
HAL Id: hal-00788055
https://hal.inria.fr/hal-00788055

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning of Context Models for a
Ubiquitous Personal Assistant

Sofia Zaidenberg, Patrick Reignier, James L. Crowley

To cite this version:
Sofia Zaidenberg, Patrick Reignier, James L. Crowley. Reinforcement Learning of Context Models for
a Ubiquitous Personal Assistant. UCAmI - 3rd Symposium of Ubiquitous Computing and Ambient
Intelligence 2008, Oct 2008, Salamanca, Spain. pp.254-264, �10.1007/978-3-540-85867-6_30�. �hal-
00788055�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49818403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00788055
https://hal.archives-ouvertes.fr

Reinforcement Learning of Context Models for

a Ubiquitous Personal Assistant

Sofia Zaidenberg1, Patrick Reignier1, and James L. Crowley1

Laboratoire LIG, 681 rue de la Passerelle - 38402 St-Martin d’Hères, France
{Zaidenberg, Reignier, Crowley}@inrialpes.fr

Summary. Ubiquitous environments may become a reality in a foreseeable future
and research is aimed on making them more and more adapted and comfortable for
users. Our work consists on applying reinforcement learning techniques in order to
adapt services provided by a ubiquitous assistant to the user. The learning produces
a context model, associating actions to perceived situations of the user. Associations
are based on feedback given by the user as a reaction to the behavior of the assistant.
Our method brings a solution to some of the problems encountered when applying
reinforcement learning to systems where the user is in the loop. For instance, the
behavior of the system is completely incoherent at the be-ginning and needs time to
converge. The user does not accept to wait that long to train the system. The user’s
habits may change over time and the assistant needs to integrate these changes
quickly. We study methods to accelerate the reinforced learning process.

1 Introduction

New technologies bring a multiplicity of new possibilities for users to work
with computers. Not only are spaces growingly equipped with computers or
notebooks, but more and more users carry mobile devices (smart phones,
PDAs, etc.). Ubiquitous computing takes advantage of this observation. Its
aim is to create smart environments where devices are dynamically linked and
provide new services and new human-machine interaction possibilities. The

most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it [18].
This network of devices must perceive the context in order to understand and
anticipate the user’s needs. Devices should be able to execute actions helping
the user to fulfill his goal or simply accommodating him. Actions depend on
the user’s situation. Possible situations and the associated actions reflect the
user’s work habits. Therefore, they should be specified by the user him-self.
However, this is a complex and fastidious task.

The objective of this work is to construct automatically a context model
by applying reinforcement learning techniques. Rewards are given by the user
when expressing his satisfaction of the system’s actions. A default context

2 Sofia Zaidenberg, Patrick Reignier, and James L. Crowley

model assures a consistent initial behavior. This model is then adapted to
each particular user in a way that maximizes the user’s satisfaction.

In the remainder of this paper, we present our research problem and ob-
jectives before evaluating the state of the art. Afterwards, we explain the
accomplished and future work. Finally, we present our first results.

2 Research Problem

A major difficulty when applying RL (Reinforcement Learning) techniques to
real world problems is their slow convergence. We need to accelerate the learn-
ing and to obtain results with few examples. The user will not give patiently
rewards while the system is exploring the state and action space. In addition,
user rewards maybe inconsistent or not given all the time (Sect. 5.1).

Furthermore, we deal with a very large state space and it is necessary to
reduce it. For this purpose we need to generalize our states at first, and then
apply techniques to split states when it is relevant (Sect. 5.1).

Lastly, working in a ubiquitous environment adds difficulties. Detecting
the next state after an action is not obvious because another event may occur
meanwhile. The environment is non-stationary because it includes the user.

In this research context, our goal is to create a ubiquitous personal as-
sistant. Devices of our ubiquitous environment and mobile devices provide
information about the user’s context [4]. Knowing this, we offer relevant,
context-aware services to the user. Examples are task migration or forwarding
a reminder when the user is away. Most of current work on pervasive comput-
ing pre-defines services and fires them in the correct situation [17, 12]. Our
assistant starts with this pre-defined set of actions and adapts it progressively
to its particular user. The default behavior makes the system ready-to-use
and the learning is a life-long process. At first, the assistant is only acceptable
but with time it gives more and more satisfying results.

