
HAL Id: hal-00788440
https://hal.inria.fr/hal-00788440

Submitted on 14 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Learning of Inverse Models with Intrinsically
Motivated Goal Exploration in Robots

Adrien Baranes, Pierre-Yves Oudeyer

To cite this version:
Adrien Baranes, Pierre-Yves Oudeyer. Active Learning of Inverse Models with Intrinsically Motivated
Goal Exploration in Robots. Robotics and Autonomous Systems, Elsevier, 2013, 61 (1), pp.69-73.
�10.1016/j.robot.2012.05.008�. �hal-00788440�

https://hal.inria.fr/hal-00788440
https://hal.archives-ouvertes.fr

Baranes, A., Oudeyer, P-Y. (2012) Active Learning of In-

verse Models with Intrinsically Motivated Goal Exploration in

Robots, Robotics and Autonomous Systems.

Highlights:

1) SAGG-RIAC is an architecture for active learning of

inverse models in high-dimensional redundant spaces

2) This allows a robot to learn efficiently distributions of

parameterized motor policies that solve a corresponding

distribution of parameterized tasks

3) Active sampling of parameterized tasks, called active

goal exploration, can be significantly faster than direct active

sampling of parameterized policies

4) Active developmental exploration, based on competence

progress, autonomously drives the system to progressively

explore tasks of increasing learning complexity.

1

Active Learning of Inverse Models with Intrinsically Motivated Goal Exploration in

Robots

Adrien Baranes and Pierre-Yves Oudeyer

INRIA and Ensta-ParisTech, France

Abstract

We introduce the Self-Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity (SAGG-RIAC) architecture as an intrinsi-

cally motivated goal exploration mechanism which allows active learning of inverse models in high-dimensional redundant robots.

This allows a robot to efficiently and actively learn distributions of parameterized motor skills/policies that solve a corresponding

distribution of parameterized tasks/goals. The architecture makes the robot sample actively novel parameterized tasks in the task

space, based on a measure of competence progress, each of which triggers low-level goal-directed learning of the motor policy pa-

rameters that allow to solve it. For both learning and generalization, the system leverages regression techniques which allow to infer

the motor policy parameters corresponding to a given novel parameterized task, and based on the previously learnt correspondences

between policy and task parameters.

We present experiments with high-dimensional continuous sensorimotor spaces in three different robotic setups: 1) learning the

inverse kinematics in a highly-redundant robotic arm, 2) learning omnidirectional locomotion with motor primitives in a quadruped

robot, 3) an arm learning to control a fishing rod with a flexible wire. We show that 1) exploration in the task space can be a

lot faster than exploration in the actuator space for learning inverse models in redundant robots; 2) selecting goals maximizing

competence progress creates developmental trajectories driving the robot to progressively focus on tasks of increasing complexity

and is statistically significantly more efficient than selecting tasks randomly, as well as more efficient than different standard active

motor babbling methods; 3) this architecture allows the robot to actively discover which parts of its task space it can learn to reach

and which part it cannot.

Keywords:

Active Learning, Competence Based Intrinsic Motivation, Curiosity-Driven Task Space Exploration, Inverse Models, Goal

Babbling, Autonomous Motor Learning, Developmental Robotics, Motor Development.

1. Motor Learning and Exploration of Forward and In-

verse Models

To operate robustly and adaptively in the real world, robots

need to know how to predict the consequences of their actions

(called here forward models, mapping typically X = (S , πθ),

where S is the state of a robot and πθ : S → A is a parame-

terized action policy, to the space of effect, or task space, Y).

Reversely, they need to be able to compute the action poli-

cies that can generate given effects (called here inverse models,

(S ,Y) → πθ). These models can be quite varied, for example

mapping joint angles to hand position in the visual field, oscil-

lation of the legs to body translation, movement of the hand in

the visual field to movement of the end point of a tool, or prop-

erties of a hand tap an object to the sound it produces. Some of

these models can be analytically elaborated by an engineer and

provided to a robot (e.g. forward and inverse kinematics of a

rigid body robot). But in many cases, this is impossible either

because the physical properties of the body itself cannot be eas-

ily modeled (e.g. compliant bodies with soft materials), or be-

cause it is impossible to anticipate all possible objects the robot

might interact with, and thus the properties of objects. More

generally, it is impossible to model a priori all the possible ef-

fects a robot can produce on its environment, especially when

robots are targeted to interact with in everyday human environ-

ments, such as in assistive robotics. As a consequence, learn-

ing these models through experience becomes necessary. Yet,

this poses highly difficult technical challenges, due in particular

to the combination of the following facts: 1) these models are

often high-dimensional, continuous and highly non-stationary

spatially, and sometimes temporally; 2) learning examples have

to be collected autonomously and incrementally by robots; 3)

learning, as we will detail below, can happen either through

self-experimentation or observation, and both of these takes sig-

nificant physical time in the real world. Thus, the number of

training examples that can be collected in a life-time is strongly

limited with regards to the size and complexity of the spaces.

Advanced statistical learning techniques dedicated to incremen-

tal high-dimensional regression have been elaborated recently,

such as [1, 2]. Yet, these regression mechanisms are efficient

only if the quality and quantity of data is high enough, which

is not the case when using unconstrained exploration such as

random exploration. Fundamental complementary mechanisms

for guiding and constraining autonomous exploration and data

Preprint submitted to Robotics and Autonomous Systems June 20, 2012

collection for learning are needed.

In this article, we present a particular approach to ad-

dress constrained exploration and learning of inverse models in

robots, based on an active learning process inspired by mecha-

nisms of intrinsically motivated learning and exploration in hu-

mans. As we will explain, the approach studies the combination

of two principles for learning efficiently inverse models in high-

dimensional redundant continuous spaces:

• Active goal/task exploration in a parameterized task

space: The architecture makes the robot sample actively

novel parameterized tasks in the task space, each of which

triggers low-level goal-directed learning of the motor pol-

icy parameters that allow to solve it. This allows to lever-

age the redundancies of the sensorimotor mapping, lead-

ing the system to explore densely only subregions of the

space of action policies that are enough to achieve all pos-

sible effects. Thus, it does not need to learn a complete

forward model and contrasts with approaches that directly

sample action policy parameters and observe their effects

in the task space. The system also leverages regression

techniques which allow to infer the motor policy param-

eters corresponding to a given novel parameterized task,

and based on the previously learnt correspondences be-

tween policy and task parameters.

• Interestingness as empirically evaluated competence

progress: The measure of interestingness for a given

goal/task is based on competence progress empirically

evaluated, i.e. how previous attempts of low-level opti-

mization directed at similar goals allowed to improve the

capability of the robot to reach these goals.

In the rest of the section, we review various related ap-

proaches to constraining exploration for motor learning.

1.1. Constraining the Exploration

A common way to carry out exploration is to use a set of

constraints on guiding mechanisms and maximally reduce the

size and/or dimensionality of explored spaces. Social guid-

ance is an important source of such constraints, widely studied

in robot learning by demonstration/imitation where an exter-

nal human demonstrator assists the robot in its learning pro-

cess [3, 4, 5, 6, 7, 8, 9]. Typically, a robot teacher manually

interacts with the robot by showing it a few behaviors corre-

sponding to a desired movement or goal that it will then have

to reproduce. This strategy prevents the robot from performing

any autonomous exploration of its space and requires an atten-

tive demonstrator. Some other techniques allow more freedom

to the human teacher and the robot by allowing the robot to

explore. This is typically what happens in the reinforcement

learning (RL) framework where no demonstration is originally

required and only a goal has to be fixed (as a reward) by the

engineer who conceives the system [10, 11, 12]. Nevertheless,

when the robot evolves in high-dimensional and large spaces,

the exploration still has to be constrained. For instance, studies

presented in [13] combine RL with the framework of learning

by demonstration. In their experiments, an engineer has to first

define a specific goal in a task space as a handcrafted reward

function, then, a human demonstrator provides a few exam-

ples of successful motor policies to reach that goal, which is

then used to initialize an optimization procedure. The Shifting

Setpoint Algorithm (SSA) introduced by Schaal and Atkeson

[14] proposes another way to constrain the exploration process.

Once a goal fixed in an handcrafted manner, a progressive ex-

ploration process is proposed: the system explores the world

gradually from the start position and toward the goal by cre-

ating a local model around the current position and shifting in

direction of the goal once this model is reliable enough, and so

on. These kinds of techniques therefore restrain the exploration

to narrow tubes of data targeted at learning specific tasks/goals

that have to be defined by a human, either the programmer or a

non-engineer demonstrator.

These methods are efficient and useful in many cases. Never-

theless, in a framework where one would like a robot to learn a

variety of tasks inside unprepared spaces like in developmental

robotics [15, 16, 17, 18], or more simply full inverse models

(i.e. having a robot learn to generate in a controlled manner

many effects rather than only a single goal), it is not conceiv-

able that a human being interacts with a robot at each instant or

that an engineer designs and tunes a specific reward function for

each novel task to be learned. For this reason, it is necessary to

introduce mechanisms driving the learning and exploration of

robots in an autonomous manner.

1.2. Driving Autonomous Exploration

Active learning algorithms can be considered as organized

and constrained self-exploration processes [19, 20, 21, 22, 9].

In the regression setting, they are used to learn a regression

mapping between an input space X and an output space Y

while minimizing the sample complexity, i.e. with a mini-

mal number of examples necessary to reach a given perfor-

mance level. These methods, typically beginning by random

and sparse exploration, build meta-models of performances of

the motor learning mechanisms and concurrently drive the ex-

ploration in various sub-spaces for which a notion of interest is

defined, often consisting in variants of expected informational

gain. A large diversity of criteria can be used to evaluate the

utility of given sampling candidates, such as the maximization

of prediction errors [23], the local density of already queried

points [24], the maximization of the decrease of global model

variance [20], expected improvement [25], or maximal uncer-

tainty of the model [26] among others. There have been active-

extensions to most of the existent learning methods, e.g. logis-

tic regression [27], support vector machines [28], gaussian pro-

cesses [29, 30, 31]. Only very recently have these approaches

been applied to robotic problems, and even more recently if we

consider examples with real robots. Nevertheless examples that

consider robotic problems already exist for a large variety of

problems: building environment maps [32, 23], reinforcement

learning [33], body schema learning [34], imitation [35, 36],

exploration of objects and body properties [16], manipulation

[37], among many others.

Another approach to exploration came from an initially dif-

ferent problem, that of understanding how robots could achieve

3

cumulative and open-ended learning autonomously. This raised

the question of the task-independent mechanisms that may al-

low a robot to get interested in practicing skills and learn new

tasks that were not specified at design time. Two commu-

nities of researchers, the first one in reinforcement learning

[38, 39, 33, 40], the second one in developmental robotics

[41, 42, 43, 16, 44], formalized, implemented and experimented

several mechanisms based on the concept of intrinsic motiva-

tion (sometimes called curiosity-driven learning) grounded into

theories of motivation, spontaneous exploration, free play and

development in humans [45, 46, 47] as well as in recent findings

in the neuroscience of motivation [48, 49, 50].

As argumented in [39, 33, 51, 52], architectures based on

intrinsically motivated learning can be conceptualized as ac-

tive learning mechanisms which, in addition to allowing for

the self-organized formation of behavioral and developmental

complexity, can also also allow an agent to efficiently learn a

model of the world by parsimoniously designing its own exper-

iments/queries. Yet, in spite of these similarities between work

in active learning and intrinsic motivation, these two strands

of approaches often differ in their underlying assumptions and

constraints, leading to sometimes very different active learn-

ing algorithms. In many active learning models, one often as-

sumes that it is possible to learn a model of the complete world

within lifetime, and/or that the world is learnable everywhere,

and/or where noise is homogeneous everywhere. Given those

assumptions, heuristics based on the exploration of parts of the

space where the learned model has maximal uncertainties or

where its prediction are maximally wrong are often very ef-

ficient. Yet, these assumptions typically do not hold in real

world robots in an unconstrained environment: the sensorimo-

tor spaces, including the body dynamics and its interactions

with the external world, are simply much too large to be learned

entirely in a life time; there are typically subspaces which are

unlearnable due to inadequate learning biases or unobservable

variables; noise can be strongly homogeneous. Thus, differ-

ent authors claimed that typical criteria used in traditional ac-

tive learning approaches, such as the search for maximal un-

certainty or prediction errors, might get trapped or become in-

efficient in situations that are common in open-ended robotic

environments [40, 16, 51, 53]. This is the reason why new

active learning heuristics have been proposed in developmen-

tal robotics, such as those based on the psychological concept

of intrinsic motivations [54, 46, 55] which relate to mecha-

nisms that drive a learning agent to perform different activi-

ties for their own sake, without requiring any external reward

[39, 33, 56, 57, 58, 59, 60, 61, 41, 62, 63, 64, 65]. Different cri-

teria were elaborated, such as the search for maximal reduction

in empirically evaluated prediction error, maximal compression

progress, or maximal competence progress [39, 40, 16]. For in-

stance, the architecture called Robust-Intelligent Adaptive Cu-

riosity (RIAC) [51], which is a refinement of the IAC archi-

tecture which was elaborated for open-ended learning of affor-

dances and skills in real robots [16], defines the interestingness

of a sensorimotor subspace by the velocity of the decrease of

the errors made by the robot when predicting the consequences

of its actions, given a context, within this subspace. As shown

in [16, 51], it biases the system to explore subspaces of progres-

sively increasing complexity.

Nevertheless, RIAC and similar ”knowledge based” ap-

proaches (see [66]) have some limitations: first, while they can

deal with the spatial or temporal non-stationarity of the model

to be learned, they face the curse-of-dimensionality and can

only be efficient when considering a moderate number of con-

trol dimensions (e.g. up to 9/10). Indeed, as many other active

learning methods, RIAC needs a certain level of sampling den-

sity in order to extract and compare the interest of different ar-

eas of the space. Also, because performing these measure costs

time, this approach becomes more and more inefficient as the

dimensionality of the control space grows [67]. Second, they

focus on the active choice of motor commands and measures of

their consequences, which allows learning forward models that

can be re-used as a side effect for achieving goals/tasks through

online inversion: this approach is sub-optimal in many cases

since it explores in the high-dimensional space of motor com-

mands and consider the achievement of tasks only indirectly.

A more efficient approach consists in directly actively explor-

ing task spaces, which are also often much lower-dimensional,

by actively self-generating goals within those task spaces, and

then learn associated local coupled forward/inverse models that

are useful to achieve those goals. Yet, as we will see, the pro-

cess is not as straightforward as learning the forward model,

since because of the space redundancy it is not possible to learn

directly the inverse model (and this is the reason why learning

the forward model and then only inversing it has often been

achieved). In fact, exploring the task space will be used to learn

a sub-part of the forward model that is enough for reaching

most of reachable parts in the task space through local inver-

sion and regression, leveraging techniques for generalizing pol-

icy parameters corresponding to novel task parameters based on

previously learnt correspondences, such as in [68, 51, 69, 70].

1.3. Driving the Exploration at a Higher Level

In a framework where a system should be able to learn to

perform a maximal amount of different tasks (here this means

achieving many goals/tasks in a parameterized task space) be-

fore focusing on different ways to perform the same tasks (here

this means finding several alternative actions to achieve the

same goal), knowledge-based exploration techniques like RIAC

cannot be efficient in robots with redundant forward models.

Indeed, they typically direct a robotic system to spend copi-

ous amounts of time exploring variations of action policies that

produce the same effect, at the disadvantage of exploring other

actions that might produce different outcomes, useful to achieve

more tasks. An example of this is learning 10 ways to push a

ball forward instead of learning to push a ball in 10 different

directions. One way to address this issue is to take inspiration

infant’s motor exploration/babbling behavior, which has been

argued to be teleological via introducing goals explicitly inside

a task space and driving exploration at the level of these goals

[71, 72, 73, 74]. Once a goal/task is chosen, the system would

then try to reach it with a lower-level goal-reaching architec-

ture typically based on coupled inverse and forward models,

4

which might include a lower-level goal-directed active explo-

ration mechanism.

Two other developmental constraints, playing an important

role in infant motor development, and presented in the experi-

mentations of this paper, can also play an important role when

considering such a task-level exploration process. First, we use

motor synergies which have been shown as simplifying mo-

tor learning by reducing the number of dimensions for con-

trol (nevertheless, even with motor synergies, the dimension-

ality of the control space can easily go over several dozens, and

exploration still needs to be organized). These motor syner-

gies are often encoded using Central Pattern Generators (CPG)

[75, 76, 77, 78, 79] or as more traditional innate low-level con-

trol loops which are part of the innate structure allowing a robot

to bootstrap the learning of new skills, as for example in [16, 80]

where it is combined with intrinsically motivated learning. Sec-

ond, we will use a heuristic inspired by observations of infants

who sometimes prepare their reaching movements by starting

from a same rest position [81], by resetting the robot to such

a rest position, which allows reducing the set of starting states

used to perform a task.

