
HAL Id: hal-00786812
https://hal.inria.fr/hal-00786812

Submitted on 20 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Split Tiling for GPUs: Automatic Parallelization Using
Trapezoidal Tiles to Reconcile Parallelism and Locality,

avoiding Divergence and Load Imbalance
Albert Cohen, Tobias Grosser, Paul H. J. Kelly, J. Ramanujam, Ponnuswamy

Sadayappan, Sven Verdoolaege

To cite this version:
Albert Cohen, Tobias Grosser, Paul H. J. Kelly, J. Ramanujam, Ponnuswamy Sadayappan, et al..
Split Tiling for GPUs: Automatic Parallelization Using Trapezoidal Tiles to Reconcile Parallelism
and Locality, avoiding Divergence and Load Imbalance. GPGPU 6 - Sixth Workshop on General
Purpose Processing Using GPUs, Mar 2013, Houston, United States. �hal-00786812�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49819517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00786812
https://hal.archives-ouvertes.fr

Split Tiling for GPUs: Automatic Parallelization Using
Trapezoidal Tiles

Tobias Grosser
École Normale Supérieure
tobias.grosser@inria.fr

Albert Cohen
École Normale Supérieure
albert.cohen@inria.fr

Paul H J Kelly
Imperial College London
p.kelly@doc.ic.ac.uk

J. Ramanujam
Louisiana State University

jxr@ece.lsu.edu

P. Sadayappan
Ohio State University

sadayappan.1@osu.edu

Sven Verdoolaege
École Normale Supérieure

sven.verdoolaege@inria.fr

ABSTRACT
Tiling is a key technique to enhance data reuse. For computations
structured as one sequential outer “time” loop enclosing a set of
parallel inner loops, tiling only the parallel inner loops may not en-
able enough data reuse in the cache. Tiling the inner loops along
with the outer time loop enhances data locality but may require
other transformations like loop skewing that inhibit inter-tile paral-
lelism.

One approach to tiling that enhances data locality without in-
hibiting inter-tile parallelism is split tiling, where tiles are subdi-
vided into a sequence of trapezoidal computation steps. In this pa-
per, we develop an approach to generate split tiled code for GPUs
in the PPCG polyhedral code generator. We propose a generic al-
gorithm to calculate index-set splitting that enables us to perform
tiling for locality and synchronization avoidance, while simulta-
neously maintaining parallelism, without the need for skewing or
redundant computations. Our algorithm performs split tiling for an
arbitrary number of dimensions and without the need to construct
any large integer linear program. The method and its implemen-
tation are evaluated on standard stencil kernels and compared with
a state-of-the-art polyhedral compiler and with a domain-specific
stencil compiler, both targeting CUDA GPUs.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processor—Compilers, Opti-
mization

General Terms
Algorithms, Performance

Keywords
Polyhedral model, GPGPU, CUDA, code generation, compilers,
loop transformations, index set splitting, time tiling, stencil

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-6 March 16 2013, Houston, TX, USA
Copyright 2013 ACM 978-1-4503-2017-7/13/03 ...$15.00.

1. INTRODUCTION AND RELATED WORK
Advances in technology over the last few decades have yielded

significantly different rates of improvement in the computational
performance of processors relative to the cost of a memory ac-
cess. Because of the significant mismatch between computational
latency and throughput when compared to main memory latency
and bandwidth, the use of hierarchical memory systems and the
exploitation of significant data reuse in the higher levels (i.e., clos-
est to the processor) of the memory hierarchy are critical for high
performance. Tiling is a key loop-level compiler transformation
technique to enable high data reuse in higher levels of the memory
hierarchy.

The effective use of cache and scratchpad memory in GPUs is
critical for high performance, since the computational performance
(in GFlops) on current GPUs is well over an order of magnitude
higher than the aggregate bandwidth to global memory (in Giga-
words per second). While a sizable number of applications have
been developed for GPUs by application developers using CUDA
and OpenCL, the expertise and effort needed to develop GPU ap-
plications that reach high performance is limiting its potential use.
Therefore, there is a growing recognition of the need to provide
higher level programming abstractions for GPUs if their use is to
be broadened.

The recent development of the OpenACC standard [16] is an out-
come of this recognition. With OpenACC, just as with the popu-
lar OpenMP model for shared-memory multi-core programming,
the developer uses parallelization directives, retaining the control
flow of a sequential program. The OpenACC compiler is respon-
sible for (i) automatically off-loading the execution of the marked
regions of code for execution on a GPU, (ii) handling the manage-
ment of memory on the GPU, (iii) data transfers between the host
and GPU memory, and (iv) the generation of effective GPU code.
With current OpenACC compilers, especially when supported with
user control over data regions, the compiler can be very effective in
managing data transfers between CPU and GPU. However, many
challenges remain in the automatic generation of effective GPU
code for the marked OpenACC regions of the program.