3 State of the Art

Our work relates to two primary areas. 1) Context-aware applications which
use context to provide relevant information and services to users. 2) Reinforce-

ment learning where an agent learns to behave from feedback on its actions.
Context is recognized a key concept for ubiquitous applications [7, 1, 4].

Dey defines context as any information that can be used to characterize the

situation of an entity, where an entity can be a person, place, or physical or

computational object. In [4], a context is represented by a network of situations.
A situation is a configuration of entities, roles and relations. Entities play roles
and relations are semantic predicate functions on entities. An example of am-
bient systems is the Gaia Operating System [13] which manages the resources
and services of an active space. First-order logic is used to model context and
define rules, but no learning components are included. Christensen states that
it is not easy to build context-aware systems because the gap between what

technology can “understand” as context and how people understand context is

significant [3]. He believes that it might be an error to build completely au-

Reinforcement Learning of Context Models 3

tonomous systems removing humans from the loop. Our learning depends on
user rewards. He can specify initial preferences, get explanations of automatic
actions and we keep the option to ask him questions when necessary.

Personal learning agents were studied in particular by [14] on providing
context-specific assistance while optimizing interruption. Schiaffino builds user
interaction profiles using association rules, learned and incrementally updated
with new experience. Our goal is for the assistant to work without needing an
initial amount of experience. Additionally, rules provide a behavior only for
observed experience, not new situations.

RL was applied to interface agents for instance by [10, 11], where RL is
completed by memory-based learning. Their agent assists users in scheduling
group meetings and sorting email. A similar project [6] uses different ma-
chine learning techniques such as neural networks. Our constraint is to keep
the model understandable. We believe explaining the works of the assistant
to the user is fundamental to gain his trust. Neural networks do not meet
this requirement. Furthermore, we took a greater interest in accelerating the
learning process. We were inspired by indirect RL techniques first introduced
by [15] and implemented for instance by [5].

4 Reinforcement Learning

Reinforcement learning is a computational approach to learning whereby an

agent tries to maximize the total amount of reward it receives when interacting

with a complex, uncertain environment [16]. A learning agent is modeled as
a Markov decision process defined by 〈S,A,R,P〉. S and A are finite sets of
states and actions; R : S × A → R is the immediate reward function and
P : S × A × S → [0, 1] is the stochastic Markovian transition function.The
agent constructs an optimal Markovian policy π : S → A that maximizes
the expected sum of future discounted rewards over an infinite horizon. We
define Qπ(s, a), the value of taking action a in state s under a policy. The Q-
learning algorithm allows computing an approximation of Q∗, independently
of the policy being followed, if R and P are known.

4.1 Indirect Reinforcement Learning

In our case, the transition (P) and reward (R) functions are unknown. Indirect
RL techniques enable the learning of these functions by trial-and-error and
the computation of a policy by planning methods. This approach, described
in [15], is implemented by the DYNA architecture. The DYNA-Q algorithm
(Fig. 1) is an instantiation of DYNA using Q-Learning to approximate V ∗.

In steps 2a-2c, the agent interacts with the world by following an ǫ-greedy

exploration [16] based on its current knowledge. Step 2e is the supervised
learning of P and R. Step 2f is the planning phase where P and R are exploited
to update the Q-table that is used for interaction with the real world.

This algorithm accelerates the convergence of Q-values by repeating real
examples virtually. Examples are better and quicker integrated into the Q-
table, providing a satisfactory behavior faster.

4 Sofia Zaidenberg, Patrick Reignier, and James L. Crowley

Input: ∅, Output: π

1. Initialize Q(s, a) and P arbitrarily.
2. At each step:

a) s← current state (non terminal).
b) a← ǫ-greedy(s, Q)).
c) Send the action a to the world and observe the resultant next state s′ and

reward r.
d) Apply a reinforcement learning method to the experience 〈s, s′, a, r〉:

Q(s, a)← Q(s, a) + α(r + γ maxa′ Q(s′, a′)−Q(s, a))
e) Update the world model P and R based on the experience 〈s, s′, a, r〉.
f) Repeat the following steps k times:

i. s← a hypothetical state that has already been observed.
ii. a← a hypothetical action that has already been taken in state s.
iii. Send s and a to the world model, obtain predictions of next state s′

and reward r: s′ ← maxs′∈SP(s′|s, a), r ←R(s, a)
iv. Apply a reinforcement learning method to the hypothetical experience
〈s, s′, a, r〉: Q(s, a)← Q(s, a) + α(r + γ maxa′ Q(s′, a′)−Q(s, a))

Fig. 1. The DYNA-Q algorithm.