In this paper, we propose an approach which allows us to

transpose some of the basic ideas of IAC and RIAC archi-

tectures, combined with ideas from the SSA algorithm, into

a multi-level active learning architecture called Self-Adaptive

Goal Generation RIAC algorithm (SAGG-RIAC) (an out-

line and initial evaluation of this architecture was presented in

[82]). Unlike RIAC which was made for active learning of for-

ward models mapping action policy parametes to effects in a

task space, we show that this new algorithm allows for efficient

learning of inverse models mapping parameters of tasks to pa-

rameters of action policies that allow to achieve these tasks in

redundant robots. This is achieved through active sampling of

novel parameterized tasks in the task space, based on a measure

of competence progress, each of which triggers low-level goal-

directed learning of the motor policy parameters that allow to

solve it. This takes advantage of both the typical redundancy of

the mapping and of the fact that very often the dimensionality of

the task space considered is much smaller than the dimension-

ality of motor primitives/action parameter space. Such an ar-

chitecture also leverages both techniques for optimizing action

policy parameters for a single predefined tasks (e.g. [83, 84]),

as well as regression techniques allowing to infer the motor pol-

icy parameters corresponding to a given novel parameterized

task, and based on the previously learnt correspondences be-

tween policy and task parameters (e.g. [68, 51, 69, 70]). While

approaches such as [83, 84] or [68, 69, 70] do not consider the

problem of autonomous life-long exploration of novel parame-

terized tasks, they are very complemetary to the present work

as they could be used as the low-level techniques for low-level

learning of action parameter policies for self-generated tasks in

the SAGG-RIAC architecture.

SAGG-RIAC can be considered as an active learning al-

gorithm carrying out the concept of competence based in-

trinsically motivated learning [66] and is in line with con-

cepts of mastery motivation, Flow, Optimal Level theories

and zone of Proximal Development introduced in psychology

[85, 86, 87, 88, 89]. In a competence based active exploration

mechanism, according to the definition [66], the robot is pushed

to perform an active exploration in the goal/operational space as

opposed to motor babbling in the actuator space.

Several strands of previous research have began exploration

various aspects of this family of mechanisms. First, algorithms

achieving competence based exploration and allowing general

computer programs to actively and adaptively self-generate ab-

stract computational problems, or goals, of increasing complex-

ity were studied in a theoretical computer science perspective

[90, 91, 92]. While the high expressivity of these formalisms

allows in principle to tackle a wide diversity of problems, they

were not designed nor experimented for the particular family

of problems of learning high-dimensional continuous models

in robotics. While SAGG-RIAC also actively and adaptively

self-generates goals, this is achieved with a formalism based on

applied mathematics and dedicated to the problem of learning

inverse models in continuous redundant spaces.

Measures of interestingness based on a measure of compe-

tence to perform a skill were studied in [93], as well as in [60]

where a selector chooses to perform different skills depending

on the temporal difference error to reach each skill. The study

proposed in [94] is based on the competence progress, which

they use to select goals in a pre-specified set of skills considered

in a discrete world. As we will show, SAGG-RIAC also uses

competence progress, but targets learning in high-dimensional

continuous robot spaces.

A mechanism for passive exploration in the task space

for learning inverse models in high-dimensional continuous

robotics spaces was presented in [95, 96], where a robot has to

learn its arm inverse kinematics while trying to reach in a pre-

set order goals put on a pre-specified grid informing the robot

about the limits of its reachable space. In SAGG-RIAC explo-

ration is actively driven in the task space, allowing the learning

process to minimize its sample complexity, and as we will show,

to reach a high-level of performances in generalization and to

discover automatically its own limits of reachability.

In the following sections we introduce the global architec-

ture and formalization of the Self-Adaptive Goal-Generation

SAGG-RIAC architecture. Then, we study experimentally its

capabilities to allow a robot efficiently and actively learn distri-

butions of parameterized motor skills/policies that solve a cor-

responding distribution of parameterized tasks/goals, and in the

context of three experimental setups: 1) learning the inverse

kinematics in a highly-redundant robotic arm, 2) learning om-

nidirectional locomotion with motor primitives in a quadruped

robot, 3) an arm learning to control a fishing rod with a flexible

wire. More precisely, we focus on the following aspects and

contributions of the architecture:

• SAGG-RIAC creates developmental trajectories driving

the robot to progressively focus on tasks of increasing

complexity of learnability;

• Drives the learning of a high variety of parameterized tasks

(i.e. capability to reach various regions of the goal/task

space) instead of numerous ways to perform the same task;

5

• Allows learning fields of tasks in high-dimensional high-

volume control spaces as long as the task space is low-

dimensional (it can be high-volume);

• Allows learning in task-spaces where only small and ini-

tially unknown subparts are reachable;

• Drives the learning of inverse models of highly-redundant

robots with different body schemas;

• Guides the self-discovery of the limits of what the robot

can achieve in its task space;

• Allows improving significantly the quality of learned in-

verse models in terms of speed of learning and general-

ization performance to reach goals in the task space, com-

pared to different methods proposed in the literature;

2. Competence Based Intrinsic Motivation: The Self-

Adaptive Goal Generation RIAC Architecture

2.1. Global Architecture

Let us consider the definition of competence based models

outlined in [66], and extract from it two different levels for ac-

tive learning defined at different time scales (Fig. 1):

1. The higher level of active learning (higher time scale)

takes care of the active self-generation and self-selection

of goals/tasks in a parameterized task space, depending

on a measure of interest based on the level of compe-

tences to reach previously generated goals (e.g. compe-

tence progress);

2. The lower level of active learning (lower time scale) con-

siders the goal-directed active choice and active explo-

ration of lower-level actions to be taken to reach the goals

selected at the higher level, and depending on local mea-

sures of interest related to the evolution of the quality of

learned inverse and/or forward models;

Goal
Interest Computation

Goal
Self-Generation

Goal-Directed Low-
Level Actions Interest

Computation

Goal Directed
Exploration and

Learning

Lower Level of Active Learning

Higher level of Active Learning

Figure 1: Global Architecture of the SAGG-RIAC architecture. The structure

is comprised of two parts defining two levels of active learning: a higher level

which considers the active self-generation and self-selection of goals, and a

lower level, which considers the goal-directed active choice and active explo-

ration of low-level actions, in order to reach the goals selected at the higher

level.

2.2. Model Formalization

Let us consider a robotic system described in both a

state/context space S , and a task space Y which is a field of

parameterized tasks/goals that can be viewed as defining a field

of parameterized reinforcement learning problems. For a given

context s ∈ S , a sequence of actions a = {a1, a2, ..., an} ∈ A,

potentially generated by a parameterized motor synergy πθ :

S → A (alternatively called an “option” and including a self-

termination mechanism), allows a transition toward the new

states y ∈ Y such that (s, a) → y, also written (s, πθ) → y.

For instance, in the first experiment introduced in the follow-

ing sections where we use a robotic manipulator, S represents

its actuator/joint space, Y the operational space corresponding

to the cartesian position of its end-effector, and A relates to ve-

locity commands in the joints. Also, in the second experiment

involving a quadruped where we use motor synergies, the con-

text s is always reset to a same state and has thus no influence

on the learning, A relates to the 24 dimensional parameters of a

motor synergy which considers the frequency and amplitude of

sinusoids controlling the position of each joints over time, and

Y relates to the position and orientation of the robot after the

execution of the synergy during a fixed amount of time.

SAGG-RIAC drives the exploration and learning of how to

reach goals given starting contexts/states. Starting states are

formalized as configurations s ∈ S and goals as a desired

yg ∈ Y . All states are considered to be potential starting states;

therefore, once a goal has been generated, the low-level goal

directed exploration and learning mechanism always tries to

reach it by starting from the current state of the system as for-

malized and explained below.

When the initiation position sstart, the goal yg and constraints

ρ (e.g. linked with the spent energy) are chosen, it generates a

motor policy πθ(Data)(sstart, yg, ρ) parameterized by sstart, yg and

ρ as well as parameters θ of internal forward and inverse mod-

els already learned with previously acquired data Data. Also,

it is important to notice that πθ(Data)(sstart, yg, ρ) can be com-

puted on the fly, as in the experiments below, with regression

techniques allowing to infer the motor policy parameters cor-

responding to a given novel parameterized task, and based on

the previously learnt correspondences between policy and task

parameters, such as in [68, 51, 69, 70].

We can make an analogy of this formalization with the Semi-

Markov Option framework introduced by Sutton [97]. In the

case of SAGG-RIAC, when considering an option 〈I, π, β〉, we

can first define the initiation set I : S → [0; 1], where I is true

everywhere, because, as presented before, every state can here

be considered as a starting state. Also, goals are related to the

terminal condition β and β = 1 when the goal is reached, and the

policy π encodes the skill learned through the process induced

by the lower-level of active learning and shall be indexed by the

goal yg, i.e. πyg
. More formally, as induced by the use of semi-

markov options, we define policies and termination conditions

as dependent on all events between the initiation of the option,

and the current instant. This means that the policy π, and β are

depending on the history htτ = {st, at, st+1, at+1..., sτ} where t is

the initiation time of the option, and τ, the time of the latest

6

event. Denoting the set of all histories by Ω, the policy and

termination condition become defined by π : Ω × A → [0; 1]

and β : Ω→ [0; 1].

Moreover, because we have to consider cases where goals

are not reachable (either because of physical impossibility or

because the robot is not capable of doing it at that point of its

development), we need to define a timeout tmax which can stop

a goal reaching attempt once a maximal number of actions has

been executed. htτ is thus needed to stop π, (i.e. the low-level

active learning process), if τ > tmax.

Eventually, using the framework of options, we can define

the process of goal self-generation, as the self-generation and

self-selection of parameterized options, and a goal reaching

attempt corresponding to the learning of a particular option.

Therefore, the global SAGG-RIAC process can be described

as exploring and learning fields of options.

2.3. Lower Time Scale:

Active Goal Directed Exploration and Learning

In SAGG-RIAC, once a goal has been actively chosen at the

high-level, the goal directed exploration and learning mecha-

nism at the lower can be carried out in numerous ways: the ar-

chitecture makes only little assumptions about them, and thus is

compatible with many methods such as those described below

(this is the reason why SAGG-RIAC is an architecture defining

a family of algorithms). Its main idea is to guide the system

toward the goal by executing low-level actions which allow a

progressive exploration of the world toward this specific goal

and that updates at the same time the local corresponding for-

ward and inverse models, leveraging previously learnt corre-

spondences with regression. The main assumptions about the

methods that can be used for this lower level are:

• Incremental learning and generalization: based on the

data collected incrementally, the method must be able to

build incrementally local forward and inverse models that

can be reused later on, in particular when considering other

goals, such as the task-space regression techniques pre-

sented in [68, 51, 69, 70];

• Goal-directed optimization: when a goal is set, an opti-

mization procedure can improve the parameters of the ac-

tion policy to reach the goal, such as policy gradient meth-

ods [98, 84] or stochastic optimization [99];

A optional feature, which is a variant of the second assumption

above, is:

• Active optimization: goal-directed optimization of the

parameters of the action policy for reaching a self-

generated goal. A learning feedback mechanism has to

be added such that the exploration is active, and the selec-

tion of new actions depends on local measures about the

quality of the learned model.

In the following experiments that will be introduced, we will

use two different methods: one mechanism where optimization

is inspired by the SSA algorithm [14], coupled with memory-

based local forward and inverse regression models using local

Moore-Penrose pseudo-inverses, and a more generic optimiza-

tion algorithm mixing stochastic optimization with memory-

based regression models using pseudo-inverse. Other kinds

of techniques could be used. For the optimization part, algo-

rithms such as natural actor-critic architectures in model based

reinforcement learning [98], algorithms of convex optimiza-

tion [100], algorithms of stochastic optimization like CMA (e.g.

[99]), or path-integral methods (e.g. [101, 84]).

For the regression part, we are here using a memory-based

approach, which if combined with efficient data storage and

access structures [102, 103], scales well from a computational

point of view. Yet, if memory limits would be a limited re-

source, and as little assumption about the low-level regression

algorithms are made in the SAGG-RIAC architecture, parame-

terized models allowing to control memory requirements such

as Neural networks, Support Vector Regression, Gaussian Pro-

cess Regression could instead be considered [1], such as in

[68, 51, 69, 70].

2.4. Higher Time Scale:

Goal Self-Generation and Self-Selection

The Goal Self-Generation and Self-Selection process relies

on a feedback defined using the concept of competence, and

more precisely on the competence improvement in given re-

gions (or subspaces) of the task space where goals are chosen.

The measure of competence can be computed at different in-

stants of the learning process. First, it can be estimated once

a reaching attempt in direction of a goal has been declared as

terminated. Second, for robotic setups which are compatible

with this option, competence can be computed during low-level

reaching attempts. In the following sections, we detail these

two different cases:

2.4.1. Measure of Competence for a Terminated Reaching At-

tempt

A reaching attempt for a goal is considered terminated ac-

cording to two conditions:

• A timeout related to a maximum number of iterations al-

lowed by the low-level of active learning has been ex-

ceeded.

• The goal has effectively been reached.

We introduce a measure of competence for a given goal reach-

ing attempt as dependent on two metrics: the similarity between

the point in the task space y f attained when the reaching at-

tempt has terminated, and the actual goal yg; and the respect

of constraints ρ. These conditions are represented by a cost,

or competence, function C defined in [−∞; 0], such that higher

C(yg, y f , ρ) will be, the more a reaching attempt will be con-

sidered as efficient. From this definition, we set a measure of

competence Γyg
directly linked with the value of C(yg, y f , ρ):

Γyg
=

{
C(yg, y f , ρ) if C(yg, y f , ρ) ≤ εsim < 0

0 otherwise

where εsim is a tolerance factor such that C(yg, y f , ρ) > εsim

corresponds to a goal reached. We note that a high value

7

of Γyg
(i.e. close to 0) represents a system that is compe-

tent to reach the goal yg while respecting constraints ρ. A

typical instantiation of C, without constraints ρ, is defined as

C(yg, y f , ∅) = −‖yg − y f ‖
2, and is the direct transposition of pre-

diction error in RIAC [16, 51] to the task space in SAGG-RIAC.

Yet, this competence measure might take some other forms in

the SAGG-RIAC architecture, such as the variants explored in

the experiments below.

2.4.2. Measure of Competence During a Reaching Attempt or

During Goal-Directed Optimization

When the system exploits its previously learnt models to

reach a goal yg, using a computed πθ through adequate lo-

cal regression, or when it is using the low-level goal-directed

optimization to optimize the best current πθ to reach a self-

generated goal yg, it does not only collect data allowing to

measure its competence to reach yg, but since the computed πθ
might lead to a different effect ye , yg, it also allows to collect

new data for improving the inverse model and the measure of

competence to reach other goals in the locality of ye. This al-

lows to use all experiments of the robot to update the model of

competences over the space of paremeterized goals.

2.4.3. Definition of Local Competence Progress

The active goal self-generation and self-selection relies on

a feedback linked with the notion of competence introduced

above, and more precisely on the monitoring of the progress

of local competences. We first need to define this notion of

local competence. Let us consider a subspace called a region

R ⊂ Y . Then, let us consider different measures of competence

Γyi
computed for different attempted goals yi ∈ R, in a time win-

dow consisting of the ζ last attempted goals. For the region R,

we can compute a measure of competence Γ that we call a local

measure such that:

Γ =

(∑
y j∈R

(Γy j
)

|R|

)
(1)

with |R|, cardinal of R.

Let us now consider different regions Ri of Y such that Ri ⊂

Y ,
⋃

i Ri = Y (initially, there is only one region which is then

progressively and recursively split; see below and see Fig. 2).

Each Ri contains attempted goals {yi1,t1 , yi2,t2 , ..., yik ,tk }Ri
and cor-

responding competences obtained {Γyi1 ,t1
,Γyi2 ,t2

, ...,Γyik ,tk
}Ri

, in-

dexed by their relative time order of experimentation t1 < t2 <

... < tk |tn+1 = tn+1 inside this precise subspace Ri (ti are not the

absolute time, but integer indexes of relative order in the given

region).

An estimation of interest is computed for each region Ri. The

interest interesti of a region Ri is described as the absolute value

of the derivative of local competences inside Ri, hence the am-

plitude of local competence progress, over a sliding time win-

dow of the ζ more recent goals attempted inside Ri (equation

2):

Figure 2: Task space and example of regions and subregions split during the

learning process according to the competence level. Each region displays its

competence level over time, measure which is used for the computation of the

interest according to equation 2.

interesti =

∣∣∣∣∣∣∣∣∣

|Ri |−
ζ

2∑

j=|Ri |−ζ

Γy j

 −

|Ri |∑

j=|Ri |−
ζ

2

Γy j

∣∣∣∣∣∣∣∣∣
ζ

(2)

By using a derivative, the interest considers the variation of

competences, and by using an absolute value, it considers cases

of increasing and decreasing competences. In SAGG-RIAC,

we will use the term competence progress with its general

meaning to denote this increase and decrease of competences.

An increasing competence signifies that the expected compe-

tence gain in Ri is important. Therefore, potentially, selecting

new goals in regions of high competence progress could bring

both a high information gain for the learned model, and also

drive the reaching of not previously achieved goals.

Depending on the starting position and potential evolution

of the environment or of the body (e.g. breaking of a body

part), a decrease of competences inside already well-reached re-

gions can arise. In this case, the system should be able to focus

again in these regions in order to at least verify the possibility

to re-establish a high level of competence inside. This explains

the usefulness to consider the absolute value of the competence

progress as shown in equation 2.

