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Abstract

Linear relation analysis is a classical abstract interpretation based on an over-approximation
of reachable numerical states of a program by convex polyhedra. Since it works with a lattice
of infinite height, it makes use of a widening operator to enforce the convergence of fixed point
computations. Abstract acceleration is a method that computes the precise abstract effect of loops
wherever possible and uses widening in the general case. Thus, it improves both the precision
and the efficiency of the analysis. This research report gives a comprehensive tutorial on abstract
acceleration: its origins in Presburger-based acceleration including new insights w.r.t. the linear
accelerability of linear transformations, methods for simple and nested loops, recent extensions,
tools and applications, and a detailed discussion of related methods and future perspectives.

This is the long version of a paper under submission.
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Laure Gonnord ∗and Peter Schrammel †

February 11, 2013

1 Introduction

Linear relation analysis (LRA)[27, 45] is one of the very first applications of abstract interpretation
[24]. It aims at computing an over-approximation of the reachable states of a numerical program as
a convex polyhedron (or a set of such polyhedra). It was applied in various domains like program
parallelization [53], automatic verification [48, 50], compile-time error detection [28], and invariant
generation to aid automated program proofs [11, 72].

In comparison to interval or octagonal static analyses, polyhedral analyses are more expensive,
but also more precise. However, precision is often compromised by the use of widenings that are
required to guarantee convergence of the analysis. A lot of techniques have been proposed to improve
widenings or to limit their effects, like delaying widening, widening with thresholds [46], landmarks
[80] or guided static analysis [41], to mention just a few. Often these methods are based on heuristics
and cure certain symptoms of the problem.

One may ask the question whether there are certain cases where widening can be performed
precisely. This leads us to so-called acceleration techniques, proposed by several authors [14, 89, 22,
31, 7] investigating the problem of finding subclasses of numerical programs for which the reachable
set can be computed exactly. Roughly, these methods can handle loops with a restricted form of linear
arithmetic in programs without nested loops such that the reachable states can be characterized in
Presburger arithmetic. However, these computations have a very high complexity (doubly exponential)
which limits the applicability of these methods in practice.

Inspired by these methods, Gonnord and Halbwachs proposed abstract acceleration [38] in LRA as
a complement to widening. The rationale is to compute the precise abstract effect of a loop whenever
possible, and otherwise to use widening. Hence, this method integrates seamlessly with classical linear
relation analyses without restricting the class of programs that can be handled by the overall analysis,
and without using expensive computations in Presburger arithmetic. Actually, the proposed abstract
accelerations are very cheap and effectively speed up analysis because less iterations are required in
comparison to a classical LRA.

Contributions and outline. The goal of this article is to give a comprehensive tutorial on linear
abstract acceleration. We cover the following aspects:
• Origins: We recall the principles of linear relation analysis and summarize the main results of

Presburger-based acceleration (§2).
• Theoretical background: We develop the notion of linear accelerability of linear transformations,

which, on the one hand, revisits results known from Presburger-based acceleration and, on the
other hand, gives some new insights (§3).
• The method: We give an enhanced account of the abstract acceleration of simple loops §4

including concise proofs and a new accelerable case. Then, we will show how these methods can
be applied to multiple loops §5.

• Extensions: We briefly summarize recent extensions of abstract acceleration to reactive systems
and backward analysis (§6).

∗Laure Gonnord is with LIFL, CNRS/University of Lille 1, France. Laure.Gonnord@lifl.fr
†Peter Schrammel is with oxford University, Computer Science Dpt. peter.schrammel@cs.ox.ac.uk
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• Tools: We briefly describe the tools Aspic and ReaVer that implement these methods and
give some experimental results (§7).
• Properties: We give a detailed discussion of its properties and related work (§8).
• Conclusion: Finally, we discuss some open problems and future perspectives (§9).

2 Preliminaries

As abstract acceleration combines linear relation analysis with acceleration, we will briefly recall the
basic concepts of these two areas and introduce some notations used throughout the paper.

2.1 Linear Relation Analysis

The goal of LRA is to attach to each control point of a program a system of linear inequalities satisfied
by the numerical variables whenever the control is at that point. This is done by propagating systems
of linear inequalities along the control paths of the program.

2.1.1 Programs

We consider numerical programs represented by a control flow graph (sometimes called interpreted
automaton):

Definition 1 (Control Flow Graph) A control flow graph (CFG) 〈Σ, L,;, X0〉 is defined by
– the state space Σ with Σ = R

n (or Z
n),

– a set of locations L,
– a set of transitions ;: L× T × L, where transitions are labeled with a transition relations τ ∈ T =

℘(Σ2), and
– X0 : L→ ℘(Σ) defines for each location the set of initial states.

We will mostly consider transition functions τ : x 7→ x′ denoted as G(x)→ x′ = A(x), where the
guard G is a conjunction of constraints over state variables x that must be satisfied in order to take
the transition, and the action (or assignment) A that computes the next state x′ as a function of the
current state x. The left-hand side of Fig. 1 gives an example of such a graph: locations are ℓ1 and
ℓ2, the two arrows denote transitions, and the initial state for location ℓ1 is {x1 = 0, x2 = 6} and is
empty for location ℓ2.

Definition 2 (Operational Semantics) An execution of a CFG is a sequence

(ℓ0,x0)→ (ℓ1,x1)→ . . . (ℓk,xk)→ . . .

such that x0 ∈ X0(ℓ0) and for any k>0 : ∃(ℓk, τ, ℓk+1) ∈;: xk+1 = τ(xk). where ℓ ∈ L and x ∈ Σ.

Definition 3 (Collecting Semantics) The collecting semantics defines the set of reachable states
for all locations X : L→ Σ as the least fixed point of the following equation:

X = λℓ′.X0(ℓ′) ∪
⋃

(ℓ,τ,ℓ′)∈;
{x′ | G(x) ∧ x′ = A(x) ∧ x ∈ X(ℓ)}

We will denote the right-hand side of the equation F (X).

Since the collecting semantics is not computable in general, LRA based on abstract interpretation
[24, 27] computes the corresponding abstract semantics over the abstract domain of convex polyhedra
Pol(Rn). The abstraction is defined by the concretization (γ) and abstraction (α) functions that form

the Galois connection ℘(Rn) −−−→←−−−α
γ

Pol(Rn) (see [24]).
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2.1.2 Convex Polyhedra

A convex polyhedron can be either represented by
– the sets of generators (V,R), i.e., , the convex closure of vertices and rays

γ(V,R) = {x | ∃λ>0,µ>0 :
∑

i

λi = 1 ∧ x =
∑

i

viλi +
∑

j

rjµj}

with the vertices V = {v1, . . . ,vp}, vi ∈ R
n and the rays R = {r1, . . . , rq}, rj ∈ R

n,
– or by a conjunction of linear constraints Ax 6 b, i.e., , an intersection of halfspaces

γ(Ax 6 b) = {x | Ax 6 b}

with x ∈ R
n, A ∈ R

m×n and b ∈ R
m.

We can convert one representation into the other one using the double description method [70, 34],
also known as Chernikova’s algorithm [20, 85]. The set of convex polyhedra Pol(Rn) ordered by
inclusion forms a lattice with ⊤ and ⊥ denoting the polyhedra R

n and ∅ respectively.

Domain operations Once a polyhedron is represented in both ways, some domain operations
(⊔,⊓, . . .) can be performed more efficiently using the generator representation only, others based on
the constraint representation, and some making use of both. A convex polyhedron X1 is included in a
convex polyhedron X2 iff all vertices of X1 belong to X2, and all rays of X1 are rays of X2. A convex
polyhedron is empty iff it has no vertex. The intersection (meet, ⊓) of two convex polyhedra, computed
by the conjunction of their constraint systems, is again a convex polyhedron: X1 ∩X2 = X1 ⊓X2. In
contrast, the union of two convex polyhedra is not convex in general. The domain operator is thus
the convex hull (join, ⊔) of the original polyhedra, computed by the union of their generators, which
implies: X1 ∪X2 ⊆ X1 ⊔X2. For the projection ∃xi : X Fourier-Motzkin elimination is used, which
is an algorithm for eliminating variables from a system of linear inequalities, i.e., , the constraint
representation (see, e.g., [88] for details). The Minkowski sum of two polyhedra X = X1+X2 is
defined by X = {x1+x2 | x1 ∈ X1,x2 ∈ X2}. The time elapse operation [48], defined as X1 ր
X2 = {x1+ tx2 |x1 ∈ X1,x2 ∈ X2, t ∈ R

>0}, can be implemented using the generator representations:
(V1, R1)ր (V2, R2) = (V1, R1∪V2∪R2). The result of the widening operationX1∇X2 consists, roughly
speaking, of those constraints of X1 that are satisfied by X2 (see [45, 48] for a detailed presentation).

2.1.3 Analysis

The classical abstract interpretation-based reachability analysis [24, 25] employs the abstract domain
operations above to over-approximate the fixed point of the abstract semantics equation X = F (X)
(cf. Def. 3). The analysis consists of three phases:
(1) an ascending sequence (Xn)06n6N of applications of F :

X0 = X0 Xn+1 = F (Xn) for n<N
(2) a (delayed) widening sequence (X ′

n)06n6N ′ that is guaranteed to converge to a post-fixed point
X ′

N ′ in a finite number of steps:
X ′

0 = XN X ′
n+1 = X ′

n∇(F (X ′
n)) until convergence (X ′

N ′ ⊑ X ′
N ′+1)

(3) a (truncated) descending sequence (X ′′
n)06n6N ′′ of applications of F for approaching the least fixed

point:
X ′′

0 = X ′
N ′ X ′′

n+1 = F (X ′′
n) for n < N ′′

Descending iterations generally do not converge: Cousot and Cousot [24] propose the use of a
narrowing operator in order to force the convergence to a fixed point. In practice, the descending
sequence is usually truncated, which is sound because the result of the widening sequence satisfies
F (X ′

N ′) ⊑ X ′
N ′ , and hence, all elements of the descending sequence are upper bounds of the least fixed

point.

Example 1 (Kleene Iteration with widening) We analyze the CFG of the program depicted in
Fig. 1 with N = 1 and N ′′ = 1:

X0 = {ℓ1 → (x1=0 ∧ x2=6), ℓ2 → ⊥}
X1 = {ℓ1 → (06x161 ∧ x1+x2=6), ℓ2 → ⊥}
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ℓ1 ℓ2

X0 = {ℓ1 → (x1=0 ∧ x2=6), ℓ2 → ⊥}

x1≥x2

x1 < x2 →

{

x′

1
=x1+1

x′

2
=x2−1

0
1
2
3
4
5

0 1 2 3 4 5 x1

x2

X0(ℓ1)
X1(ℓ1)

X
′′

1
(ℓ1)

X
′

1
(ℓ1)

0
1
2
3
4
5

0 1 2 3 4 5 x1

x2

X
′′

1
(ℓ2)

X
′

2
(ℓ2)

Figure 1: LRA Example 1: CFG with initial state X0 (left), polyhedra during the analysis in ℓ1
(center) and ℓ2 (right). The dashed lines indicate the abstract value after widening.

X ′
1 = {ℓ1 → (06x161 ∧ x1+x2=6)∇(06x162 ∧ x1+x2=6), ℓ2 → ⊥∇⊥} =

{ℓ1 → (06x1 ∧ x1+x2=6), ℓ2 → ⊥}
X ′

2 = {ℓ1 → (06x1 ∧ x1+x2=6)∇(06x1 ∧ x1+x2=6), ℓ2 → ⊥∇(36x1 ∧ x1+x2=6)} =
{ℓ1 → (06x1 ∧ x1+x2=6), ℓ2 → (36x1 ∧ x1+x2=6)} = X ′

3 = X ′′
0

X ′′
1 = {ℓ1 → (06x163 ∧ x1+x2=6), ℓ2 → x1=x2=3}

In practice, abstract interpreters compute the fixed point following an iteration strategy that take
into account the transitions in a specific order (cf. [15]), and widening is only applied at the loop
heads.

Improvements of the Widening Operator Although Cousot and Cousot [25] show that the
approach using Kleene iteration with widening and infinite height lattices can discover invariants that
finite height lattices cannot discover, the dynamic approximations induced by widening lead quite
often to an important loss of precision. There are several reasons for these problems:
– The standard widening operators are not monotonic, e.g., [0, 2]∇[0, 4] = [0,∞], but [1, 2]∇[0, 3] = ⊤

(although [1, 2] ⊑ [0, 2] and [0, 3] ⊑ [0, 4]).
– Descending iterations fail to recover information if the result of the widening sequence is already a
fixed point, i.e., , F (X ′

N ′) = X ′
N ′ .