5 The Ubiquitous Assistant

Fig. 2. Overview of the assistant.

Figure 2 sums up the works of the assis-
tant. When interacting with the user, the
assistant uses its current policy to choose
actions. It also gathers data about the
environment to update the world model.
Then it uses the current world model to
learn a new policy through offline Q-learning.

5.1 Application of Reinforcement Learning and DYNA-Q

The Components of the Reinforcement Learning Agent

The State Space. Our assistant must be able to provide explanations to
the end user. State representation must not be a black box. Therefore, we
use predicates. Each predicate represents a relevant part of the environment.
Predicates are defined with arguments. A state is a particular assignment of
argument values, which may be null. These predicates are described below.
alarm(title, hour, minute) A reminder fired by the user’s agenda.

xActivity(machine, isActive) The activity of the X server of a machine.

inOffice(user, office) Indicates the office that a user is in, if known, null otherwise.

absent(user) States that a user is currently absent from his office.

hasUnreadMail(from, to, subject, body) The latest new email received by the user.

entrance(isAlone, friendlyName, btAddress) Expresses that a bluetooth device just entered

the user’s office. isAlone tells if the user was alone or not before the event.

exit(isAlone, friendlyName, btAddress) Someone just left the user’s office.

task(taskName) The task that the user is currently working on.

user(login), userOffice(office, login), userMachine(machine, login) The main user of the

Reinforcement Learning of Context Models 5

assistant, his office and main personal computer (not meant to be modified).

computerState(machine, isScreenLocked, isMusicPaused) Describes the state of the user’s

computer regarding the screen saver and the music.

Each predicate is endowed with a timestamp accounting for the number of
steps since the last value change. Among other things, this is used to maintain
integrity of states, e.g. the predicate alarm can keep a value only for one step
and only one of inOffice and absent can have non-null values.

Our states contain free values. Therefore, our state space is very large; the
Q-table would be too large. This exact information is not always relevant to
choose an action. The user might wish for the music to stop when anyone
enters the office, but to be informed of emails only from his boss. As soon as
we observe the state “Mr. Smith entered the office”, we have an estimated
behavior for the state “someone entered the office”, which is more satisfying
for the user. We generalize states in the Q-table by replacing values with
wildcards: “<+>” means any value but “<null>” and “<*>” means any value.

The Action Space. Possible actions are: display a written message or read
it, send an email, lock or unlock the screen of a computer, pause or unpause
the music. “Do nothing” is an action as well.

Reward. Since the user is the target of the assistant’s services, the user is the
one to give rewards to the assistant. But, as pointed out by [9], user rewards
are often inconsistent and can drift over time. He will not always give a reward
and when he does, it may concern not only the last immediate action, but the
last few actions.

We gather reward from explicit and implicit sources. For instance, if we
inform the user of a new email and he views the message, then he probably
was satisfied with the action. However, such implicit reward is numerically
rather weak.

Model of the Environment

Applying the DYNA-Q algorithm (Fig. 1) requires modeling the environment,
through the transition and reward functions P and R.

The transition model. We use common sense to initialize P , and at regu-
lar time intervals we apply supervised learning on examples to complete the
model. To do so, during interactions with the user we register the previous
state, the last taken action and the current state which is thus the next state
of the tuple.

The transition model is a set of transformations from a state to the next,
given an action. A transformation is composed of starting predicates, an ac-
tion, modified predicates and a probability of being applied. Starting predi-
cates define required values, possibly using wildcards. The transformation can
be applied to every state matching them, when the given action has just been
taken. If several transformations match a state, one is chosen randomly based
on their probabilities. The next state is a copy of the previous state on which

6 Sofia Zaidenberg, Patrick Reignier, and James L. Crowley

we apply the given modifications. A modification operates on an argument
and can be to erase the value, set a given value, set the value of another
predicate’s argument or reset the timestamp.