Several recent efforts address the automatic parallelization of se-
quential code for GPUs [1, 2, 4, 23] and many of the techniques
developed in these projects can be expected to be incorporated into
OpenACC compilers. In this paper, we focus on a class of com-
putations for which effective tiled code generation for GPUs re-
mains a challenge. The computational pattern we focus on is that
of stencil computations, characterized by an outer sequential “time”
loop that iterates over a sequence of inner parallel loops that sweep

multi-dimensional grids with neighbor-based updates. When the
multi-dimensional data grids are larger than cache capacity, untiled
implementations of such codes result in repeated cache misses dur-
ing each “time” loop iteration leadind to low performance that is
limited by the available bandwidth to main memory. Thus, tiling
also along the time dimension is critical to achieving high perfor-
mance with such codes. Recent advances in polyhedral compi-
lation and tools provide an effective solution to this problem for
multi-core CPUs [3, 5]. However, the effective schemes for time-
tiling on multi-core CPUs do not translate well to GPUs. Gen-
eration of high-performance time-tiled code for GPUs remains a
challenge due to many issues, including the need to exploit high de-
grees of SIMD parallelism, limited synchronization capabilities in
GPUs, the criticality of avoiding thread divergence, and the limited
amount of cache and scratch-pad memory. Several recent studies
focus on optimizing stencil computations for multicore CPUs and
GPUs [3, 6–8, 10, 11, 14, 18–20]

Christen et al. [6] develop the PATUS stencil compiler that uses
a stencil description and a machine mapping description to gener-
ate efficient CPU and GPU code. The GPU support of PATUS is
reported to be still preliminary and, in contrast to our approach, it
does not perform any time tiling. Strzodka et al. [18, 19] use time
skewing with cache-size oblivious parallelograms to reduce mem-
ory system pressure and improve parallelism in stencils on CPUs,
but do not address GPU-specific challenges. Han et al. [10] develop
pattern-based optimization of stencil codes on CPUs and GPUs us-
ing a proposed extension to OpenMP. Micikevicius et al. [14] hand-
tune a 3-D finite difference computation stencil. Datta et al. [7, 8]
highlight the importance of auto-tuning and develop an optimiza-
tion and auto-tuning framework for stencil computations, targeting
multi-core systems, NVIDIA GPUs, and Cell SPUs. But Han et al.,
Micikevicius et al. and Datta et al. do not consider time-tiled im-
plementations on GPUs. Nguyen et al. [15] develop a data block-
ing scheme that optimizes memory bandwidth and computation re-
sources on GPU devices. Di and Xue [9] address tile size selection
for GPU kernels related to stencils. However, these works do not
address automatic code generation for GPUs.

Tang et al. [20] propose the Pochoir stencil compiler which uses
a DSL embedded in C++ to produce high-performance code for
stencil computations using cache-oblivious parallelograms for par-
allelism on x86 targets; they do not address issues specific to GPU
code generation for stencil computations. Meng and Skadron [13]
develop a performance model for the evaluation of ghost zones
for stencil computations on GPU architectures, relying on user-
provided annotations for GPU code generation; they do not con-
sider fully automated code generation.

The standard approach to time-tiling of stencil computations re-
quires skewing of the iteration space along the spatial dimensions
relative to the time dimension. Skewing makes subsequent rect-
angular tiling along spatial as well as the time dimension legal,
thereby enabling time-tiling and enhanced data reuse. While this
alleviates the impact of the memory bandwidth constraint for the
time-tiled code, inter-tile dependencies are created along the spatial
dimensions, restricting inter-tile parallelism to be only along diag-
onal wavefronts in the iteration space. In this paper, we develop a
novel static code generation approach for regular stencils targetting
GPUs using split tiling. The idea of alternating between different
phases was inspired by the approach of Strout et al. [17], which
dynamically generates sparse tiles for irregular stencils. Both split
and overlapped tiling have been proposed as alternative tiling tech-
niques to avoid the loss of inter-tile parallelism along the spatial
dimensions [12]. Overlapped tiling achieves this by introducing
redundant computations. In contrast, split tiling does not require

redundant computations, but introduces instead differently shaped
tiles and the need for additional synchronization. Overlapped tiling
is used to enhance tile-level concurrency on multicore systems by
Krishnamoorthy et al. [12]. Holewinski et al. [11] use overlapped
tiling to generate code for GPUs but do not consider split tiling.
Hierarchical overlapped tiling is described by Zhou et al. [24], and
evaluated in the context of OpenCL code generation but only for
CPUs. To date, no compiler algorithms have been developed for the
generation of effective split-tiled code for (multi-statement) stencil
codes.

In this paper, we present a novel polyhedral approach for gener-
ating split-tiled code for GPUs. We propose a generic algorithm to
calculate a schedule for index set splitting that enables us to per-
form tiling while simultaneously maintaining parallelism, without
the need for skewing or redundant computations. Our algorithm
performs split tiling for an arbitrary number of dimensions and
without the need to construct any large integer linear programming
problem instances. The method and its implementation are evalu-
ated on several stencil kernels and compared with a state-of-the-art
domain-specific GPU-stencil compiler. The newly developed algo-
rithm is being incorporated into the publicly available PPCG tool
flow [23].

