
HAL Id: hal-00690493
https://hal.inria.fr/hal-00690493v2

Submitted on 6 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fractional-step schemes for the coupling of distributed
and lumped models in hemodynamics

Cristobal Bertoglio, Alfonso Caiazzo, Miguel Angel Fernández

To cite this version:
Cristobal Bertoglio, Alfonso Caiazzo, Miguel Angel Fernández. Fractional-step schemes for the cou-
pling of distributed and lumped models in hemodynamics. SIAM Journal on Scientific Computing,
Society for Industrial and Applied Mathematics, 2013, 35 (3), pp.551-575. �10.1137/120874412�. �hal-
00690493v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49820446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00690493v2
https://hal.archives-ouvertes.fr


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
9

3
7

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7937
April 2012

Project-Team REO

Fractional-step schemes

for the coupling of

distributed and lumped

models in hemodynamics

Cristóbal Bertoglio, Alfonso Caiazzo, Miguel A. Fernández





RESEARCH CENTRE

PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt

B.P. 105 - 78153 Le Chesnay Cedex

Fractional-step schemes for the coupling of

distributed and lumped models in

hemodynamics

Cristóbal Bertoglio∗, Alfonso Caiazzo†, Miguel A. Fernández∗

Project-Team REO

Research Report n° 7937 — April 2012 — 29 pages

Abstract: In three-dimensional (3D) blood flow simulations, lumped parameter models (0D)
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Schémas à pas fractionnaire pour le couplage de modèles

distribués et localisées en hémodynamique

Résumé : Les modèles à paramètres localisés (0D) sont souvent utilisés dans les simulations
tri-dimensionnelles (3D) d’écoulements sanguins pour modéliser l’effet des parties de l’appareil
circulatoire négligées en aval. Dans cet article nous analysons deux approches pour le cou-
plage de modèles 3D-0D, dans lesquelles un schéma à pas fractionnaire est utilisé dans le fluide.
Notre analyse met en évidence que les schémas de couplage 3D-0D explicites peuvent donner
des instabilités numériques dans le cas de sorties multiples. Nous introduisons et analysons une
formulation 3D-0D implicite avec des propriétés de stabilité améliorées et un coût de calcul sup-
plémentaire négligeable par rapport au cas explicite. Nous abordons également l’extension de
ces méthodes à des problèmes d’interaction fluide-structure. Les résultats théoriques de stabilité
sont confirmés par des expériences numériques dans des géométries et données réalistes.

Mots-clés : Écoulements sanguins, schéma de projection de Chorin-Temam, interaction fluide-
structure, modèles à paramètres localisés, couplage 3D-0D.
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1 Introduction

In 3D distributed models of blood flow (e.g., Navier-Stokes equations, fluid-structure inter-
action), downstream pressure boundary conditions are often used to represent the effect of the
neglected portion of the vessels. In fact, since pressure measurements are invasive and not al-
ways available, the downstream circulation is usually modeled trough lumped parameter (or 0D)
models. This results in a set of algebraic-differential equations, relating fluxes and pressures at
each outlet boundary of the fluid domain (see, e.g., [11, 21, 20, 24] and the references therein).
A widely used lumped parameter model is the so-called three-element Windkessel system (see,
e.g., [11, 12])

The 3D-0D coupling between distributed and lumped models is operated by interface condi-
tions that guarantee the continuity of the fluxes and pressures on the outlet boundaries (3D-0D
interfaces). It is well-known that, when this coupling is treated explicitly in time, the whole
system might suffer from numerical instability, regardless of the solution scheme in the 3D com-
partment. This enforces restrictions on the time-step length, that can considerably increase
computational cost in realistic applications (see, e.g., the discussion in [21]). On the other hand,
implicit 3D-0D coupling schemes overcome this instability issue at the expense of solving a fully
coupled 3D-0D system at each time step. The so-called partitioned approaches solve this system
by sub-iterating between the 3D and 0D models, which might be inefficient in practice (see, e.g.,
[18]). Alternatively, monolithic procedures solve both models simultaneously and yield system
matrices with a modified sparsity pattern, which might lead to preconditioning issues (see, e.g.,
[19]).

This work is devoted to the formulation and analysis of 3D-0D coupling schemes based on a
fractional-step projection time-marching of the fluid (see, e.g., [6, 15, 23]). First, an advection-
diffusion problem is solved to recover an intermediate approximation of the velocity field and,
then, a suitable pressure field is recovered by solving a Poisson problem. We also consider
the case of a 3D fluid-structure interaction modeling, time-discretized by the projection semi-
implicit coupling scheme reported in [9]. In this fractional-step framework, the explicit and
implicit treatments of the 3D-0D coupling lead to different formulations of the pressure-Poisson
projection step. It can be discretized in an explicit fashion by time-advancing the 0D model from
the previously computed intermediate velocity flux, which provides an explicit Dirichlet boundary
data for the 3D pressure-Poisson problem. For a purely fluid 3D distributed modeling with two
or more 3D-0D interfaces, our analysis shows that this approach might compromise stability. We
also show that, in the case of fluid-structure interaction, numerical instabilities might appear
even with a sole downstream boundary. We propose to overcome these instability issues through
the introduction of a implicit 3D-0D formulation with enhanced energy balance across the 3D-
0D interface, both for a fluid and a fluid-structure interaction modeling of blood flow. A salient
feature of the proposed schemes is that they preserve the two-step velocity/pressure splitting of
the original fractional-step scheme, characterized by a 3D-0D coupled problem of reduced size.
Moreover, we show that this coupling strategy can be efficiently implemented by considering a
single unknown per 3D-0D interface. This yields a computational complexity comparable to an
explicit scheme and, hence, overcomes the above mentioned stability/complexity issues.

The rest of the paper is organized as follows. In Section 2 we introduce the 3D fluid equations,
its corresponding time discretization (via a fractional-step projection scheme) and the considered
Windkessel model. Section 3 is devoted to the formulation and analysis of explicit and implicit
3D-0D coupling schemes with a 3D distributed model based on the Navier-Stokes equations, while
Section 4 consider the fluid-structure interaction case. In section 5 we present and discuss the
performed numerical experiments, that is, the Navier-Stokes flow in a realistic aortic geometry
and with measured clinical data, and the fluid-structure interaction in an ideal abdominal aortic
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4 C. Bertoglio, A. Caiazzo & M.A. Fernández

aneurism. At last, Section 6 draws some concluding remarks and lines of future work.

2 The 3D-0D model problem

We first summarize the main ingredients of a 3D-0D model of blood flow coupling the in-
compressible Navier-Stokes equation and a lumped parameter description of the downstream
boundaries. We then present the time-marching schemes considered in each sub-system and
introduce some notation for the spatial discretization of the fluid equations.

2.1 3D fluid equations

We consider a domain Ωf ⊂ R
3 with the following partition of its boundary ∂Ωf

def
= Γin ∪Σ∪

Γout. In the context of blood flow simulations, Ωf will represent the lumen of the vessel (see Figure
1), with Γin, Σ and Γout denoting, respectively, the inlet, vessel wall and outlet boundaries. We

Ωf ΣΓin

Γ1

Γ2

π1
Rd,1

C1

Rp,1

C2

Rp,2 Rd,2

π2

Figure 1: Sketch of the fluid domain Ωf with two outlet boundaries Γout = Γ1 ∪ Γ2, (n0D = 2).

now consider the incompressible Navier-Stokes equations for the velocity u : Ωf ×R
+ → R

3 and
the pressure p : Ωf × R

+ → R:





ρf
∂u

∂t
+ ρfu ·∇u−∇ · σ(u, p) = 0 in Ωf ,

∇ · u = 0 in Ωf ,

u = uin on Γin,

u = 0 on Σ,

(1)

where ρf stands for the density of the fluid and the fluid Cauchy-stress tensor is given by

σ(u, p)
def
= −pI + 2µǫ(u) and ǫ(u)

def
=

1

2

(
∇u+∇uT

)
, µ being the dynamic viscosity of the

fluid and uin being a given inlet velocity field. The additional boundary conditions on Γout will
be considered in the next subsection.