Numerous improvements of the widening operators and modified iteration strategies have been
proposed. We refer to, e.g., [37, 39, 63] for surveys of such improvements, some of them will be
discussed in the related work (§8). In this line of research, abstract acceleration can be viewed as a
precise, monotonic widening operator applicable to a specific class of loops.

2.2 Presburger-Based Acceleration

Acceleration methods aim at computing the exact set of reachable states in numerical transition
systems. They are motivated by the analysis of communication protocols often modeled using counter
machines or Petri nets. First achievements date back to the 1990s [14, 13, 33, 22, 12]. Unlike abstract
interpretation, which overcomes the undecidability issue by computing a conservative approximation,
acceleration identifies classes of systems (of a certain structure and with certain transition relations) for
which the reachability problem is decidable. Acceleration methods have been shown to be applicable
to a variety of systems including pushdown systems and systems of FIFO channels for instance (cf.
[9]). In this section, we summarize the main results w.r.t. the acceleration of counter systems, which
is based on Presburger arithmetic.

Presburger arithmetic Presburger arithmetic [71] is the first-order additive theory over integers
〈Z,6,+〉. Satisfiability and validity are decidable in this theory. A set is Presburger-definable if it
can be described by a Presburger formula. For example, the set of odd natural numbers x can be
defined by the Presburger formula ∃k>0 : x = 1+ 2k, whereas for example the formula ∃k : y = k · k
characterizing the quadratic numbers y is not Presburger because of the multiplication of variables.

Counter systems Counter systems are a subclass of the program model defined in Def. 1 with
Σ = Z

n, and initial statesX0 and transition relations R(x,x′) ∈ ℘(Σ2) defined by Presburger formulas.
Counter systems generalize Minsky machines [68], thus the reachability problem is undecidable. In
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general, the reachable set of a counter system is not Presburger-definable [59] because of the following
two reasons:
(1) The reflexive and transitive closure R∗ is not always Presburger-definable.
(2) In the case of a system with nested loops where the reflexive and transitive closures R∗ of all circuits

in the system are Presburger-definable, the reachable set of the whole system is not Presburger-
definable in general, because there are infinitely many possible sequences of these circuits.

Issue (1) is addressed by identifying a class of accelerable relations R, i.e., , for which the transitive
closure R∗ is Presburger-definable:

Definition 4 (Presburger-linear relations with finite monoid) The transition relation
R(x,x′) = (ϕ(x) ∧ x′ = Cx + d) is Presburger-linear with finite monoid iff ϕ is a Presburger
formula and 〈C∗, ·〉 is a finite, multiplicative monoid, i.e., , the set C∗ = {Ck | k>0} is finite.

Theorem 1 (Presburger-definable transitive closure [12, 32]) If R is a Presburger-linear re-
lation with finite monoid, then R∗ is Presburger-definable.

The finiteness of the monoid is polynomially decidable [12]. The tool Lash [12, 89] implements these
results.

Example 2 (Translation) An example of transition relations of which the transitive closure is
Presburger-definable are translations: R(x,x′) = (ϕ(x) ∧ x′ = x + d). The variables are trans-
lated in each iteration by a constant vector d. A translation is trivially finite monoid because C= I.
The transitive closure is given by the Presburger formula:

R∗(x,x′) = ∃k>0 : x′ = x+ kd ∧ ∀k′ ∈ [0, k−1] : ϕ(x+ k′d)

Issue (2) is adressed by the concept of flat acceleration:

Flat systems A system is called flat if it has no nested loops, or more precisely if any location of
the system is contained in at most one elementary cycle of the system [7]. This notion allows us to
identify a class of systems for which the set of reachable states can be computed exactly:

Theorem 2 (Presburger-definable flat systems [32]) The reachability set of a counter system
is Presburger-definable if the system is flat and all its transitions are Presburger-linear relations with
finite monoid.

Although there are many practical examples of flat systems [66], most systems are non-flat.

Application to non-flat systems The idea of Finkel et al [32, 9] is to partially unfold the outer
loops (circuits) of nested loops in order to obtain a flat system that is simulated by the original
system. Such a system is called a flattening. The algorithm is based on heuristically selecting circuits
of increasing length and enumerating flattenings of these circuits. Hence, the algorithm terminates in
case the system is flattable, i.e., , at least one of its (finite) flattenings has the same reachability set
as the original system. However, flattability is undecidable [9]. All these techniques are implemented
in the tool Fast [7, 65, 6, 9, 8].

3 Linear Accelerability of Linear Transformations

Similarly to Presburger-based acceleration, the abstract acceleration methods that we are going to
present in §§4–6 target loops with linear transformations. To this purpose, we revisit the notion
of linearly accelerable linear transformations, and we show that this class is actually larger than
the “Presburger-based linear relations with finite monoid” originally considered by Presburger-based
acceleration.
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3.1 Characterizing Linearly Accelerable Linear Transformations

The basic idea of Presburger-based acceleration is to identify and characterize the class of linearly (i.e.,
, using Presburger arithmetic) accelerable transitions. Presburger arithmetic is able to define sets that
are conjunctions of linear inequalities (i.e., , polyhedra, Ax6 b), congruences (∃k : x′=x+kd), and
finite unions (

⋃
) thereof. This gives us the following definition of linear accelerability:

Definition 5 (Linear accelerability) A transition τ : x′ = Cx+d is linearly accelerable iff its
reflexive and transitive closure τ∗ can be written as a finite union of sets

τ∗ = λX.
⋃

l

{Ĉlx+kd̂l | k>0,x ∈ X}

The classical accelerability (“finite monoid”) criterion is merely based on the matrix C. To elu-
cidate the role of correlations between the coefficients of C, d and the initial set X, we will give an
alternative characterization based on the homogeneous form of affine transformations: any affine trans-

formation of dimension n can be written as a linear transformation

(
x′

x′n+1

)
=

(
C d

0 1

)(
x

xn+1

)

of dimension n+1 and with xn+1=1 in the initial set X.

We consider the Jordan normal form1 J ∈ C
n of C′ =

(
C d

0 1

)
∈ R

n which can be obtained by

a similarity transformation J = Q−1C′Q with a nonsingular matrix Q ∈ C
n. J is a block diagonal

matrix consisting of Jordan blocks Ji associated with the eigenvalues λi ∈ C of C′. Furthermore, we

have J
k
= Q−1C

′kQ and thus: J
k
=




Jk
1 · · · 0

· · ·
. . . · · ·

0 · · · Jk
j


.

We will now examine the linear accelerability of a Jordan block w.r.t. its size and associated
eigenvalue2. We give the acceleration criteria and illustrate them with examples. For the detailed
proofs, we refer to the extended version A.1.

Lemma 1 (Jordan block of size 1) A transition τ(X) : x′ = Jx where J is a Jordan block of
size 1 is linearly accelerable iff its associated eigenvalue is either zero or a complex root of unity, i.e.,

, λ ∈ {0} ∪ {ei2π
q

p | p, q ∈ N}.

We give some examples for such loops and their accelerations:
(E1) λ=0: X = {1}, τ : x′ = 0: τ∗(X) = X ∪ {0} = {0, 1}

(E2) λ=ei2π
1
2 =−1: X = {1}, τ : x′ = −x: τ∗(X) =

⋃
06l6p−1{(−1)

lx | x ∈ X} = {−1, 1}

(E3) λ1,2=ei2π
1
4 =±i: X =

{(
1
0

)}
, τ :

(
x′1
x′2

)
=

(
0 −1
1 0

)(
x1
x2

)
:

τ∗(X) =
⋃

06l6p−1

{(
0 −1
1 0

)l (
x1
x2

) ∣∣∣∣
(
x1
x2

)
∈ X

}
=

=

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}

(In real-valued transformation matrices, complex eigenvalues are always conjugate.)

Lemma 2 (Jordan block of size 2) A transition τ(X) : x′ = Jx where J is a Jordan block of
size 2 is linearly accelerable iff its associated eigenvalue is
– either zero (λ = 0) or

– a complex root of unity (λ ∈ {ei2π
q

p | p, q ∈ N}) and if in this case the variable associated to the
second dimension of the block has only a finite number of values in X.

1We refer to textbooks in linear algebra and matrix theory, e.g., [64].
2Boigelot’s proof [12] for the finite monid criterion proceeds similarly, but he considers the Jordan normal form of C

instead of C′.
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We give some examples:

(E4) λ=1 : X =

{(
0
1

)}
, τ :

(
x′1
x′2

)
=

(
1 3
0 1

)(
x1
x2

)
:

τ∗(X) =

{(
1 3
0 1

)k (
x1
x2

) ∣∣∣∣ k>0,

(
x1
x2

)
∈ X

}
=

{(
3k
1

)
| k>0

}

(E5) λ1,2=ei2π
1
4 =±i: τ : x′ =




0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0


x see B.1

Lemma 3 (Jordan block of size > 2) A transition τ(X) : x′ = Jx where J is a Jordan block of
size m>2 is linearly accelerable iff its associated eigenvalue is zero.

We give an example for m=3:

(E6) λ=0: X =







1
2
3





, τ : x′ =



2 2 −2
5 1 −3
1 5 −3


x

τ∗(X) =
⋃

06l6m







2 2 −2
5 1 −3
1 5 −3




l

x

∣∣∣∣∣∣∣
x ∈ X





=







1
2
3


 ,




0
2
−2


 ,



−8
−8
16


 ,



0
0
0







We summarize these results in the following theorem:

Theorem 3 (Accelerable linear transformations) A linear transformation τ(X) : x′ = C′x is
linearly accelerable iff its Jordan form consists of Jordan blocks J satisfying the following criteria:

• J is of size 1 and its associated eigenvalue λ ∈ {0} ∪ {ei2π
q

p | p, q ∈ N}.

• J is of size 2 and its associated eigenvalue λ = 0 or λ ∈ {ei2π
q

p | p, q ∈ N}, and in the latter case
the variable associated with the second dimension of the block has only a finite number of values
in X in the Jordan basis.
• J is of size greater than 2 and its associated eigenvalue λ = 0.

3.2 Comparison with Finite Monoid Acceleration

The background of the “finite monoid” criterion of Def. 4 is the following characterization of Boigelot
(Theorem 8.53, [12]): x′ = Cx + d is accelerable if ∃q > 0 such that Cq is diagonizable and all its
eigenvalues are in {0, 1}. In other words: the eigenvalues are either zero or roots of unity and all
Jordan blocks of non-zero eigenvalues have size 1.

Theorem 4 (Jordan normal form of finite monoid affine transformations) The Jordan

form of the homogeneous transformation matrix

(
C d

0 1

)
, where {Ck | k>0} is finite, consists of

– Jordan blocks of size 1 with eigenvalues which are complex roots of unity,
– at most one block of size 2 with eigenvalue 1 where the variable associated with the second dimension

is a constant equal to 1, and
– blocks with eigenvalue 0 of any size.

Proof 1 See A.2.

Hence, finite monoid transformations are strictly included in the characterization of accelerable
linear transformations of Thm. 3.

The Jordan normal form gives an intuitive geometric understanding of the linear transformations.
For finite monoid transformations, the Jordan form of the homogeneous transformation matrix J is
the direct product of
• Identity blocks: λ=1, size 1, i.e., , τ : x′=x;
• Translation blocks (Ex. E4 with x2 = 1): λ=1, size 2, second dimension equals 1 in X;
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x1

x2

0

1

2

3

0 1 2 3 4 5 6 7

τ⊗(X)

X

G

Figure 2: Finite-cardinality translation: τ : x1+x267 → x′1=x1+x2 ∧ x′2=x2 with X0 = (06x1=
x264): reachable points and polyhedron computed by abstract acceleration (see §4.4).

• Nilpotent (“projection”) blocks (E1, E6): λ=0, size m (Jm=0);

• Rotation blocks (E2, E3): λ=e
i2π q

p , size 1: this corresponds to a rotation by θ=2π q
p
.

We now relate the ((n+1)-dimensional) J to the characterization of typical finite monoid transitions
by the (ultimate) periodicity property of the original matrix C, i.e., , Cp+l = Cp, p>0, l>0:
• Translations (p=0, l=1,d 6=0): J consists of one translation block and n−1 identity blocks.
• Translations with resets (p = 1, l = 1, m reset variables, n−m translations): J consists of m
nilpotent blocks of size 1, one translation block, and n−m−1 identity blocks.

• Purely periodic C (p = 0): J consists of rotation blocks and zero or one translation blocks
(depending on d, cf. A.2).
• Ultimately periodic C: J consists of rotation blocks, nilpotent blocks with maximum size p, and

zero or one translation blocks (depending on d, cf. A.2).
The criterion of Thm. 3 identifies furthermore those transformations as accelerable where the

eigenvalue is a root of unity and the second dimension of the block has a finite set of values in the
initial set X. In addition to the above types of blocks, we have:
• Finite-cardinality translation blocks (E4 with a different X: see Ex. 3 below): λ = 1, size 2,

second dimension has a finite number of values in X;

• Finite-cardinality translation-rotation blocks (E5: see B.1): λ= e
i2π q

p , size 2, second dimension
has a finite number of values in X.

