates there exist persons born on the same day who also died on
the same day, which is not impossible but statistically rare. A verification can be performed
by transforming pseudo-keys into SPARQL queries and executing them on the dataset.

5The transformation is performed by the program DuplicateFinder available at https://gforge.inria.

fr/projects/melinda/

14 of 18

http://dbpedia.org/ontology/deathDate
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/ontology/deathDate
http://dbpedia.org/ontology/deathPlace
http://xmlns.com/foaf/0.1/name
 http://dbpedia.org/ontology/birthPlace
http://xmlns.com/foaf/0.1/surname
http://purl.org/dc/elements/1.1/description
http://dbpedia.org/ontology/deathPlace
http://dbpedia.org/ontology/birthDate
https://gforge.inria.fr/projects/melinda/
https://gforge.inria.fr/projects/melinda/

Datalift CHAPTER 5. APPLICATIONS

Class duplicate misclassification other

dbpedia:Person 31 75 16

Table 5.3: Repartition of errors in the DBPedia class Person

The query must check what resources have same values for properties in the key for the
given class.

We obtain the following query for the key
(dbpedia:birthPlace , dbpedia:deathPlace):

SELECT DISTINCT ?x ?y

WHERE {

?x dbpedia-owl:deathDate ?dp1;

dbpedia-owl:birthDate ?dp2;

rdf:type dbpedia-owl:Person.

?y dbpedia-owl:deathDate ?dp1;

dbpedia-owl:birthDate ?dp2;

rdf:type dbpedia-owl:Person.

MINUS {

?x dbpedia-owl:deathDate ?dpx1;

dbpedia-owl:birthPlace ?dpy1 .

?x dbpedia-owl:deathDate ?dpx2 ;

dbpedia-owl:birthPlace ?dpy2 .

FILTER (?dpx1=?dpy1)

FILTER (?dpx2=?dpy1)

}

FILTER (?x!=?y) }

In this example, the MINUS query pattern is not required because dbpedia-owl:birthDate
and dbpedia-owl:deathDate are single valued properties. But in case of multivalued proper-
ties this operator is needed.

Manual analysis of the query results6 shows the 124 instances pairs returned by the query
in fact correspond to diverse types of errors in the dataset. The first kind of errors arises
when two resources exist for describing a same object, for example
dbpedia:Louis_IX_of_France__Saint_Louis___1 and
dbpedia:Louis_IX_of_France

A second kind of errors seems to be caused by the infoboxes extraction process when gen-
erating DBPedia. These errors most of the time lead to resource misclassification problems.
For example:
dbpedia:Timeline_of_the_presidency_of_John_F._Kennedy is classified as a person although it is
in fact a timeline.

Finally, a third kind of errors come from Wikipedia inconsistencies between the infobox
and the article7 or from documents from which these articles were informed.8

Table 5.3 below show error repartition for the class dbpedia:Person.
A systematic analysis of this experiment results on every DBPedia class goes out of this

article scope. These results are available online in RDF9. This method can be reproduced
on any dataset without any prior knowledge of the data.

6Query executed on the DBPedia SPARQL endpoint http://dbpedia.org/sparql
7See for example http://dbpedia.org/resource/Phromyothi_Mangkorn and http://dbpedia.org/

resource/Kraichingrith_Phudvinichaikul
8See for example http://dbpedia.org/resource/Merton_B._Myers and http://dbpedia.org/resource/

William_J._Pattison and the footnote at the end of these articles.
9http://data.lirmm.fr/keys

15 of 18

http://dbpedia.org/sparql
http://dbpedia.org/resource/Phromyothi_Mangkorn
http://dbpedia.org/resource/Kraichingrith_Phudvinichaikul
http://dbpedia.org/resource/Kraichingrith_Phudvinichaikul
http://dbpedia.org/resource/Merton_B._Myers
http://dbpedia.org/resource/William_J._Pattison
http://dbpedia.org/resource/William_J._Pattison
http://data.lirmm.fr/keys

Deliverable 4.1.2 ANR-10-CORD-009

6. Related Works

The use of keys and functional dependencies for quality analysis and reference reconciliation
of RDF data on the Web is attracting a lot of attention in the Semantic Web community.

The extraction of key constraints for reference reconciliation has been addressed by Syme-
onidou et al. in [11]. In this work the authors introduce KD2R as a method for automatic
discovery of keys in RDF datasets. KD2R is based on the Gordian technique which allows to
discover composite keys in relational databases with a depth-first search strategy. However,
no experimental results concerning the run-time efficiency and scalability of the proposed
algorithm are provided. The biggest dataset tested with KD2R contains only 3200 instances,
whereas our algorithm has been tested with DBPedia with more than 1.5 million of instances.

Song and Heflin also rely on key discovery for data interlinking [10]. Their definition of a
key is based on the notions of coverage and discriminability of a property. The coverage of a
property is defined as the ratio of the number of instances of a class having that property to
the total number of instances of that class. The discriminability of a property is the ratio of
the number of distinct values for the property to the total number of instances having that
property. Song and Heflin do not consider conjunction of properties, but single properties.
A property is a key if it has coverage and discriminability equal to 1.