Inria



3D-0D coupling schemes in hemodynamics 5

2.2 0D Windkessel model

In what follows, the oulet boundary Γout is assumed to be made of n0D components

Γout =

n0D⋃

l=1

Γl,

such that Γi∩Γj = ∅ for i, j = 1, . . . , n0D with i 6= j (see, e.g., Figure 1). We will consider a three-
element Windkessel model (see, e.g., [11, Chapter 10] and [12]), where the pressure Pl : R

+ → R

and the flux Ql : R
+ → R on the outlet Γl are related through the following algebraic-differential

equations: 


Cd,l

dπl
dt

+
πl
Rd,l

= Ql,

Pl = Rp,lQl + πl,

(2)

for l = 1, . . . , n0D. Here, Rp,l and Rd,l model the resistance to the flow of the vasculature
proximal and distal to each outlet Γl, respectively, and the capacity Cd,l, take into account the
deformability of the downstream vessels. The values Pl and πl are also called proximal and distal
pressures, respectively.

Remark 2.1 We will mainly focus on a three-element Windkessel model, that is one of the most
popular choices in computational hemodynamics. However, this choice is due purely illustrative
and the methods and the analysis presented in the following sections to can be extended to more
complex lumped parameter models (see Section 3.2.4 for details).

2.3 3D-0D coupling conditions

The 3D-0D coupling between (1) and (2) is defined through the following relations on each
Γl 



Ql =

∫

Γl

u · nf ,

σ(u, p)nf = −Plnf on Γl,

(3)

for l = 1, . . . , n0D and where nf denotes the exterior unit-vector normal of Ωf .

Energy balance Let the quantity

E(t)
def
=

ρf
2
‖u‖20,Ωf

+

n0D∑

l=1

Cd,l

2
π2
l

denote the total (kinetic + potential) energy of the 3D-0D coupled system given by (1)-(3), while

D(t)
def
= 2µ

∫ t

0

‖ǫ(u(s))‖20,Ωf
ds+

n0D∑

l=1

∫ t

0

(
π2
l (s)

Rd,l
+Rp,lQ

2
l (s)

)
ds > 0 (4)

represents the dissipative effects. Assuming that uin = 0 (free system) and using a standard
energy argument, we get the following identity

E(t) +D(t) +

∫ t

0

(∫

Γout

ρf
2
|u(s)|2u(s) · nf

)
ds = E(0). (5)

RR n° 7937



6 C. Bertoglio, A. Caiazzo & M.A. Fernández

Remark 2.2 Since the last term of the left-hand side of Equation (5) can be negative, this
expression does not guarantee a correct energy balance across the 3D-0D interface Γout. This
issue is well-known in computational hemodynamics. The interested reader is referred to [4] for
a stabilization technique, and to [10] for a different 3D-1D coupling. The methods introduced in
this paper can be easily adapted to these alternative formulations.

2.4 Time semi-discretization

We consider a fractional-step time-marching of the fluid equations (1) and a backward Euler
scheme for the lumped parameter model (2). In what follows, the parameter τ denotes the

time-step size, we set tn
def
= nτ for n ∈ N and ∂τx

n def
= (xn − xn−1)/τ stands for the first-order

backward difference.

2.4.1 Fractional-step fluid time-marching

Several variants of the original Chorin-Temam projection scheme [6, 23] have been proposed
in the literature (see, e.g., [15] for a recent review). The methods presented and analyzed in
section 3 below do not a priori depend on the specific formulation considered for the projection
scheme. To fix the ideas and without generality loss, we consider the non-incremental pressure-
correction version (see, e.g., [15, Section 4]). Hence, the time semi-discrete approximation of 1 is
performed as follows. We set ũ0 = u0 = u0 and, for n ≥ 1, we compute (un, pn, ũn) by solving:
1. Viscous step:





ρf
ũn − un−1

τ
+ ρf ũ

n−1 ·∇ũn − 2µ∇ · ǫ(ũn) = 0 in Ωf ,

ũn = uin(tn) on Γin,

ũn = 0 on Σ.

(6)

where the 2. Projection step:




ρf
un − ũn

τ
+∇pn = 0 in Ωf ,

∇ · un = 0 in Ωf ,

un · nf = uin(tn) · nf on Γin,

un = 0 on Σ.

(7)

From the implementation point of view, the projection step (7) is usually reformulated by as
the pressure-Poisson problem





−
τ

ρf
∆pn = −∇ · ũn in Ωf ,

τ

ρf

∂pn

∂nf
= 0 on Γin ∪ Σ,

(8)

which requires further regularity on the pressure (H1(Ωf) instead of L2(Ωf) in practice). Then,
the divergence free (or end-of-step) velocity un can be eliminated in (6) using the following
relation (from (7)1)

un = ũn −
τ

ρf
∇pn. (9)

It should be noted that the boundary conditions on Γout have been omitted deliberately in
(6)-(8), since they depend on the type of 3D-0D coupling scheme considered. In particular, they
lead to different formulations of the pressure-Poisson equation (8) (see Section 3.1).

Inria



3D-0D coupling schemes in hemodynamics 7

2.4.2 Backward-Euler Windkessel time-marching

Without loss of generality, we consider a backward Euler time-discretization of (2), which
yields 



Cd,l∂τπ

n
l +

πn
l

Rd,l
= Qn

l ,

Pn
l = Rp,lQ

n
l + πn

l

(10)

or, equivalently, {
πn
l = αlπ

n−1
l + βlQ

n
l ,

Pn
l = γlQ

n
l + αlπ

n−1
l ,

(11)

with the notation αl
def
=

Rd,lCd,l

Rd,l Cd,l + τ
, βl

def
= Rd,l(1− αl) and γl

def
= Rp,l + βl.

2.5 Spatial discretization

In what follows, we will consider the usual Sobolev space H1(Ω), for a given domain Ω ⊂ R
3.

Then, for X ⊂ ∂Ω (with meas(X) > 0), we define H1
X(Ω) the subspace of H1(Ω) with vanishing

trace on X. The scalar product in L2(Ω) is denoted by (·, ·)Ω and its associated norm by ‖ · ‖0,Ω.
We consider a family of triangulations {Tf,h}0<h≤1 of the domain Ωf satisfying the usual

requirements of finite element approximations (see, e.g., [7]). The subscript h ∈ (0, 1] refers
to the level of refinement of the triangulations. In order to ease the presentation, we assume
that the family of triangulations is quasi-uniform. For the discretization in space of (1), we
consider continuous Lagrange finite element approximations Vh and Rh of [H1(Ωf)]

3 and H1(Ωf),
respectively. Other choices of approximation spaces are possible for the projection method (see
[16] for a discussion). For a given X ⊂ ∂Ωf (with meas(X) > 0), we set

VX,h
def
= Vh ∩ [H1

X(Ωf)]
3, RX,h

def
= Rh ∩H1

X(Ωf).

3 Fractional-step time-marching and 3D-0D coupling schemes

In this section, we describe two coupling schemes (explicit and implicit) resulting from ap-
propriate time discretizations of the coupling conditions (3).

3.1 Explicit 3D-0D coupling scheme

In this case the 3D-0D coupling conditions (3) are time discretized as follows





Qn
l =

∫

Γl

ũn · nf ,

pn = Pn
l on Γl,

2µǫ(ũn)nf = 0 on Γl,

(12)

for l = 1, . . . , n0D. Note that the continuity of fluxes (3)1 is treated explicitly by using the flux
of the latest computed viscous velocity. For the relation (3)2 we consider a Dirichlet boundary
condition for the pressure, while the viscous part of the fluid stresses is set to zero. This is a
standard procedure to decouple the projection and viscous steps in the framework of projection
schemes with natural boundary conditions (see, e.g., [14] and [15, Section 10]).

RR n° 7937



8 C. Bertoglio, A. Caiazzo & M.A. Fernández

Remark 3.1 It is well-known that the artificial Dirichlet boundary condition (12)2 could lead to
sub-optimal approximations since, in general, the relation (12)2 is not consistent with the solution
of continuous problem. For further details on this issue, we refer to the analysis reported [14]
which suggests the use of the rotational version of the pressure-correction scheme.

The resulting fully discrete time-marching procedure is reported in Algorithm 1. In the
viscous-step (13) we have considered the standard Temam’s consistent term, ρf

2 ((∇·ũn−1)ũn,v)Ωf
,

which stabilizes the semi-implicit treatment of the convective term. The 3D-0D explicit coupling
given by (12) allows a fully uncoupled computation of the Windkessel state, fluid pressure and
velocity. This is particularly appealing from the implementation and computational efficiency
point of view. Nevertheless, as suggested in Section 3.1.1 below (and then confirmed by numerical
experiments in Section 5), Algorithm 1 may suffer from stability issues.