Example 3 (Finite-cardinality translation) The following loop translates x1 by x2 while x2 re-

mains unmodified: τ : x1+2x2 6 6 → x′ =

(
1 1
0 1

)
x with X0 = (x1 =0 ∧ x2 ∈ {2, 3, 4}). We can

exactly accelerate the loop τ by enumerating the values of x2 in X0 and translating x1 by each of these
values:

τ∗(X0) = {(x′1, 2) | ∃k>0 : x′1=x1+2k ∧X0(x) ∧ ∀06k′<k : x′162} ∪
{(x′1, 3) | ∃k>0 : x′1=x1+3k ∧X0(x) ∧ ∀06k′<k : x′160} ∪
{(x′1, 4) | ∃k>0 : x′1=x1+4k ∧X0(x) ∧ ∀06k′<k : x′16−2}

= {(0, 2), (2, 2), (4, 2), (0, 3), (3, 3), (6, 3), (0, 4)}

The resulting points are depicted in Fig. 2.

Another example is given in B.1.

4 Abstract Acceleration of Simple Loops

Abstract acceleration introduced by Gonnord and Halbwachs [38] reformulates acceleration concepts
within an abstract interpretation approach: it aims at computing the best correct approximation of
the effect of loops in the abstract domain of convex polyhedra.

The objective of abstract acceleration is to over-approximate the set τ∗(X), X ⊆ R
n by a (single)

convex polyhedron γ(τ⊗(α(X))) ⊇ τ∗(X) that is “close” to the convex hull of the exact set. Abstract
acceleration targets affine transition relations τ : G→ A (actually functions) with polyhedral guards3

G = (Ax 6 b) and affine actions A = (x′ = Cx+ d).
Forgetting about the guard G for a moment, we can intuitively derive a notion of “abstract

linear accelerability” by replacing the operators by their abstract counterparts in Def. 5: τ⊗ =

3We will use the same notation for polyhedra X interexchangeably for both the predicate X(x) = (Ax 6 b) and the
set X = {x | Ax 6 b}.
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λX.
⊔

l

(
ĈlX ր {d̂l}

)
. This view elucidates the basic approximations made by abstract accelera-

tions:
• Unions

⋃
are approximated by the convex hull

⊔
.

• Congruences (∃k>0 : x′=x+kb) are lost by the dense approximation using the ր operator.
We will first give abstract accelerations for the case of translations (C=I) and translations/resets

(C=diag(c1 . . . cn), ci ∈ {0, 1}), and in a second step we will reduce the case of (general) finite monoid
transitions to these two.

4.1 Translations

Theorem 5 (Translations) Let τ be a translation G→ x′ = x+d, then for every convex polyhedron
X, the convex polyhedron

τ⊗(X) = X ⊔ τ
(
(X ⊓G)ր {d}

)

is a convex over-approximation of τ∗(X).

Proof 2 x′ ∈
⋃

k>1 τ
k(X)⇐⇒ x′ ∈ τ(

⋃
k>0 τ

k(X))

⇐⇒ ∃k>0, ∃x0 ∈ X, ∃xk : x′ ∈ τ(xk) ∧ xk = x0 + kd ∧G(x0) ∧ ∀k
′ ∈ [1, k] : G(x0 + k′d)

⇐⇒ ∃k>0, ∃x0 ∈ X, ∃xk : x′ ∈ τ(xk) ∧ xk = x0 + kd ∧ G(x0) ∧ G(xk)
(because G is convex)

=⇒ ∃α>0, ∃x0 ∈ X, ∃xk : x′ ∈ τ(xk) ∧ xk = x0 + αd ∧ G(x0)
(dense approximation; G(xk) implied by x′ ∈ τ(xk))

⇐⇒ ∃x0 ∈ X ⊓G, ∃xk : x′ ∈ τ(xk) ∧ xk ∈ ({x0} ր {d})
⇐⇒ x′ ∈ τ((X ⊓G)ր {d})

Ideally, τ⊗(X) as defined in Thm. 5 should be the best over-approximation of τ∗(X) by a convex
polyhedron. This is not the case as shown by the following example in one dimension. Let X = [1, 1]
and τ : x1 6 4 → x′1 = x1 + 2. τ⊗(X) = [1, 6], whereas the best convex over-approximation of
τ∗(X) = {1, 3, 5} is the interval [1, 5]. This is because the operations involved in the definition of
τ⊗(X) manipulate dense sets and do not take into account arithmetic congruences. Considering the
proof, this approximation takes place in the line (⇒) where the integer coefficient k>0 is replaced by
a real coefficient α>0.

Example 4 (Translation) (see Fig. 3) τ : x1+x264 ∧ x263︸ ︷︷ ︸
G

→

(
x′1
x′2

)
=

(
x1
x2

)
+

(
2
1

)

︸ ︷︷ ︸
d

Starting from X = (06x161 ∧ 06x264) we compute τ⊗(X):

X ⊓G = (06x161 ∧ 06x263)
(X ⊓G)ր {d} = (x1>0 ∧ x2>0 ∧ x1−2x2>−6 ∧ − x1+2x2>−1)

τ((X ⊓G)ր {d}) =

{
x1>0 ∧ 06x264 ∧ x1−2x2>−6 ∧
−x1+2x2>−1 ∧ x1+x267

τ⊗(X) = (x1>0 ∧ 06x264 ∧ − x1+2x2>−1 ∧ x1+x267)

4.2 Translations/Resets

Theorem 6 (Translations/resets) Let τ be a translation with resets G → x′ = Cx + d, then for
every convex polyhedron X, the convex polyhedron

τ⊗(X) = X ⊔ τ(X) ⊔ τ
(
(τ(X) ⊓G)ր {Cd}

)

is a convex over-approximation of τ∗(X).

Intuitively, Thm. 6 exploits the property that a translation with resets to constants iterated N
times is equivalent to the same translation with resets, followed by a pure translation iterated N−1
times. Hence the structure of the obtained formula.
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~d

Figure 3: Abstract ac-
celeration of a translation
(Ex. 4) by vector d start-
ing from X (dark gray)
resulting in τ⊗(X) (whole
shaded area).
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τ⊗(X)
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Figure 4: Abstract accel-
eration of translations/resets
(Ex. 5) starting from X (dark
gray): τ(X) (bold line) and
result τ⊗(X) (whole shaded
area).
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x1

x2

(τ2)⊗(τ(X))

(τ2)⊗(X)

X

τ(X)

G

Figure 5: Abstract acceleration of a
finite monoid (Ex. 6) starting from
X = {(1, 0)}, τ(X) = {(2, 2)},
(τ2)⊗(X) and (τ2)⊗(τ(X)) (bold
lines), and the result τ⊗(X) (whole
shaded area).

Proof 3 The formula is trivially correct for 0 or 1 iterations of the self-loop τ . It remains to show
that, for the case of k > 2 iterations, our formula yields an over-approximation of

⋃
k>2 τ

k(X).

x′ ∈
⋃

k>2 τ
k(X)⇐⇒ x′ ∈ τ

(⋃
k>0 τ

k(τ(X))
)

⇐⇒ ∃k>0, ∃x0 ∈ τ(X), ∃xk : x′ ∈ τ(xk) ∧ xk = x0 + kCd ∧G(x0) ∧ ∀k
′ ∈ [1, k] : G(x0 + k′Cd)

⇐⇒ ∃k>0, ∃x0 ∈ τ(X), ∃xk : x′ ∈ τ(xk) ∧ xk = x0 + kCd ∧ G(x0) ∧ G(xk)
(because G is convex)

=⇒ ∃α>0, ∃x0 ∈ τ(X), ∃xk : x′ ∈ τ(xk) ∧ xk = x0 + αCd ∧ G(x0)
(dense approximation; G(xk) implied by x′ ∈ τ(xk))

⇐⇒ ∃x0 ∈ τ(X) ⊓G, ∃xk : x′ ∈ τ(xk) ∧ xk ∈ ({x0} ր {Cd})
⇐⇒ x′ ∈ τ

(
(τ(X) ⊓G)ր {Cd}

)

Example 5 (Translations/resets) (see Fig. 4) Let us consider τ : x1+x264→

{
x′1 = x1+2
x′2 = 1

.

Starting from X = (06x163 ∧ 26x263) we compute τ⊗(X):

τ(X) = (26x164 ∧ x2=1)
τ(X) ⊓G = (26x163 ∧ x2=1)

Cd = (2, 0)T

(τ(X) ⊓G)ր {Cd} = (x1>2 ∧ x2=1)
τ((τ(X) ⊓G)ր {Cd}) = (26x165 ∧ x2=1)

τ⊗(X) = (x1>0 ∧ 16x263 ∧ x1+2x2>4 ∧ x1+x266)

4.3 General Case of Finite Monoid Transitions

Let τ be a transition Ax6b∧x′ = Cx+d such that the powers of C form a finite monoid (cf. Def. 4)
with ∃p > 0, ∃l > 0 : Cp+l = Cp, i.e., , the powers of C generate an ultimately periodic sequence with
prefix p and period l. Gonnord [37] uses the periodicity condition ∃q > 0 : C2q = Cq. This condition
is equivalent to the one above with q = lcm(p, l).

With the latter condition, τ∗ can be rewritten by enumerating the transitions induced by the
powers of C:

τ∗(X) =
⋃

06j6q−1

(τ q)∗(τ j(X)) (1)

This means that one only has to know how to accelerate τ q which equals:

τ q =
∧

06i6q−1


ACix+

∑

06j6i−1

Cjd 6 b




︸ ︷︷ ︸
A′x6b′

→ x′ = Cqx+
∑

06j6q−1

Cjd

︸ ︷︷ ︸
x′=C′x+d′

(2)

The periodicity condition above implies that Cq is diagonizable and all eigenvalues of Cq are in
{0, 1} as stated by the following lemma .
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Let denote C′ = Cq.

Lemma 4 (Diagonizable with eigenvalues in {0, 1}) C′ is diagonizable and all its eigenvalues
are in {0, 1} iff C′ = C

′2.

Proof 4

(=⇒): For any diagonal matrix C′ = diag(c1, . . . , cn) with ci ∈ {0, 1} we trivially have C′ = C
′2.

(⇐=): C′ = C
′2 implies that C′ and C

′2 have the same set of eigenvalues λ1, . . . , λn. Since
diag(λ1, . . . , λn)

2 = diag(λ2
1, . . . , λ

2
n), each λi, i ∈ [1, n] must satisfy λi = λ2

i with the only
solutions λi ∈ {0, 1}.

Hence, τ q is a translation with resets in the eigenbasis of Cq.

Lemma 5 (Translation with resets in the eigenbasis) A transition τ : Ax6b→ x′ = C′x+ d

where C′ = C
′2 is a translation with resets τ ′ in the eigenbasis of C′:

τ ′ : AQx6b→ x′ = Q−1C′Qx+Q−1d

where Q−1C′Q = diag(λ1, . . . , λn) and λi the eigenvalues of C′.

By putting together, these results we get the theorem for abstract acceleration of finite monoid tran-
sitions:

Theorem 7 (Finite monoid) Let τ be a transition G∧x′ = Cx+d where ∃q > 0 : C2q = Cq, then
for every convex polyhedron X, the convex polyhedron

τ⊗(X) =
⊔

06j6q−1

(τ q)⊗(τ j(X))

is a convex over-approximation of τ∗(X), where τ q is defined by Eq. 2 and (τ q)⊗ is computed using
Lem. 5.

Example 6 (Finite monoid) (see Fig. 5) τ : x1+x266 ∧

(
x′1
x′2

)
=

(
0 1
1 0

)(
x1
x2

)
+

(
2
1

)

We have C2 = I = C4, thus q = 2. Obviously C2 has its eigenvalues in {0, 1} and Q = I. According

to Eq. 2 we strengthen the guard by A(Cx+d)6b = (x1+x263) and compute d′ = (C+I)d =

(
3
3

)
.

Hence we get: τ2 : (x1+x263) ∧

(
x′1
x′2

)
=

(
x1
x2

)
+

(
3
3

)

Starting from X = (x1=1 ∧ x2=0) we compute τ⊗(X) = X ⊔ (τ2)⊗(X) ⊔ (τ2)⊗(τ(X)):

τ(X) = (x1=x2=2)
(τ2)⊗(X) = (16x16

11
2 ∧ x1−x2=1)

(τ2)⊗(τ(X)) = (16x166 ∧ x1=x2)
τ⊗(X) = (2x1−x2>2 ∧ x26x1 ∧ x1−x261 ∧ x1+x2612)

4.4 Non-Finite-Monoid Cases

In the previous section, we have shown how to handle finite monoid transformations. Now, we will gen-
eralize abstract acceleration to the additional case of linearly accelerable transformations we identified
in §3.1, i.e., , Jordan blocks of size two with eigenvalues that are roots of unity.