2. ILLUSTRATIVE EXAMPLE
In this section, we use a simple example to elaborate on the prob-

lem addressed in this paper. The following simple computation ker-
nel contains fine-grained parallelism at the inner loop dimension.

f o r (t = 1 ; t < n ; t ++)
f o r (i = 1 ; i < m − 1 ; i ++)

R : A[t] [i] = A[t −1][i −1] + A[t −1][i + 1] ;

The polyhedral representation (visualized in Figure 2) is:

DR = {A[t, i] : 1≤ t < n∧1≤ i < m−1}
SR = {A[t, i]→ [t, i]}
PR = {A[t, i]→ A[t−1, i−1];A[t, i]→ A[t−1, i+1]}.

DR describes the set of statement instances executed in this kernel,
SR maps each instance to an execution time and PR describes the
dependences that must be respected when changing the execution
order of different statement instances. Details on the polyhedral
model and its representation can be found in [21].

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

t

Figure 1: The iteration space of the simple kernel.

Listing 1: Wavefront parallel code
f o r (t 1 = 0 ; t 1 <= f l o o r d (2∗ n+m−4 ,32) ; t 1 ++) {

l b 1 = max (c e i l d (t1 , 2) , c e i l d (32∗ t1−n + 1 , 3 2)) ;
ub1 = min (min (f l o o r d (n+m−3 ,32) , f l o o r d (32∗ t 1 +m+ 2 9 , 6 4)) , t 1) ;

pragma omp p a r a l l e l f o r s h a r e d (t1 , lb1 , ub1) p r i v a t e (t2 , t3 , t 4)
f o r (t 2 = l b 1 ; t 2 <= ub1 ; t 2 ++)

f o r (t 3 = max (max (1 , 3 2∗ t1 −32∗ t 2) , 3 2∗ t2−m+ 2) ;
t 3 <= min (min (n−1 ,32∗ t 2 +30) ,32∗ t1 −32∗ t 2 + 3 1) ; t 3 ++)

f o r (t 4 = max (32∗ t2 , t 3 + 1) ; t 4 <= min (32∗ t 2 +31 , t 3 +m−2); t 4 ++)
A[t 3][− t 3 + t 4] = A[t3 −1][− t 3 + t4 −1]+A[t3 −1][− t 3 + t 4 + 1] ; ;

}

In the given form, tiling with rectangular tiles in the 2D iter-
ation space is not feasible because we would have mutual inter-
dependences between spatially adjacent tiles. The standard ap-
proach to tiling such a code is to first skew the iteration space so that
no dependences are oriented along the negative direction along any
dimension. The Pluto algorithm developed by Bondhugula et al. [5]
can generate such tiled code for any affine, imperfectly nested loop.

0 5 10 15 20 25 30
i+t

0

2

4

6

8

10

12

14

t

Figure 2: Pluto generated code for the simple kernel (tile size
3×4).

For our example this yields the code in Listing 1,1 whose execu-
tion is depicted in Figure 2.

We can see that while iterations at a fixed time value are parallel
for different values of i within a rectangular tile, there are inter-
tile dependences between horizontally adjacent tiles. This inter-tile
parallelism is not available along the i dimension. Inter-tile par-
allelism is only feasible among tiles in a common diagonal wave-
front.

Such an automatic parallelization approach may be used effec-
tively for multicore CPUs; however, it is not effective for GPUs,
which require a very high degree of thread-level parallelism within
a thread block and multiple concurrent thread blocks to utilize par-
allelism across the streaming multiprocessors in a GPU. We claim
that wavefront parallelism is not optimal for GPUs, due to the low
number of parallel tiles at the beginning and at the end of the com-
putation. An even more effective approach using “diamond” tiles
has very recently been developed for multi-core CPUs [3], but it
1Generated with ‘polycc –tile –parallel’.

remains to be evaluated on GPUs. As illustrated in the next sec-
tion, the split tiling approach does not skew the iteration space but
instead creates trapezoid shaped tiles of suitable shape so that they
can be executed in a small number of phases. In each phase, we
have a set of concurrently executable tiles with intra-tile parallelism
that can be mapped to threads in a thread block.

3. SPLIT TILING OVERVIEW
Figure 3 illustrates split tiling for the previously discussed exam-

ple. Two execution phases are needed for each time-tile. The green
upright trapezoidal tiles in a time band can be executed in parallel.
Each of these tiles is atomically executable since there are no in-
coming dependence edges from either neighboring purple tile. The
only incoming dependences are from iteration points from a previ-
ous time band that have already completed. In mapping this to a
GPU, different green tiles map to different thread blocks, and the
points along the spatial dimension within each tile map to threads
within a thread block. After all the green tiles in a time band have
executed, all purple tiles in the same time band can execute concur-
rently, since all incoming dependences are either from points in the
previous time band or points within a green tile in the same time
band that have already executed.