Algorithm 1 (Explicit 3D-0D coupling scheme)

Let u0 def
= u0, ũ0 ∈ Vh and π0

1 , . . . , π
0
n0D

∈ R be given initial data. For n ≥ 1 perform:
1. Viscous step: Find ũn ∈ VΣ,h such that





ũn|Γin = uin(tn),
ρf
τ
(ũn,v)Ωf

+ ρf(ũ
n−1 ·∇ũn,v)Ωf

+
ρf
2
((∇ · ũn−1)ũn,v)Ωf

+ 2µ (ǫ(ũn), ǫ(v))Ωf
=
ρf
τ

(
un−1,v

)
Ωf

(13)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃n
l

def
=
∫
Γl

ũn · nf .
2. Windkessel step: For l = 1, . . . , n0D, compute (Qn

l , π
n
l , P

n
l ) ∈ R

3 from

Qn
l = Q̃n

l , Cd,l∂τπ
n
l +

πn
l

Rd,l
= Qn

l , Pn
l = Rp,lQ

n
l + πn

l . (14)

3. Projection step: Find pn ∈ Rh such that



pn|Γl

= Pn
l , l = 1, . . . , n0D,

τ

ρf
(∇pn,∇q)Ωf

= − (∇ · ũn, q)Ωf

(15)

for all q ∈ RΓout,h. Thereafter set un def
= ũn− τ

ρf
∇pn ∈ [L2(Ωf)]

d .

3.1.1 Stability analysis

Let the quantities

En def
=
ρf
2
‖ũn‖20,Ωf

+

n0D∑

l=1

Cd,l

2
|πn−1

l |2,

Dn def
=2µ

n∑

m=1

τ‖ǫ(ũm)‖20,Ωf
+

n−1∑

m=1

n0D∑

l=1

τ

(
|πm

l |2

Rd,l
+Rp,l|Q

m
l |2
)
,

for n ≥ 1, denote the energy and physical dissipation of the discrete system. Let us also set

E0 def
=

ρf
2
‖u0‖20,Ωf

+

n0D∑

l=1

Cd,l

2
|π0

l |
2,

Inria



3D-0D coupling schemes in hemodynamics 9

We then have the following energy based result (whose proof can be found in [5, Chapter 2]).

Theorem 3.2 Let
{
(ũn, pn)

}
n≥1

and
{
(Qn

l , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the solution given by Algo-

rithm 1 and assume that uin = 0 (free system). The following inequality holds for n ≥ 1

En +Dn +

n∑

m=1

ρf
2
τ(ũm−1 · nf , |ũ

m|2)Γout ≤ E0 −
n−1∑

m=1

τ2

2ρf
‖∇pm‖20,Ωf

+
n−1∑

m=1

τ (∇ · ũm, φm)Ωf
+

n−1∑

m=1

τ2

ρf
(∇pm,∇φm)Ωf

, (16)

where φn ∈ Rh is an arbitrary discrete lifting of the (unknown) proximal pressures, namely,

φn = Pn
l on Γl , l = 1, . . . , n0D. (17)

The left-hand side of estimate (16) corresponds to the discrete counterpart of (5). Neverthe-
less, the artificial power introduced by the last two terms of (16),

n−1∑

m=1

τ (∇ · ũm, φm)Ωf
+

n−1∑

m=1

τ2

ρf
(∇pm,∇φm)Ωf

, (18)

cannot be controlled, so that this estimate does not guarantee the energy stability of the approx-
imations provided by Algorithm 1. Two remarks are now in order.

Remark 3.3 It is worth mentioning that the term (18) corresponds to the residual of the pro-
jection step (15) (note that φn /∈ RΓout,h). In fact, for the space continuous counterpart of (15)
we have

(∇ · ũn, φn)Ωf
+
τ

ρf
(∇pn,∇φn)Ωf

=
τ

ρf

∫

Γout

∂pn

∂nf
φn

= −
n0D∑

l=1

(∫

Γl

un · nf −

∫

Γl

ũn · nf

)
Pn
l .

Hence, the uncontrolled artificial power involved in the energy estimate (16) is due to the time-lag
in the flux (

∫
Γl

ũn ·nf instead of
∫
Γl

un ·nf) introduced by the explicit treatment of the continuity

of fluxes (12)1 on the 3D-0D interfaces Γl. It should be noted that a 3D-0D explicit coupling
with a monolithic time-marching scheme in the fluid yields a similar time lag, but now with∫
Γl

un−1 · n instead of
∫
Γl

un · n.

Remark 3.4 In the case of a single outlet (i.e., n0D = 1), we can take φn = Pn in Ωf . From
the proof of Proposition 3.2 (see [5, Chapter 2]) one then recovers the following energy estimate
for the fluid

ρf
2
‖ũn‖20,Ωf

+ 2µ
n∑

m=1

τ‖ǫ(ũm)‖20,Ωf
+

n∑

m=1

ρf
2
τ(ũm−1 · nf , |ũ

m|2)Γout

≤
ρf
2
‖u0‖20,Ωf

−
n−1∑

m=1

τ2

2ρf
‖∇pm‖20,Ωf

.

As a result, the energy stability of the fluid does not depend on the imposed outlet pressure.

RR n° 7937



10 C. Bertoglio, A. Caiazzo & M.A. Fernández

3.2 Implicit 3D-0D coupling scheme

In this case the 3D-0D coupling conditions (3) are time-discretized as follows




Qn
l =

∫

Γl

un · nf ,

pn = Pn
l on Γl,

2µǫ(ũn)nf = 0 on Γl,

(19)

for l = 1, . . . , n0D. Note that, in comparison with (12), the above coupling scheme treats im-
plicitly the continuity of fluxes on the outlet boundaries. This feature enhances stability, as we
will show in Section 3.2.1. However, from the computational point of view, the relations (19)1,2
and (10) apparently couple the evaluation of (8) and (9). Fortunately, this difficulty can be
circumvented via an appropriate reformulation of the pressure boundary condition (19)2 for the
projection step (8). Indeed, by inserting (9) into (19)1, we get

Qn
l = Q̃n

l −
τ

ρf

∫

Γl

∂pn

∂nf
, (20)

which with (11) and (19)2 yields the following (implicit) boundary condition for the outlet pres-
sures:

pn|Γl
= γlQ̃

n
l −

γlτ

ρf

∫

Γl

∂pn

∂nf
+ αlπ

n−1
l (21)

for l = 1, . . . , n0D. Note that this expression still enforces pn to be constant on each Γl.
Multiplying (8)1 by q ∈ Rh, integrating by parts, using (8)1 and the fact that q|Γl

is constant,
we get

τ

ρf
(∇pn,∇q)Ωf

−
τ

ρf

n0D∑

l=1

(∫

Γl

∂pn

∂nf

)
q|Γl

= − (∇ · ũn, q)Ωf

for all q ∈ Rh. We can eliminate the normal derivative of the pressure using (21), which yields
the following modified variational formulation for the projection step: Find pn ∈ Rh such that

τ

ρf
(∇pn,∇q)Ωf

+

n0D∑

l=1

(pn|Γl
)(q|Γl

)

γl
=

n0D∑

l=1

(
Q̃n

l +
αlπ

n−1
l

γl

)
q|Γl

− (∇ · ũn, q)Ωf
(22)

for all q ∈ Rh. We can then set Pn
l = pn|Γl

and retreive (Qn
l , π

n
l ) from (11), for l = 1, . . . n0D.

Remark 3.5 The well-posedness of the pressure-Poisson problem (22) follows from a generalized
Poincaré’s inequality, which guarantees the coercivity of the left-hand side of (22) in Rh.

Remark 3.6 Testing (22) with q = 1, and since Pn
l = pn|Γl

, we have

n0D∑

l=1

Pn
l − αlπ

n−1
l

γl
=

n0D∑

l=1

Q̃n
l +

∫

Ωf

∇ · ũn.

Hence, integrating by parts in the last term, using (11)2 and owing to (6)2,3 we get the following
mass conservation for the Windkessel fluxes:

n0D∑

l=1

Qn
l = −

∫

Γin

uin(tn).
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3D-0D coupling schemes in hemodynamics 11

The complete time-marching procedures is reported in Algorithm 2.