The reward model. Likewise, we define initial obvious rules and learn R
using examples observed during real interaction. The reward model is a list of
triplets 〈s, a, r〉, the reward r earned when taking action a in state s. s can
be defined with wildcards so an entry can be used when the states match and
with action a.

Supervised learning of the models. The two algorithms are given Fig. 3.
It makes sense to run these algorithms rather often at first and to space out
the runs as the models are complete enough, i.e. when new transformations
are rarely created because then the model has already seen most of the envi-
ronment. From the assistant’s point of view the user is part of the environment
thus this model is non stationary and we can not stop updating it.

Input: A set of examples {s, a, s′}, Output: P
• For each example {s, a, s′} do

– If a transformation t that obtains s′

from s with the action a, can be found,
then
· Increase the probability of t.

– Else
· Create a transformation starting

with s, having the action a and end-
ing in s′, with a low probability.

· Decrease the probability of any
other transformation t′ that
matches the starting state s and
the action a but whose ending state
is different from s′.

– End if.
• Done.

Input: A set of examples
{s, a, r}, Output: R
• For each example {s, a, r} do

– If an entry e =
{se, ae, re} such as s

matches se and a = ae,
can be found, then
· Update e, set re =

mix(r, re), where mix

is a merging function.
– Else
· Add a new entry e =
{s, a, r} to the reward
model.

– End if.
• Done.

Fig. 3. The supervised learning of the transition (left) and reward (right) models

In the second algorithm (Fig. 3), entries are added with exact states, with-
out generalizing values since we can not know which ones are important. We
can apply an offline treatment to possibly merge entries that express the same
piece of information (see below). Furthermore, we need to define a merging
function mix that translates the weight of the new example against the pre-
vious value. Currently mix(r, re) = 0.7re + 0.3r. This choice needs to be
validated empirically, or changed.

Global Learning Algorithm

At this point we have defined all the elements of our learning algorithm, let us
formulate their interweaving (Fig. 4). At the beginning of the assistant’s life,

Reinforcement Learning of Context Models 7

the only knowledge of the RL agent is the initially predefined environment
model. Firstly, the RL agent performs several episodes, with random initial
states, to initialize the Q-table. This provides a consistent initial behavior.

Events are sent to the RL agent as a state change. We add this as an
example for the transition model. The RL agent uses its current policy to
choose an action and sends it to the assistant, in charge of executing it. These
state and action are displayed to the user (in a nondisruptive manner) and
his reward, if he gives one, is stored for the reward model. We choose not to
perform a step of Q-learning (Fig. 1/2d) here in order to modify the behavior
not too frequently and avoid surprising the user.

The supervised learning of the models is performed every n steps, when
enough new experience has been acquired. The planning step (Fig. 1/2f) con-

Input: Initial transition and reward models, Output: the user’s context model.

1. Run an episode (algorithm Fig. 5).
2. At each step i:

a) Receive the new state si.
b) Store the example to the database: {si−1, ai−1, si}.
c) Choose an action using the current policy ai = π(si).
d) Display to the user si and ai.
e) If the user gives a reward then store it to the database: {si, ai, ri}.
f) If i is a multiple of n then

i. Run the supervised learning of the transition model (algorithm Fig. 3).
ii. Run the supervised learning of the reward model (algorithm Fig. 3).

3. In parallel, at regular time intervals, run an episode (algorithm Fig. 5).

Fig. 4. The global learning algorithm of the RL agent.

sists in running an episode of RL and is shown Fig. 5. At the beginning, we
should perform frequent, short episodes in order to quickly integrate every-
thing that happens into the Q-table. Later on, the assistant can run longer
episodes less often, for instance once a day. An episode consists of executing
k steps of RL. At each step, a state change leads to the choice of an action
and to the update of a Q-value, using the transition and reward models. A
state change is triggered by an event, which we generate. We can only replay
previously seen events (DYNA-Q) or we can generate random events. The first
option makes the most of past experience while the second emphasizes explo-
ration. It is a means to have an estimate for a Q-value even if the situation
never happened yet. This makes sense when the transition and reward models
are somehow complete. Both methods, plus a mixture of them (starting with
the first and as the models evolve, add progressively the second) need testing.