Using a sliding window in order to compute the value of in-

terest prevents the system from keeping each measure of com-

petence in its memory, and thus limits the storage resource

needed by the core of the SAGG-RIAC architecture.

2.4.4. Goal Self-Generation Using the Measure of Interest

Using the previous description of interest, the goal self-

generation and self-selection mechanism carries out two differ-

ent processes:

1. Splitting of the space Y where goals are chosen, into sub-

spaces, according to heuristics that allows to maximally

discriminate areas according to their levels of interest.

2. Selecting the next goal to perform.

Such a mechanism has been described in the RIAC algorithm

introduced in [51], but was previously applied to the actua-

tor space S rather than to the goal/task space Y as is done in

SAGG-RIAC. Here, we use the same kind of methods such as

a recursive split of the space, each split being triggered once a

predefined maximum number of goals gmax has been attempted

8

inside. Each split is performed such that it maximizes the dif-

ference of the interest measure described above in the two re-

sulting subspaces. This allows the easy separation of areas of

differing interest and therefore of differing reaching difficulty.

More precisely, here the split of a region Rn into Rn+1 and Rn+2

is done by selecting among m randomly generated splits, a split

dimension j ∈ |Y | and then a position v j such that:

• All the yi of Rn+1 have a jth component smaller than v j;

• All the yi of Rn+2 have a jth component higher than v j;

• The quantity Qual(j, v j) =

card(Rn+1).card(Rn+2).‖interestRn+1
− interestRn+2

‖ is

maximal;

Finally, as soon as at least two regions exist after an initial

random exploration of the whole space, goals are chosen ac-

cording to the following heuristics, selected according to prob-

abilistic distributions:

1. mode(1): in p1% percent (typically p1 = 70%) of goal

selections, a random goal is chosen along a uniform distribution

inside a region which is selected with a probability proportional

to its interest value:

Pn =
interestn −min(interesti)∑|Rn |

i=1
interesti −min(interesti)

(3)

Where Pn is the selection probability of the region Rn, and

interesti corresponds to the current interest of the region Ri.

2. mode(2): in p2% (typically p2 = 20% of cases), a random

goal is chosen inside the whole space Y .

3. mode(3): in p3% (typically p3 = 10%), a region is first se-

lected according to the interest value (like in mode(1)) and then

a new goal is generated close to the already experimented one

which received the lowest competence estimation.

2.4.5. Reduction of the Initiation Set

In order to improve the quality of the learned inverse model,

we add a heuristic inspired by two observations on infant motor

exploration and learning. The first one, proposed by Berthier

et al. [81] is that infant’s reaching attempts are often preceded

by movements that either elevate their hand or move their hand

back to their side. And the second one, noticed in [95], is that

infants do not try to reach for objects forever but sometimes re-

lax their muscles and rest. Practically, these two characteristics

allow them to reduce the number of initiation positions that they

use to reach an object, which simplifies the reaching problem by

letting them learn a reduced number of reaching movements.

Such mechanism can be transposed in robotics to motor

learning of arm reaching tasks as well as other kind of skills

such as locomotion or fishing as shown in experiments be-

low. In such a framework, it directly allows a highly-redundant

robotic system to reduce the space of initiation states used to

learn to reach goals, and also typically prevent it from exper-

imenting with too complex actuator configurations. We add

such a process in SAGG-RIAC, by specifying a rest position

(srest, yrest) reachable without any need of planning from the

system, that is set for each r subsequent reaching attempts (we

call r the reset value, with r > 0).

2.5. New Challenges of Unknown Limits of the Task Space

In traditional active learning methods and especially

knowledge-based intrinsically motivated exploration [104, 16,

58, 39, 42], the system is typically designed to select actions

to perform inside a set of values inside an already known in-

terval (for instance, the range of angles that can be taken by a

motor, or the phases and amplitudes of CPGs which can be eas-

ily identified). In these cases, the challenge is to select which

areas would potentially give the most information to the sys-

tem, to improve its knowledge, inside this fixed range of pos-

sibilities. As argued earlier, a limit of these approaches is that

they become less and less efficient as the dimensionality of the

control space increases. Competence based approaches allow

to address this issue when a low-dimensional task space can

be identified. Nevertheless, in that case, a new problem arises

when considering unbounded learning: the space where goals

are reachable can be extremely large and it is generally very

difficult to predict its limits and undesirable to ask the engineer

to identify them. Therefore, when carried out in large spaces

where the reachable area is only a small part of it, the algorithm

could necessitate numerous random goal self-generations to be

able to estimate interests of different subregions. In order to re-

duce this number, and help the system to converge easily toward

regions where competence can be improved, we emphasize two

different mechanisms that can be used in SAGG-RIAC, during

a reaching attempt:

1. Conservation of every point reached inside the task space

even if they do not correspond to the attempted goal (see

section 2.4.2): when the robot performs a reaching attempt

toward a goal y, and, instead of reaching it, terminates at

another state y′, we consider y′ as a goal reached with a

value of competence depending on constraints ρ. In cases

where no constraints are studied, we can consider the y′ as

another goal reached with the highest level of competence.

2. Addition of subgoals: in robotic setups where the process

of goal reaching can be subdivided and described using

subgoals which could be fixed on the pathway toward the

goal, we artificially add states y1, y2, ..., yn that have to be

reached before y while also respecting the constraints ρ,

and estimate a competence measure for each one.

The consideration of these two heuristics has important advan-

tages: first, they can significantly increase the number of esti-

mations of competence, and thus the quantity of feedback re-

turned to the goal self-generation mechanism. This reduces

the number of goals that have to be self-generated to bootstrap

the system, and thus the number of low-level iteration required

to extract first interesting subspaces. Also, by creating areas

of different competence values around already reached states,

they influence the discovery of reachable areas. Finally, they re-

sult in an interesting emergent phenomena: they create a grow-

ing area of increasing competence around the first discovered

reachable areas. Indeed, by obtaining values of competences

inside reachable areas, the algorithm is able to split the space

first in these regions, and compute values of interest. These

values of interest will typically be high in already reached ar-

eas and influence the goal self-generation process to create new

9

goals in its proximity. Once the level of competence becomes

important and stabilized in efficiently reached areas, the inter-

est becomes null, then, new areas of interest close to these ones

will be discovered, and so on.

2.6. PseudoCode

Pseudo-code 1 and algorithm 2 present the flow of operations

in the SAGG-RIAC architecture. Algorithms 3 and 4 are sim-

ple alternative examples of low-level goal-directed optimization

algorithms that are used in the experimental section, but they

could be replaced by other algorithms like PI2 − CMA [84],

CMA [99], or those presented in [83]. The function Inefficient

can also be built in numerous manners and will not be described

in details in the pseudo-code (examples will be described then

for each experimentation). Its function is to judge if the current

model has been efficient enough to reach or come closer to the

decided goal, or if the model has to be improved in order to

reach it.

In the following sections, we will present two different kinds

of experiments. The first one is a reaching experiment where

a robotic arm has to learn its inverse kinematics to reach self-

generated end-effector positions. It uses an evolving context

s ∈ S , also called setpoint in SSA, representing its current joint

configuration. Therefore, it can be described by the relationship

(s, a)→ y where s, a and y can evolve. It is thus possible to use

a goal-directed optimization algorithm very similar to SSA in

this experiment, like the one in algorithm 3.

In the two other experiments, in contrast, we control the

robots using parameterized motor synergies and consider a

fixed context (a rest position) s ∈ S where the robot is reset

before each action: we will first consider a quadruped learning

omnidirectional locomotion, and then an arm controlling a flex-

ible fishing rod learning to put the float in precise self-generated

positions on top of the water. Thus, these systems can be de-

scribed by the relationship (s, πθ) → y, where s will here be

fixed and θ will be the parameters of the motor synergy used

to control the robots. Thus, a variation of setpoint being pre-

vented here, a variant of SSA will be proposed for such exper-

iments (similar to a more traditional optimization algorithm),

where the context will not evolve and always be reset, like in

algorithm 4.

3. Experimental Setup 1: Learning Inverse Kinematics

with a Redundant Arm

In this section, we propose an experiment carried out with

a robotic arm which has to explore and learn its forward and

inverse kinematics. Also, before discussing the details of our

active exploration approach in this first experimentation case,

we firstly define the representations of the models and con-

trol paradigms involved in this experiment. Here, we focus on

robotic systems whose actuators are settable by positions and

velocities, and restrict our analysis to discrete time models.

Allowing robots to be self-adaptive to environmental condi-

tions and changes in their own geometry is an important chal-

lenge of machine learning. These changes in the robot geome-

Algorithm 1 The SAGG-RIAC Architecture

S : State/Context space

Π: Space of paremeterized action policies πθ
Y: Space of parameterized tasks yi

M: regression model of the forward mapping (S ,Π)→ Y

M−1: regression model of the inverse mapping (S ,Y)→ Π

R: set of regions Ri ⊂ Y and corresponding measures

interesti;

input: thresholds εC; εmax; timeout

input: rest position srest ∈ S ; reset value: r

input: starting position sstart ∈ S

input: number of explorative movements q ∈ N

input: starting time: t

input: q budget of physical experiments for goal-directed

optimization

loop

Reset the system in the resting state (sstart = srest) every r

iteration of the loop;

Active Goal Self-Generation (high-level):

Self-generate a goal yg ∈ Y using the mode(m ∈ [1; 2; 3])

with probability pm (see Section 2.4.4.)

Active Goal-Directed Exploration and Learning (low-level):

Let st represent the current context of the system

if Made possible by the sensorimotor space then

Compute a set of subgoals {y1, y2, ..., yn} ∈ Y on the

pathway toward yg; (e.g. with a planning algorithm that

takes s, M, M−1 and yg into account);

else

{y1, y2, ..., yn} = ∅;

end if

for each y j in {y1, y2, ..., yn} ∪ yg do

while Γy j
≤ εC & timeout not exceeded do

Compute and execute an action/synergy πθ j
∈ Π us-

ing M−1 such that it targets y j, e.g. using techniques

such as in [68, 51, 69, 70];

Get the resulting actually performed ỹ j and update M

and M−1 with new data (st, θ j, ỹ j)

Compute the competence Γỹ j
(see section 2.4.1.)

UpdateRegions(R, ỹ j,Γỹ j
);

if experiment with evolving context then

Goal-directed optimization of θ j to reach y j, with

SSA like algorithm such as Algorithm 3, and given

a budget of q allowed physical experiments;

else

Goal-directed optimization of θ j to reach y j such

as algorithm 4, or alternatively algorithms such as

[84, 99, 83], and given a budget of q allowed phys-

ical experiments;

end if

end while

Compute the competence Γy j
(see section 2.4.1.)

UpdateRegions(R, y j, Γy j
);

end for

end loop

10

Algorithm 2 Pseudo-Code of UpdateRegions

input: R: : set of regions Ri ⊂ Y and corresponding mea-

sures interesti;

input: yt: current goal

input: Γyt
: competence measure for yt

Let gMax be the maximal number of elements inside a region

Let ζ be a time window used to compute the interest

Find the region Rn in R such that yt ∈ Rn;

Let k = card(Rn)

Add Γyt ,k in Rn, where k is an indice indicating the ordinal

order in which Γyt
was added in the region as compared to

other measures of competences in Rn ;

Compute the new value of interestn of Rn according to each

Γyi,l ∈ Rn such that:

interestn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

|Rn |−
ζ

2∑

l=|Rn |−ζ

Γyi,l

−

|Rn |∑

l=|Rn |−
ζ

2

Γyi,l

∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ

if card(Rn) > gmax then

Split Rn; (see text, section 2.4.4)

end if

Algorithm 3 Example of Pseudo-Code for the Low-Level

Goal-Directed Exploration with Evolving Context (used in the

experimentation introduced section 3.3)

input: q is the budget of physical experiment allowed to the

robot for local optimization;

Update the current context st = s j; {where s j is the context

after having performed πθ j
}

if Inefficient(M−1, ỹ j, y j) then

Local Exploration Phase:

for i = 1 to q do

Perform action policy πθi with θi drawn randomly in the

vicinity of θ j;

Measure the resulting yi and si;

Update M and M−1 with (st, θi, yi);

Update the context st = si;

Compute the competence Γyi
;

UpdateRegions(R, yi, Γyi
);

end for

end if

try directly have an impact on its Inverse Kinematics IK, relat-

ing workspace coordinates (where tasks are usually specified),

to actuators coordinates (like joint position, velocity, or torque

used to command the robot). Learning inverse kinematics is

useful in numerous machine learning cases, such as when no

accurate kinematic model of a robot is available or when an

online calibration is needed due to sensor or motor impreci-

sion. Moreover, in developmental robotics studies, the a priori

knowledge of a precise model of the body is often avoided, be-

cause of its implausibility from the biological point of view. In

the following experiment, we assume that the inverse kinemat-

ics of our system is totally unknown, and we are interested in

Algorithm 4 Example of Pseudo-Code for the Low-Level

Goal-Directed Exploration with a Fixed or Resettable Context

(used in the experiments introduced sections 4 and 5)

input: q is the budget of physical experiment allowed to the

robot for local optimization;

Reset the current context: st = srest;

if Inefficient(M−1, ỹ j, y j) then

Local Exploration Phase:

Initialize θk = θ j and yk = y j and Γyk
= Γy j

for i = 1 to q do

Perform πθi where θi is drawn randomly in the vicinity

of θk;

Observe the resulting yi;

Update M and M−1 with the resulting (st, θi, yi);

Reset the current context: st = srest;

Compute the competence Γyi
;

UpdateRegions(R, yi, Γyi
);

if Γyi
> Γyk

then

θk = θi
yk = yi

end if

end for

end if

studying how SAGG-RIAC can efficiently guide the discovery

and learning of its inverse kinematics.

3.1. Control Paradigms for Learning Inverse Kinematics

Let us mathematically formulate forward and inverse

kinematics relations. We define the intrinsic coordinates

(joint/actuator positions) of a manipulator as the n-dimensional

vector S = α ∈ Rn, and the position and orientation of the ma-

nipulator’s end-effector as the m-dimensional vector y ∈ R
m.

Relative to this formalization, actions of the robot corresponds

to speed commands parameterized by a vector θ = α̇ ∈ R
n

which controls the instantaneous speed of each of the n joints

of the arm. The forward kinematic function of this system is

generally written as y = f (α), and inverse kinematics relation-

ship is defined as α = f −1(y).

When a redundant manipulator is considered (n > m), or

when m = n, solutions to the inverse relationship are generally

non-unique [105]. The problem posed to inverse learning algo-

rithms is thus to determine particular solutions to α = f −1(y),

when multiple solutions exists. A typical approach used for

solving this problem considers local methods, which learn rela-

tionships linking small changes ∆α and ∆y :

ẏ = J(α)α̇ (4)

where J(α) is the Jacobian matrix.

Then, using the Jacobian matrix and inverting it to get a sin-

gle solution α̇ corresponding to a desired ẏ raises the problem of

the non-convexity property of this last equation. A solution to

this non-convex problem has then been proposed by Bullock in

[106] who converted it into a convex problem, by only consider-

ing the learning task within the spatial vicinity ̂̇α of a particular

11

xg

xf

D(xg, x
f)

xstartD(xstart, xg)

θ1
θ2 θ3 θ4 θ5

θ6
θ7

α1
α2

α3 α4
α5

α6

α7

Figure 3: Values used to compute the competence Γyg , considering a manipu-

lator of 7 degrees-of-freedom, in a 2 dimensions operational/task space. Here,

the arm is set in a position called rest position which is not straight and slightly

bent. (αrest , yrest).

α :

ẏ = J(α)̂α̇ (5)

3.2. Representation of Forward and Inverse Models to be

Learnt

We use here non-parametric models which typically deter-

mine local models in the vicinity of a current datapoint. By

computing a model using parameterized functions on data-

points restrained to a locality, they have been proposed as useful

for real time queries, and incremental learning. Learning in-

verse kinematics typically deals with these kind of constraints,

and these local methods have thus been proposed as an efficient

approach to IK learning [107, 1]. In the following study, we use

an incremental version of the Approximate Nearest Neighbors

algorithm (ANN) [103], based on a tree split using the k-means

process, to determine the vicinity of the current α. Also, in the

environments that we use to introduce our contribution, we do

not need highly robust, and computationally very complex re-

gression methods. Using the pseudo-inverse of Moore-Penrose

[108] to compute the pseudo-inverse J+(α) of the Jacobian J(α)

in a vicinity ̂̇α is thus sufficient. Possible problems happening

due to singularities [105, 109, 110] being bypassed by adding

noise in the joint configurations (see [96] for a study about this

problem).

Also, in the following equation, we use this method to deduce

the change ∆α corresponding to a ∆x, for a given joint position

α:

α̇ = J+(α)ẏ (6)

3.3. Robotic Setup

In the following experiments, we consider a n-dimensional

manipulator controlled in position and speed (as many of to-

day’s robots), updated at discrete time values. The vector

α ∈ R
n which represents joint angles corresponds to the con-

text/state space S and the vector y ∈ R
m which is the position

of the manipulator’s end-effector in m dimensions in the Euclid-

ian space R
m corresponds to the task space Y (see Fig. 3 where

n = 7 and m = 2). We evaluate how the SAGG-RIAC archi-

tecture can be used by a robot to learn how to reach all reach-

able points in the environment Y with this arm’s end-effector.