Algorithm 2 (3D-0D implicit coupling scheme)

Let u0 = u0, ũ0 ∈ Vh, and π0
1 , . . . , π

0
n0D

∈ R be given initial data. For n ≥ 1 perform:
1. Viscous step: Find ũn ∈ VΣ,h such that





ũn|Γin = uin(tn),
ρf
τ
(ũn,v)Ωf

+ ρf(ũ
n−1 ·∇ũn,v)Ωf

+ 2µ (ǫ(ũn), ǫ(v))Ωf

+ =
ρf
τ

(
un−1,v

)
Ωf

(23)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃n
l

def
=
∫
Γl

ũn · nf .
2. Projection-Windkessel step: Find pn ∈ Rh and such that

τ

ρf
(∇pn,∇q)Ωf

+

n0D∑

l=1

(pn|Γl
)(q|Γl

)

γl
=

n0D∑

l=1

(
Q̃n

l +
αlπ

n−1
l

γl

)
q|Γl

− (∇ · ũn, q)Ωf
(24)

for all q ∈ Rh. Thereafter, set Pn
l = pn|Γl

and compute (Qn
l , π

n
l ) ∈ R

2 from the relations

Qn
l =

Pn
l − αlπ

n−1
l

γl
, πn

l = αlπ
n−1
l + βlQ

n
l , l = 1, . . . n0D (25)

and set un def
= ũn −

τ

ρf
∇pn ∈ [L2(Ωf)]

d.

3.2.1 Stability analysis

The focus of this section is to present the stability result of the formulation (23)-(25) sum-
marized in the following proposition.

Theorem 3.7 Let
{
(ũn, pn)

}
n≥1

and
{
(Qn

l , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated solution

given by Algorithm 2 and assume that uin = 0 (free system). The following energy inequality
holds

En +Dn +

n∑

m=1

ρf
2
(ũm−1 · nf , |ũ

m|2)Γout ≤ E0 −
n−1∑

m=1

τ2

2ρf
‖∇pm‖20,Ωf

. (26)

Proof. We first test (23) with v = ũn and integrate by parts the convective term. This yields
the identity

ρf
2
∂τ‖ũ

n‖20,Ωf
+
ρf
2τ

∥∥ũn − ũn−1
∥∥2
0,Ωf

+ 2µ‖ǫ(ũn)‖20,Ωf

+
(
∇pn−1, ũn

)
Ωf

+
ρf
2
(ũn−1 · nf , |ũ

n|2)Γout = 0 (27)

for n ≥ 2 and, for n = 1, we get

ρf
2τ

(∥∥ũ1
∥∥2
0,Ωf

−
∥∥u0

∥∥2
0,Ωf

)
+
ρf
2τ

∥∥ũ1 − u0
∥∥2
0,Ωf

+ 2µ
∥∥ǫ(ũ1)

∥∥2
0,Ωf

+
ρf
2
(ũ0 · nf , |ũ

1|2)Γout = 0.

(28)

RR n° 7937



12 C. Bertoglio, A. Caiazzo & M.A. Fernández

Thereafter, taking (24) at time step n− 1, testing with q = pn−1 and integrating by parts in its
right-hand side it yields

τ

ρf

∥∥∇pn−1
∥∥2
0,Ωf

+

n0D∑

l=1

Pn−1
l − αlπ

n−2
l

γl
Pn−1
l =

(
ũn−1,∇pn−1

)
Ωf
.

for n ≥ 2. Hence, the addition and subtraction of suitable terms and the application of the
Cauchy-Schwarz and arithmetic-geometric inequalities yields

τ

2ρf

∥∥∇pn−1
∥∥2
0,Ωf

−
ρf
2τ

∥∥ũn − ũn−1
∥∥2
0,Ωf

−
(
ũn,∇pn−1

)
Ωf

+

n0D∑

l=1

Pn−1
l − αlπ

n−2
l

γl
Pn−1
l ≤ 0. (29)

As a result, the summation of (27) and (29) gives

ρf
2
∂τ‖ũ

n‖20,Ωf
+ 2µ‖ǫ(ũn)‖20,Ωf

+
ρf
2
(ũn−1 · nf , |ũ

n|2)Γout

+

n0D∑

l=1

Pn−1
l − αlπ

n−2
l

γl
Pn−1
l ≤ −

τ

2ρf

∥∥∇pn−1
∥∥2
0,Ωf

(30)

for n ≥ 2. At last, from (25) and its equivalence to (11), we have

Pn
l − αlπ

n−1
l

γl
Pn
l = Qn

l P
n
l = Rp,l|Q

n
l |

2 +Qn
l π

n
l

≥
Cd,l

2
∂τ |π

n
l |

2 +
1

Rd,l
|πn

l |
2 +Rp,l|Q

n
l |

2

(31)

for n ≥ 1. Hence, by inserting the last inequality of (31) into (30), multiplying by τ and summing
over m = 2, ..., n we get the estimate

En +Dn +
n∑

m=2

ρf
2
(ũm−1 · nf , |ũ

m|2)Γout ≤ E1 −
n−1∑

m=1

τ2

2ρf
‖∇pm‖20,Ωf

.

for n ≥ 2. We recover the estimate (26) by simply adding to this inequality the expression (28)
multiplied by τ , which completes the proof.

The estimate (26) corresponds to the discrete counterpart of (5). Note that the right-hand
side of (26) is a pure numerical dissipation term (the natural pressure stabilization of the pro-
jection scheme). Therefore, the 3D-0D coupling reported in Algorithm 2 does not introduce any
uncontrolled artificial power and, hence, a guaranty of numerical stability. This feature will be
illustrated in Section 5 via numerical experiments.

3.2.2 Implementation details

In this section we discuss the implementation of the pressure problem (24) in a finite element
framework. For the sake of simplicity, and without loss of generality, we limit the discussion
to the case of a single outlet. We define the arrays P, V ∈ R

N corresponding to the degrees of
freedom (d.o.f.) of the pressure pn ∈ Qh and of a general test function q ∈ Qh, respectively.
The bilinear form (∇pn,∇q)Ωf

, without imposing Dirichlet boundary conditions to pn, can be
written in matrix form as

(∇pn,∇q)Ωf
= V TAP =

[
V T
I V T

O

] [AII AIO

AOI AOO

] [
PI

PO

]
,
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3D-0D coupling schemes in hemodynamics 13

where the subindexes O and I indicate the elements of the array corresponding to the d.o.f. on
Γout and Ω̄\Γout, respectively. Hence, the pressure-Poisson projection step with explicit Dirichlet
data can be formulated as

AIIPI = F̃I −AIO1O p
n
|Γout , (32)

where the notation in right-hand side is such that

[
V T
I V T

O

]
[
F̃I

F̃O

]
=
ρf
τ
(∇ · ũn, q)Ωf

,

with 1O ∈ R
NO denoting a vector of ones, with NO being the number of pressure d.o.f. on Γout.

The linear system (32) is usually solved by means of a preconditioned conjugate gradient methods
(PCG), with the preconditioning operator Â−1

II given, for example, by an incomplete Cholesky
factorization of AII (alternative preconditioners could be used). With the notations introduced
above, the stiffness matrix of the implicit formulation (24) can be derived straightforwardly.
Indeed, since VO = 1Oq|Γout and PO = 1Op

n
|Γout , we obtain

[
AII a

a
T b

] [
PI

pn|Γout

]
=




F̃I

1
T
OF̃I +

ρf
τ

(
Q̃n +

απn−1

γ

)

 , (33)

with a
def
= AIO1O and b

def
= 1

T
OAOO1O +

ρf
τ γ

. It should be noted that the matrix in (33) has a

non-standard sparsity pattern. However, since we use a Krylov linear solver this matrix is never
assembled in practice (only matrix-vector products are evaluated). In the numerical experiments,
we have considered the block-preconditioner given by

[
Â−1

II 0
0 1

b

]
,

which yielded practically the same number of PCG-iterations than in the solution of (32). In
the general case of a domain Ωf with multiple outlets, the aforementioned considerations can
be extended by considering one additional equation for each 3D-0D interface. Concerning the
computational cost, in our numerical simulations we did observe any relevant difference between
the implicit and the explicit coupling.

3.2.3 Extension to higher order time-splitting schemes

Although widely used in practice, the original Chorin-Temam projection scheme might suffer
of a limited accuracy in time and of spurious boundary layers, due to the unphysical homogenous
Neumann boundary condition (8)3. Among the several variants available (see, e.g., [15] for
an overview), in this section we describe a possible extension of the implicit 3D-0D coupling
(Algorithm 2) in the context of an incremental pressure projection scheme with a second order
time discretization.