Let us now provide an overview of the code generation approach
for this simple example. Split tiling divides the iteration space into
subspaces and tiles each subspace with a different schedule. For our
example we define the subspaces TG, the green tile space, and TP,
the purple tile space. The schedule for TG is SG and the schedule
for TP is SP. The overall schedule S is a map where SG is used for
all elements in TG and SP is used for all elements in TP. For each
subspace we can now define a schedule that executes the convex
subsets (our tiles) in parallel. SG and SP define such schedules.
For our example we define TG, TP, SP and SP as follows (tile size
64×32):

TG = {A[t, i] : (∃i′, t ′ : t ′ = t mod 32∧ i′ = i mod 64

∧ i′− t ′ ≤ 0∧ i′+ t ′ ≤ 64−2)}
TP = {A[t, i] : (∃i′, t ′ : t ′ = t mod 32∧ i′ = i mod 64

∧ i′− t ′ < 64∧ i′+ t ′ > 64−2)}
SG = {A[t, i]→ [t ′,0, i′, t, i] : t ′ = bt/32c∗32

∧ i′ = bi/64c∗64}
SP = {A[t, i]→ [t ′,1, i′, t, i] : t ′ = bt/32c∗32

∧ i′ = b(i−31)/64c∗64}

Applying the schedule S with a code generator like CLooG yields
the code in Listing 2.

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

t

Figure 3: Split tiling for the simple example (tile size 10×4).

4. SPLIT TILING ALGORITHM
We present our new algorithm in steps, starting with the main

idea applied to a single statement stencil, then generalizing it to
multi-statement kernels, and refining the method with necessary
optimizations. The algorithm is implemented in PPCG.2

4.1 Core algorithm
Given an iteration space and a set of dependences, we want to

construct a schedule that implements split tiling. We start from a
kernel where there is a single outermost loop that carries all depen-
dences such that the remaining inner dimensions are fully parallel.
Such a kernel is typical for a single statement stencil. As a first
step, we partition the iteration space by placing equally distanced
hyperplanes orthogonal to the axis of the time dimension. The dif-
ferent partitions form bands of fixed height (the height of the tiles).
As the time dimension increases from band to band and as all de-
pendences are carried by the time dimension, the bands can and
must be executed sequentially. To obtain parallelism, we split the
iterations within a single band into tiles of different colors, such
that dependences may enforce an execution order between the dif-
ferent colors, but that within a single color all tiles can be executed
in parallel.

To partition the band into different colors, we derive a tile shape
for each color such that the full band can be covered with these
shapes. The tile shape of the first color C0 is constructed by choos-
ing an arbitrary point X . X will be the apex of a pyramid that con-
tains all iterations within the band that are needed to satisfy the
(transitive) dependences of X . To construct this pyramid, we cal-
culate the dependence distance vectors of the program and attach
all of them to X . Together they form the upper part of a pyramid.
We now extend the dependence vectors backward until their length
along the time dimension matches the tile height we are aiming for.
The convex hull of the extended dependence vectors forms a pyra-
mid. This pyramid is the minimal set of points that we consider as
the shape of the first color. In some cases it is preferable to have a
shape that is wider along certain space dimensions. We can form
2http://repo.or.cz/w/ppcg.git

such wider shapes by “stretching” the initial pyramid along these
space dimensions. Stretching along a dimension means to posi-
tion two copies of the original shape, such that the positions of the
copies only differ in the dimension along which we stretch. The
stretched shape is now the convex hull of the two shapes.

In addition to the first color, we derive one color for each space
dimension in the input. The shape of a color Cx (where x corre-
sponds to some space dimension) is derived by stretching the pyra-
mid of C0 along the x-dimension and by subsequently subtracting
the shapes of all previously calculated colors.

In the case of more than one space dimension, additional colors
are needed. Besides the initial color C0 and the colors for indi-
vidual dimensions, we introduce a color for each combination of
dimensions. This means, for a 3D input, the colors Cxy, Cxz, Cyz as
well as Cxyz are introduced. Their tile shapes are derived by stretch-
ing the initial pyramid along the set of dimensions they are named
after. This can be compared to calculating the different faces of
a cube, where the pyramid itself forms the shape of a vertex, the
pyramids stretched along a single dimension form the differently
oriented edges, the pyramids stretched along two dimensions form
the facets and the pyramid stretched along all three dimensions
forms the cube itself. Stretching the pyramid along more than one
dimension (e.g., along x-y-z) is done recursively. We select one
dimension (e.g., y) and calculate the union of the tile shapes that
correspond to the colors of the remaining dimensions (here Cxy, Cx,
Cz, C0). This union is then replicated along the selected dimension,
the convex hull of the entire construct is calculated, and finally the
previous colors as well as their replicated copies are subtracted.