We consider transitions of the form τ : Ax 6 b → x′ =

(
J I
0 J

)

︸ ︷︷ ︸
C

x where the transformation

matrix is in real Jordan normal form (see, e.g., [64]), i.e., , J =

(
cos 2π q

p
− sin 2π q

p

sin 2π q
p

cos 2π q
p

)
for conjugate

complex eigenvalues e
i2π q

p , p, q ∈ N, and J = (1) for the eigenvalue 1.
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We distinguish the translated dimensions T from the non-translated ones N . In the case of conju-
gate complex eigenvalues, T is {1, 2} and N={3, 4}, for the eigenvalue 1 we have T ={1} and N={2}.
Then, X•,N for example, denotes the projection of the polyhedron X onto the non-translated dimen-
sions. xT and xN denote the subvectors of translated and non-translated dimensions respectively.

Proposition 1 (Non-Finite-Monoid Case) Let τ : Ax6b→ x′ =

(
J I
0 J

)
x be a transition as

explained above. Then
τ⊗(X) = X ⊔

⊔
06l6p−1 τ

(
(τ l(X) ⊓G)ր D(l)

)

is a sound over-approximation of τ∗(X), where
• τ l is expressed as in Eq. 2, i.e., :

τ l =
∧

06i6l−1

(
ACix+

∑
06j6i−1C

jd 6 b
)
→ x′ = Clx+

∑
06j6l−1C

jd

• D(l) =

(
0 Jl′

0 0

)
·
(
(X ⊓G)•,N

)
with l′=(l−1) mod p.

This means that we enumerate the powers of J and translate the dimensions T by the polyhedron D(l)

corresponding to the (l−1)th power of J. The polyhedron D(l) originates from the right upper block

in Ckx=

(
JkxT kJk−1xN

0 JkxN

)
where it over-approximates the set {Jl−1xN | x ∈ X ⊓ G} by which

the dimensions T are translated. The projection on the non-translated dimensions may incur an over-
approximation if the non-translated dimensions are not independent from the translated dimensions
in the initial set X. Remark that we do not require as in Thm. 3 that the variables corresponding to
the non-translated dimensions have a finite number of values in the initial set: this generalization is
justified by the dense approximation that we perform. For the proof, see A.3. Figures 2 and 12 depict
the result of the application of Prop. 8 to Examples 3 and 12 respectively.

The methods proposed in this section allow us to accelerate single self-loops. However, real pro-
grams often have locations with multiple self-loops, which we will consider in the next section.

5 Abstract Acceleration of Multiple loops

In the case of flat systems (each location has at most one self-loop), we were able to replace accelerable
self-loops τ by accelerated transitions τ⊗. If all self-loops are accelerable, widening is not needed at
all. In non-flat systems, i.e., , systems with nested loops, however, this is no more possible for all
loops: only single inner self-loops can be replaced by their accelerated versions, and widening is needed
to handle outer loops.

In this section, we propose abstract accelerations to avoid widening in cases of locations with
multiple self-loops.

Remark 1 Piecewise constant derivative (PCD) systems [3] can be
considered continuous versions of multiple self-loops with translations,
with the restriction that the guards are assumed to divide the space into
polyhedral regions (points on borders belong to all adjacent regions).
Such a system (in dimension 2) is drawn on the right-hand side. Each
region is associated with a translation vector that determines the direc-
tion of the trajectory emanating of a reachable point in the region. The
reachability problem for PCDs in dimension 3 and higher is undecidable.

For the two loops, we have to compute: τ1(X)⊔ τ2(X)⊔ τ2 ◦ τ1(X)⊔ τ1 ◦ τ2(X)⊔ τ21 (X)⊔ τ22 (X)⊔
τ1 ◦ τ2 ◦ τ1(X) ⊔ τ2 ◦ τ1 ◦ τ2(X) ⊔ . . . We can speed up the computation of the limit of this sequence
by replacing τi(X) by τ⊗i (X) (because τi(X) ∈ τ⊗i (X)), and compute the following fixed point using
Kleene iteration:

(
⋃

16i6N

τi)
⊗(X) = lfpλX.X ⊔

⊔

16i6N

τ⊗i (X) (3)
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However, this fixed point computation may not converge, thus in general, widening is necessary to
guarantee termination. In our experiments, we observed that the fixed point is often reached after a
few iterations in practice.

Graph expansion The first idea [37, 39] to deal with multiple self-loops τ1, . . . , τN was to partition
the loop guards into the overlapping regions (pairwise Gi ⊓Gj) and expand the graph such that each
location has only a single self-loop accelerating the transitions in one of these regions. However, this
approach suffers from the combinatorial explosion in the number of regions, i.e., , locations, and
it introduces many new widening points in the resulting strongly connected graph. Hence, we will
investigate cases where we are able to compute abstract accelerations of multiple loops without the
use of widening.

5.1 Multiple Translation Loops

We first consider two translation loops τ1 and τ2: We observe that if one of the transitions is never taken
(τ⊗1 (X) ⊓G2=⊥ or τ⊗2 (X) ⊓G1=⊥ respectively), then we can resort to the case of single self-loops.
If both transitions may be taken, then we can further distinguish the frequent case where the guards
of the transitions can be mutually strengthened, i.e., , substituting G1 ∧ G2 for the guards in both
transitions has no influence on the concrete semantics. This gives rise to the following proposition:

Proposition 2 (Translation loops with strengthened guards) Let τ1 : G1 → x′ = x+d1, τ2 :
G2 → x′ = x+d2, with X ⊆ G1 ⊓G2 (*) and

(G1+{d1}) 6⊑ G1 ∧ (G2+{d1}) ⊑ G2 ∧ (G2+{d2}) 6⊑ G2 ∧ (G1+{d2}) ⊑ G1 (**)
then

τ⊗1,2(X) = X ⊔
((

(X ր D) ⊓G1 ⊓G2

)
+D

)

with D = {d1} ⊔ {d2} is a sound over-approximation of (τ1 ∪ τ2)
∗(X).

Intuitively, combining the two translation vectors d1 and d2 by their convex hull D results in
a time elapse that contains all interleavings of translations d1 and d2. Condition (**) states that
no application of τ1 to a state in the intersection of the guards can violate the guard of τ2, hence
strengthening, i.e., , conjoining, the guard of τ2 to G1 has no influence on τ1, and vice versa for τ2.

Proof 5
x′ ∈ (τ1 ∪ τ2)

∗(X)
⇐⇒ ∃K>0, ∃x ∈ X, ∃x0 ∈ X :

(
G1(x0) ∨G2(x0)

)
, ∀k ∈ [1,K] : ∃xk :(

xk=xk−1+d1 ∧G1(xk−1) ∨ xk=xk−1+d2 ∧G2(xk−1)
)
∧
(
x′=τ1(xK) ∨ x′=τ2(xK) ∨ x′=x

)

⇐⇒ ∃K>0, ∃x0 ∈ (X ⊓G1 ⊓G2), ∀k ∈ [1,K] : ∃xk : (because of condition (*))(
xk=xk−1+d1 ∧G1(xk−1) ∧G2(xk−1) ∨ xk=xk−1+d2 ∧G2(xk−1) ∧G1(xk−1)

)
∧(

x′=τ1(xK) ∨ x′=τ2(xK ∨ x′=x0)
)

(because of condition (**))
=⇒ ∃α>0, ∃x0 ∈ X, ∃d ∈ {d1} ⊔ {d2}, ∃xK ∈ (G1 ⊓G2) :

xK = x0+αd ∧
(
x′=xK+d ∨ x′=x0

)
(convex and dense approximation)

⇐⇒ X ⊔
((

(X ր D) ⊓G1 ⊓G2

)
+D

)

Example 7 (Translation loops with strengthened guards) (see Fig. 6)

τ1 : x1+x264→

{
x′1 = x1+2
x′2 = x2+1

and τ2 : −2x1+x264→

{
x′1 = x1−1
x′2 = x2+1

.

Starting from X = (06x161 ∧ 06x261), we compute:

D = (−16x162 ∧ x2=1)
X ր D = (x2>−x1 ∧ x2>0 ∧ x1−2x261)

(X ր D) ⊓G1 ⊓G2 = (x2>−x1 ∧ x2>0 ∧ x1−2x261 ∧ x1+x264 ∧ − 2x1+x264)
(τ1 ∪ τ2)

⊗(X) = (x2>−x1 ∧ 06x265 ∧ x1−2x261 ∧ x1+x267 ∧ − 2x1+x267)

The descending iterations in standard LRA cannot recover the three upper-bounding constraints, and
therefore it yields x2>−x1 ∧ x2>0 ∧ x1−2x261.
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In the general case of two translation loops, we can safely approximate (τ1 ∪ τ2)
∗(X) using the

following proposition:

Proposition 3 (Translation loops) Let τ1 : G1 → x′ = x+d1 and τ2 : G2 → x′ = x+d2, then

τ⊗1,2(X) = X ⊔ τ1(Y ) ⊔ τ2(Y ) with Y =
(
(X ⊓G1) ⊔ (X ⊓G2)

)
ր
(
{d1} ⊔ {d2}

)

is a sound over-approximation of (τ1 ∪ τ2)
∗(X).

In contrast to Prop. 2, we cannot exploit information about the guards in the last iteration. The
join τ1(Y )⊔τ2(Y ) computes just a normal descending iteration and hence, if applied to Ex. 7, it yields
the same result as standard LRA.

More than two translation loops Prop. 3 generalizes to N translation loops as follows:

(
⋃

16i6N

τi)
⊗(X) = X ⊔

⊔

16i6N

τi
(
(
⊔

16i6N

X ⊓Gi)ր (
⊔

16i6N

{di})
)

Similarly, Prop. 2 can be generalized to

τ⊗1...N (X) = X ⊔
((

(X ր D) ⊓
l

16i6N

Gi

)
+D

)
with D = (

⊔

16i6N

{di}).

In practice, one starts computing the Kleene iteration with the individually accelerated transitions
τ⊗i (X). Sometimes a fixed point is already reached after a few iterations. Then one can apply Prop. 2
if ires preconditions are fulfilled or otherwise resort to Prop. 3. Gonnord and Halbwachs describe some
other heuristics in [39].

5.2 Multiple Translation and Reset Loops

We start with the simplest case: a translation loop and a reset loop.

Proposition 4 (Translation and reset loop) Let τ1 : G1 → x′ = x+d1 and τ2 : G2 → x′ = d2,
then

τ⊗1,2(X) = τ⊗1 (X ⊔ τ2(τ
⊗
1 (X)))

is a sound over-approximation of (τ1 ∪ τ2)
∗(X).

Intuitively, the translation τ1 can only act on the initial set X and the reset state d2 (if τ2 can be
taken at all, i.e., , G2 must be satisfied by X or any iteration of τ1 on X).

Proof 6
(τ1 ∪ τ2)

∗

= id ∪ τ1 ∪ τ2 ∪ τ2 ◦ τ1 ∪ τ1 ◦ τ2 ∪ τ21 ∪ τ22 ∪ τ2 ◦ τ
2
1 ∪ τ22 ◦ τ1 ∪ . . .

= id ∪ τ1 ∪ τ2 ∪ τ2 ◦ τ1 ∪ τ1 ◦ τ2 ∪ τ21 ∪ τ21 ◦ τ2 ∪ . . . (τ2 is idempotent)
⊆ τ∗1 ∪ τ2 ◦ τ

∗
1 ∪ τ∗1 ◦ τ2 ∪ τ∗1 ◦ τ2 ◦ τ

∗
1 ∪ τ2 ◦ τ

∗
1 ◦ τ2 ∪ . . . (τ∗1 is idempotent, contains id and τ1)

= τ∗1 ∪ τ2 ◦ τ
∗
1 ∪ τ∗1 ◦ τ2 ∪ τ∗1 ◦ τ2 ◦ τ

∗
1 (τ2 and τ∗1 ◦ τ2 are idempotent)

= τ∗1 ◦ (id ∪ (τ2 ◦ τ
∗
1 ))

By the monotonicity of the abstraction, we have (α ◦ τ∗1 ◦ (id ∪ (τ2 ◦ τ
∗
1 ) ◦ γ)) (X) ⊑ τ⊗1 (X ⊔

τ2(τ
⊗
1 (X))).