Instead of key constraints, Yu and Heflin rely on functional dependencies for quality anal-
ysis in RDF datasets [13]. In order to adapt the classical notion of functional dependencies
in relational databases to the singularities of RDF datasets, the authors introduce the notion
of value-clustered graph functional dependency.

Nonetheless, keys are not considered for quality analysis as they are pruned by their
algorithm.

16 of 18

Datalift CHAPTER 7. CONCLUSION

7. Conclusion

We have proposed a novel algorithm for computing keys and pseudo-keys in RDF datasets.
The algorithm is efficient, even on large datasets thanks to pruning techniques based on
minimal support for keys and avoiding generating redundancies.

We have demonstrated the need for such an algorithm in two applications: datasets inter-
linking and duplicates and error detection in data. Error detection allows to efficiently detect
duplicates or correct errors on DBPedia persons. The approach still demands a substantial
amount of work to identify the type of error. Also, tuning of the support and discriminability
parameters is not trivial. A too high discriminability will lead in missing interesting pseudo-
keys, while a too low discriminability will lead in getting properties with many common
values, thus not showing any interesting information. Furthermore, parameters pertinence
may varies across classes in a same dataset.

In future work we will continue to optimize the algorithm using ontology based opti-
mization like exploiting the class and property hierarchy for pruning. We will also work on
methods to optimize value selection for support and discriminability thresholds.

17 of 18

Deliverable 4.1.2 ANR-10-CORD-009

References

[1] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing
linked datasets. In Proceedings of the WWW2009 Workshop on Linked Data on the
Web, volume 538 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[2] Manuel Atencia, Jérôme David, and François Scharffe. Keys and pseudo-keys detection
for web datasets cleansing and interlinking. In EKAW, pages 144–153, 2012.

[3] Alfio Ferrara, Andriy Nikolov, and François Scharffe. Data linking for the Semantic
Web. Int. J. Semantic Web Inf. Syst., 7(3):46–76, 2011.

[4] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An effi-
cient algorithm for discovering functional and approximate dependencies. Comput. J.,
42(2):100–111, 1999.

[5] Heikki Mannila and Kari-Jouko Raiha. Algorithms for inferring functional dependencies
from relations. Data & Knowledge Engineering, 12:83–99, 1994.

[6] Andriy Nikolov, Victoria S. Uren, Enrico Motta, and Anne N. De Roeck. Handling
instance coreferencing in the KnoFuss architecture. In Proc. of IRSW’08, volume 422
of CEUR Workshop Proceedings, 2008.

[7] François Scharffe, Laurent Bihanic, Gabriel Képéklian, Ghislain Atemezing, Raphaël
Troncy, Franck Cotton, Fabien Gandon, Serena Villata, Jérôme Euzenat, Zhengjie Fan,
Bénédicte Bucher, Fayçal Hamdi, Pierre-Yves Vandenbussche, and Bernard Vatant.
Enabling linked data publication with the datalift platform. 2012.

[8] François Scharffe and Jérôme Euzenat. MeLinDa: an interlinking framework for the
web of data. CoRR, abs/1107.4502, 2011.

[9] François Scharffe, Yanbin Liu, and Chunguang Zhou. RDF-AI: an architecture for
RDF datasets matching, fusion and interlink. In Proceedings of IJCAI-09 Workshop on
Identity and Reference in web-based Knowledge Representation (IR-KR at IJCAI-09),
2009.

[10] Dezhao Song and Jeff Heflin. Automatically generating data linkages using a domain-
independent candidate selection approach. In The Semantic Web - ISWC 2011 - 10th
International Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Pro-
ceedings, Part I, volume 7031 of LNCS, pages 649–664. Springer, 2011.

[11] Danai Symeonidou, Nathalie Pernelle, and Fatiha Säıs. KD2R: A key discovery method
for semantic reference reconciliation. In Proceedings of the 7th International IFIP Work-
shop on Semantic Web & Web Semantics (SWWS 2011), volume 7046 of LNCS, pages
392–401. Springer, 2011.

[12] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk - A link discov-
ery framework for the Web of Data. In LDOW’09 at WWW’09, volume 538 of CEUR
Workshop Proceedings, 2009.

[13] Yang Yu, Yingjie Li, and Jeff Heflin. Detecting abnormal semantic web data using
semantic dependency. In Proceedings of the 5th IEEE International Conference on
Semantic Computing (ICSC 2011), Palo Alto, CA, USA, September 18-21, 2011, pages
154–157. IEEE, 2011.

18 of 18

	Introduction
	Key dependencies
	Algorithm for discovering keys
	Details of the algorithm
	Algorithm efficiency and scalability

	Representing Keys
	Applications
	Datasets Interlinking
	Error detection

	Related Works
	Conclusion
	References