The split tiling schedule is constructed by tiling the original iter-
ation space with the previously calculated tile shapes, such that the
sequential execution of the different bands as well as of the differ-
ent colors is ensured. Tiles of the same color and within the same
band are mapped to parallel dimensions. The iterations within the
tiles are executed according to the original schedule. As the index
set splitting is calculated without considering the bounds of the it-
eration space, there is no constraint on the shape of the iteration
space. Only as the very last step, we constrain the schedule to the
actual iteration space.

The left part of Figure 4 shows a split tiling of the Jacobi 2D ker-
nel. The pyramid that forms the first color was placed in the center
of the iteration space. At time step one (the upper left illustration)
the number of elements in the first color is still large. When going
down to time step two and three we are moving up the pyramid
such that the number of elements executed becomes smaller. At
time step three, color one consists only of a single point, the sum-
mit of the pyramid. The shape of color two forms the connection
between two vertical neighbors of color one. The shape is non-
convex and resembles a simple butterfly. Color three now forms
the horizontal connection between two neighboring shapes of color
one. Color four, the last color constructed, fills the space enclosed
by the previously calculated colors.

4.2 Tile shape simplification
The previously introduced split-tiling algorithm starts from a sin-

gle pyramid that exactly covers the dependence vectors. Depend-
ing on the dependence vectors, such a minimal pyramid may not
always be parallel to the axes of the iteration space. In case it is
not, such as in Figure 4, subsequent tile shapes may have a non-
convex form. Such non-convex tile shapes are undesirable, not
only because they increase the required amount of communication
between the different tiles, but they also introduce more complex
control flow structures. To avoid such complex control flow struc-
tures, we normally widen the original pyramid to create a rectan-

Listing 2: Split tiled code
f o r (c1 =0; c1 <=M−1; c1 +=32) {

l b = 0 ;
ub = min (N−2, c1+N−3);

#pragma omp p a r a l l e l f o r s h a r e d (c1 , ub , l b) p r i v a t e (c3 , t , i)
f o r (c3 = l b ; c3 <= ub ; c3 +=64)

f o r (t = max (1 , c1) ; t <= min (min (M−1, c1 +31) , c1−c3+N−2); t ++)
f o r (i = max(1 ,− c1+c3+ t) ; i <= min (N−2, c1+c3−t + 6 2) ; i ++)

A[t] [i] = A[t −1][i −1] + A[t −1][i + 1] ;

l b = max(−64 ,−64∗ f l o o r d (−c1+M−3 ,64)−64);
ub = min (N−34,−c1+M+N−66);

#pragma omp p a r a l l e l f o r s h a r e d (c1 , ub , l b) p r i v a t e (c3 , t , i)
f o r (c3 = l b ; c3 <= ub ; c3 +=64)

f o r (t = max (max (max (1 , c1) , c1−c3−62) , c1+c3−N+ 6 5) ; t <= min (M−1, c1 + 3 1) ; t ++)
f o r (i = max (1 , c1+c3−i + 6 3) ; i <= min (N−2,−c1+c3+ t + 6 3) ; j ++)

A[t] [i] = A[t −1][i −1] + A[t −1][i + 1] ;
}

gular base. This can avoid the construction of non-convex tiles.
Figure 4 illustrates the tile shapes resulting from the widening of
the original pyramid to a rectangular base. As can been seen, this
leads to greatly simplified (and convex) shapes.

f o r (t = 0 ; t < T ; t ++)
f o r (i = 0 ; i < N; i ++)

A[t] [i] += A[t −1][i +1] + A[t −2][i −3];

Figure 5: Example

4.3 Multi-statement loop nests
Up to this point, our split-tiling algorithm is only defined for ker-

nels typical of single-statement stencils. In this section, we extend
it to stencil computations that apply more than one statement in
each iteration of the time loop. Such kernels have an additional
sequential dimension with a known non-parametric number of it-
erations that models the lexicographic order of the different state-
ments.

Figure 6 shows a simple two-statement kernel. Its iteration do-
main is {S[t, i] : 0 ≤ t < T ∧ 0 ≤ i < N;P[t, i] : 0 ≤ t < T ∧ 0 ≤
i < N} and its execution order is defined by the following schedule
{S[t, i]→ [t,0, i];P[t, i]→ [t,1, i]}. The following dependences ex-
ist: {S[t, i−2]→P[t, i];P[t−1][i−1]→ S[t, i];S[t−1][i]→ S[t][i];P[t−
1][i]→ S[t− 1][i]}. Mapped into the scheduling space, this yields
{[t,0, i−2]→ [t,1, i]; [t−1,1, i−1]→ [t,0, i]; [t−1,0, i]→ [t,0, i]; [t−
1,1, i]→ [t,1, i]}. By analyzing the dependences, we see that the
two outermost dimensions both carry loop dependences. This means
our split-tiling algorithm is not directly applicable.