Example 8 (Translation and reset loop) (see Fig. 7) τ1 : x1+x2 6 4 →

{
x′1 = x1 + 1
x′2 = x2 + 1

and

τ2 : x1+x2>5→

{
x′1 = 2
x′2 = 0

. Starting from X = (x1=x2=0), we compute:

τ⊗1 (X) = (06x1=x263)
τ2
(
τ⊗1 (X)

)
= (x1=2 ∧ x2=0)

τ2
(
τ⊗1 (X)

)
⊔X = (06x162 ∧ x2=0)

τ⊗1
(
τ2
(
τ⊗1 (X)

)
⊔X

)
= (06x26x16x2+2 ∧ x1+x266)

16/33



Gonnord & Schrammel Abstract Acceleration in LRA (extended version)
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Figure 6: Acceleration for trans-
lation loops with strengthened
guards (Ex. 7).

x1

x2

X

τ1,2(X)
G1

0

1

2

3

0 1 2 3 4
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(Ex. 8).
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Figure 8: Acceleration for trans-
lation and translation/reset loops
with strengthened guards (Ex. 9).

Similar to Prop. 2, we can consider the case where the guards of the transitions can be mutually
strengthened:

Proposition 5 (Translation and translation/reset loops with strengthened guards) Let
τ1 : G1 → x′ = x+d1, τ2 : G2 → x′ = C2x+d2 with(

X ⊔ τ2(X)
)
⊆ (G1 ⊓G2) and (*)

(G1+{d1}) 6⊑ G1 ∧ (G2+{d1}) ⊑ G2 ∧ (G2+{C2d2}) 6⊑ G2 ∧ (G1+{C2d2}) ⊑ G1 (**)
then

τ⊗1,2(X) = X ⊔
((

((X ⊔ τ2(X))ր D) ⊓G1 ⊓G2

)
+D

)

with D =
(⊔{

{d1}, {C2d2}, {C2d1}
})

is a sound over-approximation of (τ1 ∪ τ2)
∗(X).

Proof 7 Notation: we partition the dimensions of the vectors x according to C2=diag(c1 . . . cn) into
xt consisting of the translated dimensions (ci=1), and the reset dimensions xr (ci=0).

x′ ∈ (τ1 ∪ τ2)
∗(X)

⇐⇒ ∃K>0, ∃x ∈ X, ∃x0 ∈ X :
(
G1(x0) ∨G2(x0)

)
: ∀k ∈ [1,K] : ∃xk :(

xk=xk−1+d1 ∧G1(xk−1) ∨ xk=C2xk−1+d2 ∧G2(xk−1)
)
∧(

x′=τ1(xK) ∨ x′=τ2(xK) ∨ x′=x
)

⇐⇒ ∃K>0, ∃x0 ∈
(
(X ⊔ τ2(X)) ⊓G1 ⊓G2

)
: ∀k ∈ [1,K] : ∃xk : (because of (*))(

xk=xk−1+d1 ∧G1(xk−1) ∧G2(xk−1) ∨ xk=C2xk−1+d2 ∧G1(xk−1) ∧G2(xk−1)
)
∧(

x′=τ1(xK) ∨ x′=τ2(xK) ∨ x′=x
)

(because of (**))
=⇒ ∃K>0, ∃x0 ∈

(
(X ⊔ τ2(X)) ⊓G1 ⊓G2

)
, ∃xK :(

xt
K = xt

0+Kdt
1 ∨ xt

K = xt
0+Kdt

2

)
∧
(
xr
K = xr

0+Kdr
1 ∨ xr

K = dr
2 ∨ xr

K = dr
2+Kdr

1

)
∧(

x′=τ1(xK) ∨ x′=τ2(xK) ∨ x′=x
)

=⇒ ∃α>0, ∃x0 ∈
(
(X ⊔ τ2(X)) ⊓G1 ⊓G2

)
, ∃d ∈ {d1} ⊔ {C2d2} ⊔ {C2d1}, ∃xK :

xK = x0+αd ∧
(
x′=τ1(xK) ∨ x′=τ2(xK) ∨ x′=x

)

(d is in the convex hull of {dt
1,d

t
2} × {d

r
1,0

r}, and {xt
0} × {x

r
0,d

r
2} ⊆ X ⊔ τ2(X) (*))

⇐⇒ x′ ∈ X ⊔
((

(X ր D) ⊓G1 ⊓G2

)
+D

)
∧ D =

(⊔{
{d1}, {C2d2}, {C2d1}

})

Example 9 (Translation and translation/reset loops) (see Fig. 8)

τ1 : x1+x264→

{
x′1 = x1+2
x′2 = x2+1

and τ2 : −2x1+x264→

{
x′1 = x1−1
x′2 = 0

.

Starting from X = (06x161 ∧ 16x262), we compute:

τ2(X) = (x2 = 0 ∧ x1 6 0 ∧ − 16x1)
X ⊔ τ2(X) = (x16x2 ∧ 06x2 ∧ x161 ∧ x262 ∧ x262x1 + 2)

D = (−1, 0) ⊔ (1, 1) ⊔ (1, 0) = (2x26x1+1 ∧ 06x2 ∧ x1+x262)
(X ⊔ τ2(X))ր D = (x2>0)

τ⊗1,2(X) = (x2>0 ∧ x166 ∧ x1+x267 ∧ − 2x1+x266 ∧ − x1+3x2613)

In [38], Gonnord and Halbwachs proposed a specialized abstract acceleration for another combi-
nation of translation and translation/reset loops which frequently occurs in synchronous controller
programs.
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τ1 : s ≤ 3 →
d′ = d+ 1
s′ = s+ 1

τ2 : true →

s′ = 0
t′ = t+ 1

(s′, t′, d′) = (0, 0, 0)

Figure 9: CFG of the cruise
control Ex. 10.

K

x1

x3

X

d1

x2

d2

kmaxC2d1

Figure 10: Abstract acceleration of translation and
translation/reset loops (Prop. 6).

Proposition 6 ([38]) Let τ1 : G1 → x′ = x + d1 and τ2 : x′ = C2x + d2 with G1 = (xn 6 K),
C2 = diag(1 . . . 1, 0) and4 d2,n=0, and assume X ⊑ (xn=K). Then

τ⊗1,2(X) =

{
X ր

⊔
{d1,C2d1,d2} if X ր {d1} ⊑ G1

X ⊔ τ1
(
X ր

⊔
{d1,d2, kmaxC2d1 + d2}

)
else

with kmax = ⌊K/d1,n⌋+1 is a convex overapproximation of (τ1 ∪ τ2)
∗(X).

Prop. 6 is illustrated in Fig 10 for n = 3.

Example 10 We consider the famous cruise control example [48] (see Fig. 9). There are two input
signals that trigger a transition: the “second” signal increments time t and resets the speed estimate
s to 0, and the “meter” signal increments both the distance d and the speed estimate s. The “meter”
signal can only occur when s63 because it is assumed that the speed is less than 4m/s. With notations
of figure 10, we have x = (t, d, s), G1 = (s 6 3), d1 = (0, 1, 1), d2 = (1, 0, 0), and X = {(0, 0, 0)}.
Moreover, with kmax = 3/1+1 = 4 and C2d1 = (0, 1, 0) we have kmaxC2d1 + d2 = (1, 4, 0), and we
obtain:

τ⊗1,2(X) =
(
{(0, 0, 0)} ր

⊔
{(0, 1, 1), (1, 0, 0), (1, 4, 0)}

)
⊓ (s 6 3)

= (t > 0 ∧ 0 6 s 6 3 ∧ 0 6 d 6 4t+ s)

For the general case of a translation and a translation/reset loop, we can give a formula by
combining ideas from Propositions 3, 4 and 5:

τ⊗1,2(X) = X ⊔ τ1(Y ) ⊔ τ2(Y )

with

{
Y =

(
(Z ⊓G1) ⊔ (Z ⊓G2)

)
ր
(⊔{

{d1}, {C2d2}, {C2d1}
})

Z = τ2(τ
⊗
1 (X)) ⊔X

However, its generalization to more than two loops is less obvious.

These results led to algorithms that were implemented in the Aspic tool (§7). More recent work
considers a different approach to handling multiple loops, as we will see in the next section.

5.3 Path Focusing

Henry and al [49] and Monniaux and Gonnord [69] propose to run classical Kleene iterations on a
modified CFG that consists only of a set of “cut” nodes (every cycle in the initial CFG passes through
at least one of these nodes). Joins (convex hulls) are only taken in these locations and the loop
bodies are entirely represented symbolically. This has the advantage that convex unions on joining
branches within in the loops are avoided and hence the precision is improved. During the analysis,
one searches for loop paths that violate the current invariant by posing a query to an SMT solver:
Is ΦG(x,x

′) ∧ x ∈ X ∧ x′ 6∈ X ∧ bsi ∧ bdi ∧ . . . satisfiable? where ΦG denotes an encoding of the CFG:
control points and transitions are boolean values, transition are encoded with primed values; bsi ∧ bdi
expresses that the desired path begins and end at a given control point, and x ∈ X ∧ x′ 6∈ X means
that the desired path should add new states to the current abstract value. If there is a positive answer,
the valuation gives us a new path that can possibly be accelerated, or at least iterated with widening
until convergence.

4
di,n denotes the n

th dimension of di.
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Non-elementary loops Until now our results have been exposed for simple or multiple elementary
loops in a control location. We can still apply abstract acceleration techniques to non-elementary
loops by composing the transitions of cycles of nested loops. However, as enumerating cycles is costly,
we have to choose between all cycles which ones are most likely to be accelerable. Again, this choice
can be made efficiently via adequate SMT-queries as explained above.

6 Extensions

This section summarizes further developments w.r.t. abstract acceleration. First, abstract acceleration
can be generalized from closed to open systems, e.g., reactive systems with numerical inputs (§6.1,
[77, 79]). Then, it can also be applied to perform a backward (co-reachability) analysis (§6.2, [79]). At
last, §6.3 describes a method that makes abstract acceleration applicable to logico-numerical programs,
i.e., , programs with Boolean and numerical variables.

6.1 Reactive Systems With Numerical Inputs

Reactive programs such as Lustre programs [44] interact with their environment: at each compu-
tation step, they have to take into account the values of input variables, which typically correspond
to values acquired by sensors. Boolean input variables can be encoded in a CFG by finite non-
deterministic choices, but numerical input variables require a more specific treatment. Indeed, they
induce transitions of the form τ : G(x, ξ) → x′ = f(x, ξ), x,x′ ∈ R

n, ξ ∈ R
p that depend on both,

numerical state variables x and numerical input variables ξ. We consider transitions τ where the
variables x, ξ occur in general linear expressions in guards and actions:

(
A L
0 P

)(
x

ξ

)
6

(
b

q

)

︸ ︷︷ ︸
Ax+Lξ6b ∧ Pξ6q

→ x′ =
(
C T

)(x
ξ

)
+ u

︸ ︷︷ ︸
Cx+Tξ+u

(4)

The main challenge raised by adding inputs consists in the fact that any general affine transforma-
tion without inputs Ax 6 b→ x′ = Cx+ d can be expressed as a “reset with inputs” (Ax 6 b∧ ξ =
Cx + d) → x′ = ξ [79]. This means that there is no hope to get precise acceleration for such resets
or translations with inputs, unless we know how to accelerate precisely general affine transformations
without inputs.

Nevertheless, we can accelerate transitions with inputs if the constraints on the state variables do
not depend on the inputs, i.e., , the guard is of the form Ax 6 b ∧ Pξ 6 q, i.e., , when L = 0 in
Eqn. (4). We call the resulting guards simple guards. A general guard G′ can be relaxed to a simple
guard G = (∃ξ : G′)︸ ︷︷ ︸

Ax6b

∧ (∃x : G′)︸ ︷︷ ︸
Pξ6q

. This trivially results in a sound over-approximation because G ⊒ G′.

We will now show how to abstractly accelerate a translation with inputs and simple guards: The
first step is to reduce it to a polyhedral translation defined as τ : G→ x′ = x+D with the semantics
τ(X) = (X ⊓G)+D. Intuitively, the polyhedron D contains all possible values (induced by the inputs
ξ) that may be added to x. The polyhedron D = {d | d = Tξ + u ∧ Pξ 6 q} can be computed
using standard polyhedra operations. Then, Thm. 5 can be generalized from ordinary translations to
polyhedral translations.

Theorem 8 (Polyhedral translation [79]) Let τ be a polyhedral translation G→ x′ = x+D with
simple guards, and X, D convex polyhedra. Then, the set

τ⊗(X) = X ⊔ τ
(
(X ⊓G)ր D

)

is a convex over-approximation of τ∗(X).

The case of translations/resets with inputs can be handled similarly to translations: first, we
reduce translations/resets with inputs and simple guards polyhedral translations with resets τ : G→
x′ =Cx+D. However, the resulting abstract acceleration becomes more complicated than Thm. 6
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because, unlike in the case of resets to constants, the variables may be assigned a different value in
each iteration. We refer to [79] for further details.