Following [15], we decompose now the time iteration in a BDF2 time discretization for the
viscous step





ρf

(
3ũn − 4un−1 + un−2

)

2τ
+ ρf ũ

n−1 ·∇ũn − 2µ∇ · ǫ(ũn) +∇pn−1 = 0 in Ωf ,

ũn = uin(tn) on Γin,

ũn = 0 on Σ,

2µǫ(ũn)nf = 0 on Γout,RR n° 7937



14 C. Bertoglio, A. Caiazzo & M.A. Fernández

a projection step for the increment of pressure





−
τ

ρf
∆δpn = −

3

2
∇ · ũn in Ωf ,

τ

ρf

∂δpn

∂nf
= 0 on Γin ∪ Σ,

δpn = Pn
l − Pn−1

l on Γl, l = 1, . . . , n0D

(34)

completed by the end-of-step updates: pn = pn−1 + δpn and un = ũn − 2τ
3ρf

∇δpn.
In order to have a second-order time-discretization for the whole 3D-0D problem, we also

discretize the 0D model with a BDF2 scheme, namely

πn
l = α̂lπ

n−1
l −

α̂l

4
πn−2
l + β̂lQ

n
l , Pn

l = γ̂lQ
n
l + α̂lπ

n−1
l −

α̂l

4
πn−2
l , (35)

with α̂l
def
=

2Rd,lCd,l

(3/2)Rd,lCd,l + τ
, β̂l

def
=

Rd,lτ
(3/2)Rd,lCd,l+τ , γ̂l

def
= Rp,l + β̂l.

Hence, using equation (35)2 to define the implicit coupling with the projection step, we obtain
the following time-stepping method:
1. Viscous step: Find ũn ∈ VΣ,h such that





ũn|Γin = uin(tn),
ρf
2τ

(3ũn,v)Ωf
+ ρf(ũ

n−1 ·∇ũn,v)Ωf
+ 2µ (ǫ(ũn), ǫ(v))Ωf

+
ρf
2
((∇ · ũn−1)ũn,v)Ωf

= − (∇pn,v) +
ρf
2τ

(
4un−1 − un−2,v

)
Ωf

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃n
l

def
=
∫
Γl

ũn · nf .
2. Increment-Windkessel step: Find δpn ∈ Rh and such that

τ

ρf
(∇δpn,∇q)Ωf

+

n0D∑

l=1

(δpn|Γl
)(q|Γl

)

γ̂l

=

n0D∑

l=1

(
Q̃n

l +
α̂lπ

n−1
l − ψ̂lπ

n−2
l − Pn−1

l

γ̂l

)
q|Γl

− (∇ · ũn, q)Ωf

for all q ∈ Rh.

3. End-of-step: Set pn
def
= pn−1 + δpn, un def

= ũn −
2τ

3ρf
∇δpn ∈ [L2(Ωf)]

d, Pn
l = pn|Γl

and

compute (Qn
l , π

n
l ) ∈ R

2 from the relations (25).

Remark 3.8 It is well known that the stability of the pressure-incremental projection scheme
requires that the finite element spaces for velocity and pressure satisfy an inf-sup condition (see
[15] for an extended discussion).

3.2.4 Extension to more complex lumped parameter models

The algorithm and analysis presented above can be straightforwardly extended to more com-
plex networks of lumped parameter models, made of resistances, capacitances, and inductances.
These networks can be obtained, for instance, by connecting several Windkessel elements (see,
e.g., [17, 19, 22] and the references therein).

Inria



3D-0D coupling schemes in hemodynamics 15

Let us consider the following general lumped parameter model





C
dP

dt
+RP = Q+HΨ,

L
dΨ

dt
= −H⊺P,

(36)

with
P ⊺ def

=
[
P1 . . . Pn0D

π1 . . . πnπ

]
,

the collection of outlet Pl, l = 1, . . . , n0D and distal pressures πj , j = 1, . . . , nπ, and Ψ are the
fluxes through the inductances, both representing the dynamical state of the lumped parameter
model. Moreover, we assume that Q(t) ∈ R

np has the form

Q⊺ def
=
[
Q1 . . . Qn0D

0 . . . 0
]
,

with Ql the input flux at the outlet Γl.
In (36), C, R,L denote symmetric capacitances, resistances and inductances matrices. This

ensures the correct energy balance of the system in the 3D-0D time-space continuos formulation,
namely

d

dt

(
1

2
P ⊺CP +

1

2
Ψ⊺LΨ

)
= −P ⊺RP + P ⊺Q,

since that the last term of the right-hand-side cancels out when coupling (36) with (1). As
an example, the three-element Windkessel presented above, with an additional inductance Lp

parallel to Rp, can be rewritten in this format obtaining the following expressions for the system
matrices

C =

[
0 0
0 Cd

]
, R =

[
1/Rp −1/Rp

−1/Rp 1/Rp + 1/Rd

]
, H =

[
−1
1

]
, L = Lp.

More complex models can be represented in this format analagously.
Discretizing (36) in time (e.g., using a backward Euler scheme), we obtain

Pn = APn−1 +BQn +BHΨn−1, (37)

with
B

def
= (C/τ +R)−1, A

def
= B(C/τ + τHL−1H⊺).

In order to derive the 3D-0D implicit coupling scheme (Algorithm 2), we need explicit expressions
for Qn

l , l = 1, . . . , n0D. These can be computed algebraically from (37) by first isolating the
degrees-of-freedom on the outlets via

¯̄B



Qn

1
...

Qn
n0D


 =



Pn
1
...

Pn
n0D


− ĀPn−1 − B̄ HΨn−1,

with (̄) denoting the first n0D rows and ¯̄() the first n0D rows and columns, respectively. Hence,
we obtain the following expression



Qn

1
...

Qn
n0D


 = G



Pn
1
...

Pn
n0D


−GĀPn−1 −GB̄ HΨn−1,
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with G = ( ¯̄B)−1. Finally, by combining the latter with (20), we obtain the following formulation
of the pressure projection-Windkessel step (compare with (24)): Find pn ∈ Rh such that

τ

ρf
(∇pn,∇q)Ωf

+

n0D∑

k,l=1

gk,l(p
n|Γk

)(q|Γl
)

=

n0D∑

l=1

(Q̃n
l + bn−1

l q|Γl
)(q|Γl

)− (∇ · ũn, q)Ωf
(38)

for all q ∈ Rh and with gk,l
def
= [G]k,l, bnl

def
= [GĀPn + GB̄ HΨn]l. Note that, in this general

formulation, the pressure at the outlets can be coupled through the lumped parameter model
since generally gk,l 6= 0 for k 6= l.

Remark 3.9 Using the same arguments than in Section 3.2.1, the unconditional stability re-
sults of Theorem 3.7 can be extended to a fractional-step scheme with the generalized pressure
projection formulation (38).

4 Incompressible fluid-structure interaction

Fractional-step time-marching schemes have been a valuable tool for the design of efficient
solution methods for incompressible fluid-structure interaction (FSI) problems, yielding the pro-
jection semi-implicit coupling schemes [1, 9]. This coupling approach is based on the following
three basic ideas:

• treat explicitly the geometrical non-linearities and the viscous-structure coupling, which
reduces computational complexity;

• treat implicitly the presssure-structure coupling, which avoids numerical instability;

• perform this explicit-implicit splitting through a projection scheme in the fluid.

So far, the stability of this method has been analyzed within a simplified framework which
enforces null pressure on the outlet boundaries (see [1, 9]). In this section the analysis is extended
to the case of a lumped parameter modeling of the outlet boundaries, with a pressure-Poisson
formulation of the projection step, based on the methods of Section 3.