By applying a simple pre-transformation we can canonicalize
the code such that it is again possible to use the previously pre-
sented split-tiling algorithm. We detect that only the outermost
time dimension can have parametric size related to the number
of time steps executed. The size of the second sequential dimen-
sion is independent of the number of executed time steps. As the
second dimension represents the lexical order of the statements
in the source code, its size is bounded by the number of state-
ments in the source code. As the integer value of this bound is
available at compile time, we can fold the two time dimensions
into a single one. For a two statement kernel this transformation

can be described by the following mapping {[t,1, i]→ [2t + 1, i] :
0 ≤ l ≤ 1}. Applying this mapping on the original schedule gives
us {S[t, i]→ [2t, i];P[t, i]→ [2t + 1, i]} as well as the dependences
{[2t, i−2]→ [2t+1, i]; [2t−1, i−1]→ [2t, i]; [t−2, i]→ [t, i]}. Af-
ter this transformation, all dependences are again carried by the
outermost dimensions and the inner parallel dimensions remain un-
changed. Now, the previously presented split-tiling algorithm can
be applied.

f o r (t = 0 ; t < T ; t ++) {
f o r (i = 0 ; i < N; i ++)

S : A[1] [i] += A[0] [i +1]

f o r (i = 0 ; i < N; i ++)
P : A[0] [i] += A[1] [i +2]
}

Figure 6: Two statement kernel

5. CUDA CODE GENERATION
To generate CUDA code, we extended the polyhedral GPU code

generator PPCG [23]. PPCG is a state-of-the-art GPU code gener-
ator that translates static control programs in C to CUDA enabled
programs. For certain classes of computations (e.g., linear algebra
kernels), this produces very efficient code that reaches the perfor-
mance of highly-tuned libraries. For stencil computations, PPCG
performs a basic mapping where for each time step, a new ker-
nel instance is spawned and each kernel applies a single stencil to
just a couple of data points. This mapping exposes a high level of
parallelism, but at each time step all data is read from and writ-
ten to global memory. This means the global memory bandwidth
becomes the limiting factor of the stencil computation.

By adding sipport for split-tiling, we enabled PPCG to produce
time-tiled CUDA code for stencil like computations. Such code
executes several iterations of the time loop within each kernel and
keeps intermediate results in shared memory. This significantly
lowers the pressure on the global memory bandwidth and conse-
quently allows a higher computational throughput.

The split-tiling support for PPCG was developed by enhancing

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16
j

Split Tiling (non-simplified), t=1

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (simplified), t=1

Color 1

Color 2

Color 3

Color 4

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=2

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (simplified), t=2

Color 1

Color 2

Color 3

Color 4

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (non-simplified), t=3

0 2 4 6 8 10 12 14 16
i

0

2

4

6

8

10

12

14

16

j

Split Tiling (simplified), t=3

Color 1

Color 2

Color 3

Color 4

Figure 4: Split tiled jacobi-2d kernel

and parameterizing the polyhedral optimization infrastructure al-
ready available in PPCG. We specifically avoided the development
of a new domain-specific code generator, but aimed instead at en-
hancing an existing GPU optimization framework. From a user’s
point of view, this provides a smoother experience as the same
framework can be used for a wide range of kernels. The only differ-
ence is that it is now possible to obtain improved code for stencil

computations. From the developer’s point of view, the use of a
uniform optimization framework has several benefits. Developing
on top of an existing infrastructure speeds up the development of
the CUDA code generator. It also enabled us to develop generic
features and optimizations that can be beneficial for PPCG itself,
but that show immediate benefits for split tiling if parameterized
accordingly. The uniform framework makes it again very easy to

specify and communicate the necessary parameters to the relevant
transformations.

When generating split-tiled CUDA code we start from the C code
of the program. This code is read by the polyhedral extraction tool
pet [22] which is available from within PPCG. Based on the ex-
tracted polyhedral description, we check if the program is suitable
for split tiling. If this is the case, we derive a split-tiled sched-
ule according to the generic algorithm described above. This new
schedule is now provided to the generic PPCG transformation in-
frastructure where it replaces the PPCG internal schedule optimizer
as well as the PPCG internal tiling. Instead, we parameterize PPCG
with information about the schedule we provide. This information
includes the number of dimensions of the entire schedule, the num-
ber of outer loops that should be executed on the host side, the first
parallel loop that should be mapped to the GPU, the dimension-
ality of the tiles, the number of parallel dimensions in the tiles as
well as information about the number of dimensions that should be
considered when keeping values in shared memory.

PPCG uses this information to map the split tiles to the GPU.
The mapping itself is rather straightforward. The tile loop of the
time dimension is generally kept in the host code where it loops
over a sequence of kernel calls. Each kernel call executes a set of
thread blocks which in turn execute the parallel tiles as available at
a certain time point using a one-to-one mapping from tiles to thread
blocks. Within a tile, the parallel loops that enumerate the space
dimensions are mapped to individual threads in a way that ensures
coalesced memory accesses. The non-parallel loop for the time di-
mension is executed sequentially in each kernel. __synchthreads
calls are introduced to ensure that each time step is finished before
the next one is started.