Learning the inverse kinematics is here an online process that

arises each time a micro-action θ = ∆α ∈ A is executed by

the manipulator: by doing each micro-action, the robot stores

measures (α,∆α,∆x) in its memory and creates a database Data

which contains elements (αi,∆αi,∆yi) representing the discov-

ered change ∆yi corresponding to a given ∆αi in the configura-

tion αi (this learning entity can be called a schema according to

the terminology of Drescher [111]). These measures are then

reused online to compute the Jacobian J(α) = ∆y/∆α locally

to move the end-effector in a desired direction ∆ydesired fixed

toward the self-generated goal. Therefore, we consider a learn-

ing problem of 2n dimensions, the relationship that the system

has to learn being (α,∆α) → ∆y. Also, in this experiment,

where we suppose Y Euclidian, and do not consider obstacles,

the direction to a goal can be defined as following a straight line

between the current end-effector’s position and the goal.

3.4. Evaluation of Competence

In this experiment, in order to clearly illustrate the main con-

tribution of our algorithm, we do not consider constraints ρ and

only focus on the reaching of goal positions yg. It is neverthe-

less important to notice that a constraint ρ has a direct influence

on the low-level of active learning of SAGG-RIAC, and thus an

indirect influence on the higher level. As using a constraint can

require a more complex exploration process guided at the low-

level, a more important number of iterations at this level can

be required to reach a goal, which could have an influence on

the global evolution of the performances of the learning process

used by the higher-level of SAGG-RIAC.

We define here the competence function C with the Euclid-

ian distance D(yg, y f), between the goal position and the final

reached position y f , which is normalized by the starting dis-

tance D(ystart, yg), where ystart is the end-effector’s starting po-

sition. This allows, for instance, to give a same competence

level when considering a goal at 1cm from the origin position,

which the robot approaches at 0.5cm and a goal at 1mm, which

the robot approaches at 0.5mm.

C(yg, y f , ystart) = −
D(yg, y f)

D(ystart, yg)
(7)

where C(yg, y f , ystart) = 0 if D(ystart, yg) < εC (the goal is

too close from the start position) and C(yg, y f , ystart) = −1 if

D(yg, y f) > D(ystart, yg) (the end-effector moved away from the

goal).

3.5. Addition of subgoals

Computing local competence progress in subspaces/regions

typically requires the reaching of numerous goals. Because

reaching a goal can necessitate several micro-actions, and thus

time, obtaining competence measures can be long. Also, with-

out biasing the learning process and as already explained in sec-

tion 2.5, we improve this mechanism by taking advantage of the

Euclidian nature of Y: we increase the number of goals artifi-

cially, by adding subgoals on the pathway between the start-

ing position and the goal, where competences are computed.

12

Therefore, considering a starting state ystart in Y , and a self-

generated goal yg, we define the set of l subgoals {y1, y2, ..., yl}

where yi = (i/l) × (yg − ystart), that have to be reached before

attempting to reach the terminal goal yg.

We also consider another way to increase the number of com-

petence measures which is to take into consideration each ex-

perimented position of the end-effector as a goal reached with

a maximal competence value. This will typically help the sys-

tem to distinguish which regions are efficiently covered, and to

discover new regions of interest.

3.6. Active Goal Directed Exploration and Learning

Here we propose a method inspired by the SSA algorithm to

guide the system to learn on the pathway toward the selected

goal position yg. This instantiation of the SAGG-RIAC archi-

tecture uses algorithm 3 and considers evolving contexts, as ex-

plained below.

3.6.1. Reaching Phase

The reaching phase deals with creating a pathway to the

current goal position yg. This phase consists of determining,

from the current position yc, an optimal micro-action which

would guide the end-effector toward yg. For this purpose,

the system computes the needed end-effector’s displacement

∆ynext = v.
yc−yg

‖yc−yg‖
(where v is the velocity bounded by vmax and

yc−yg

‖yc−yg‖
a normalized vector in direction of the goal), and per-

forms the action ∆αnext = J+.∆ynext, with J+, pseudo-inverse of

the Jacobian estimated in the close vicinity of α and given the

data collected by the robot so far. After each action ∆ynext, we

compute the error ε = ‖∆̃ynext − ∆ynext‖, and trigger the explo-

ration phase in cases of a too high value ε > εmax > 0. εmax is

thus a parameter which has to be set depending on the range of

error ε that can be experienced, and will be set depending on

a tolerance that can be conceded to allow reaching goal posi-

tions with the current learned data. While a too high value of

εmax will prevent exploring and learning new data (the system

spending potentially too important amounts of time exploring

around a same configuration and get trapped in local minima),

too low values of εmax will prevent an efficient local optimiza-

tion.

3.6.2. Exploration Phase

This phase consists in performing q ∈ N small random ex-

plorative actions ∆αi, around the current position α, where the

variations can be derandomized such as in [99]. This allows the

learning system to improve its regression model of the relation-

ship (α,∆α)→ ∆y, in the close vicinity of α, which is needed to

compute the inverse kinematics model around α. During both

phases, a counter is incremented for each micro-action and re-

set for each new goal. The timeout used to define a goal as

unreached and to stop a reaching attempt uses this counter. A

maximal quantity of micro-actions is fixed for each goal as di-

rectly proportional to the number of micro-action it requires to

be reached. In the next experiments, the system is allowed to

perform up to 1.5 times the distance between ystart and yg before

stopping the reaching attempt.

3.7. Qualitative Results for a 15 DOF Simulated Arm

In the simulated experiment introduced in this section, we

consider the robotic arm presented Fig. 3 with 15 DOF, each

limb of the robot having the same length (considering a 15 DOF

arm corresponds to a problem of 32 continuous dimensions,

with 30 dimensions in the actuator/state space and 2 dimensions

in the goal/task space). We set the dimensions of the task space

Y as bounded in intervals yg ∈ [0; 150]× [−150; 150], where 50

units is the total length of the arm, which means that the arm

covers less than 1/9 of the space Y where goals can be chosen

(i.e. the majority of areas in the operational/task space are not

reachable, which has to be self-discovered by the robot). We

fix the number of subgoal per goal to 5, and the maximal num-

ber of elements inside a region before a split to gmax = 50. We

also set the desired velocity v = 2 units/micro-action, and the

number of explorative actions q = 20. Moreover, we reset the

arm to the rest position (αrest, yrest) (position displayed in Fig.

3) every r = 1 reaching attempts. This allows reducing the ini-

tiation set and prevent the system from experimenting with too

complex joint positions where the arm is folded, and where the

Jacobian is more difficult to compute. Using a low value of r

is an important characteristic for the beginning of the learning

process. A too high value of r prevents learning rapidly how to

achieve a maximal amount of goal position, due to the difficulty

to reuse the previously learned data when the arm is folded in

unknown positions.

The bent character of the rest position is also useful to avoid

to begin a micro-action close to a singularity like when the arm

is totally unfolded. Also, in this experiment, we consider each

experimented position of the end-effector as if it was a goal

reached with the maximal competence level (these numerous

positions are not displayed in the following figures in order to

not overload the illustrations).

Figure 4: Competence values corresponding to the entire set of self-generated

goals collected over an experiment of 30000 micro-actions on a 15 DOF arm.

The heterogeneous set of competence values situated inside the reachable space

illustrates the typical measures of competence that can be measured in this re-

gion over a whole experiment. For a visualization of the evolution of these

competence values, see figure 5

13

Figure 5: Evolution of competence values corresponding to self-generated goals collected during an experiment of 30000 micro-actions on a 15 DOF arm. Time is

indexed by the number of self-generated goals. Higher values (dark red) corresponds to position that has been reached using learned data. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article)

1 to 42 Goals

100 200 300 400 500

100

200

300

400

500

100

200

300

400

500

42 to 83 Goals

100 200 300 400 500

100

200

300

400

500

100

200

300

400

500

84 to 125 Goals

100 200 300 400 500

100

200

300

400

500

125 to 166 Goals

100 200 300 400 500

100

200

300

400

500

100

200

300

400

500

167 to 208 Goals

100 200 300 400 500

100

200

300

400

500

100

200

300

400

500

208 to 249 Goals

100 200 300 400 500

100

200

300

400

500

150

-150
0 150

1-42 Goals 42-83 Goals 84-125 Goals

125-166 Goals 167-208 Goals 208-249 Goals
0 150 0 150

150

-150
0 150 0 150 0 150

0

0

Figure 6: Evolution of the distribution of self-generated goals displayed over time windows indexed by the number of performed goals, for an experiment of

30000 micro-actions on a 15 DOF arm measuring 50 units. The black half-circle represents the contour of the area reachable by the arm. Higher values (dark red)

corresponds to higher density of self-generated goals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article)

3.7.1. Evolution of Competences over Time

Fig. 4 represents the whole distribution of self-generated

goals and sub-goals selected by the higher-level of active learn-

ing module, and their corresponding competences after the exe-

cution of 30000 micro-actions. The global shape of the distribu-

14

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

150

-150
0 150

42 Goals 83 Goals 125 Goals

166 Goals 208 Goals 249 Goals
0 150 0 150

150

-150
0 150 0 150 0 150

0

0

Figure 7: Evolution of the splitting of the task/goal space and creation of subregions indexed by the number of goals self-generated (without counting subgoals), for

the experiment presented in Fig. 6.

167-208 Goals 208-249 Goals125-166 Goals84-125 Goals

-50

50

0

-50

50

0

-50

50

0

-50

50

0

xrest

Figure 8: Details of the evolution of the distribution of self-generated goals inside the reachable area for the experiment presented in Fig. 6. Gray points represent

the end-effector rest position yrest .

tion of points allows observing the large values of competence

levels inside the reachable space and its close vicinity, and the

global low competence inside the remaining space.

The progressive increase of competences is displayed on Fig.

5 where we evaluate over time (indexed here by the number of

goals self-generated) the global competence of the system to

reach positions situated on a grid which covers the entire task

space. From these estimations of competence, we can extract

two interesting phenomena: first of all, the two first subfigures,

estimated after the self-generation of 42 and 83 goals, show that

the system is, at the beginning of the exploration and learning

process, competent to only attain areas situated close to the lim-

its of the reachable space. Then, the 4 other subfigures show

the progressive increase of competences inside the reachable

space following an increasing radius whose the origin is situ-

ated around the end-effector rest position.

The first observation is due to the reaching mechanism in

itself, which, when possessing a few data acquired, does not al-

low the robot to experiment complex joint movements, but only

simple ones which typically leads to the limits of the arm. The

second phenomenon is due to the coupling of the lower-level of

active learning inspired by SSA with the heuristic of returning

to yrest every subsequent goals. Indeed, the necessity to be con-

fident in the local model of the arm to shift toward new positions

makes the system progressively explore the space, and resetting

it to its rest position makes it progressively explore the space by

beginning close to yrest. Finally, goal positions that are physi-

cally reachable but far from this radius typically present a low

competence to be reached initially, before the radius spreads

enough to reach them.

3.7.2. Global Exploration over Time

Fig. 6 shows histograms of goal positions self-generated dur-

ing the execution of the 30000 micro-actions (only goals, not

15

subgoals for an easy reading of the figure). Each subfigure cor-

responds to a specified time window indexed by the number

of generated goals: the first one (upper-left) shows that, at the

onset of learning, the system already focuses in a small area

around the end-effector’s rest position, and thus discriminates

differences between a subpart of the reachable area and the re-

maining space (the whole reachable zone being represented by

the black half-circle on each subfigure of Fig. 6). In the sec-

ond subfigure, the system is, inversely, focusing almost only on

regions of the space which are not reachable by the arm. This

is due to the imprecise split of the space at this level of the

exploration, which left very small reachable areas (which have

already been reached with a high competence), at the edge in-

side each large unreachable regions. This typically gives a high

mean competence to each of these region when they are created.

Then, due to the very large part of unreachable areas, in com-

parison to reachable ones, the mean competence decreases over

time. This brings interest to the region, thanks to the mathemat-

ical definition of the interest level, which, by using an absolute

value, pushes the robot toward areas where the competence is

decreasing. This complex process which allows driving the ex-

ploration in these kind of heterogeneous regions then allows di-

viding efficiently the task space into reachable and unreachable

regions.

Then, considering a global observation of subfigures 3 to 6,

we can conclude that the system effectively autonomously dis-

covers its own limits by focusing the goal self-generation in-

side reachable areas during the largest part of the exploration

period. The system is indeed discovering that only a subpart

is reachable due to the interest value becoming null in totally

unreachable areas where the competence value is low.

3.7.3. Exploration over Time inside Reachable Areas

A more precise observation of subfigures 3 to 6 is presented

in Fig. 8 where we can specifically observe the self-generated

goals inside the reachable area. First, we can perceive that

the system is originally focusing in an area around the end-

effector’s rest position yrest (shown by gray points in Fig. 8).

Then, it increases the radius of its exploration around yrest

and focuses on areas further afield to the end-effector’s rest po-

sition. Subfigures 2 and 3 shows that the system explores new

reachable parts corresponding to the right part close to its basis

(subfigure 2), and then, the left part close to its basis (subfigures

3).

Also, comparing the two first subfigures, and the two last

ones, we observe a shift of the maximum exploration peak to-

ward the arm basis. This is first linked with the loss of interest

of self-generating goals around the end-effector’s rest position.

Indeed, because the system becomes highly efficient inside this

region, the competence level becomes high and stationary over

time, which leads to low interest values. At the same time, this

phenomenon is also linked with the increase of competences in

new reachable positions far from the end-effector rest position

yrest, closer to its basis, which creates new regions of interest

(see the four last subfigures of Fig. 5).

3.7.4. Emergent Process

The addition of subgoals and the consideration of each end-

effector’s position as a goal reached with the highest com-

petence level have important influences on the learning pro-

cess. If we look at traditional active learning algorithms

which cannot deal with open-ended learning [20, 112, 113],

as well as RIAC-like algorithms different from SAGG-RIAC

[16, 58, 60, 114, 39, 51], we can notice that even if these tech-

niques deal with avoiding excessive exploration in unlearnable

or extremely complex areas, the learning process still has to

begin by a period of random exploration of the whole space,

to distinguish and extract which subparts are the most inter-

esting according to the used definition of interest. Thanks to

the addition of sub-goals and/or the consideration of every end-

effector’s position in SAGG-RIAC, in addition to exploring in

the task space, we reduce the number of needed random global

exploration, and improve the capability of the system to deal

with large (i.e. when the volume of reachable space is small as

compared to the volume of the whole space) task spaces. Us-

ing subgoals indeed creates a concentration of goals around the

current end-effector’s position, which progressively grows ac-

cording to new experimented positions.

Furthermore, the consideration of each end-effector’s posi-

tion for the estimation of competence allows discovering pro-

gressively which positions are reachable with a high compe-

tence level, and gives a fast indication of first subregions where

these high competences are situated. This increases the number

of subregions close to the reachable areas and allows computing

the interest values in the growing vicinity of the end-effector’s

experimented positions (see Fig. 7 where the progressive split

of subregions in reachable areas is displayed).

Therefore, these additions of competence measures allow the

system to discover and focus on areas where the competence is

high in a very low number of goal self-generation, and tackle

the typical problem of fast estimation and distinction of inter-

esting areas. Nevertheless, this emergent process only helps

to increase the number of feedbacks required by the goal self-

generation mechanism to split the space, and do not influence

the low-level active learning. Then, the timeout which defines

a goal as unreached during a single reaching attempt becomes

crucial when considering high-volume task spaces with large

unreachable parts as introduced in the following section.

3.7.5. Robustness in High-Volume Task Spaces

in the previous experiment, the timeout which describes a

goal as not reached and stops a reaching attempt is defined as

directly proportional to the number of micro-actions required

to reach each goal. Practically, as introduced section 3.6.2, we

allowed the system to perform 1.5 times the distance between

ystart and yg before declaring a goal as not reached (including

explorative movements).

This timeout is efficient enough to learn efficiently by dis-

criminating regions of different complexities in the middle-size

space S ′ = [0; 150] × [−150; 150] considered in this experi-

ment. Nevertheless, it can have an important influence on the

SAGG learning process when considering extremely large task

spaces with small underlying reachable areas. For instance, if

16

1 to 336 Goals

200 400 600

100

200

300

400

500

600

337 to 672 Goals

200 400 600

100

200

300

400

500

600

673 to 1008 Goals

200 400 600

100

200

300

400

500

600

1009 to 1344 Goals

200 400 600

100

200

300

400

500

600

1345 to 1680 Goals

200 400 600

100

200

300

400

500

600

1680 to 2015 Goals

200 400 600

100

200

300

400

500

600

1 to 336 Goals 337 to 672 Goals 673 to 1008 Goals

1009 to 1334 Goals 1345 to 1680 Goals 1681 to 2015 Goals

-500

500

0

0 500

-500

500

0

0 500 0 500 0 500

0 500 0 500

Figure 9: Histograms of self-generated goals displayed over time windows indexed by the number of performed goals, for an experiment of 30000 micro-actions

on a 15 DOF arm, for a high-volume task space S = [−500; 500] × [0; 500], according to the reachable space contained in [−50; 50] × [0; 50] (the black half-circle

represents the contour of the area reachable by the arm according to its length of 50 units).

we consider a task space Y = [−500; 500] × [−0; 500] where

only [−50; 50] × [0; 50] is reachable, the low-level of active

learning will spend an extremely large number of iterations try-

ing to reach each unreachable goal if this kind of timeout is

used.