Split and Merge

As mentioned above, our state space is extremely large and we need to reduce
it by generalizing states. We replace actual values by wildcards.

Then, we reveal cases where actual values matter. This way we can make
the assistant inform the user of an email from his boss but not from “newslet-

8 Sofia Zaidenberg, Patrick Reignier, and James L. Crowley

Input: P , R, Output: π

1. Repeat the following steps k times:
a) Choose a state s.
b) Choose an action a = π(s).
c) Send s and a to the world model and obtain predictions of next state s′ and

reward r: s′ ← maxs′∈SP(s′|s, a), r ←R(s, a)
d) Apply a reinforcement learning method to the hypothetical experience
〈s, s′, a, r〉: Q(s, a)← Q(s, a) + α(r + γ maxa′ Q(s′, a′)−Q(s, a))

Fig. 5. An episode of Q-learning used for planning by the RL agent.

ter@nytimes.com”. We intend to accomplish this through an offline treatment
inspired by [2]. The idea is to detect conflicting rewards given by the user for
similar events, corresponding to a merge of states. We split these states and
learn different Q-values for each of them.

Finally, new entries of the reward model (algorithm Fig. 3) are added
with exact states, without generalization. The offline treatment would reveal
similar entries with similar reward values for merging. In the history of given
rewards, it would pick out tuples with different rewards used to update one
entry and split the entry.

Further Improvements

The transition model will be split into two: one model for the next state after
an action (the current model) and one for the next state after an event. If the
last event is a consequence of the agent’s actions, it saves an example of the
old state, action and next state: {s, a, s′}. If not, it saves an example of the
old state, event and next state: {s, e, s′}. This example is used to learn the
event transition model, the same way we learn the action transition model
(Fig. 3). This is a better way of computing the next state of an event.

6 Preliminary Results

We implemented modules to interact with the environment using a framework
well adapted for ubiquitous systems [19], based on a combination of the mid-
dleware OMiSCID [8] and OSGi (www.osgi.org). But to begin, we use an
experimental platform to test our algorithms. The world, including the user,
is simulated. The simulator plays input scenarios by sending events as sensors
would do. It answers commands as effectors would do. The aim of the test
is to bring the system to a desired state. For evaluation we measure 1) the
distance to the expected state (the number of transitions in the graph defined
by the transition model). 2) How fast we learned this behavior. Deterministic
scenarios facilitate experimentations: we can replay them with variations of
our algorithm. Much more tests need to be done; this is the very first result.

For this test we used a very simple scenario in three events: 0. “Sofia is in
the office” – 1. “Sofia leaves” – 2. “Sofia enters”. The 9 possible actions concern
the screen saver and the music: they are combinations of (nothingAboutMusic
|| pause || unpause) and (nothingAboutScreen || lock || unlock).

Reinforcement Learning of Context Models 9

The desired behavior is (lock && pause) when the user leaves, and (unlock
&& unpause) when the user enters. The reward when this happens is 75, it is
-50 when both are wrong and -25 when one is wrong. We start with a good
environment model. At the beginning, the Q-table is empty and we run 100
episodes of 10 iterations where we choose randomly initial states and events
from the database. Further experiments will use random initial states and
events both from the database and random to cover more of the environment.
We skip an event when the transition model does not know the next state to
avoid modifying a Q-value when not necessary. Later on we run an episode
every minute. In parallel, we play the scenario in a loop. After 120 episodes
we stop exploration.

Fig. 6. The total re-
ward of scenarios.

We executed the scenario ∼700 times and observed
the total amount of reward given each time (Fig. 6).
Scenarios do not influence the learning. They enable
simply to test the resulting policy. In any case would
the real user need to leave and enter his office 700 times!
After exploration was stopped, one of the three actions
was wrong because the best Q-value did not reflect what
we actually wanted. But at the end, the desired behavior
is reached: as episodes went on, Q-values corrected themselves. This proves
that we need to run a lot of episodes focusing on exploration.

Fig. 7. The mean Q-
value update/step.