5.1 Shared memory usage
The most important optimization for split tiling is the use of

shared memory. The standard code that PPCG generates for sten-
cils only uses shared memory to take advantage of special reuse
within a single calculation. Such special reuse rarely happens for
stencils and the additional synchronization overhead often outweighs
the benefits of shared memory usage. However, with split-tiling, we
can now take advantage of reuse along the time dimension. This
means, all calculations within a single tile can be performed in
shared memory. Only at the beginning and at the end of the ker-
nel execution, the used values need to be loaded from and stored
back into global memory.

5.2 Instruction level parallelism
On CUDA architectures several kinds of parallelism are avail-

able. Parallelism due to the execution of parallel threads is the
most obvious one. However, even when generating code without
split tiling, PPCG maps by default several data points to a single
thread. Mapping several data points to a single thread ensures that
there is a certain number of instructions between two subsequent
__syncthreads calls. Exposing this instruction level parallelism
is beneficial as it helps to hide memory access latency. Our split
tiling implementation uses loop unrolling to increase the amount of
available instruction level parallelism.

5.3 Full/partial tile separation
One way to avoid overhead due to the evaluation of boundary

conditions is to use full/partial tile separation. The idea here is to
generate specialized code for full tiles as well as for tiles that inter-
sect with the iteration space boundary (i.e., partial tiles). Due to the
absence of checks for the iteration space boundaries, the code of
the full tiles evaluates a lot less conditionals. This is beneficial not

only due to the reduced number of evaluated conditions, but also as
it opens up new possibilities for loop-invariant code motion. Our
split-tiling compiler automatically performs full/partial tile separa-
tion.

6. EVALUATION

jacobi-1d-3pt jacobi-1d-5pt jacobi-1d-7pt jacobi-2d-5pt poisson-2d-9pt
0

20

40

60

80

100

120

140

P
e
rf

o
rm

a
n
ce

 [
G

FL
O

P
S

]

Performance of split-tiling on GeForce GTX 470

split

ppcg
overtile

jacobi-1d-3pt jacobi-1d-5pt jacobi-1d-7pt jacobi-2d-5pt poisson-2d-9pt
0

5

10

15

20

25

P
e
rf

o
rm

a
n
ce

 [
G

FL
O

P
S

]

Performance of split-tiling on NVS 5200M

split

ppcg
overtile

Figure 7: Performance results on different stencil compilers

To evaluate the performance of our split-tiling implementation
we compare it against two compilers: (i) PPCG [23], a state-of-the-
art GPU code generator; (and) (ii) Holewinski et al.’s [11] recent
GPU stencil compiler, that we refer to as overtile (since it uses
overlapped tiling).

We evaluate on a couple of different kernels consisting of jacobi-
1d (3pt, 5pt, 7pt), jacobi-2d (5pt) as well as a 9pt poisson solver.
The experiments are run on a NVIDIA GeForce GTX 470 desktop
GPU as well as on a NVIDIA NVS 5200M mobile GPU. The per-
formance is shown in GFLOPS and includes both the time of the
computation itself as well as the data transfer to the GPU.

The results in Figure 7 show that the split-tiled code is consis-
tently faster than both PPCG and overtile. Especially for the
one dimensional test cases, we can see an almost 4x improvement
over PPCG and between 30% and 40% over overtile. For the
2D cases on the mobile GPU, the performance of the different tools
is again closer. On the desktop GPU, on the other hand, the differ-
ence between split tiling as well as PPCG and overtile is again
considerable.3

3Unfortunately, we cannot report overtile numbers for the
poisson solver, as nvcc 4 and 5 both crashed on the CUDA file
that overtile produced.

7. CONCLUSIONS
We have presented a novel polyhedral method for generating

split-tiled code for GPUs. It is based on an index-set splitting which
is directly derived from dependence vectors, without the need of
any additional algorithm to calculate valid tiling hyperplanes. Our
algorithm has been implemented in a prototype extension of the
PPCG tool flow. It is capable of tiling multi-statement stencils over
both time and parallel loops, achieving excellent multi-level ex-
ploitation of the parallelism and local memory resources of a mod-
ern GPU. Future work includes the investigation of hybrid schemes
for imperfectly nested loops, combining affine transformations with
index-set splitting [3], evaluating the impact on a wider range of
CPU and GPU targets, and providing a formal definition of the al-
gorithms.

Acknowledgments. This work is partly funded by a Google Eu-
ropean Fellowship in Efficient Computing, by the European FP7
project CARP id. 287767 as well as EPSRC (Project ref EP/I00677X/1).