Therefore, when considering such high-volume spaces, the

definition of a new timeout becomes crucial. In Fig. 9, we

demonstrate the high discriminating factor of SAGG-RIAC in

such a task space (Y = [−500; 500] × [−0; 500]) when using a

timeout which is not only based on the distance to the goal. This

one has also been designed to stop a reaching attempt accord-

ing to the following blocking criteria: let us consider a self-

generated goal yg that the low-level exploration and reaching

mechanisms try to reach. Then, if the system is not coming

closer to the goal even after some low-level explorations, the

exploration toward this precise goal stops. In a practical way,

when w consecutive low-level explorations are triggered (typ-

ically w ≥ 2) and thus no progress to the goal was made, we

declare a goal as unreached, and compute the corresponding

competence level. Using such a definition, the rapidity of dis-

covering blocking situations will depend on both values of w

and number of explorative actions q. Minimal values of these

two parameters allows the fastest discoveries, but decrease the

quality of the low-level exploration mechanism when exploring

reachable spaces (in the experiment presented in Fig. 9 we use

q = 5 and w = 3).

3.7.6. Conclusion of Qualitative Results

When considering low-level mechanisms allowing an effi-

cient progressive learning, the SAGG-RIAC algorithm is ca-

pable to discriminate very efficiently reachable areas in such

high-volume spaces. Then, it is also able to drive a progres-

sive self-generation of goals through reachable subspaces of

progressively growing complexities of reachability.

In this experiment, the reachable region in the task space was

convex and with no obstacles. Yet, as we will see in the fishing

experiment below, SAGG-RIAC is capable of identifying cor-

rectly its zones of reachability, given a low-level optimization

algorithm, even if there are “holes” or obstacles: goals initially

generated in unreachable positions or in positions for which ob-

stacles prevent their reaching provide a low level of competence

progress, and thus the system stops trying to reach them. It is

also possible to imagine that some given self-generated goals

might be reachable only by an action policy going around an

obstacle. Such a capability is not a property of the SAGG-RIAC

architecture by itself, but a property of the optimization algo-

rithm, and action representation, that is used at the low-level

goal-directed mechanism. In the present experiment, low-level

optimization was a simple one only considering action poli-

cies going in a straight line to the goal. Yet, if one would

have used more complex optimization leveraging continuous

domain planning techniques (e.g. [115]), the zones of reach-

ability would be increased if obstacles are introduced since the

low-level system could learn to go around them.

3.8. Quantitative Results for Experiments

with Task Spaces of Different Sizes

In the following evaluation, we consider the same robotic

system than previously described (15DOF arm of 50 units) and

design different experiments. For each one, we estimate the

17

efficiency of the inverse model learned by testing how it al-

lows in average the robot to reach positions selected inside a

test database of 100 reachable positions (uniformly distributed

in the reachable area and independent from the exploration of

the robot). We will also compare SAGG-RIAC to three other

types of exploration techniques:

1. SAGG-RANDOM, where goals are chosen randomly

(higher-level of active learning (RIAC) disabled)

2. ACTUATOR-RANDOM, where small random micro-

actions ∆α are executed. This method corresponds to clas-

sical random motor babbling.

3. ACTUATOR-RIAC, which corresponds to the original

RIAC algorithm that uses the decrease in prediction errors

(α,∆α) → ∆x to compute an interest value and split the

space (α,∆α).

Also, to be comparable to SAGG-RIAC, each ACTUATOR

technique will have the position of the arm reset to the rest

position every max micro-actions, max being the number of

micro-actions needed to reach the more distant reachable po-

sition. max is proportional to the desired velocity which is

here of v = 2 units/micro-action as well as the size of the task

space (this will explain the different results of each ACTUA-

TOR methods when used with task spaces of different sizes). In

every graph, we present statistical results obtained after launch-

ing the same experiment with different random seeds 15 times.

3.8.1. Exploration in the Reachable Space

The first quantitative experiment is designed to compare

the quality of inverse models learned using babbling in the

task/operational space (i.e. using goals), instead of more tra-

ditional motor babbling heuristics executed in the configura-

tion/actuator space. We still consider a n=15 DOF arm of 50

units, also, to be suited for the first study, dimensions of Y will

be bounded in intervals yg ∈ [0; 50] × [−50; 50] which means

that the arm can reach almost all the space Y where goals can

be chosen (the limits of reachability are thus almost given to the

robot). In this experiment, we fix q = 20 for the SAGG meth-

ods and use a timeout only relative to the distance to the current

goal (a end-effector movement of 1.5 times the one needed is

allowed).

Fig. 10 shows the evolution of the capability of the system to

reach the 100 test goals using the inverse model learned by each

technique, starting from the rest position. This capability is

computed using the mean Euclidian distance between the goal

and the final state of a reaching attempt.

Globally, these results show that in order to learn inverse

kinematics of this highly-redundant arm, exploration in the

goal/operational space is significantly more efficient than ex-

ploration in the actuator space using either random exploration

or RIAC-like active learning. Moreover, better performances of

ACTUATOR-RANDOM compared to ACTUATOR-RIAC em-

phasizes that the original version of RIAC has not been de-

signed for the efficient learning of inverse models of highly-

redundant systems (high-dimension in the actuator space).

Focusing on the evaluation of the two mechanisms which

use SAGG, we can also make the important observation that

Reaching Error

D
is

ta
n
ce

Number of Actions (time steps)
5

10

15

20

25

30

35

40

45

15

20

0

5

10

25

300000

SAGG-RIAC
SAGG-RANDOM

ACTUATOR-RANDOM
ACTUATOR-RIAC

Figure 10: Evolution of mean distances between the goal and the end effector

after reaching attempts over an independently randomly generated set of test

goals. Here SAGG-RIAC and SAGG-RANDOM are only allowed to choose

goals within Y = [0; 50] × [−50; 50] (i.e. most eligible goals are physically

reachable). Standard deviations are computed over 15 experiments at the same

instants for each curve, and shifted in graphs for an easy reading.

SAGG-RIAC is here more efficient than SAGG-RANDOM

when considering a system which already knows its own lim-

its of reachability. More precisely, we observe both increase in

learning speed and final generalization performances (this re-

sults resonates with results from more classic active learning,

see [116]). These improvement signifies that SAGG-RIAC is

efficiently able to progressively discriminate and focus on areas

which bring the highest informational amount (i.e. areas which

have not been visited enough). It brings to the learning system

more useful data to create an efficient inverse model, contrarily

to the SAGG-RANDOM approach which continues to select

goals in already efficiently reached areas.

3.8.2. Robustness in Large Task Spaces

in the following experiment, we would like to test the capa-

bility of SAGG-RIAC to focus on reachable areas when facing

high volume task spaces (will call this phenomenon the dis-

crimination capability). Therefore, we will here consider a task

space Y = [0; 500] × [−500; 500]. Fig. 11 shows the learn-

ing efficiency of SAGG-RIAC using the timeout with block-

ing criteria as described in the section 3.7.5. This allows to

test the quantitative aspect of the discrimination capability of

SAGG-RIAC and its comparison with the three other tech-

niques when facing high volume task spaces where only small

subparts are reachable. As Fig. 11 shows, SAGG-RIAC is here

the only method able to drive an efficient learning in such a

space. SAGG-RANDOM actually spends the majority of the

time trying to reach unreachable positions. Also, the size of

the task space has an influence on the two ACTUATOR algo-

rithms if we compare results in Y = [0; 50] × [−50; 50] intro-

duced Fig. 10 and in Y = [0; 500] × [−500; 500] introduced

Fig. 11. This is due to the value max of micro-actions per-

formed by ACTUATOR methods which is proportional to the

size of the task space as explained section 3.8. Results consid-

18

0 1 2 3 4 5
0

5

10

15

20

Reaching Error

D
is

ta
n
ce

Number of Actions (time steps)
50000250000

15

20

0

5

10

25

SAGG-RIAC
SAGG-RANDOM

ACTUATOR-RANDOM
ACTUATOR-RIAC

Figure 11: Evolution of mean distances between the goal and end effector after

reaching attempts over an independently randomly generated set of test goals,

averaged over 15 experiments. Here SAGG-RIAC and SAGG-RANDOM are

allowed to choose goals within a large space corresponding to the one in Fig.

9, define as Y = [0; 500] × [−500; 500] (i.e. most eligible goals are physically

unreachable).

ering the space Y = [0; 500]× [−500; 500] seems more efficient

for these methods, where the value of max is higher than in

Y = [0; 50] × [−50; 50]. An increase of max thus allows these

methods to explore more efficiently the reachable space whose

exploration is limited when considering a too low value of max.

3.8.3. Robustness in Very Large Task Spaces

Finally, we test the robustness of SAGG-RIAC in task spaces

larger than in the previous section. Fig. 12 shows the be-

havior of SAGG-RIAC when used with task spaces of dif-

ferent sizes, from 1 to 900 times the size of the reachable

space, and compare these results with a random exploration

in the actuator space when the value of max is fixed as when

Y = [0; 500] × [−500; 500]. We can notice here that, al-

though the high discriminative capacity of SAGG-RIAC in

large spaces such as Y = [0; 500] × [−500; 500], as shown

previously, the performances of this technique decrease when

the size of the considered task space increases. Therefore,

we can observe that SAGG-RIAC obtains better results than

ACTUATOR-RANDOM since 5000 micro-actions when con-

sidering spaces smaller than Y = [0; 500] × [−500; 500]. Then,

this method shows better results than ACTUATOR-RANDOM

only after 10000 micro-actions when considering the space Y =

[0; 500] × [−500; 500]. And finally, this one becomes less effi-

cient than ACTUATOR-RANDOM when the considered space

increases in comparison to the reachable space, as shown by re-

sults when considering spaces Y = [0; 1000] × [−1000; 1000]

and Y = [0; 1500] × [−1500; 1500]. These results clearly show

that SAGG-RIAC is robust in spaces up to 100 times larger than

the reachable space, but has some difficulties to explore even

larger spaces. Therefore, despite the fact that SAGG-RIAC is

very efficient in large spaces, it seems that the challenge of au-

tonomous exploration in un-prepared spaces can not be totally

resolved by this algorithm, a human supervisor being still nec-

essary to define a set of (even very approximate) limits for the

task space. As it will be emphasized in the perspective of this

work, some complementary techniques should be used in order

to bring robustness to such spaces, such as mechanisms inspired

by the notion of maturational constraints which are able to fix

limits on the task space since the beginning of the exploration

process.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

25

15

5

0

10

20

0 10000 20000 30000 40000 50000

S’ = [0;50]x[-50;50]

SA
G

G
-R

IA
C

S’ = [-0;150]x[150;150]
S’ = [-0;500]x[500;500]

S’ = [-0;1000]x[1000;1000]
S’ = [-0;1500]x[1500;1500]

ACTUATOR-RANDOM

D
is

ta
n
ce

Number of Actions (time steps)

Reaching Error

Figure 12: Quantitative results of SAGG-RIAC when used with task spaces of

different sizes and comparison with ACTUATOR-RANDOM.

3.9. Quantitative Results for Experiments

with Arm of Different Number of DOF and Geometries

In every experiment, we set the dimensions of Y as bounded

by the intervals yg ∈ [0; 150] × [−150; 150], where 50 units is

the total length of the arm, which means that the arm covers

less than 1/9 of the space Y where goals can be chosen (i.e. the

majority of areas in the operational/task space are not reachable,

which has to be discovered by the robot).

For each experiment, we set the desired velocity v = 0.5

units/micro-action, and the number of explorative actions q =

20. Moreover, we reset the arm to the rest position (αrest, yrest)

every r = 2 reaching attempts, which increases the complexity

of the reaching process.

We present a series of experiments aiming to test the ro-

bustness of SAGG-RIAC in arm setups with different shapes

and numbers of degrees-of-freedom. Performed tests used 7,

15, and 30 DOF arms whose each limb has either the same

length or a decreasing length depending on its distance from

the arm’s base (we use the golden number to specify the rela-

tive size of each part, taking inspiration from the architecture of

human limbs). These experiments permit testing the efficiency

of the algorithm for highly redundant systems (considering a

30 DOF arm corresponds to a problem of 62 continuous di-

mensions, with 60 dimensions in the actuator/state space and 2

dimensions in the goal/task space), and different morphologies.

Also, to stress the capability of the system to make the robot

self-discover its own limits, we remove the consideration of

each end-effector position experimented as a goal reached with

the highest level of competence (see 3.7.4). In these exper-

iments, the competence level is therefore evaluated only for

goals and subgoals. We fix q = 100, and compute tests of in-

verse models over 200000 micro-actions.

19

0 5 10 15

x 10
4

5

10

15

20

25

30

x10
4 x10

4

7 Dim Equal Size 15 Dim Equal Size 30 Dim Equal Size

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

16

18

20

22

18

20

22

24

26

28

30

32

34

36

0 5 10 15

x 10
4

5

10

15

20

25

Distance To Reach

D
is

ta
n
ce

30 Dim Decreasing Size7 Dim Decreasing Size 15 Dim Decreasing Size

x10
4

SAGG-RIAC
SAGG-Random

ACTUATOR-Random
ACTUATOR-RIAC

0 5 10 15

x 10
4

5

10

15

20

25

30

35
7 Dim Equal Size 15 Dim Equal Size 30 Dim Equal Size

0 5 10 15

x 10
4

0

2

4

6

8

10

12

14

16

18

20

22

28

30

32

34

36

38

40

42

44

46

48

0 5 10 15

x 10
4

5

10

15

20

25

30

35

40

x10
4 x10

4
x10

4

Number of Actions (time steps)

D
is

ta
n
ce

SAGG-RIAC
SAGG-Random

ACTUATOR-Random
ACTUATOR-RIAC

Number of Actions (time steps)

Reaching Errors

Number of Actions (time steps)

Figure 13: Evolution of mean distances between the goal and end effector after reaching attempts over an independently randomly generated set of test goals,

averaged over 15 experimentations. Here SAGG-RIAC and SAGG-random are only allowed to choose goals within Y = [0; 150] × [−150; 150] (i.e. the set of

reachable goals is only a small subset of eligible goals).

3.9.1. Quantitative Results

Fig. 13 illustrates the performances of the learned inverse

models when used to reach goals from an independent test

database and evolving along with the number of experimented

micro-actions. First, we can globally observe the slower de-

creasing velocity (over the number of micro-actions) of SAGG-

RANDOM and SAGG-RIAC, compared to the previous exper-

iment, which is due to the higher value of q and the removed

consideration of every end-effector position. Graphs on the

first line of Fig. 13 present the reaching errors of 7, 15 and 30

DOF arms with decreasing lengths. The first subfigure shows

that when considering 7 DOF, which is a relatively low num-

ber of degrees of freedom, SAGG-RANDOM is not the second

more efficient algorithm. Indeed, the ACTUATOR-RANDOM

method is here more efficient than SAGG-RANDOM after

25000 micro-actions and is then stabilized, while SAGG-

RANDOM is progressively decreasing, reaching the same level

as ACTUATOR-RANDOM at the end of the experiment. This

is due to the high focalization of SAGG-RANDOM outside the

reachable area, which leads to numerous explorations toward

unreachable positions. As shown also in this subfigure, adding

the RIAC active component to SAGG efficiently improves the

learning capabilities of the system; SAGG-RIAC reaching er-

rors were indeed the lowest for this 7 DOF system.

Experiments with 15 DOF and 30 DOF shows that both

SAGG methods are here more efficient than actuator methods,

20

SAGG-RIAC showing a significant improvement compared to

every other algorithm (for 15DOF, the level of significance

is p = 0.002 at the end of the experiment (200000 micro-

actions)).

Experiments presented with 7, 15 and 30 DOF arms where

each limb has the same length show the same kind of results.

The 7 DOF experiment shows that ACTUATOR-RANDOM

can be more efficient than SAGG-RANDOM, and that the ad-

dition of RIAC allows obtaining a significant improvement in

this case, but also when considering 15 and 30 DOF.

3.9.2. Conclusion of Quantitative Results

Globally, quantitative results presented here emphasize the

high efficiency and robustness of SAGG-RIAC when carried

out with highly redundant robotic setups of different morpholo-

gies, compared to more traditional approaches which explore in

the actuator (input) space. They also showed that random ex-

ploration in the goal (output) space can be very efficient when

used in high-dimensional systems, even when considering a

task space more than 9 times larger than the reachable sub-

space. These results therefore indicate the high potential of

competence based motor learning for IK learning in highly-

redundant robots.