The convergence of the Q-values is encouraging:
Fig. 7 shows the mean update value of the Q-table dur-
ing Q-learning steps. At each step, several Q-values are
modified in order to spread a change. The Y value is
the mean amount of differences between old and new
Q-values. As it is clear Fig. 7, this difference decreases
drastically. This can be used to stop an episode prema-
turely because the Q-table has converged. We are fully
aware that this experiment is far from complete. It is
only the beginning. The next tests will start with min-
imal models and learn them online. Episodes will mix
saved and random events and start in random states.

7 Conclusion and Expected Outcome

The aim of this research is to investigate the learning of a context model in
the frame of ubiquitous environments. A context model defines the observable
situations and what actions should be executed in each situation in order to
provide a useful service to the user. We achieve this goal by applying a RL
algorithm and then following the resulting policy. We use techniques to initial-
ize and accelerate the learning process in order to bother the user with as few
undesirable actions as possible. To do so, firstly we use common sense to build
an initial behavior. Secondly we perform offline virtual learning steps to simu-
late real interaction. The system learns quicker, with potentially inconsistent

10 Sofia Zaidenberg, Patrick Reignier, and James L. Crowley

and retroactive rewards. Our assistant is deployed into a ubiquitous environ-
ment equipped with video cameras, bluetooth sensors, microphones, speakers
and mobile devices. These devices gather information about the user’s con-
text and activity, and provide him services. To complete this work we need
to implement the split and merge algorithms, perform evaluations, compare
techniques and carry out tests with real users.

References

1. J. E. Bardram. Pervasive Computing, chapter The Java Context Awareness
Framework (JCAF) - A Service Infrastructure and Programming Framework
for Context-Aware Applications. 2005.

2. O. Brdiczka, P. Reignier, and J. L. Crowley. Automatic development of an
abstract context model for an intelligent environment. PerCom, 2005.

3. J. Christensen, J. Sussman, S. Levy, W. E. Bennett, T. Vetting Wolf, and W. A.
Kellogg. Too much information. ACM Queue, 2006.

4. J. L. Crowley, J. Coutaz, G. Rey, and P. Reigner. Perceptual components for
context awareness. In International conference on ubiquitous computing, 2002.

5. T. Degris, O. Sigaud, and P.-H. Wuillemin. Learning the structure of factored
markov decision processes in reinforcement learning problems. In ICML, 2006.

6. L. Dent, J. Boticario, T. Mitchell, D. Sabowski, and J. McDermott. A personal
learning apprentice. In AAAI, 1992.

7. A. K. Dey and G. D. Abowd. The context toolkit: Aiding the development of
context-aware applications. In SEWPC, 2000.

8. R. Emonet, D. Vaufreydaz, P. Reignier, and J. Letessier. O3MiSCID: an Ob-
ject Oriented Opensource Middleware for Service Connection, Introspection and
Discovery. In SIPE’06.

9. C. Isbell, C. R. Shelton, M. Kearns, S. Singh, and P. Stone. A social reinforce-
ment learning agent. In AGENTS, 2001.

10. R. Kozierok and P. Maes. A learning interface agent for scheduling meetings.
In IUI, 1993.

11. P. Maes. Agents that reduce work and information overload. ACM, 1994.
12. V. Ricquebourg, D. Menga, D. Durand, B. Marhic, L. Delahoche, and C. Log.

The smart home concept : our immediate future. In ICELIE, 2006.
13. M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and

K. Nahrstedt. Gaia: A middleware infrastructure to enable active spaces. IEEE

Pervasive Computing, 2002.
14. S. Schiaffino and A. Amandi. Polite personal agent. Intelligent Systems, 2006.
15. R. S. Sutton. Integrated architectures for learning, planning, and reacting based

on approximating dynamic programming. In ICML, 1990.
16. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. 1998.
17. M. Vallée, F. Ramparany, and L. Vercouter. Dynamic service composition in

ambient intelligence environments: a multi-agent approach. In YRSOC, 2005.
18. M. Weiser. The computer for the 21st century. Scientific American, 1991.
19. S. Zaidenberg, P. Reignier, and J. L. Crowley. An architecture for ubiquitous

applications. In IWUC, 2007.