8. REFERENCES
[1] M. Amini, F. Coelho, F. Irigoin, and R. Keryell. Static

compilation analysis for host-accelerator communication
optimization. In Workshop on Languages and Compilers for
Parallel Computing (LCPC’11), LNCS. Springer-Verlag,
Oct. 2011.

[2] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier,
S. Guelton, J. O. McMahon, F. X. Pasquier, G. Péan, and
P. Villalon. Par4all: From convex array regions to
heterogeneous computing. In IMPACT’12, Paris, France, Jan.
2012.

[3] V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling stencil
computations to maximize parallelism. In Proceedings of SC
’12, pages 40:1–40:11, Los Alamitos, CA, USA, 2012. IEEE.

[4] M. M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic c-to-cuda code generation for affine programs. In
Proceedings of the 19th joint European conference on
Theory and Practice of Software, international conference on
Compiler Construction, CC’10/ETAPS’10, pages 244–263,
Berlin, Heidelberg, 2010. Springer-Verlag.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral parallelizer
and locality optimizer. In Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI’08, pages 101–113, New York, NY,
USA, 2008. ACM.

[6] M. Christen, O. Schenk, and H. Burkhart. Patus: A code
generation and autotuning framework for parallel iterative
stencil computations on modern microarchitectures. In
Proceedings of the 2011 IEEE International Parallel &
Distributed Processing Symposium, IPDPS ’11, pages
676–687, Washington, DC, USA, 2011. IEEE.

[7] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and
K. A. Yelick. Optimization and performance modeling of
stencil computations on modern microprocessors. SIAM
Review, 51(1):129–159, 2009.

[8] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures. In Proceedings of SC ’08, pages
4:1–4:12, Piscataway, NJ, USA, 2008. IEEE Press.

[9] P. Di and J. Xue. Model-driven tile size selection for
DOACROSS loops on GPUs. In Proceedings of the 17th

international conference on Parallel processing - Volume
Part II, Euro-Par’11, pages 401–412, Berlin, Heidelberg,
2011. Springer-Verlag.

[10] D. Han, S. Xu, L. Chen, and L. Huang. Pads: A
pattern-driven stencil compiler-based tool for reuse of
optimizations on gpgpus. In ICPADS, pages 308–315, 2011.

[11] J. Holewinski, L.-N. Pouchet, and P. Sadayappan.
High-performance code generation for stencil computations
on gpu architectures. In Proceedings of the 26th ACM
international conference on Supercomputing, ICS ’12, pages
311–320, New York, NY, USA, 2012. ACM.

[12] S. Krishnamoorthy, M. Baskaran, U. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan. Effective
automatic parallelization of stencil computations. In
Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation,
PLDI’07, pages 235–244, New York, NY, USA, 2007. ACM.

[13] J. Meng and K. Skadron. A performance study for iterative
stencil loops on gpus with ghost zone optimizations.
International Journal of Parallel Programming,
39(1):115–142, 2011.

[14] P. Micikevicius. 3d finite difference computation on gpus
using cuda. In Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units,
GPGPU-2, pages 79–84, New York, NY, USA, 2009. ACM.

[15] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey.
3.5-d blocking optimization for stencil computations on
modern cpus and gpus. In Proceedings of SC ’10, pages
1–13, Washington, DC, USA, 2010. IEEE Computer Society.

[16] The OpenACC standard, 2011.
[17] M. M. Strout, L. Carter, J. Ferrante, J. Freeman, and

B. Kreaseck. Combining performance aspects of irregular
gauss-seidel via sparse tiling. In LCPC, pages 90–110, 2002.

[18] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache
oblivious parallelograms in iterative stencil computations. In
ICS, pages 49–59, 2010.

[19] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache
accurate time skewing in iterative stencil computations. 2012
41st International Conference on Parallel Processing,
0:571–581, 2011.

[20] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
C. E. Leiserson. The pochoir stencil compiler. In
Proceedings of the 23rd ACM symposium on Parallelism in
algorithms and architectures, SPAA ’11, pages 117–128,
New York, NY, USA, 2011. ACM.

[21] S. Verdoolaege. Counting affine calculator and applications.
In First International Workshop on Polyhedral Compilation
Techniques (IMPACT’11), Charmonix, France, Apr. 2011.

[22] S. Verdoolaege and T. Grosser. Polyhedral extraction tool. In
Second International Workshop on Polyhedral Compilation
Techniques (IMPACT’12), Paris, France, Jan. 2012.

[23] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez,
C. Tenllado, and F. Catthoor. Polyhedral parallel code
generation for CUDA. ACM Transactions on Architecture
and Code Optimization(TACO), Dec. 2012. Selected for
presentation at the HiPEAC 2013 Conf.

[24] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni,
and D. Padua. Hierarchical overlapped tiling. In Proceedings
of the 10th Intl. Symp. Code Gen. and Opt., CGO ’12, pages
207–218, New York, NY, USA, 2012. ACM.