3.10. Qualitative Results for a Real 8 DOF Arm

In this section, we test the robustness of the algorithm in a

qualitative point of view when considering a real robotic setup

(not simulated) which corresponds to the simulation presented

above: we use a 8 DOF arm controlled in position. Also, help-

ing to test the robustness of our method, we use low quality

motors whose averaged noise is 20% for each movement. The

fixed task space corresponds to the whole surface observable

by a camera fixed on top of the robot, which is more than three

times larger than the reachable space (see the left part of Fig.

14). In order to allow the camera to distinguish the end-effector

of the arm and to create a visual referent framework on the

2D surface, we used visual tags and the software ARToolKit

Tracker [117].

Fig. 14 (right part) shows histograms of self-generated goals

displayed over sliding time windows indexed by the number

of performed goals (without counting subgoals) for an exper-

iment of 10000 micro-actions. We can observe that the algo-

rithm manages to discover the limits of the reachable area and

drives the exploration inside after the goal 57. Then, the system

continues to focus on the reachable space until the end of the ex-

perimentation, alternating between different areas inside. More

precisely, we can notice while comparing the bottom-left sub-

figure to the two positioned on the second line, that the system

seems to concentrate only after some time on the areas situated

close to its basis, and therefore more difficult to reach. The pro-

gressive increase of the complexity of positions explored which

appeared in simulation therefore also happens here. Finally, the

last subfigure shows that the system continues its exploration

toward an area more central of the reachable part. This is due

to the high level of noise of the motor control: while the sys-

tem is originally not very robust in this part of the space, an

improvement of the generalization capacity of the learning al-

gorithm allows obtaining an increase of competences in already

visited areas of the task space.

This experiment shows the efficiency of the SAGG-RIAC ar-

chitecture to drive the learning process in real noisy robotic

setups with only a few iterations, as well as its capacity to

still control the complexity of the exploration when consider-

ing highly-redundant systems.

4. Experimental Setup 2: Learning Omnidirectional

Quadruped Locomotion with Motor Synergies

Sometimes stemming from pre-wired neuronal structures

(e.g. central pattern generators [118, 119, 75]), motor syner-

gies are defined as the coherent activations (in space or time)

of a group of muscles. They have been proposed as building

blocks simplifying the scaffolding of motor behaviors because

allowing the reduction of the number of parameters needed to

represent complex movements [77, 78, 79, 120]. Described

as crucial for the development of motor abilities, they can be

seen as encoding an unconscious continuous control of muscles

which simplifies the complexity of the learning process: learn-

ing complex tasks using parameterized motor synergies (such

as walking, or swimming) indeed corresponds to the tuning of

relatively low-dimensional (but yet which can have a few dozen

dimensions) high-level control parameters, compared to the im-

portant number of degrees of freedom which have to be con-

trolled (thousand in the human body, see [121]).

θ

u

v

3 DOF/Leg

φ

Figure 15: 12 degrees-of-freedom quadruped controlled using motor synergies

parameterized with 24 values : 12 for the amplitudes and 12 others for the

phases of a sinusoid tracked by each motor. Experiments consider a task space

u, v, α which corresponds to the 2D position and orientation of the quadruped.

4.1. Formalization

In the two following experiments, we simplify the learning

process by using such parameterized motor synergies control-

ling amplitude, phase, and velocity of Central Pattern Gen-

erators (CPGs). Mathematically, using motor synergies sim-

plifies the description of the considered robotic system. In

the framework introduced above (section 2.2) we defined our

system as being represented by the relationship (s, a) → y,

where for a given configuration s ∈ S , a sequence of actions

a = {a1, a2, ..., an} ∈ A allows a transition toward y ∈ Y .

21

1 to 29 Goals

100 200 300 400 500

100

200

300

400

500

1 to 29 Goals 29 to 57 Goals

100 200 300 400 500

100

200

300

400

500

57 to 85 Goals

100 200 300 400 500

100

200

300

400

500

85 to 113 Goals

100 200 300 400 500

100

200

300

400

500

113 to 141 Goals

100 200 300 400 500

100

200

300

400

500

141 to 169 Goals

100 200 300 400 500

100

200

300

400

500

29 to 57 Goals

57 to 85 Goals 85 to 113 Goals

113 to 141 Goals 141 to 169 Goals

Observation of the Camera (Goal Space)

Figure 14: Histograms of self-generated goals displayed over time windows indexed by the number of performed goals, for an experiment of 10000 micro-actions

on a real 8 DOF arm. Each histogram represents the surface covered by the camera, which here defines the task space.

In the current framework we consider the sequence of actions

as being generated directly by parameterized motor synergies

πθ, which means that the sequence of actions is directly en-

coded and controlled (using feedbacks internal to the synergy)

by setting parameters θ specified at the beginning of an action.

For instance, in the experiment described in this section, we

define a synergy as a set of parameterized sinusoids (one on

each joint) that a motor joint has to track with a low-level pre-

programmed PID-like controller. Eventually, motor synergies

can be seen as a way to encapsulate the low-level generation

of sequences of micro-actions, allowing the system to directly

focus on the learning of models (s, πθ) → y, with s ∈ S fixed

(the rest position of the robot) and θ a set of parameters control-

ling the synergy (we will remove the fixed context s in the next

notations for a easier reading and only write πθ → y).

4.2. Robotic Setup

In the following experiment, we consider a quadruped robot

simulated using the Breve simulator [122] (physics simulation

is based on ODE). Each of its leg is composed of 2 joints, the

first (closest to the robot’s body) is controlled by two rotational

DOF, and the second, one rotation (1 DOF). Each leg therefore

consists of 3 DOF, the robot having in its totality 12 DOF (See

Fig. 15).

This robot is controlled using motor synergies piθ whose pa-

rameters θ ∈ R
n directly specify the phase and amplitude of

each sinusoid which controls the precise rotational value of

each DOF over time. These synergies are parameterized us-

ing a set of 24 continuous values, 12 representing the phase

ph of each joint, and the 12 others, the amplitude am; θ =

{ph1,2,..,12; am1,2,..,12}, where each joint i receives the command

am× sin(ωt+ ph), with ω a fixed frequency. Each experimenta-

tion consists of launching a motor synergy πθ for a fixed amount

of time, starting from a fixed position. After this time period,

the resulting position y f of the robot is extracted into 3 dimen-

sions: its position (u, v), and its rotation φ. The correspondence

θ → (u, v, φ) is then kept in memory as a learning exemplar.

The three dimensions u, v, φ are used to define the task space

of the robot. Also, it is important to notice that precise areas

reachable by the quadruped using these motor synergies cannot

be estimated beforehand. In the following, we set the original

dimensions of the task space to [−45; 45]×[−45; 45]×[−2π; 2π]

on axis (u, v, φ), which was a priori larger than the reachable

space. Then, after having carried out numerous experimenta-

tions, it appeared that this task space was actually more than

25 times the size of the area accessible by the robot (see red

contours in Fig. 16).

The implementation of our algorithm in such a robotic setup

aims to test if the SAGG-RIAC driving method allows the robot

to learn efficiently and accurately to attain a maximal amount of

reachable positions, avoiding the selection of many goals inside

regions which are unreachable, or that have previously been vis-

ited.

4.3. Measure of competence

In this experiment, we do not consider constraints ρ and only

focus on reaching of the goal positions yg = (ug, vg, φg). In

every iteration the robot is reset to a same configuration called

the origin position (see Fig. 17). We define the competence

function C using the Euclidian distance goal/robot’s position

D(yg, y f) after a reaching attempt, which is normalized by the

original distance between the origin position yorigin, and the goal

D(yorigin, yg) (See Fig. 17).

In this measure of competence, we compute the Euclidian

distance using (u, v, φ) where dimensions are rescaled in [0; 1].

Each dimension therefore has the same weight in the estimation

of competence (an angle error of φ = 1
2π

is as important as an

error u = 1
90

or v = 1
90

).

22

Figure 16: Positions explored by the quadruped inside the task space u, v, φ after 10000 experiments (running a motor synergy during a fixed amount of time), using

different exploration mechanisms. Red lines represents estimated limits of reachability. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article)

23

Goal Position

Reached Position

ug

vg

θg

θfuf

vf

(ug, vg, θg)

(uf , vf , θf)

φ

φ

φ

φ

Figure 17: Example of experimentation of the quadruped and illustration of

beginning position, goal position (ug, vg, φg), and a corresponding reached po-

sition (u f , v f , φ f) whose value are used to compute the measure of competence.

C(yg, y f , ystart) = −
D(yg, y f)

D(ystart, yg)
(8)

where C(yg, y f , ystart) = 0 if D(ystart, yg) = 0.

4.4. Active Goal Directed Exploration and Learning

Reaching a goal yg necessitates the estimation of a motor syn-

ergy πθi leading to this chosen state yg. Considering a single

starting configuration for each experimentation, and motor syn-

ergies πθ, the forward model which defines this system can be

written as the following:

θ → (u, v, φ) (9)

Here, we have a direct relationship which only considers the 24

dimensional parameter vector θ = {ph1,2,..,12; am1,2,..,12} of the

synergy as inputs of the system, and a position in (u, v, φ) as

output. We thus have a fixed context and use here an instanti-

ation of the SAGG-RIAC architecture with local optimization

algorithm Alg. 4, detailed below.

4.4.1. Reaching Phase

The reaching phase deals with reusing the data already ac-

quired and use local regression to compute an inverse model

((u, v, φ) → θ)L in the locality L of the intended goal yg =

(ug, vg, φg). In order to create such a local inverse model (nu-

merous other solutions exist, such as [68, 51, 69, 70]), we

extract the potentially more reliable data using the following

method:

We first extract from the learned data the set L of the l nearest

neighbors of (ug, vg, φg) and then retrieve their corresponding

motor synergies using an ANN method [103]:

L = {{u, v, φ, θ}1, {u, v, φ, θ}2, ..., {u, v, φ, θ}l} (10)

Then, we consider the set M which contains l sets of m ele-

ments:

M =

M1 : {{u, v, φ, θ}1, {u, v, φ, θ}2, ..., {u, v, φ, θ}m}1
M2 : {{u, v, φ, θ}1, {u, v, φ, θ}2, ..., {u, v, φ, θ}m}2

...

Ml : {{u, v, φ, θ}1, {u, v, φ, θ}2, ..., {u, v, φ, θ}m}l

(11)

where each set {{u, v, φ, θ}1, {u, v, φ, θ}2, ..., {u, v, φ, θ}m}i corre-

sponds to the m nearest neighbors of each θi, i ∈ L, and their

corresponding resulting position (u, v, φ).

For each set {{u, v, φ, θ}1, {u, v, φ, θ}2, ..., {u, v, φ, θ}m}i, we es-

timate the standard deviation σ of the parameters of their motor

synergies θ :

σ(M j) = σ
(
θ j ∈ {{u, v, φ, θ}1,...,m}

)
(12)

Finally, we select the set Mk =

{{u, v, φ, θ}1, {u, v, φ, θ}2, ..., {u, v, φ, θ}m} inside M such that

it minimizes the standard deviation of its synergies:

Mk = argmini σ(Mi) (13)

From Mk, we estimate a local linear inverse model

((u, v, φ) → θ) by using a pseudo-inverse as introduced in the

reaching experiment, and use it to estimate the motor synergy

parameters θg which correspond to the desired goal (ug, vg, φg).

4.4.2. Exploration Phase

The system here continuously estimates the distance between

the goal yg and already reached position yc which is the closest

from the goal. If the reaching phase does not manage to make

the system come closer to yg, i.e. D(yg, yt) > D(yg, yc), with

yt as last effectively reached point in an attempt toward yg, the

exploration phase is triggered.

In this phase the system first considers the nearest neighbor

yc = (uc, vc, φc) of the goal (ug, vg, φg) and gets the correspond-

ing known synergy θc. Then, it adds a random noise rand(24) to

the 24 parameters {ph1,2,..,12, am1,2,..,12}c of this synergy θc which

is proportional to the Euclidian distance D(yg, yc). The next

synergy θt+1 = {ph1,2,..,12, am1,2,..,12}t+1 to experiment can thus

be described using the following equation:

θt+1 =

(
{ph1,2,..,12, am1,2,..,12}c
+ λ.rand(24).D(yg, yc)

)
(14)

where rand(i) returns a vector of i random values in [−1; 1],

λ > 0 and {ph1,2,..,12, am1,2,..,12}c the motor synergy which cor-

responds to yc.

4.5. Qualitative Results

Fig. 16 presents the positions explored by the quadruped

inside the task space u, v, φ after 10000 experimentations

(running of motor synergies during the same fixed amount

of time) using the exploration mechanisms introduced pre-

viously. ACTUATOR-RANDOM and ACTUATOR-RIAC

select parameters of motor synergies in this experiment,

whereas SAGG-RANDOM and SAGG-RIAC self-generate

goals (u, v, φ).

24

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Reaching Error

D
is

ta
n
ce

Number of Actions (time steps)

SAGG-RIAC
SAGG-Random

ACTUATOR-Random
ACTUATOR-RIAC

100000
1

6

3

2

4

5

Figure 18: Quantitative results for the quadruped measured using the reaching

error over the number of experimentations.

Comparing the two first exploration mechanisms

(ACTUATOR-RANDOM and ACTUATOR-RIAC) we

cannot distinguish any notable difference, the space explored

appears similar and the extent of explored space on the (u, v)

axis is comprised in the interval [−5; 5] for u and [−2.5; 2.5]

for v on both graphs. Moreover, we notice that the difference

between u and v scales is due to the inherent structure of the

robot, which simplifies the way to go forward and backward

rather than shifting left or right.

Considering SAGG methods, it is important to note the dif-

ference between the reachable area and the task space. In Fig.

16, red lines correspond to the estimated reachable area which

is comprised of [−10; 10]×[−10; 10]×[−π; π], whereas the task

space is much larger: [−45; 45]× [−45; 45]× [−2π; 2π]. We are

also able to notice the asymmetric aspect of its repartition ac-

cording to the v axis, which is due to the decentered weight of

the robot’s head.

First, the SAGG-RANDOM method seems to slightly in-

crease the space covered on the u and v axis compared to AC-

TUATOR methods, as shown by the higher concentration of

positions explored in the interval [−5;−3] ∪ [3; 5] of u. How-

ever, this change does not seem very important when comparing

SAGG-RANDOM to these two algorithm.

Second, SAGG-RIAC, contrary to SAGG-RANDOM, shows

a large exploration range: the surface in u has almost twice as

much coverage than using previous algorithms, and in v, up to

three times; there is a maximum of 7.5 in v where the previ-

ous algorithms were at 2.5. These last results emphasize the

capability of SAGG-RIAC to drive the learning process inside

reachable areas which are not easily accessible (hardly discov-

ered by chance).

4.6. Quantitative Results

In this section, we aim to test the efficiency of the learned

forward/inverse models to guide the quadruped to reach a set of

goal positions from an independently generated test database.

Here we consider a test database of 100 goals, generated inde-

pendantly and covering approximately uniformly the reachable

part of the task space, and compute the distance between each

goal attempted, and the reached position. Fig. 18 shows perfor-

mances of the 4 methods introduced previously. First of all, we

can observe the higher efficiency of SAGG-RIAC compared to

the other three methods which can be observed after only 1000

iterations. The high decreasing velocity of the reaching error (in

the number of experimentations) is due to the consideration of

regions limited to a small number of elements (30 in this exper-

iment). It allows creating a very high number of regions within

a small interval of time, which helps the system to discover and

focus on reachable regions and its surrounding area.

ACTUATOR-RIAC shows slightly more efficient perfor-

mances than ACTUATOR-RANDOM. Also, even if SAGG-

RANDOM is less efficient than SAGG-RIAC, we can observe

its highly decreasing reaching errors compared to ACTUATOR

methods, which allows it to be significantly more efficient than

these method when considered at 10000 iterations. Again, as in

the previous experiment, we can also observe that SAGG-RIAC

does not only allow to learn faster how to master the sensorimo-

tor space, but that the asymptotic performances also seem to be

better [20].

4.7. Conclusion of Results for the Quadruped Experiment

These experiments first emphasize the high efficiency of

methods which drives the exploration of motor synergies in

terms of their effects in the task space. As illustrated by quali-

tative results, SAGG methods, and especially SAGG-RIAC, al-

lows driving the exploration in order to explore large spaces

containing areas hardly discovered by chance, when limits of

reachability are very difficult to predict. Then, quantitative re-

sults showed the capability of SAGG-RANDOM and SAGG-

RIAC methods to learn inverse models efficiently when consid-

ering highly-redundant robotic systems controlled with motor

synergies.