The general case of finite monoid transitions (Thm. 7) can be extended to inputs based on Eq. (1)
τ∗(X) =

⋃
06j6q−1(τ

q)∗(τ j(X)), where, in the case of inputs, τ q is defined as:
∧

06i6q−1

(
ACix+ LCiξi +

∑
06j6i−1TCjξj−C

ju 6 b
)
∧ (Pξ 6 q) →

(
x′ = Cqx+

∑
06j6q−1TCjξj−C

ju
)

Then we can accelerate each τ q by relaxing the guard, reducing them to polyhedral translations
(with resets) and applying the respective theorems in the eigenbasis of Cq according to Lem. 5. Mind
that we need to duplicate the inputs q times.

Also, the non-finite monoid cases of §4.4 can be extended to inputs in a straightforward way by
taking them into account (existential quantification) in the computation of D(l) in Prop. 8.

6.2 Backward Analysis

Abstract acceleration has been applied to forward reachability analysis in order to compute the reach-
able states starting from a set of initial states. Backward analysis computes the states co-reachable
from the error states. For example, combining forward and backward analysis allows to obtain an
approximation of the sets of states belonging to a path from initial to error states. The experience
of verification tools, e.g., [55], shows that combining forward and backward analyses results in more
powerful tools.

Although the inverse of a translation is a translation, the difference is that the intersection with
the guard occurs after the (inverted) translation. The case of backward translations with resets is
more complicated than for the forward case, because resets are not invertible. We state here just
the translation case and refer to [79] for the other cases and their respective extensions to numerical
inputs.

Proposition 7 (Backward translation [79]) Let τ be a translation G→ x′ = x+d. Then the set

τ−⊗(X ′) = X ′ ⊔
(
(τ−1(X ′)ր {−d}

)
⊓G

is a convex over-approximation of τ−∗(X ′), where τ−∗ = (τ−1)∗ = (τ∗)−1 is the reflexive and transitive
backward closure of τ .

6.3 Logico-Numerical Abstract Acceleration

The classical approach to applying abstract acceleration to logico-numerical programs like Lustre

programs [44] relies on the enumeration of the Boolean state space. However, this technique suffers
from the state space explosion. In [78], Schrammel and Jeannet proposed a method that alleviates
this problem by combining an analysis in a logico-numerical abstract domain (that represents both
Boolean and numerical states symbolically) and state space partitioning. This approach separates the
issue of (i) accelerating transition relations that contain Boolean variables from (ii) finding a suitable
CFG that enables a reasonably precise and fast reachability analysis.

Self-loops in logico-numerical programs are of the form τ :

(
b′

x′

)
=

(
f b(b,β,x, ξ)
fx(b,β,x, ξ)

)
where fx

is a vector of expressions of the form
∨

j

(
aj(x, ξ) if gj(b,β,x, ξ)

)
where aj are arithmetic expressions,

and gj (as well as the components of f b) are arbitrary (Boolean) formulas involving Boolean state
variables b, Boolean input variables β and constraints over x and ξ. The “guards” gj are assumed to
be disjoint.

We use the logico-numerical abstract domain that abstracts logico-numerical state sets ℘(Bm×Rn)
by a cartesian product of Boolean state sets ℘(Bm) (represented with the help of Bdds) and convex
polyhedra abstracting ℘(Rn).

By factorizing the guards of fx, we obtain several loops of the form τ : gb(b,β) ∧ gx(x, ξ) →(
b′

x′

)
=

(
f b(b,β,x, ξ)

ax(x, ξ)

)
. Such a loop is accelerable if gx is a conjunction of linear inequalities
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and x′ = ax(x, ξ) are accelerable actions. Then numerical and Boolean parts of the transition function
τ are decoupled into

τb : g
b ∧ gx →

(
b′

x′

)
=

(
f b

x

)
and τx : gb ∧ gx →

(
b′

x′

)
=

(
b

ax

)
.

and τ⊗ is approximated by (τ ♯b )
∗ ◦ τ⊗x where τ⊗x is computed using numerical abstract acceleration

(which is possible because its Boolean part is the identity) and the abstract version τ ♯b of τb is iterated
up to convergence (which is guaranteed because the lattice of Boolean state sets is finite).

This method can be applied to accelerable loops (in the sense above) in any CFG. However, in order
to alleviate the impact of decoupling Boolean and numerical transition functions on the precision, it is
applied to CFGs obtained by partitioning techniques that group Boolean states that exhibit the same
numerical behavior (“numerical modes”) in the same locations.

7 Tools and Experimental Results

In [39, 29] Gonnord et al. showed a general method to integrate abstract acceleration results onto
a classical LRA tool. Basically, a preprocessing phase identifies accelerable loops and precomputes
the static information used for acceleration. Accelerable loops are tagged so that to avoid widening
application on their heads. Then a classical LRA is performed, where the application of any accelerable
loop is replaced by the application of its acceleration.

7.1 Tools for abstract acceleration

Aspic5 was the first implementation of abstract acceleration techniques for numerical programs. It
implements a combination of classical LRA with abstract acceleration on polyhedra on accelerable
simple loops and multiple loops (§4 and §5). The implementation details can be found in [29]. Aspic

takes as input a variant of the Fast [7] format, and is able to compute numerical invariants for C
programs via c2fsm [29]. It also belongs to a toolsuite called WTC [1] that was designed to prove
termination of flowchart programs.

ReaVer6 (REActive system VERifier) is a tool for safety verification of discrete and hybrid sys-
tems specified by logico-numerical data-flow languages, like Lustre [19]. It features partitioning
techniques and logico-numerical analysis methods based on logico-numerical product and power do-
mains (of the Apron [57] and BddApron [56] domain libraries) with convex polyhedra, octagons,
intervals, and template polyhedra to abstract numerical state sets. It has frontends for the NBac for-
mat [55], Lustre via lus2nbac [54], and (subset of) Lucid Synchrone [18]. It implements abstract
acceleration for self-loops (§4) including the extension to numerical inputs (§6.1), the logico-numerical
technique (§6.3), and numerical backward acceleration with inputs (§6.2). Furthermore, it is able to
apply these methods to the analysis of hybrid systems.

7.2 Experimental Results

In this section, we recall some already published experimental results that show the relevance of
the acceleration methods in what concerns precision and efficiency. We also mention applications
where abstract acceleration-based invariant generation has been successfully applied, like termination
analysis.

Accelerated vs standard LRA Using Aspic and its C front-end c2fsm, Feautrier and Gonnord
[29] showed the precision of abstract acceleration in comparison to Fast, standard LRA, and its
improvements using widening with thresholds (widening “up to” [46]) and guided static analysis [41]
on 17 small, but difficult benchmarks7. The experiments show that Aspic generally manages to

5laure.gonnord.org/pro/aspic/aspic.html
6pop-art.inrialpes.fr/people/schramme/reaver/
7All these benchmarks can be found on the Aspic webpage.
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infer better invariants in 12 cases in comparison to standard LRA, 7 w.r.t. widening “up to”, and 9
compared with guided static analysis. With a 15 minutes timeout, Fast is able to compute the exact
invariants on 13 benchmarks but is at least 3 times slower.

Proving properties and termination Aspic has been used in combination with c2fsm for prov-
ing properties in C programs [29] (Table 1).

File Proved property
Apache(simp1_ok) No buffer Overflow (c2fsm)
Sendmail(inner_ok) No buffer Overflow (c2fsm)

Sendmail(mime_fromqp_arr_ok.c) No buffer Overflow (aspic)
Spam(loop_ok) No Buffer Overflow (aspic)

OpenSER(parse_config_ok) No Buffer Overflow (aspic+accel)
list.c AssertOK (aspic+delay4+accel)

disj_simple.c AssertOK (aspic+accel)
Heapsort(realheapsort) Termination (aspic)

Loops (nestedLoop) Termination (aspic+delay4+accel)

Table 1: C benchmarks (cf. [61] and [43])

The two first properties were proved within c2fsm (bad states were proved to be unreachable
while generating the automaton). Standard linear relation analysis was sufficient to prove three
more properties, but the precision gain with acceleration was absolutely mandatory for the rest of the
experiments of this table. In some cases we were obliged to combine acceleration and delayed widening
to obtain the desired precision.

For termination analysis, Aspic was used as invariant generator inside the WTC toolsuite8. The
idea is to approximate the search space domain for finding linear ranking functions and thus proving
termination [1]. The experiments show that in a few cases (7 over 35), abstract acceleration gained
enough precision to conclude for termination. In 8 more cases, standard analysis with widening “up
to” was precise enough to prove termination, although acceleration gave better results in terms of
invariant precision. In all other cases, the obtained invariants were the same.
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Figure 11: Comparison between Aspic, standard numerical linear relation analysis (StdNum)),
ReaVer, standard logico-numerical analysis (StdLN), and NBac.

Reactive system analysis Fig. 11 depicts the results of an experimental comparison (cf. [78]) on a
set of reactive system benchmarks9 written in Lustre. On the one hand, it compares standard analysis
methods (standard LRA (§2.1) and NBac [55]) with abstract acceleration (Aspic and ReaVer), and
on the other hand, it compares purely numerical methods (Aspic and standard numerical LRA) that
encode the Boolean states in CFG locations10 with logico-numerical methods (ReaVer, NBac, and

8http://compsys-tools.ens-lyon.fr/rank/index.php
9Production line benchmarks available on: pop-art.inrialpes.fr/people/schramme/reaver/.

10Only the Boolean states that are reachable in the Boolean skeleton of the program are actually enumerated.
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standard logico-numerical LRA) that use state space partitioning heuristics to scale up. It shows
that the abstract acceleration-based tools outperform the other methods. This is due to both the
increased precision and the faster convergence to a fixed point. Moreover, it shows that ReaVer that
implements logico-numerical abstract acceleration scales better than the purely numerical Aspic.

8 Discussion and Related Work

Methods to improve widening As explained in §2.1.3, the motivation for abstract acceleration
was the development of a precise, monotonic widening operator for a specific class of loops.

Delaying widening (parameter N in §2.1.3) helps discovering a better estimate before applying
extrapolation. This has an important effect on precision. However, delaying widening in polyhedral
analyses is expensive, because coefficients quickly become huge. Remark that delaying widening is
not equivalent to loop unrolling, because the convex union is taken after each iteration, whereas loop
unrolling creates separate locations.

In systems with nested loops (or loops with loop phases (branches within the loop)), the standard
approach often suffers from the fact that the result of the widening sequence is already a (bad) fixed
point, and hence the descending sequence cannot recover any information [47]. This typically happens
due to transitions that keep “injecting” bad extrapolations during the descending sequence.

Halbwachs [46] observes that distinguishing loop phases can be exploited to obtain a better preci-
sion. Guided static analysis with lookahead widening [40, 41] follows this idea by alternating ascending
and descending sequences on a strictly increasing, finite sequence of restrictions of the program (by
adding new transitions) which converges towards the original program. In many cases this method
improves the precision, but it ultimately relies on the effectiveness of the descending iterations.

Widening with thresholds tries to limit widening by a given set of constraints T [46, 26] in order not
to avoid bad extrapolations in the first place. To achieve this, the result of the standard widening is
intersected with those constraints in T that are satisfied by both arguments of the widening operator.
The problem is, though, how to find a set of relevant threshold constraints. A static threshold inference
method based on propagating the post-condition of a loop guard to the widening points of the CFG
is proposed in [63]. Dynamic threshold inference methods are for example counterexample-refined
widening [86], which is based on an (under-approximating) backward analysis, and widening with
landmarks [80], which extrapolates threshold constraints by estimating the number of loop iterations
until the guard of the loop is violated.

A framework for designing new widening operators was proposed in [4, 5]. The proposition for a new
widening operator for polyhedron gives better precision locally but as widening is not monotonic, there
is no result on the global precision improvement. Most experimental results show an improvement, but
there are also counter-examples. Moreover, the cost of the analysis can increase significantly, because
the convergence is generally slower.

Abstract acceleration vs. Kleene iteration. Abstract acceleration aims at computing a tight
over-approximation of α(

⋃
k>0 τ

k(X0)) where X0 is a convex polyhedron and τ is an affine trans-
formation with an affine guard. Since convex polyhedra are closed under affine transformations
(α(τ(X0))=τ(X0)), we have α(

⋃
k>0 τ

k(X0)) =
⊔

k>0 τ
k(X0). The latter formula is known as Merge-

Over-All-Paths (MOP) solution of the reachability problem [58], which computes the limit of the
sequence:

X0 X1 = X0 ⊔ τ(X0) X2 = X0 ⊔ τ(X0) ⊔ τ2(X0) . . .
In contrast, the standard approach in abstract interpretation computes the fixed point X ′

∞ of
X = X0 ⊔ τ(X), known as the Minimal-Fixed-Point (MFP) solution. It proceeds as follows:

X ′
0 = X0 X ′

1 = X ′
0 ⊔ τ(X ′

0) X ′
2 = X ′

0 ⊔ τ(X ′
0 ⊔ τ(X ′

0)) . . .
The MOP solution is more precise than the MFP solution [58]. The reason is that, in general, τ does
not distribute over ⊔ and we have τ(X1) ⊔ τ(X2) ⊑ τ(X1 ⊔ X2). For instance, if X0 = [0, 0] and
τ : x61→ x′=x+2, we have X2 = [0, 0] ⊔ [2, 2] ⊔ ⊥ = [0, 2] and X ′

2 = [0, 0] ⊔ τ([0, 2]) = [0, 3]. Since
abstract acceleration should yield a tight over-approximation of the MOP solution, we should gener-
ally have the relationship

⊔
k>0 τ

k(X0) ⊑ τ⊗(X0) ⊑ X ′
∞, i.e., , abstract acceleration should be more

23/33



Gonnord & Schrammel Abstract Acceleration in LRA (extended version)

precise than the standard abstract interpretation approach (MFP) even when assuming convergence
of the Kleene iteration without widening.