4.1 Model problem

For the sake of the analysis (see [9]), we consider as model problem a coupled linear system
in which the fluid is described by the Stokes equations, in the fixed domain Ωf , and the structure
either by the classical linear elastodynamics equations or by equations based on linear thin-solid
models (e.g., plate, shell, etc.). The reference domain of the solid is denoted by Ωs. It will
be either a domain or a 2−manifold of R3 (in this later case the elastic domain is identified to

its mid-surface). We denote by Σ
def
= ∂Ωs ∩ ∂Ωf the fluid-structure interface. In the case the

structure is described by thin-solid model we have Ωs = Σ (see Figure 2). The resulting coupled
system, describing the fluid velocity u : Ωf ×R

+ → R
3, fluid pressure p : Ωf ×R

+ → R and solid

Inria
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Ωf ΣΓ
in

Γ1

Γ2
Ωs

Ωs

Ωs

Figure 2: Examples of geometric configuration Ωs 6= Σ (Ωs = Σ, see Figure 1).

displacement y : Ωs × R
+ → R

3, is given by




ρf∂tu−∇ · σ(u, p) = 0 in Ωf ,

∇ · u = 0 in Ωf ,

u = uin on Γin,

u = ẏ in Σ,

(39)

{
ρs (∂tẏ,vs)Ωs

+ as(y,vs) = − (σ(u, p)nf ,vs)Σ ∀vs ∈ W ,

ẏ = ∂ty in Ωs,
(40)

completed with the lumped-parameter modeling (2)-(3) on the outlet boundary Γout (see Figure
2). Here, ρs denotes the solid density, the abstract bilinear form as : W × W → R describes
the elastic behavior of the structure and W stands for its space of admissible displacements.
It should be noted that the solid problem (40) has been written in weak form, which allows to
treat in the same formulation the case of thin and thick solid models. The relations (39)4 and
(40)1 enforce the kinematic and kinetic interface coupling conditions, respectively. Note that the
latter represents also the variational formulation of the structure subproblem. Though simplified,
problem (39)-(40) features some of the main numerical issues that appear in complex nonlinear
fluid-structure interaction problems involving an incompressible fluid (see, e.g., [8]).

Let the quantity E(t)
def
= ρf

2 ‖u‖
2
0,Ωf

+ ρs

2 ‖ẏ‖
2
0,Ωs

+ 1
2‖y‖

2
s +

∑n0D

l=1
Cd,l

2 π2
l denote the total

(kinetic + potential) energy of the FSI-0D coupled system given by (39)-(40) and (2)-(3). Here,

‖ · ‖s stands for the elastic energy norm of the solid, defined as ‖y‖2s
def
= as(y,y). Assuming that

uin = 0 (free system) and using a standard energy argument, we get the following identity

E(t) +D(t) = E(0), (41)

with the dissipative term D(t) > 0 given as in (4).
Note that in this model problem we do not consider the convective term in the fluid, hence

we have to solve the fluid in a fixed domain in order to get the right energy balance across the
fluid-structure interface Σ.

4.1.1 Spatial discretization

Let {Ts,h}0<h≤1 be a quasi-uniform family of triangulations of the domain Ωs. In order to
ease the presentation, we assume that the fluid and solid triangulations Tf,h and Ts,h match at
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the interface Σ. For the discretization in space of the solid problem (40), we consider continuous
Lagrange finite element approximations, Wh of W , which match the fluid velocity discretizations
at the interface. Hence,

{v|Σ | v ∈ Vh} = {vs|Σ | vs ∈ Wh} .

At last, we introduce the standard fluid-sided discrete lifting operator Lh : Wh → Vh, such that,
the nodal values of Lhvs vanish out of Σ and (Lhvs)|Σ = vs|Σ, for all vs ∈ Wh. In what follows
we shall make use of the following continuity estimates (from [9, Lemma 1]) for the discrete
lifting operator Lh:

‖Lhvs‖0,Ωf
≤ CLh

1−α
2 ‖vs‖0,Ωs

, ‖∇Lhvs‖0,Ωf
≤ CLh

− 1+α
2 ‖vs‖0,Ωs

(42)

for all vs ∈ Wh and with the notation

α
def
=

{
0 if Ωs = Σ,

1 if Ωs 6= Σ.
(43)

4.1.2 Semi-implicit FSI scheme with implicit 3D-0D coupling

In this case we consider numerical approximations of the coupled problem FSI-0D system
(39)-(40) and (2)-(3) by combining the projection semi-implicit coupling scheme reported in [9]
with the 3D-0D implicit coupling of Section 3.2. The resulting fully discrete time-marching
procedure is reported in Algorithm 3. In the solid subproblem (47), the fluid residual terms are
given by

〈Rµ(ũ
n),v〉

def
=

ρf
τ
(ũn,v)Ωf

+ 2µ (ǫ(ũn), ǫ(v))Ωf
−
ρf
τ

(
un−1,v

)
Ωf
,

〈Rp(p
n,un),v〉

def
=

ρf
τ
(un,v)Ωf

−
ρf
τ
(ũn,v)Ωf

− (pn,∇ · v)Ωf
.

Algorithm 3 (Semi-implicit FSI scheme with implicit 3D-0D coupling)

Let u0 = u0, π0
1 , . . . , π

0
n0D

∈ R and y0, ẏ0 ∈ Wh be given initial data. For n ≥ 1 perform:

1. Viscous step: Find ũn ∈ Vh such that





ũn|Σ = ẏn−1|Σ,

ũn|Γin = uin(tn),
ρf
τ
(ũn,v)Ωf

+ 2µ (ǫ(ũn), ǫ(v))Ωf
=
ρf
τ

(
un−1,v

)
Ωf

(44)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃n
l

def
=
∫
Γl

ũn · nf .

2. Implicit step (projection-Windkessel-solid step): Find (pn,un,yn) ∈ Rh × Vh ×Wh with
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ẏn = ∂τy
n and such that





τ

ρf
(∇pn,∇q)Ωf

+

n0D∑

l=1

(pn|Γl
)(q|Γl

)

γl
=

n0D∑

l=1

(
Q̃n

l +
αlπ

n−1
l

γl

)
q|Γl

− (∇ · ũn, q)Ωf
− ((ẏn − ũn) · nf , q)Σ ,

(45)





un|Γin = uin(tn),

un|Σ = ẏn|Σ,
ρf
τ
(un,v)Ωf

=
ρf
τ
(ũn,v)Ωf

− (∇pn,v)Ωf
,

(46)

ρs (∂τ ẏ
n,vs)Ωs

+ as(y
n,vs) = −〈Rµ(ũ

n),Lhvs〉 − 〈Rp(u
n, pn),Lhvs〉 (47)

for all (q,v,vs) ∈ Rh × VΣ∪Γout,h ×Wh.

Thereafter, set Pn
l = pn|Γl

and compute (Qn
l , π

n
l ) ∈ R

2 from the relations

Qn
l =

Pn
l − αlπ

n−1
l

γl
, πn

l = αlπ
n−1
l + βlQ

n
l , l = 1, . . . n0D. (48)

Let the quantities

En def
=
ρf
2
‖un‖20,Ωf

+
ρs
2
‖ẏn‖20,Ωs

+
1

2
‖yn‖2s +

n0D∑

l=1

Cd,l

2
|πn

l |
2,

Dn def
=2µ

n∑

m=1

τ‖ǫ(ũm)‖20,Ωf
+

n−1∑

m=1

n0D∑

l=1

τ

(
|πm

l |2

Rd,l
+Rp,l|Q

m
l |2
)

for n ≥ 1, denote the energy and physical dissipation of the discrete FSI-0D system. We then
have the following energy based result.

Theorem 4.1 Let
{
(ũn, pn,yn, ẏn)

}
n≥1

and
{
(Qn

l , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated

solution given by Algorithm 3, and assume that uin = 0 (free system) and that the following
condition holds

ρs ≥ 3CL

(
ρfh

1−α +
µτ

h1+α

)
, (49)

with α given by (43). Then, following energy inequality holds

En +Dn . E0 −
n−1∑

m=1

τ2

ρf

∥∥Π⊥
h (∇pn)

∥∥2
0,Ωf

, (50)

with Πh : L2(Ωf) → VΣ∪Γin,h stands for the L2-projection operator into VΣ∪Γin,h, and Π⊥
h

def
=

I −Πh for the corresponding orthogonal projection.