5. Experimental Setup 3: Learning to Control a Fishing

Rod with Motor Synergies

5.1. Robotic Setup

This experiments consists of having a robot learning to con-

trol a fishing rod (with a flexible wire) in order to attain certain

positions of the float when it touches the water. This setup is

simulated using the Breve simulator, such as in the previous

experiment. The rod is fixed on a 4 DOF arm controlled with

motor synergies which affect the velocity of each joint, and are

parameterized by the values θ = (v1, v2, v3, v4), vi ∈ [0; 1]. More

precisely, for each experimentation of the robot we use a low-

level pre-programmed PID controller which tracks the desired

velocity vi of each joint i during a fixed short amount of time

(2 seconds), starting from a fixed rest position, until suddenly

25

Figure 19: 4 degrees-of-freedom arm with a fixed fishing rod at its extrem-

ity. The arm is controlled using motor synergies which affect the velocity of

each joint, and are parameterized by 4 values. Experiments consider a two-

dimensional task space x, y which corresponds to the position of the float when

touching the water after performing a movement.

stopping the movement. During the movement, as well as a few

second after, we monitor the 3D position of the float in order

to detect a potential contact with the water (a flat plane corre-

sponding to the water level). If the water is touched, we extract

the 2D coordinates (x, y) of the float on the plane (if not, we do

not consider this trial). These coordinates, as well as the param-

eters of the synergies will be used to describe the forward model

of the system as (v1, v2, v3, v4) → (x, y). Learning will thus be

performed while recording each set {(v1, v2, v3, v4), (x, y)}i as a

learning exemplar. In such a sensorimotor space, studying the

behavior of SAGG-RIAC is relevant according to the flexible

aspect of the line, which makes this system very difficult to

model analytically, because it is highly redundant and highly

sensitive to small variations of inputs. In the following experi-

ment, the task space will consist of a limited area of the water

surface. We will consider the basis of the arm as fixed on the

coordinates (0, 0), the limits of the task space will be fixed to

[−3; 3] × [−3; 3] while the reachable region corresponds to a

disk whose radius is 1, and can be contained in [−1; 1]× [−1; 1]

(see Fig. 19).

5.2. Qualitative Results

Fig. 20 shows histograms of the repartition of positions

reached by the float on the water surface computed after 10000

”water touched” trials (a ”water touched” trial corresponds

to a reaching attempt where the float effectively touches the

surface), after running ACTUATOR-RANDOM and SAGG-

RIAC exploration processes. The point situated at the center

corresponds to the base to which the arm handling the fishing

rod is situated (see Fig. 19). While observing the two figures,

we can note a repartition of positions situated inside a disk,

which radius delimits position reached when the line is maxi-

mally slack. Yet, the distribution of reached (and reachable) po-

sitions within this disk is both asymetrical among and between

the two exploration processes. The asymetries on each figure

are in fact reflecting the asymetries of the robot setup (see Fig.

19): the geometry of the robot is not symmetric and its start-

ing/rest configuration is also not symmetric. Coupled with the

structure of motor primitives, this makes that the structure of

the reachable positions is complex and asymetric, and this can

be observed especially in the ACTUATOR-RANDOM sub-

figure, since it shows the asymetric distribution of float position

reached when the parameters of the action primitives are sam-

pled uniformly (and thus symmetrically). Comparing the two

histograms, we note that SAGG-RIAC drives the exploration

toward positions of the float not explored by ACTUATOR-

RANDOM, such as the large part situated at the bottom of

the reachable area. Thus, SAGG-RIAC drives here the ex-

ploration toward more diverse regions of the space. SAGG-

RIAC is therefore able to avoid spending large amounts of

time exclusively guiding the exploration toward the same ar-

eas, as ACTUATOR-RANDOM does. Extended experimen-

tation with this setup showed that the distribution of reached

points with SAGG-RIAC (right sub-figure) corresponds closely

to the actual whole reachable space. Eventually, these quali-

tative results emphasize that SAGG-RIAC is able to drive the

exploration process efficiently when carried out with highly re-

dundant and complex robots with compliant/soft parts.

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

SAGG-RIACACTUATOR-Random

Figure 20: Histograms of positions reached by the float when entering in con-

tact with the water in the fishing experiment, after 10000 contact float/water,

using ACTUATOR-RANDOM and SAGG-RIAC exploration methods.

5.3. Quantitative Results

Fig. 21 shows the mean reaching errors obtained using

ACTUATOR-RANDOM and SAGG-RIAC, statistically com-

puted after 10 experiments with different random seeds. Here,

the comparison of these two methods shows that SAGG-RIAC

led to significantly more efficient results after 1000 successful

trials. Also, after 6000 trials, we can observe a small increase

in reaching errors of SAGG-RIAC. This phenomenon is due

to the discovery of new motor synergies which led to already

mastered goal positions. This discovered redundancy reduces

the generalization capability for computing the inverse model

for a small amount of time until these new parameters of motor

synergy have been explored enough to disambiguate the invert

model (i.e. two distinct local inverse models are well encoded

and do not interfere).

6. Conclusion and Future Work

This paper introduced the Self-Adaptive Goal Generation ar-

chitecture, SAGG-RIAC, for active learning of inverse mod-

els in robotics through intrinsically motivated goal exploration.

26

0 2000 4000 6000 8000 10000

10

15

20

25

30

Reaching Error

D
is

ta
n
ce

Number of Actions (time steps)

SAGG-RIAC
ACTUATOR-Random

100000

10

30

20

Figure 21: Quantitative results for the fishing experiment measured using the

reaching error over the number of experimentations.

First, we demonstrated the high efficiency of learning inverse

models by performing an exploration driven by the active self-

generation of high-level goals in the parameterized task space

instead of traditional motor babbling specified inside a low-

level control space. Active exploration in the task space lever-

ages the redundancy often characterizing sensorimotor robotic

spaces: this strategy drives robots to learn a maximal amount

of tasks (i.e. learn to generate in a controlled manner a maxi-

mal number of effects in the task space), instead of numerous

ways to perform the same tasks (i.e. learn many action poli-

cies to achieve the same effect in the task space). Coupling

goal babbling and sophisticated intrinsically motivated active

learning also allows a robot to perform efficient autonomous

learning of its limits of reachability, and of inverse models with

unknown high-dimensional body schemas of different architec-

tures. Intrinsically motivated active learning was here driven

by the active stochastic search of areas in the task space where

competence progress is maximal. This also allowed emerging

developmental trajectories by driving the robot to progressively

focus and learn tasks of increasing complexities, while discov-

ering its own limits of reachability, avoiding to spend much ex-

ploration time trying to perform impossible tasks.

While we showed that such an approach could allow effi-

cient learning when the action space was continuous and high-

dimensional, the experiments performed here were assuming

that a low-dimensional task space was initially provided. It is

frequent to have such low-dimensional task spaces for useful

engineering problems in robotics, where one can assume that

an engineer helps the robot learner by designing by hand the

task space (including the choice of the variables and parame-

ters specifying the task space). On the other hand, if one would

like to use an architecture like SAGG-RIAC in a developmen-

tal framework, where one would not assume low-dimensional

task spaces pre-specified to the robot, some additional mech-

anisms should be added to equip the robot with the following

two related capabilities:

• Find autonomously low-dimensional task spaces. Indeed,

a too high dimension of a task space would make the eval-

uation of “competence progress” suffer from the curse of

dimensionality;

• Explore actively multiple task spaces (potentially an open-

ended number of task space), thus opening the possibility

to learn fields of skills which may be of different kinds;

There are several potential approaches that could be used to

address these issues that include:

• Mechanisms for higher-level stochastic generation of

task spaces, and their active selection through global mea-

sures of competence progress, forming an architecture

with three levels of active learning (active choice of a task

space inside a space of tasks spaces, active choice of goals

inside the chosen task space, and active choice of actions

to learn to reach the chosen goal) would be a natural ex-

tension of the work presented in this article.

• Social guidance and learning by interaction: social guid-

ance mechanisms allowing a non-engineer human to drive

the attention of a robot toward particular task spaces,

through physical guidance [6, 123] or human-robot inter-

faces allowing the robot to be attracted toward particu-

lar dimensions of the environment [124], may be intro-

duced. Inverse reinforcement learning mechanisms, which

are able to extract reward functions thanks to examples of

action policies could also be seen as a mean to infer in-

teresting task spaces from human demonstrations [125].

Social guidance may also be used as a mechanism to boot-

strap the evaluation of competence progress, and the iden-

tification of zones of reachability, in very large or high-

dimensional spaces such as shown in [123], which presents

an approach to combine intrinsically motivated learning

like SAGG-RIAC with techniques for learning by demon-

stration.

• Maturational constraints: Although SAGG-RIAC

highly simplifies the learning process by using goal bab-

bling and drives it efficiently thanks to intrinsic motiva-

tions, learning still have to begin by a period of random

exploration in order to discriminate unreachable areas as

well as areas of differing interests. This becomes a prob-

lem when the volume of reachable areas in the task space

is a lot smaller than the task space itself or when the task

space becomes itself high-dimensional. An important di-

rection for future work is to take inspiration from the matu-

rational processes of infants which are constrained in their

learning and development by numerous physiological and

cognitive mechanisms such as the limitation of their sen-

sorimotor apparatus, as well as the evolving capabilities

of their brain [121, 126, 127, 128]. For instance, infants

27

have a reduced visual acuity which prevents them from ac-

cessing high visual frequencies as well as distinguishing

distant objects. This acuity then progressively grows as

the maturation process evolves. Using such constraints in

synergy with goal babbling and intrinsic motivation, such

as explored in [129], would potentially allow to constrain

and simplify further learning since the first actions of the

robot [130, 131], and could be crucial when considering

life-long learning in unbounded task spaces.

Acknowledgment

We thank everyone who gave us their feedback on the paper.

This research was partially funded by ERC Grant EXPLOR-

ERS 240007

References

[1] O. Sigaud, C. Salaun, V. Padois, On-line regression algorithms for learn-

ing mechanical models of robots: a survey, Robotics and Autonomous

System 59 (2011) 1115–1129.

[2] D. Nguyen-Tuong, J. Peters, Model learning for robot control: A survey,

Cognitive Processing 12 (2011) 319–340.

[3] P. Abbeel, A. Ng, Apprenticeship learning via inverse reinforcement

learning, in: Proceedings of the 21st International Conference on Ma-

chine Learning (2004), ACM Press, New York, 2004, pp. 1–8.

[4] M. Lopes, J. Santos-Victor, A developmental roadmap for learning by

imitation in robots, IEEE Transactions in Systems Man and Cybernetic,

Part B: Cybernetics 37 (2007).

[5] A. Billard, S. Calinon, R. Dillmann, S. Schaal, Robot programming

by demonstration, in: B. Siciliano, O. Khatib (Eds.), Handbook of

Robotics, Springer, 2008, pp. 1371–1394.

[6] S. Calinon, A. Billard, Statistial learning by imitation of competing

constraints in joint space and task space, Advanced Robotics 23 (2009)

2059–2076.

[7] M. Lopes, F. Melo, B. Kenward, J. Santos-Victor, A computational

model of social-learning mechanisms, Adaptive Behavior 467 (2009).

[8] T. Cederborg, M. Li, A. Baranes, P.-Y. Oudeyer, Incremental local in-

line gaussian mixture regression for imitation learning of multiple tasks,

in: Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (2010), Taipei, Taiwan.

[9] M. Lopes, f. Melo, J. Santos-Victor, Abstraction levels for robotic imita-

tion: Overview and computational approaches, in: From Motor Learn-

ing to Interaction Learning in Robots, SpringerLink, 2010.

[10] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,

1998.

[11] M. Riedmiller, T. Gabel, R. Hafner, S. Lange, Reinforcement learning

for robot soccer, Autonomous Robot 27 (2009) 55–73.

[12] E. Theodorou, J. Peters, S. Schaal, Reinforcement learning for optimal

control of arm movements, in: Abstracts of the 37st meeting of the

society of neuroscience (2007).

[13] J. Peters, S. Vijayakumar, S. Schaal, Reinforcement learning for hu-

manoid robotics, in: Third IEEE-RAS International Conference on Hu-

manoid Robots (2003).

[14] S. Schaal, C. G. Atkeson, robot juggling: an implementation of memory-

based learning, Control systems magazine (1994) 57–71.

[15] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,

E. Thelen, Autonomous mental development by robots and animals,

Science 291 (2001).

[16] P.-Y. Oudeyer, F. Kaplan, V. Hafner, Intrinsic motivation systems for

autonomous mental development, IEEE Transactions on Evolutionary

Computation 11(2) (2007) pp. 265–286.

[17] J. Weng, Developmental robotics: Theory and experiments, Int. J. Hu-

manoid Robotics 1 (2004) 199–236.

[18] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa,

M. Ogino, C. Yoshida, Cognitive developmental robotics: A survey,

IEEE Trans. Autonomous Mental Development 1 (2009).

[19] V. Fedorov, Theory of Optimal Experiment, Academic Press, Inc., New

York, NY, 1972.

[20] D. A. Cohn, Z. Ghahramani, M. I. Jordan, Active learning with statistical

models, J Artificial Intelligence Research 4 (1996) 129–145.

[21] N. Roy, A. McCallum, Towards optimal active learning through sam-

pling estimation of error reduction, in: Proc. 18th Int. Conf. Mach.

Learn. (2001), volume 1, pp. 143–160.

[22] B. Settles, Active Learning Literature Survey, CS Tech. Rep. 1648, Univ.

Wisconsin-Madison, Madison, WI, 2009.

[23] S. Thrun, Exploration in active learning, in: M. Arbib (Ed.), Handbook

of Brain Science and Neural Networks, MIT Press, Cambridge, MA,

1995.

[24] S. Whitehead, A Study of Cooperative Mechanisms for Faster Reinfoce-

ment Learning, Technical Report 365, Univ. Rochester, Rochester, NY,

1991.

[25] D. Jones, M. Schonlau, W. Welch, Efficient global optimization of ex-

pensive black-box functions, Global Optimization 13 (1998) 455–492.

[26] S. Thrun, K. Moller, Active exploration in dynamic environments, in:

Proceedings of Advances of Neural Information Processing Systems.

[27] A. Schein, L. Ungar, Active learning for logistic regression: An evalua-

tion, Machine Learning 68 (2007) 235–265.

[28] G. Schohn, D. Cohn, Less is more: Active learning with support vector

machines, Proceedings of the Seventeenth International Conference on

Machine Learning (2000).

[29] A. Kapoor, K. Grauman, R. Urtasun, T. Darrell, Active learning with

gaussian processes for object categorization, in: Proceeding of the IEEE

11th Int. Conf. Comput. Vis. (2007), Crete, Greece.

[30] A. Krause, C. Guestrin, Nonmyopic active learning of gaussian pro-

cesses: an exploration-exploitation approach, in: 24th international con-

ference on Machine learning (2008).

[31] A. Krause, A. Singh, C. Guestrin, Near-optimal sensor placements in

gaussian processes: Theory, efficientalgorithms and empirical studies,

Journal of Machine Learning Research 9 (2008) 235–284.

[32] R. Martinez-Cantin, N. de Freitas, E. Brochu, J. Castellanos, A. Doucet,

A Bayesian exploration-exploitation approach for optimal online sens-

ing and planning with a visually guided mobile robot, Autonomous

Robots - Special Issue on Robot Learning, Part B (2009).

[33] A. Barto, S. Singh, N. Chenatez, Intrinsically motivated learning of

hierarchical collections of skills, (2004), in: Proc. 3rd Int. Conf. Dvp.

Learn., San Diego, CA, pp. 112–119.

[34] R. Cantin-Martinez, M. Lopes, L. Montesano, Body schema acquisition

through active learning, in: EEE - International Conference on Robotics

and Automation (ICRA), Anchorage, Alaska, USA, (2010).

[35] M. Lopes, F. S. Melo, L. Montesano, Active learning for reward esti-

mation in inverse reinforcement learning, in: European Conference on

Machine Learning (ECML/PKDD), Bled, Slovenia, (2009).

[36] S. Chernova, M. Veloso, Interactive policy learning through confidence-

based autonomy, J. Artificial Intelligence Research 34 (2009) 1–25.

[37] S. Hart, R. Grupen, Intrinsically motivated hierarchical manipulation,

in: Proceedings of the IEEE Conference on Robots and Automation

(2008).

[38] R. Sutton, Integrated architectures for learning, planning, and reacting

based on approximating integrated architectures for learning, planning,

and reacting based on approximating dynamic programming, in: Pro-

ceedings of the International Machine Learning Conference, pp. 212–

218, (1990).

[39] J. Schmidhuber, Curious model-building control systems, in: Proc. Int.

Joint Conf. Neural Netw. (1991), volume 2, pp. 1458–1463.

[40] J. Schmidhuber, Optimal artificial curiosity, developmental robotics,

creativity, music, and the fine arts, Connection Science 18 (2006).

[41] X. Huang, J. Weng, Novelty and reinforcement learning in the value

system of developmental robots, in: C. Prince, Y. Demiris, Y. Marom,

H. Kozima, C. Balkenius (Eds.), Proc 2nd Int. Workshop Epigenetic

Robotics: Modeling Cognitive Development in Robotic Systems, vol-

ume 94, Lund University Cognitive Studies, 2002, pp. 47–55.

[42] D. Blank, D. Kumar, L. Meeden, J. Marshall, Bringing up robot: Fun-

damental mechanisms for creating a self-motivated, self-organizing ar-

chitecture, Cybernetics and Systems 36 (2005).

[43] P. Oudeyer, F. Kaplan, V. Hafner, A. Whyte, The playground experi-

ment: Task-independent development of a curious robot, in: Proceed-

ings of the AAAI Spring Symposium on Developmental Robotics, pp.

28

42–47, (2005).

[44] M. Schembri, M. Mirolli, B. G., Evolving childhood’s length and

learning parameters in an intrinsically motivated reinforcement learn-

ing robot, in: Proceedings of the Seventh International Conference on

Epigenetic Robotics, Lund University Cognitive Studies, 2007.