Abstract acceleration in non-flat systems Generally, the invariants computed by abstract ac-
celeration of a single self-loop τ are not inductive, which implies that τ⊗ is not idempotent, i.e., ,
τ⊗(τ⊗(X0)) 6= τ⊗(X0). While this is not a problem for flat systems, it has negative effects in the
presence of nested loops. For example, in the system (id ◦ τ∗)∗ we can apply abstract acceleration
to the innermost loop: (id ◦ τ⊗)∗ = (τ⊗)∗. If τ⊗ is not idempotent, then the outer loop might not
converge and thus widening is needed. Thus, the considerations w.r.t. MOP and MFP solutions for τ∗

above apply to (τ⊗)∗ in the same manner. Since this problem arises in particular when the initial set
is not contained in the guard G (cf. [67, 79]), Leroux and Sutre [67] propose to accelerate translations
by the formula τ⊗(X) = τ(X ր D), i.e., , without initially intersecting with G, which is idempotent
and hence convergence without widening can be expected more often. However, this formula is clearly
less precise and should not be used for accelerating non-nested loops.

Affine derivative closure algorithm The initial source of inspiration for abstract acceleration
was the affine derivative closure algorithm of Ancourt et al. [2] which is based on computing an
abstract transformer, i.e., , a relation between variables x and x′, independently of the initial state
of the system. The abstract transformer abstracts the effect of the loop by a polyhedral translation

true → x′ = x+DR with DR = {d | ∃x, ξ,x′ : R(x, ξ,x′) ∧ x′ = x+ d}

where R is the concrete transition relation. The polyhedronDR is called the “derivative” of the relation
R. The effect of multiple loops with relations R1, . . . , Rk is abstracted by considering the convex union⊔

iDRi
. Then, the reflexive and transitive closure R∗ = {(x,x′) | ∃k > 0 : x′ = x+kd ∧ DR(d)} is

applied to a polyhedron X of initial states: R∗(X) = {x′ | ∃x : R∗(x,x′) ∧ X(x)} The final result
is obtained by computing one descending iteration (which eventually takes into account the guards
of the loops), in the same way as it is done in standard abstract interpretation after widening. The
affine derivative closure algorithm is implemented in the code optimization tool Pips11.

In single self-loops with translations or translations/resets, the method works similarly to abstract
acceleration, and is expected to yield the same results: although resets cannot be expressed as polyhe-
dral translations (for instance, if R(x, x′) = (x′=0), then DR = {d |∃x, x′ : x′ = 0 ∧ x′ = x+ d} = ⊤),
this information is recovered during the descending iteration. However, in nested loop situations,
these descending iterations may fail (like in Ex. 7). Hence, even though the derivative closure method
elegantly deals with multiple loops by taking the convex union of the derivatives, it is also less precise
than abstract acceleration for such programs. However, the main advantage of the derivative closure
method is that it is more general than abstract acceleration, because it automatically approximates
any kind of transformations. Moreover, since it computes abstract transformers, it is modular and
can be used in the context of interprocedural analyses.

In the context of applying Presburger-based acceleration to program parallelization, Beletska et al.
[10, 84] propose a similar computation scheme for multiple loops that accelerates first the loop bodies
and takes into account the guards afterwards, thus trading precision for efficiency.

Strategy iteration. Another approach to overcome the widening issue is to restrict the domain
(e.g., using template polyhedra [75] or intervals [82]) and use fixed point iteration strategies that do
not need widening at all. Strategy (policy) iteration methods [23, 35, 36] solve the fixed point equation
associated with the reachability analysis by iteratively approximating the least fixed point by fixed
points of simpler semantic equations that can be solved exactly using mathematical programming,
for example. Strategy iteration methods are able to “accelerate” globally the whole transition system
regardless of the graph structure or type of affine transformation, and they effectively compute the least
fixed point. However, this is only possible on the simpler domain of template polyhedra. In contrast,
abstract acceleration is only able to accelerate some cases of self-loops and cycles with certain types

11pips4u.org
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of affine transformations, and it relies on widening in the general case. However, due to the use of
general convex polyhedra, it is able to “discover” complex invariant constraints.

Presburger-based acceleration Most of the related work has been discussed in §3. It remains to
mention that it has been shown that the transitive closure of difference [22] and octagonal relations [16]
is also Presburger-definable. A performant algorithm for accelerating such relations is implemented
in the tool Flata [17]. In the most recent work [51], the CEGAR method is extended with an
acceleration-based counter example generalization.

Ellipsoidal techniques Alternative techniques for linear loops originate from the analysis of linear
filters frequently found in control systems. These techniques consider ellipsoidal domains [62, 30, 73]
that are known to be well suited for analyzing systems that are Lyapunov-stable (eigenvalues with
modulus < 1.), and hence, they target a different class of linear transformations.

Recurrence equations. Kovacs [60] infers loop invariants by solving the recurrence equations rep-
resenting the loop body in closed form. The technique targets exact invariant generation for single
loops that admit polynomial equality invariants. While polynomials go beyond the scope of LRA they
cannot express all finite monoid transitions (counterexample: rotations). Hence, the class of inferred
properties and programs is incomparable to that considered by abstract acceleration. Regardless of
performance considerations, the technique could provide a significant enhancement of abstract accel-
eration to handle a larger class of loops. However, it is not clear how to integrate the technique into
LRA.

Quantifier elimination. Acceleration can be viewed as a loop summarization method, in the sense
that it aims at finding a relation between the states X entering the loop and any future states X ′

encountered at the loop head (the intersection with the negated loop guard yields the exit states).
Symbolically computing such a transformer Rx,x′ = ∃k > 0 : x′ = τk(x) is essentially a quantifier
elimination problem. For example, Tiwari et al. [83, 76] propose to compute such transformers for
linear differential equations dx(t)/dt = Ax(t) in the context of hybrid systems, which is a problem
similar to the acceleration of discrete linear loops. The transformers are computed using off-the-shelf
quantifier elimination tools over real arithmetic, like RedLog. Although efficiency drawbacks are
reported, they are able to solve many tricky benchmarks. Real quantifier elimination is also used by
Colón et al. [74, 21] who proposed methods that solve for the coefficients of the linear invariant directly
using Farkas’ Lemma. Gulwani, Srivastava and Tiwari [81, 42] propose to compute template-based
invariants by translating the program into a big ∃∀ formula. Then rational numbers are mapped to
bounded-range integers and the formula is solved using bit-blasting or other SMT-based techniques.

9 Conclusion and Perspectives

Abstract acceleration is complement to widening in linear relation analysis. Due to its monotonicity
property, it is possible to accelerate the innermost loops precisely while using widening for the outer
loops in nested loop situations. Thus, better invariants are computed for programs where a lot of
information is lost when using widening only. We have shown how (linear) abstract accelerations are
derived for linearly accelerable linear transitions, and we have given experimental results using the
tools Aspic and ReaVer.

Open problems and perspectives. Abstract acceleration reduces more general linear transforma-
tions to some base cases (translations, resets, a.s.o) via a change of basis. This basis change requires
the computation of the eigenvalues of the transformation matrix which corresponds to finding the
roots of matrix’s characteristic polynomial. This is a hard problem and, in general, only numerical
approximations can be computed (see, e.g., [87]). However, for our purpose, numerical approximations

are not useful, because, for example, the matrices

(
1 1
0 1

)
and

(
1 1
0 1 + ǫ

)
are close to each other, but
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the Jordan form of the first one is itself, whereas the second one is diagonalizable for ǫ> 0 with the

Jordan form

(
1 0
0 1 + ǫ

)
, and hence, we could accelerate the first but not the second one. For these

reasons, our tools do not yet perform a basis change and accelerate only transitions that accelerable
in the given basis, which is often the case in practical programs. Nonetheless, in order to fully exploit
abstract acceleration, we could consider the use of computer algebra systems like Sage12 that allow
us to manipulate rational and algebraic numbers in an exact manner, hoping that the performance is
sufficient for most practical cases.

Another direction for future research could be to detect the maximal linearly accelerable sub-
transformations within a general linear transformation or even in a general transition function. Then,
the transition function can be decomposed w.r.t. the accelerable dimensions which are treated using
abstract acceleration and the non-accelerable dimensions which can be handled with widening or the
derivative closure technique.

At last, it would be of great interest to generalize the abstract acceleration concept to not linearly
accelerable (linear) transformations: for example, to compute a reasonably simple, but precise, convex,
polyhedral over-approximation of the transitive closure of the self-loop x6 10 → x′ = 2x which has
an exponential trajectory as a function of time. Computing precise approximations of such behavior
is also of high importance in the analysis of hybrid systems, of which the time-continuous behavior is
often specified by linear dynamics ẋ = Cx.

Regarding implemention, we plan to implement abstract acceleration inside the Pagai13 tool,
which already implements path focusing (§5.3) in a more general framework than Aspic [49]. This
implementation will enable the combination of acceleration, precise fixpoint iteration and linear rela-
tion analysis for general C programs. Moreover, we plan to add front-ends for the Numerical Transition
System format [52] to our tools in order to favor further experimental comparisons.
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Programmes Synchrones. Thèse de doctorat, Grenoble INP, Sept 2000.

[55] Bertrand Jeannet. Dynamic partitioning in linear relation analysis. application to the verification of reactive systems. Formal
Methods in System Design, 23(1):5–37, 2003.

[56] Bertrand Jeannet. Some experience on the software engineering of abstract interpretation tools. In Tools for Automatic
Program Analysis, volume 267 of Electronical Notes in Theoretical Computer Science. Elsevier, 2010.
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A Omitted Proofs

A.1 Jordan form characterization of linearly accelerable transformations
Lemma 6 (Jordan block of size 1) A transition τ(X) : x′ = Jx where J is a Jordan block of size 1 is linearly accelerable iff

its associated eigenvalue is either zero or a complex root of unity, i.e., , λ ∈ {0} ∪ {ei2π
q
p | p, q ∈ N}.

Proof 8 A Jordan block of size m = 1 consists of its associated eigenvalue: J = (λ). The linear acceleration for τ is thus

τ∗(X) =
⋃

k>0

{λkx | x ∈ X} =
⋃

l

{alx+blk | k>0, x ∈ X}

This means that we have to look for values of λ such that there is a finite number of values for the coefficients al, bl as solutions
of the equation ∀k>0, x ∈ X : λkx = alx+ blk. We distiniguish cases according to k:

• k=0: λ0 = 1 for any λ, hence a0=1, b0=0.
• k>1: By writing λk in polar form ρkeiθk we get the solutions

{

λ=0, a0=0, b0=0 (i.e., , 0keiθk = 0x+ 0k)

λ = e
i2π q

p , ak=e
i2π q

p
k
, bk=0, p, q ∈ N (i.e., , 1ke

i2π q
p
k
x = e

i2π q
p
k
x+ 0k).

For the second solution, the number of values for ak is finite because they are periodic: e
i2π q

p = e
i(2π q

p
+2πqj)

, j ∈ Z.
Hence, there are p distinct values for ak with 06k6p−1.

This yields:

λ=0: τ∗ = λX.X ∪ {0}
λ=e

i2π q
p : τ∗ = λX.

⋃

06l6p−1{
(

e
i2π q

p
l
x
)

| x ∈ X}

Lemma 7 (Jordan block of size 2) A transition τ(X) : x′ = Jx where J is a Jordan block of size 2 is linearly accelerable iff
its associated eigenvalue is
– either zero (λ = 0) or

– a complex root of unity (λ ∈ {ei2π
q
p | p, q ∈ N}) and if in this case the variable associated to the second dimension of the block

has only a finite number of values in X.