Proof. First, testing the viscous step (44) with v = ũn − Lhẏ
n−1 yields

ρf
2τ

(
‖ũn‖20,Ωf

−
∥∥un−1

∥∥2
0,Ωf

)
+
ρf
2τ

∥∥ũn − un−1
∥∥2
0,Ωf

+ 2µ‖ǫ(ũn)‖20,Ωf
−
〈
Rµ(ũ

n),Lhẏ
n−1
〉
= 0. (51)
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On the other hand, testing (46) with v = un − Lhẏ
n yields

ρf
2τ

(
‖un‖20,Ωf

− ‖ũn‖20,Ωf

)
+
ρf
2τ

‖un − ũn‖20,Ωf

+ (∇pn,un)Ωf
− (pn, ẏn · nf)Σ − 〈Rp(p

n,un),Lhẏ
n〉 = 0 (52)

and taking vs = ẏn in (47) yields

ρs
2
∂τ‖ẏ

n‖20,Ωs
+
ρs
2τ

∥∥ẏn − ẏn−1
∥∥2
0,Ωs

+
1

2
∂τ‖y

n‖2s +
1

2τ
‖yn − yn−1‖2s

= −〈Rµ(ũ
n),Lhẏ

n〉 − 〈Rp(p
n,un),Lhẏ

n〉 . (53)

As a result, by adding the equalities (51)-(53) we get

ρf
2
∂τ‖u

n‖20,Ωf
+ 2µ‖ǫ(ũn)‖20,Ωf

+
ρs
2
∂τ‖ẏ

n‖20,Ωs
+

1

2
∂τ‖y

n‖2s

+
ρs
2τ

∥∥ẏn − ẏn−1
∥∥2
0,Ωs

+ (∇pn,un)Ωf
− (pn, ẏn · nf)Σ︸ ︷︷ ︸
T1

−
〈
Rµ(ũ

n),L(ẏn − ẏn−1)
〉

︸ ︷︷ ︸
T2

≤ 0. (54)

Following the argument used in [1, Appendix A], from (45) we infer that

ũn = un +Π⊥
h (ũn − Lhẏ

n) +
τ

ρf
Πh (∇pn) . (55)

Thereafter, taking q = pn in (45), integrating by parts in its right-hand side, and since Pn
l =

pn|Γl
, we have

τ

ρf
‖∇pn‖20,Ωf

+

n0D∑

l=1

Pn
l − αlπ

n−1
l

γl
Pn
l − (ũn,∇pn)Ωf

+ (pn, ẏn · nf)Σ = 0.

Now, by inserting (55) into this expression and using (31), we get

T1 =
τ

ρf

∥∥Π⊥
h (∇pn)

∥∥2
0,Ωf

+

n0D∑

l=1

Pn
l − αlπ

n−1
l

γl
Pn
l −

(
Π⊥

h (ũn − Lhẏ
n) ,∇pn

)
Ωf

≥
τ

ρf

∥∥Π⊥
h (∇pn)

∥∥2
0,Ωf

+
Cd,l

2
∂τ |π

n
l |

2 +
1

Rd,l
|πn

l |
2 +Rp,l|Q

n
l |

2

−
(
Π⊥

h (ũn − Lhẏ
n) ,∇pn

)
Ωf︸ ︷︷ ︸

T3

.

Therefore, by applying this lower bound to (54) we get

ρf
2
∂τ‖u

n‖20,Ωf
+
ρf
2τ

∥∥ũn − un−1
∥∥2
0,Ωf

+ 2µ‖ǫ(ũn)‖20,Ωf
+
ρs
2
∂τ‖ẏ

n‖20,Ωs
+

1

2
∂τ‖y

n‖2s

+
ρs
2τ

∥∥ẏn − ẏn−1
∥∥2
0,Ωs

+
τ

ρf

∥∥Π⊥
h (∇pn)

∥∥2
0,Ωf

+
Cd,l

2
∂τ |π

n
l |

2 +
1

Rd,l
|πn

l |
2 +Rp,l|Q

n
l |

2

≤ T2 + T3. (56)
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Term T2 can be bounded as in [9], using (42), which yields

T2 ≤
ρf
τ
‖ũn − un−1‖0,Ωf

‖Lh(ẏ
n − ẏn−1)‖0,Ωf

+ 2µ‖ǫ(ũn)‖0,Ωf
‖ǫ(Lh(ẏ

n − ẏn−1))‖0,Ωf

≤ε1
ρf
2τ

‖ũn − un−1‖20,Ωf
+ ε2µ‖ǫ(ũ

n)‖20,Ωf

+ CL

(
ρf

2τε1
h1−α +

µ

ε2
h−1−α

)
‖ẏn − ẏn−1‖20,Ωs

.

(57)

Term T3 can be bounded following the argument used in [1], which yields

T3 =
(
Π⊥

h

(
Lh(ẏ

n−1 − ẏn)
)
,Π⊥

h (∇pn)
)
Ωf

≤ε3
τ

2ρf
‖Π⊥

h (∇pn)‖20,Ωf
+

ρf
2τε3

CLh
1−α‖ẏn − ẏn−1‖20,Ωs

.
(58)

Hence, by inserting (57)-(58) into (56) we get the energy estimate

ρf
2
∂τ‖u

n‖20,Ωf
+
ρf
2τ

(1− ε1)
∥∥ũn − un−1

∥∥2
0,Ωf

+ µ(2− ε2)‖ǫ(ũ
n)‖20,Ωf

+
ρs
2
∂τ‖ẏ

n‖20,Ωs

+
1

2
∂τ‖y

n‖2s +

[
ρs
2τ

− CL
ρf
2τ
h1−α

(
1

ε1
+

1

ε3

)
− CL

µ

ε2
h−1−α

] ∥∥ẏn − ẏn−1
∥∥2
0,Ωs

+
τ

ρf

(
1−

ε3
2

)∥∥Π⊥
h (∇pn)

∥∥2
0,Ωf

+

n0D∑

l=1

(
Cd,l

2
∂τ |π

n
l |

2 +
1

Rd,l
|πn

l |
2 +Rp,l|Q

n
l |

2

)
≤ 0.

At last, the energy estimate (50) follows by taking in the latter ε1 = 1
2 , ε2 = ε3 = 1, summing

over n and using (49), which completes the proof.
Proposition 4.1 guarantees the conditional stability of Algorithm 3. Note that the stability

condition is similar to the one obtained in [9] with a Darcy-like formulation of the projection
step. The estimate (50) corresponds to the discrete counterpart of (41), the right-hand side of
(50) is a dissipative numerical term related to the natural pressure stabilization of the projection
scheme. Moreover, extensive numerical simulations with the semi-implicit FSI coupling scheme
in physiological regimes (see [9, 8, 20]) suggest that condition (49) is not necessary for stability.

4.1.3 Semi-implicit FSI scheme with explicit 3D-0D coupling

We now consider numerical approximations of the coupled problem FSI-0D system (39)-(40)
and (2)-(3) by combining the projection semi-implicit coupling scheme reported in [9] with the
3D-0D explicit coupling of Section 3.1. The resulting fully discrete time-marching procedure is
reported in Algorithm 4.

Algorithm 4 (Semi-implicit FSI scheme with explicit 3D-0D coupling)

Let u0 = u0, π0
1 , . . . , π

0
n0D

∈ R and y0, ẏ0 ∈ Wh be given initial data. For n ≥ 1 perform:

1. Viscous step: Find ũn ∈ Vh such that




ũn|Σ = ẏn−1|Σ,

ũn|Γin = uin(tn),
ρf
τ
(ũn,v)Ωf

+ 2µ (ǫ(ũn), ǫ(v))Ωf
=
ρf
τ

(
un−1,v

)
Ωf

(59)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃n
l

def
=
∫
Γl

ũn · nf .
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2. Windkessel step: For l = 1, . . . , n0D, compute (Qn
l , π

n
l , P

n
l ) ∈ R

3 from





Qn
l = Q̃n

l ,

Cd,l∂τπ
n
l +

πn
l

Rd,l
= Qn

l ,

Pn
l = Rp,lQ

n
l + πn

l .

(60)

3. Implicit projection-solid step: Find (pn,un,yn) ∈ Rh×Vh×Wh with ẏn = ∂τy
n and such

that



pn|Γl

= Pn
l , l = 1, . . . , n0D,

τ

ρf
(∇pn,∇q)Ωf

= − (∇ · ũn, q)Ωf
− ((ẏn − ũn) · nf , q)Σ

(61)





un|Γin = uin(tn),

un|Σ = ẏn|Σ,
ρf
τ
(un,v)Ωf

=
ρf
τ
(ũn,v)Ωf

− (∇pn,v)Ωf
,

(62)

ρs (∂τ ẏ
n,vs)Ωs

+ as(y
n,vs) = −〈Rµ(ũ

n),Lhvs〉 − 〈Rp(u
n, pn),Lhvs〉 (63)

for all (q,v,vs) ∈ RΓout,h × VΣ∪Γin,h ×Wh.

The following proposition provides an energy estimate for the approximations provided by
Algorithm 4.