[45] R. White, Motivation reconsidered: The concept of competence, Psy-

chol. Rev. 66 (1959) 297–333.

[46] E. Deci, M. Ryan, Intrinsic Motivation and self-determination in human

behavior, Plenum Press, New York, 1985.

[47] D. Berlyne, Conflict, Arousal and Curiosity, McGraw-Hill, 1960.

[48] W. Schultz, P. Dayan, P. Montague, A neural substrate of prediction and

reward, Science 275 (1997) 1593–1599.

[49] S. Kakade, P. Dayan, Dopamine: Generalization and bonuses, Neural

Networks 15 (2002) 549–59.

[50] P. Redgrave, K. Gurney, The short-latency dopamine signal: A role in

discovering novel actions?, Nat. Rev. Neurosci. 7 (2006) 967–75.

[51] A. Baranes, P.-Y. Oudeyer, Riac: Robust intrinsically motivated explo-

ration and active learning, IEEE Trans. on Auto. Ment. Dev. 1 (2009)

155–169.

[52] M. Lopes, P.-Y. Oudeyer, Active learning and intrinsically motivated

exploration in robots: Advances and challenges (guest editorial), IEEE

Transactions on Autonomous Mental Development 2 (2010) 65–69.

[53] J. Schmidhuber, Formal theory of creativity, fun, and intrinsic motiva-

tion, IEEE Transaction on Autonomous Mental Development 2 (2010)

230–247.

[54] R. M. Ryan, E. L. Deci, Intrinsic and extrinsic motivations: Classic

definitions and new directions, Contemporary Educational Psychology

25 (2000) 54 – 67.

[55] D. Berlyne, Curiosity and exploration, Science 153 (1966) 25–33.

[56] Ö. Şimşek, A. Barto, An intrinsic reward mechanism for efficient explo-

ration, in: Proceedings of the Twenty-Third International Conference on

Machine Learning (2006).

[57] S. Singh, R. Lewis, A. Barto, J. Sorg, Instrinsically motivated rein-

forcement learning: An evolutionary perspective, IEEE Transactions on

Autonomous Mental Development (IEEE TAMD) 2 (2010) 70–82.

[58] J. Marshall, D. Blank, L. Meeden, An emergent framework for self-

motivation in developmental robotics, in: Proc. 3rd Int. Conf. Develop-

ment Learn. (2004), San Diego, CA, pp. 104–111.

[59] K. Merrick, M. L. Maher, Motivated learning from interesting events:

Adaptive, multitask learning agents for complex environments, Adap-

tive Behavior - Animals, Animats, Software Agents, Robots, Adaptive

Systems 17 (2009) 7–27.

[60] M. Schembri, M. Mirolli, B. G., Evolution and learning in an in-

trinsically motivated reinforcement learning robot, in: Springer (Ed.),

Proceedings of the 9th European Conference on Artificial Life (2007),

Berlin, pp. 294–333.

[61] J. Schmidhuber, A possibility for implementing curiosity and boredom

in model-building neural controllers, in: J. A. Meyer, S. W. Wilson

(Eds.), Proc. SAB’91, pp. 222–227, (1991).

[62] G. Baldassare, What are intrinsic motivations? a biological perspective,

in: Proceeding of the IEEE ICDL-EpiRob Joint Conference, (2011).

[63] P.-Y. Oudeyer, F. Kaplan, What is intrinsic motivation? a typology of

computational approaches, Frontiers of Neurorobotics (2007) 1:6.

[64] M. Luciw, V. Graziano, M. Ring, J. Schmidhuber, Artificial curiosity

with planning for autonomous perceptual and cognitive development, in:

Proceeding of the First IEEE ICDL-EpiRob Joint Conference (2011).

[65] I. Fasel, A. Wilt, N. Mafi, C. T. Morrison, Intrinsically motivated infor-

mation foraging, in: Proceedings of the IEEE 9th International Confer-

ence on Development and Learning (2010).

[66] P. Oudeyer, F. Kaplan, How can we define intrinsic motivations ?, in:

Proc. Of the 8th Conf. On Epigenetic Robotics (2008).

[67] C. Bishop, Pattern recognition and machine learning, in: Information

Science and Statistics, Springer, 2007.

[68] S. Bitzer, S. Vijayakumar, Latent spaces for dynamic movement prim-

itives, in: Proceedings of IEEE/RAS International Conference on Hu-

manoid Robots, (2009).

[69] J. Kober, E. Oztop, J. Peters, Reinforcement learning to adjust robot

movements to new situations, in: Proceedings of Robotics: Science and

Systems, Zaragoza, Spain, (2010).

[70] B. C. D. Silva, G. Konidaris, A. Barto, Learning parameterized skills, in:

Proceedings of International Conference of Machine Learning, (2012).

[71] C. von Hofsen, An action perspective on motor an action perspective on

motor development, TRENDS in Cognitive Science 8 (2004).

[72] L. Ronnquist, C. von Hofsten, Neonatal finger and arm movements as

determined by a social and an object context, Early Develop. Parent. 3

(1994) 81–94.

[73] A. van der Meer, F. van der Weel, D. Lee, The functional significance of

arm movements in neonates, Science 267 (1995) 693–695.

[74] A. van der Meer, Keeping the arm in the limelight: Advanced visual

control of arm movements in neonates, Eur. J. Paediatric Neurol 1 (1997)

103–108.

[75] A. Ijspeert, Central pattern generators for locomotion control in animals

and robots: A review, Neural Networks 21 (2008) 642–653.

[76] F. Delcomyn, Neural basis for rhythmic behaviour in animals., Science

210 (1980) 492–498.

[77] A. D’Avella, P. Saltiel, E. Bizzi, Combinations of muscle synergies in

the construction of a natural motor behavior, Nature neuroscience 6

(2003) 300–308.

[78] W. Lee, Neuromotor synergies as a basis for coordinated intentional

action, J. Mot. Behav. 16 (1984) 135–170.

[79] M. Berniker, A. Jarc, E. Bizzi, M. Tresch, Simplified and effective motor

control based on muscle synergies to exploit musculoskeletal dynamics,

Proceedings of the National Academy of Sciences of the United States

of America (PNAS) 106 (2009) 7601–7606.

[80] S. Hart, S. Sen, R. Grupen, Generalization and transfer in robot control,

in: L. U. C. Studies (Ed.), Proc. Of the 8th International Conference On

Epigenetic Robotics (2008), University of Sussex.

[81] N. E. Berthier, R. Clifton, D. McCall, D. Robin, Proximodistal structure

of early reaching in human infants, Exp Brain Res (1999).

[82] A. Baranes, P. Y. Oudeyer, Intrinsically motivated goal exploration for

active motor learning in robots: A case study, in: Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Taipei, Taiwan, (2010).

[83] J. Peters, S. Schaal, reinforcement learning of motor skills with policy

gradients (2008) 682–97.

[84] F. Stulp, O. Sigaud, Path integral policy improvement with covariance

matrix adaptation, in: Proceedings of International Conference of Ma-

chine Learning, (2012).

[85] T. B. Dichter, N. A. Busch, D. E. Knauf, Mastery motivation: Appro-

priate tasks for toddlers, Infant Behavior and Development 20 (1997)

545–548.

[86] M. Csikszentmihalyi, Creativity-Flow and the Psychology of Discovery

and Invention, Harper Perennial, New York, 1996.

[87] R. E. Redding, G. A. Morgan, R. J. Harmon, Mastery motivation in in-

fants and toddlers: Is it greatest when tasks are moderately challenging?,

Infant Behavior and Development 11 (1988) 419–430.

[88] H. R. Arkes, J. P. Garske, Optimal level theories, in: Psychological

theories of motivation, volume 2, 1982, pp. 172–195.

[89] L. Vygotsky, Mind and society: The development of higher mental pro-

cesses, Cambridge, MA: Harvard University Press, 1978.

[90] J. Schmidhuber, Artificial curiosity based on discovering novel algorith-

mic predictability through coevolution, in: P. Angeline, Z. Michalewicz,

M. Schoenauer, X. Yao, Z. Zalzala (Eds.), Congress on Evolutionary

Computation, IEEE Press, Piscataway, NJ, pp. 1612–1618, (1999).

[91] J. Schmidhuber, Exploring the Predictable, Springer, pp. 579–612,

(2002).

[92] J. Schmidhuber, Powerplay: Training an increasingly general problem

solver by continually searching for the simplest still unsolvable problem,

in: Report arXiv:1112.5309, (2011).

[93] B. Bakker, J. Schmidhuber, Hierarchical reinforcement learning based

on subgoal discovery and subpolicy specialization, in: Proc. 8th Conf.

on Intelligent Autonomous Systems (2004).

[94] A. Stout, A. Barto, Competence progress intrinsic motivation, in: Pro-

ceedings of the International Conference on Development and Learning

(2010).

[95] M. Rolf, J. Steil, M. Gienger, Goal babbling permits direct learning of

inverse kinematics, IEEE Trans. Autonomous Mental Development 2

(2010) 216–229.

[96] M. Rolf, J. Steil, M. Gienger, Online goal babbling for rapid bootstrap-

ping of inverse models in high dimensions, in: Proceeding of the IEEE

ICDL-EpiRob Joint Conference (2011).

[97] R. Sutton, D. Precup, S. Singh, Between mdps and semi-mdps: A frame-

29

work for temporal abstraction in reinforcement learning, Artificial Intel-

ligence 1123 (1999).

[98] J. Peters, S. Schaal, Natural actor critic, Neurocomputing (2008) 1180–

1190.

[99] N. Hansen, A. Ostermeier, Completely derandomized self- adaptation

in evolution strategies, Evolutionary Computation 9 (2001) 159–195.

[100] J. Dattorro, Convex Optimization and Euclidean Distance Geometry,

Meboo Publishing USA, 2011.

[101] F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L. Righetti,

S. Schaal, Learning motion primitive goals for robust manipulation, in:

Int. Conference on Intelligent Robots and Systems (IROS), (2011).

[102] S. Arya, D. M. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal

algorithm for approximate nearest neighbor searching fixed dimensions,

Journal of the ACM (JACM) 45 (1998) 891–923.

[103] M. Muja, D. Lowe, Fast approximate nearest neighbors with automatic

algorithm, in: International Conference on Computer Vision Theory and

Applications (2009).

[104] A. Barto, O. Simsek, Intrinsic motivation for reinforcement learning

systems, in: C. New Haven (Ed.), Proceedings of the Thirteenth Yale

Workshop on Adaptive and Learning Systems (2005).

[105] Siciliano, Khatib, Handbook of Robotics, Springer, 2008.

[106] D. Bullock, S. Grossberg, F. Guenther, A self-organizing neural model

of motor equivalent reaching and tool use by a multijoint arm, Journal

of Cognitive Neuroscience 5 (1993) 408–435.

[107] S. Vijayakumar, A. D’Souza, S. Schaal, Incremental online learning in

high dimensions, Neural Computation 17 (2005) 2602–2634.

[108] A. Albert, Regression and the moore-penrose pseudo inverse, in: Math-

ematics in science and engineering, Academic Press, Inc., 1972.

[109] S. Chiaverini, Singularity-robust task-priority redundancy resolution for

real-time kinematic control of robot manipulators, IEEE Transactions

on Robotics and Automation 13 (1997) 398–410.

[110] C. Salaun, V. Padois, O. Sigaud, Learning forward models for the oper-

ational space control of redundant robots, in: From Motor Learning to

Interaction Learning in Robots, volume 264, Springer, 2010, pp. 169–

192.

[111] G. Drescher, Made-Up Minds: A Constructivist Approach to Artificial

Intelligence, MIT Press, 1991.

[112] Y. Freund, H. Seung, E. Shamir, N. Tishby, Selective sampling using the

query by committee algorithm, Machine Learning 28 (1997) 133–168.

[113] S. Dasgupta, Analysis of a greedy active learning strategy, Adv. Neural

Inform. Process. Systems 17 (2004).

[114] J. Mugan, B. Kuipers, Autonomously learning an action hierarchy using

a learned qualitative state representation, in: Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (2009).

[115] M. Toussaint, A. Storkey, Probabilistic inference for solving discrete

and continuous state markov decision processes, in: Proceedings of the

23rd international conference on Machine learning, ICML ’06, ACM,

New York, NY, USA, 2006, pp. 945–952.

[116] D. Cohn, L. Atlas, R. Ladner, Improving generalization with active

learning, Mach. Learn. 15 (1994) 201–221.

[117] I. Poupyrev, H. Kato, M. Billinghurst, Artoolkit user manual, version

2.33, Technical Report, University of Washington, 2000.

[118] S. Grillner, P. Wallen, Central pattern generators for locomotion, with

special reference to vertebrates, Annual Review of Neuroscience 8

(1985) 233–261.

[119] J. Nishii, Y. Uno, R. Suzuki, Mathematical models for the swimming

pattern of a lamprey, in: Biological Cybernetics, volume 72, Springer,

1994.

[120] L. Ting, J. McKay, Neuromechanics of muscle synergies for posture and

movement, Curr. Opin. Neubiol. 7 (2007) 622–628.

[121] N. Bernstein, The Coordination and Regulation of Movements, Perga-

mon, 1967.

[122] J. Klein, Breve: a 3d environment for the simulation of decentralized

systems and artificial life, in: M. Press (Ed.), Proceeding of the eighth

international conference on artificial life (2003).

[123] M. Nguyen, A. Baranes, P.-Y. Oudeyer, Bootstrapping intrinsically mo-

tivated learning with human demonstrations, in: proceedings of the

IEEE International Conference on Development and Learning, Frank-

furt, Germany, (2011).

[124] P. Rouanet, P.-Y. Oudeyer, D. Filliat, An integrated system for teaching

new visually grounded words to a robot for non-expert users using a

mobile device, in: Proceedings of IEEE-RAS International Conference

on Humanoid Robots (HUMANOIDS), Paris, France, (2009).

[125] N. Jetchev, M. Toussaint, Task space retrieval using inverse feedback

control, in: L. G. . T. Scheffer (Ed.), International Conference on Ma-

chine Learning (ICML-11), volume 28, New York, NY, USA, pp. 449–

456, (2011).

[126] G. Turkewitz, P. Kenny, The role of developmental limitations of sen-

sory input on sensory/perceptual organization., J Dev Behav. Pediatr. 6

(1985) 302–6.

[127] J. C. Bongard, Morphological change in machines accelerates the evo-

lution of robust behavior, Proceedigns of the National Academy of Sci-

ences of the United States of America (PNAS) (2010).

[128] H. Martinez, M. Lungarella, R. Pfeifer, On the influence of sensor mor-

phology on eye motion coordination, in: Proc. of the IEEE 9th Interna-

tional Conference on Development and Learning (2010), pp. 238 –243.

[129] A. Baranes, P.-Y. Oudeyer, The interaction of maturational constraints

and intrinsic motivations in active motor development, in: Proceedings

of ICDL-EpiRob, (2011).

[130] J. Elman, Learning and development in neural networks: The impor-

tance of starting small, Cognition 48 (1993) 71–99.

[131] R. M. French, M. Mermillod, P. C. Quinn, A. Chauvin, D. Mareschal,

The importance of starting blurry: Simulating improved basic-level cat-

egory learning in infants due to weak visual acuity, in: LEA (Ed.),

Proceedings of the 24th Annual Conference of the Cognitive Science

Society (2002), New Jersey, pp. 322–327.

7. Biographies

Adrien Baranes received the M.S. degree in artificial intel-

ligence and robotics from the University Paris VI, France, in

2008 and the a Ph.D. degree in artificial intelligence from the

French National Institute of Computer Sciences and Control

(INRIA)/University Bordeaux 1, France, in 2011. During his

PhD, he studied developmental mechanisms allowing to con-

strain and drive the exploration process of robots in order to

allow them to progressively learn high quantities of knowledge

and know-how in unprepared open-ended spaces. Since Jan-

uary 2012, he has been studying intrinsic motivations with a

biological/neurological point of view as a Post-Doctoral Fel-

low at Columbia University Medical Center, New-York, thanks

to a Fulbright grant, and will pursue his research thanks to an

HFSP Cross-Disciplinary Fellowship.

Dr. Pierre-Yves Oudeyer is permanent researcher at Inria

and responsible of the FLOWERS team at Inria and Ensta-

ParisTech. Before, he has been a permanent researcher in

Sony Computer Science Laboratory for 8 years (1999-2007).

30

He studied theoretical computer science at Ecole Normale Su-

prieure in Lyon, and received his Ph.D. degree in artificial in-

telligence from the University Paris VI, France. After hav-

ing worked on computational models of language evolution,

he is now working on developmental and social robotics. He

has published a book, more than 80 papers in international

journals and conferences, holds 8 patents, gave several invited

keynote lectures in international conferences, and received sev-

eral prizes for his work. In particular, he is a laureate of the

ERC Starting Grant EXPLORERS. He is editor of the IEEE

CIS Newsletter on Autonomous Mental Development, and an

associate editor of IEEE Transactions on Autonomous Mental

Development, Frontiers in Neurorobotics, and of the Interna-

tional Journal of Social Robotics.

31