Proof 9 A Jordan block of size m = 2 has the form J =

(
λ 1
0 λ

)

. The linear acceleration for τ is

τ∗(X) = X ∪
⋃

k>1

{(
λk kλk−1

0 λk

)(
x1

x2

)

|
(

x1

x2

)

∈ X

}

=
⋃

l

{(
al,1 al,2
al,3 al,4

)(
x1

x2

)

+ k

(
bl,1
bl,2

)

| k>0,

(
x1

x2

)

∈ X

}

The case k=0 is the identity for any eigenvalue λ, thus, we concentrate on k>1: We have to find values of λ such that there is a
finite number of values for the coefficients al,·, bl,· in the equation

∀k>1,x ∈ X :

{
λkx1+kλk−1x2 = al,1x1+al,2x2+bl,1k

λkx2 = al,3x1+al,4x2+bl,2k

We distinguish cases by values of k:
• k=1: The left-hand side of the first equation reduces to λx1+x2. Hence, we can match left and right-hand sides for any

values of λ: a0,1=a0,4=λ, a0,2=1, all other coefficents are 0.
• k>2: In this case we cannot match kλk−1x2 with al,2x2, but we can match it with bl,1k under the assumption that x2 has

a finite number of values in X, which gives us (besides λ=0) the following solution (p, q ∈ N):

∀k>2,x ∈ X :







e
i2π q

p
k

︸ ︷︷ ︸

λk

x1+k e
i2π q

p
(k−1)

︸ ︷︷ ︸

λk−1

x2 = e
i2π q

p
k

︸ ︷︷ ︸

akx2,1

x1+ 0
︸︷︷︸

akx2,2

·x2+e
i2π q

p
(k−1)

x2
︸ ︷︷ ︸

bkx2,1

k

e
i2π q

p
k

︸ ︷︷ ︸

λk

x2 = 0
︸︷︷︸

akx2,3

·x1+e
i2π q

p
k

︸ ︷︷ ︸

akx2,4

x2+ 0
︸︷︷︸

bkx2,2

·k

As in the proof for Lem. 6 there is a finite number of values for e
i2π q

p
k
because it is periodic.

This yields:

λ=0: τ∗ = λX.X ∪
{(

x2

0

)

,

(
0
0

)}

λ=e
i2π q

p : τ∗ =







λX.X∪
⋃

16l6p,x2

{(

e
i2π q

p
l
x1+kle

i2π q
p
(l−1)

x2

e
i2π q

p
l
x2

)

| x ∈ X, k>0

}

Lemma 8 (Jordan block of size > 2) A transition τ(X) : x′ = Jx where J is a Jordan block of size > 2 is linearly accelerable
iff its associated eigenvalue is zero.
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Proof 10 Jordan blocks of size m > 2 have the form: J =










λ 1 0 . . . 0
0 λ 1 . . . 0

. . . . . .
. . .

. . . . . .

0 . . . 0 λ 1
0 . . . 0 0 λ










.

Their powers have the form:

Jk =












λk Ck
1 λ

k−1 Ck
2 λ

k−2 . . . Ck
m−1λ

k−m+1

0 λk Ck
1 λ

k−1 . . . Ck
m−2λ

k−m+2

. . . . . .
. . .

. . . . . .

0 . . . 0 λk Ck
1 λ

k−1

0 . . . 0 0 λk












where Ck
j are the binomial coefficients.

For any value of λ 6=0 we have polynomials in k of order m, hence we cannot match the coefficients with a linear form in k.
Thus, we have only λ=0: τ∗ = λX.

⋃

06k6m{Jkx | x ∈ X}

A.2 Jordan form characterization of finite monoid transformations
Theorem 9 (Jordan form of finite monoid affine transformations) The Jordan form of the homogeneous transformation

matrix

(
C d

0 1

)

, where {Ck | k>0} is finite, consists of

– Jordan blocks of size 1 with eigenvalues which are complex roots of unity,
– at most one block of size 2 with eigenvalue 1 where the variable associated with the second dimension is a constant equal to 1,

and
– blocks with eigenvalue 0 of any size.

Proof 11 We will show that
(1) extending C to the homogeneous form adds the eigenvalue 1 to the spectrum. Hence, only the Jordan blocks in the Jordan

form of C associated with an eigenvalue 1 are affected by homogenization, and
(2) the Jordan form of the homogenized matrix has at most one Jordan block of size 2 associated to an eigenvalue 1.

(1) follows from the fact that the characteristic polynomial of the homogeneous form is the characteristic polynomial of C
multiplied by 1−λ:

det

(
C−λI d

0 1−λ

)

= (1−λ) · det(C−λI)

(because the left-hand side matrix is triangular). The variable corresponding to the dimension added during homogenization is
known to equal the constant 1.

(2) We show that the Jordan form of C′ has at most one Jordan block of size 2 associated with an eigenvalue 1: Assume that
the Jordan form of the (n−1)-dimensional matrix C has m−1 blocks of size 1 associated with eigenvalue 1. Then, the homogeneous
form C′ has
• exactly 1 Jordan block of size 2 (with eigenvalue 1) and m−2 blocks of size 1 (with eigenvalue 1) if ker(C′ − I) has dimension

m−1, i.e., , rank(C′−I) = n−m+1;
• no Jordan block of size 2 (with eigenvalue 1) and m blocks of size 1 (with eigenvalue 1) if ker(C′ − I) has dimension m, i.e., ,

rank(C′−I) = n−m.
Since the eigenvalues 1 of C have all geometric multiplicity 1, C−I has n−m linearly independent column vectors. Hence,

C′−I has n−m linearly independent column vectors iff the additional column vector

(
d

0

)

is not linearly independent from the

others; otherwise it has n−m+1 linearly independent column vectors. Hence, we have n−m6rank(C′−I)6n−m+1.

Example 11 (Jordan form characterization) Consider C =





0 1 0
0 0 1
1 0 0



 and d = (0, 1, 2)T . C has the eigenvalues

{1,− 1
2
± 1

2
i
√
3}. Hence, the homogeneous form C′ has 4 dimensions (n = 4) and an eigenvalue 1 with algebraic multiplicity

m=2.

The matrix C′−I =







−1 1 0 0
0 −1 1 1
1 0 −1 2
0 0 0 0







has n−m+1=3 linearly independent column vectors, hence the Jordan form

has one block with size 2 associated with the eigenvalue 1.
Assume that d= (−1, 0, 1)T , then C′ − I would have only n−m= 2 linearly independent column vectors, hence the Jordan

form would have 2 blocks of size 1 associated with the eigenvalue 1.

A.3 Abstract acceleration of non-finite-monoid case

Proposition 8 (Non-Finite-Monoid Case) Let τ : Ax6b → x′ =

(
J I
0 J

)

x be a transition as explained above. Then

τ⊗(X) = X ⊔
⊔

06l6p−1

τ
(
(τ l(X) ⊓G) ր D(l)

)

is a sound over-approximation of τ∗, where
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• τ l is expressed as in Eq. 2, i.e., :

τ l =
∧

06i6l−1



ACix+
∑

06j6i−1

Cjd 6 b



→ x′ = Clx+
∑

06j6l−1

Cjd

• D(l) =

(
0 Jl′

0 0

)

·
(
(X ⊓G)•,N

)
with l′=(l−1) mod p.

Proof 12
The formula is trivially correct for 0 iterations. It remains to show that our formula yields an over-approximation for k > 1
iterations:

x′ ∈
⋃

k>1 τ
k(X)

⇐⇒ ∃k>0, ∃x0 ∈ X, ∃xk :
x′ ∈ τ(xk) ∧ xk=Ckx0 ∧ ∀k′ ∈ [0, k] : G(xk′ )

⇐⇒ ∃k>0, ∃x0 ∈ X, ∃xpk+l, ∃l ∈ [0, p−1] :
x′=

⋃

l τ(xpk+l) ∧ xpk+l=Cpk+lx0 ∧ ∀k′ ∈ [0, pk+l] : G(xk′ )
⇐⇒ ∃k>0, ∃x0 ∈ X, ∃xpk+l, ∃l ∈ [0, p−1] :

x′=
⋃

l τ(xpk+l) ∧ xT
pk+l

=JlxT
0 +(pk+l)Jl′xN

0 ∧ xN
pk+l

=JlxN
0 ∧

∀k′ ∈ [0, pk+l] : G(xk′ )
(with l′=(l−1) mod p)

=⇒ ∃k>0, ∃x0 ∈ X, ∃xpk+l, ∃l ∈ [0, p−1], ∃d(l)T ∈ D(l)T =Jl′ (X ⊓G)N :

x′=
⋃

l τ(xpk+l) ∧ xl=τ l(x0) ∧ xT
pk+l

=xT
l
+(pk+l)d(l)T ∧ xN

pk+l
=xN

l
∧

∀k′ ∈ [0, pk+l] : G(xk′ )

(over-approximation of Jl′xN
l

by d(l)T )

=⇒ ∃α>0, ∃x0 ∈ X, ∃xpk+l, ∃l ∈ [0, p−1], ∃d(l)T ∈ D(l)T =Jl−1(X ⊓G)N :

x′=
⊔

l τ(xpk+l) ∧ xl=τ l(x0) ∧ xT
pk+l

=xT
l
+αd(l)T ∧ xN

pk+l
=xN

l
∧

∧

l G(xl) ∧G(xpk+l)
(dense and convex approximations)

⇐⇒ x′ ∈ ⊔06l6p−1 τ
(
(τ l(X) ⊓G) ր D(l)

)

The first approximation (=⇒) in the proof due to the projection on the non-translated dimensions occurs only if the non-
translated dimensions are not independent from the translated dimensions in the initial set X.

B Additional Examples

B.1 Non-Finite-Monoid Example
Example 12 (Finite-cardinality translation-rotation) The linear transformation

C =







0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0







is a rotation by π
2

in dimensions 3 and 4, and it also rotates dimensions 1 and 2 by π
2

while translating them by dimensions 3
and 4 respectively.

C has conjugate complex eigenvalues (±i)4 = 1 with algebraic multiplicity 2 and geometric multiplicity 1, i.e., , it is not
finite-monoidal. The Jordan form is

J =







−i 1 0 0
0 −i 0 0
0 0 i 1
0 0 0 i







Let us consider the loop τ : −96x1+x269 ∧ −56x1610 → x′=Cx with X0 = {(0, 0, 1, 2)}. Since the values for x3 and x4 are
finite in X0, the transition is accelerable according to Thm. 3.

The matrix C is of the form C =

(
J I
0 J

)

, thus its powers have the form Ck =

(
Jk kJk−1

0 Jk

)

. Moreover, J has

periodicity p=4.
With this information, x′ =Cx can be accelerated by enumerating the powers of J and the values of x3, x4 in X0 as follows (cf.
proof of Lem. 7):

(x′=Cx)∗ = λX.X ∪
⋃

16l6p,x3,x4













Jl

(
x1

x2

)

+klJ(l−1)

(
x3

x4

)

Jl

(
x3

x4

)







| x ∈ X, k>0
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Figure 12: Rotation with translation by rotated variables: reachable integer points and polyhedron
computed by abstract acceleration (dark gray, bold frame) projected on plane x1, x2; guard G (light
gray), the four sets involved in the union (bold lines) with their associated values of x3 and x4.

Using this formula and taking into account the guard G, τ∗ is computed by

τ∗(X0) = {(x′
1, x

′
2, 1, 2) | ∃k>0 : x′

1=xk
1 ∧ x′

2=xk
2∧

xk
1 =x1+2 · 4k ∧ xk

2 =x2−1 · 4k
∧X(x1, x2, 1, 2) ∧ ∀06k′<k : G(xk′

1 , xk′

2 , 1, 2)} ∪
{(x′

1, x
′
2,−2, 1) | ∃k>0 : x′

1=xk
1 ∧ x′

2=xk
2∧

xk
1 =−x2+1(4k+1) ∧ xk

2 =x1+2(4k+1)

∧X(x1, x2,−2, 1) ∧ ∀06k′<k : G(xk′

1 , xk′

2 ,−2, 1)} ∪
{(x′

1, x
′
2,−1,−2) | ∃k>0 : x′

1=xk
1 ∧ x′

2=xk
2∧

xk
1 =−x1−2(4k+2) ∧ xk

2 =−x2+1(4k+2)

∧X(x1, x2,−1,−2) ∧ ∀06k′<k : G(xk′

1 , xk′

2 ,−1,−2)} ∪
{(x′

1, x
′
2, 2,−1) | ∃k>0 : x′

1=xk
1 ∧ x′

2=xk
2∧

xk
1 =x2−1(4k+3) ∧ xk

2 =−x1−2(4k+3)

∧X(x1, x2, 2,−1) ∧ ∀06k′<k : G(xk′

1 , xk′

2 , 2,−1)}

We obtain the result
τ∗(X0) = {(0, 0, 1, 2), (8,−4, 1, 2), (1, 2,−2, 1), (5, 10,−2, 1),

(−4, 2,−1,−2), (−3,−6, 2,−1)}

See Fig. 12 for a plot of these points.
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