Theorem 4.2 Let
{
(ũn, pn,yn, ẏn)

}
n≥1

and
{
(Qn

l , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated so-

lution given by Algorithm 4 and assume that uin = 0 (free system). Then, under the condition
(49), the following energy inequality holds

En +Dn . E0 −
n−1∑

m=1

τ2

2ρf

∥∥Π⊥
h (∇pm)

∥∥2
0,Ωf

+

n−1∑

m=1

τ (∇ · ũm, φm)Ωf

+

n−1∑

m=1

τ2

ρf
(∇pm,∇φm)Ωf

+

n−1∑

m=1

τ (ẏm · nf , φ
m)Σ . (64)

Proof. The result follows by combining the arguments involved in the proofs of Propositions
3.2 and 4.1. Hence, only partial details are given. The main difference lies on the estimation of
term T1 in (54). Since q ∈ RΓout,h, integration by parts in (61) gives

(∇pn,∇q)Ωf
=
ρf
τ
(ũn,∇q)Ωf

− (ẏn · nf , q)Σ ,

so that by testing with q = (pn − φn) ∈ RΓout,h we get

τ

ρf
‖∇pn‖20,Ωf

−(ũn,∇pn)Ωf
+(ẏn · nf , p

n)Σ+

(
ũn −

τ

ρf
∇pn,∇φn

)

Ωf

−(ẏn · nf , φ
n)Σ = 0. (65)
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As in the proof of Proposition 4.1, from (62) we get (55). Hence, inserting this expression into
(65) we get

− (∇pn,un)Ωf
+ (pn, ẏn · nf)Σ +

τ

ρf

∥∥Π⊥
h (∇pn)

∥∥2
0,Ωf

−
(
Π⊥

h (ũn − Lhẏ
n) ,∇pn

)
Ωf

= −

(
ũn −

τ

ρf
∇pn,∇φn

)

Ωf

+ (ẏn · nf , φ
n)Σ

−
n0D∑

l=1

Qn
l P

n
l + (∇ · ũn, φn)Ωf

+
τ

ρf
(∇pn,∇φn)Ωf

+ (ẏn · nf , φ
n)Σ (66)

and the estimate (64) follows using the same arguments than in the proof of Proposition 4.1.

Remark 4.3 A comparison of the energy estimates (16) and (64) suggests that the fluid-solid
interaction introduces and additional destabilizing effect in the explicit splitting of the 3D-0D
coupling (12), due to the presence of the artificial interface term

n−1∑

m=1

τ (ẏm · nf , φ
m)Σ .

In particular, it is worth noting that the observation made in Remark 3.4 for the case of a single
outlet is not valid in the FSI framework, since the above term does not vanish for φm = Pm in
Ωf . This point will be illustrated trough numerical experiments in Section 5.2.

5 Numerical experiments

In this section we present two numerical experiments that confirm the analysis of the previous
sections.

5.1 Blood flow in a patient-specific aorta

Our first example is a pure Navier-Stokes flow within a patient-specific aorta with repaired
coarctation (see Figures 3-Left-Center). The geometry comes from the euHeart database1. A

Outlet 1 Outlet 2 Outlet 3 Outlet 4
Rp (dyn · s · cm−5) 250 683 615 94
Rd (dyn · s · cm−5) 104 1.296 · 104 1.1664 · 104 0.1794 · 104

C (cm5 · dyn−1) 4 · 10−4 2 · 10−4 2 · 10−4 14 · 10−4

Table 1: Parameters for the Windkessel’s model. The outlets are ordered in direction of the flow.

segment growing registration algorithm (see [2, 3]) was used for the segmentation of the geometry
from the medical image. The resulting surface was pre-processed with 3-matic (Materialise) and
the final mesh was generated with Gmsh [13]. The inflow curve used as boundary condition
(Figure 4-Right, black-line) was obtained from the same patient with Phase Contrast MRI.
The initial constant pressure was set to 47mmHg, and the Windkessel parameters (reported

1
www.euheart.eu
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Figure 3: Patient-specific aorta. Left: geometry. Center: surface mesh. Right: simulation results
for the aorta (vector velocity field and pressure distribution).
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Figure 4: Mean pressures at inlet (black) and outlets 1 to 4 (blue, green, red, cyan). Explicit
(left) and implicit (right) schemes.

in Table 1) where calibrated in order to approximate the measured pressure at the coarctation
and the measured flow on each outlet. The physical parameters of the fluid are µ = 0.035Po
and ρf = 1 gr/cm3. For the numerical simulation, we use P1 finite elements for both pressure
and velocity fields (SUPG stabilization in the viscous-convective step, where we assume that the
first perform the Chorin-Temam splitting and then we stabilize) and a time step τ = 10−3 s. A
snapshot of the simulation results is shown in Figure 3-Right. Figures 4 and 5 show the pressure
and flow results for both schemes (Algorithms 1 and 2, respectively). The spurious oscillations
in the approximation provided by the explicit 3D-0D coupling scheme are clearly visible for all
the outlet pressures and (less pronounced) for some outlet fluxes, while the implicit formulation
guarantees stability within the whole cardiac cycle. Hence, these results are in agreement with
the stability estimates provided by Theorems 3.2 and 3.7. As further validation of the numerical
scheme, Figure 6 shows the pressures and flows curves computed using a monolithic solver,
implicitely coupled with the 0D-model, showing a satisfactory agreement of the results.
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Figure 5: Fluxes for inlet (black) and outlets 1 to 4 (blue, green, red, cyan). Explicit (left) and
implicit (right) schemes.
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Figure 6: Pressures (left) and fluxes (right) for inlet (black) and outlets 1–4 (blue, green, red,
cyan) obtained with a monolithic method (circles) and with the projection method (continuos)
using an implicit 3D-0D coupling.

5.2 Fluid-structure interaction in an idealized AAA

We consider an idealized abdominal aortic aneurysm (AAA) of length 22.95 cm, minimal
diameter 1.7 cm (tubular part), maximal diameter 4.98 cm (aneurysm) and wall thickness 0.2 cm
(see Figure 7 (left)). The structure is described by the linear elastodynamics equations and the
fluid by the incompressible Navier-Stokes equations in a moving domain (ALE formalism). We
considered the non-linear counterpart of Algorithms 3 and 4 using the projection semi-implicit
coupling scheme reported in [9]. The solid has Young’s modulus 1MPa, Poisson ratio is 0.46
and density 1.2 g/cm3. The fluid viscosity is µ = 0.035Po and its density 1 g/cm3. The inlet
and the outlet parts of the solid are clamped. In the fluid, a parabolic velocity profile is enforced
at the inlet, with a realistic inflow (peak velocity ≈ 96 cm/s). The Windkessel parameters are
Rp = 700 dyn · s · cm−5, Rd = 5 · 103 dyn · s · cm−5 and C = 2 · 10−4 cm5 · dyn−1. At t = 0,
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Figure 7: Left: snapshot of the velocity field (left) inside the idealized AAA, the curves show
outlet pressure and displacements of the aneurysm wall. Right: Windkessel pressure for the AAA,
comparison between implicit (solid line) and explicit (dashed line) fluid-Windkessel coupling.

the pressure is constant and equal to 80 mmHg, whereas all the other state variables are zero.
During the whole simulation, the stress received by the structure is corrected by the initial one,
and the solid only responds to the difference with the diastolic phase. In this way, the load
applied to the structure is kept reasonable small so that the linearity assumptions holds.

The results are summarized in Figure 7 (right), showing the Windkessel pressures in time
for a time step P for τ = 0.001 s. Note that the semi-implicit algorithm with explicit 0D-3D
coupling (Algorithm 4) is unstable whereas with the implicit 3D-0D treatment (Algorithm 3) the
numerical solution remains stable. In fact, from the results one can infer that the interface term
outlined in Remark 4.3, namely (ẏn, Pnnf)Σ, injects a positive artificial power into the system
(an increased pressure Pn > 0 leads to ẏn · nf > 0).

6 Conclusions

In this paper we formulated and analyzed the treatment of a 3D-0D coupling between the
3D distributed (fluid, fluid-structure interaction) models and a set of Windkessel 0D models.
The key ingredient in the proposed schemes is the use of a fractional-step time-marching in the
3D compartment. For purely fluid problems with multiple outlets, our energy based stability
analysis showed that numerical instabilities might appear when using an explicit 3D-0D coupling.
Interestingly, this result also holds with a single outlet in the case of fluid-structure interaction.
We proposed to overcome this issues via an implicit treatment of the 3D-0D coupling, which
involves a negligible additional computational cost with respect to the explicit strategy. These
theoretical expectations were confirmed by numerical experiments in realistic geometries and
physiological data.
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