
HAL Id: hal-00788584
https://hal.inria.fr/hal-00788584

Submitted on 14 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy by Design: a Formal Framework for the
Analysis of Architectural Choices (extended version)

Daniel Le Métayer

To cite this version:
Daniel Le Métayer. Privacy by Design: a Formal Framework for the Analysis of Architectural Choices
(extended version). [Research Report] RR-8229, INRIA. 2013, pp.24. �hal-00788584�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49817944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00788584
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
82

29
--

FR
+E

N
G

RESEARCH
REPORT
N° 8229
February 2013

Project-Team Privatics

Privacy by Design: a
Formal Framework for
the Analysis of
Architectural Choices
(Extended Version)
Daniel Le Métayer

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Privacy by Design: a Formal Framework for
the Analysis of Architectural Choices

(Extended Version)

Daniel Le Métayer

Project-Team Privatics

Research Report n° 8229 — February 2013 — 23 pages

Abstract: The privacy by design approach has already been put into practice in different
application areas. We believe that the next challenge today is to go beyond individual cases and
to provide methodologies to explore the design space in a systematic way. As a first step in this
direction, we focus in this report on the data minimization principle and consider different options
using decentralized architectures in which actors do not necessarily trust each other. We propose
a framework to express the parameters to be taken into account (the service to be performed, the
actors involved, their respective requirements, etc.) and an inference system to derive properties
such as the possibility for an actor to detect potential errors (or frauds) in the computation of a
variable. This inference system can be used in the design phase to check if an architecture meets
the requirements of the parties or to point out conflicting requirements.

Key-words: privacy, design, architecture, methodology, formal, model

ACM, 2013. This is the authors version of the work. It is published here by permission of ACM for personal
use. Not for redistribution. The definitive version of the original paper was published in the Proceedings of the
CODASPY 2013 Conference. This Research Report is an extended version of the paper published in the
proceedings of the Conference. It includes a simplification of some definitions and a correctness proof of the
main result of the paper.

Author’s address: Inria Grenoble Rhône-Alpes, Université de Lyon, CITI, Domaine Scientifique de la Doua,
Bâtiment Claude Chappe, 6 avenue des Arts, 69621 Villeurbanne, France

Protection de la vie privée:
un cadre formel

pour analyser les choix d’architecture (version étendue)
Résumé : La démarche de protection de la vie privée par conception (ou “privacy by design”) a
déjà été mise en pratique dans différents domaines d’applications. Le prochain défi en la matière
est de dépasser le traitement au cas par cas pour fournir des méthodes de conception plus systé-
matiques. Dans ce rapport, nous proposons à cet effet une méthode mettant en oeuvre le principe
de minimisation des données. Elle permet d’analyser différents choix de conception reposant sur
des architectures décentralisées dans lesquelles les acteurs ne s’accordent pas forcément une to-
tale confiance. Le cadre proposé permet d’exprimer les paramètres à prendre en compte (service
à assurer, acteurs impliqués, exigences en terme de protection des données ou d’accès aux in-
formations, etc.) et d’analyser les choix d’architectures à l’aide d’un système d’inférence. Ce
système peut être utilisé dans la phase de conception pour montrer qu’une architecture satisfait
toutes les propriétés requises ou pour détecter des exigences inconciliables.

Mots-clés : vie privée, donnée personnelle, conception, architecture, methodologie, formel,
modèle

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 3

1 Motivation

The privacy by design approach is often praised by lawyers as well as computer scientists as an
essential step towards a better privacy protection [28, 45]. The general philosophy of privacy by
design is that privacy should not be treated as an afterthought but rather as a first-class require-
ment during the design of a system. The approach has been applied in different areas such as
smart metering [18, 32, 47], electronic traffic pricing [2, 22, 44]), ubiquitous computing [28] or
location based services [14, 25, 26]. More generally, it is possible to identify a number of core
principles that are widely accepted and can form a basis for privacy by design. For example,
the Organization for Economic Co-operation and Development (OECD) has put forward princi-
ples [43] such as the consent, limitation of use, data quality, security and accountability. These
principles, which were themselves inspired by the fair information practices initially proposed
by a U.S. government advisory committee in the seventies, are also in line with the European
Directive 95/46/EC on data protection.

One must admit however that the take-up of privacy by design in the industry is still rather
limited. This situation is partly due to legal and economic reasons: as long as the law does not
impose binding commitments, ICT providers and data collectors do not have sufficient incentives
to invest into privacy by design [30]. The situation on the legal side might change in Europe
though because the regulation proposed by the European Commission in January 2012 (to replace
the European Directive 95/46/EC) includes binding commitments on privacy by design1.

But the reasons for the lack of adoption of privacy by design are not only legal and eco-
nomic [7]: even though computer scientists have devised a wide range of privacy enhancing
tools [15, 19, 46], no general methodology is available to integrate them in a consistent way to
meet a set of privacy requirements. Indeed, privacy by design goes beyond the use of privacy
enhancing tools : it has to do with the general requirements of a system and the definition of
its architecture. As such, privacy by design is a matter of choice: multiple options are generally
available to achieve a given set of functionalities, some of them being privacy friendly, others
less. Therefore, it is necessary to have a clear view of the overall system, the actors involved,
what they need to know and the information flows between them, in order to ensure that a given
choice of tools is consistent with the privacy requirements.

The next challenge in this area is thus to go beyond individual cases and to establish sound
foundations and methodologies for privacy by design [20, 50]. As a first step in this direction, we
focus in this paper on the data minimization principle which stipulates that the collection should
be limited to the pieces of data strictly necessary for the purpose, and we provide a framework to
reason about the choices of architecture and their impact in terms of privacy. The first strategic
choices are the allocation of the computation tasks to the nodes of the architecture and the types
of communications between the nodes. For example, data can be encrypted or hashed, either to
protect their confidentiality or to provide guarantees with respect to their correctness or origin.
The main benefit of a centralized architecture for the “central” actor is that he can trust the
result because he keeps full control over its computation [42]. As we can see from the examples
in Section 2, the loss of control by a single actor in decentralized architectures can be offset by
extra requirements ensuring that errors (or frauds) can be detected a posteriori.

In this paper, we focus on the investigation of the architectural choices based on these criteria,
especially the decentralization and error detection requirements. In order to help the designer
grasp the combination of possible options, we propose a framework to express the parameters
to be taken into account (the service to be performed, the actors involved, their respective
requirements, etc.) and an inference system to derive properties such as the possibility for an
actor to detect potential errors (or frauds) in the computation of a variable. This inference

1http://ec.europa.eu/justice/newsroom/data-protection/news/120125-en.htm

RR n° 8229

4 Daniel Le Métayer

system can be used in the design phase to check if an architecture meets the requirements of the
parties or to point out conflicting requirements.

The rest of the paper is organized as follows. Section 2 presents, as a motivating example,
different architectural choices for electronic traffic pricing systems. Section 3 introduces our
formal framework and establishes the correctness of our inference system. This framework is
applied to the motivating example in Section 4. Section 5 discusses related work. Section 6
concludes the paper and outlines directions for further work.

2 Motivating example

Electronic Traffic Pricing (ETP) makes it possible to replace flat road tax schemes by systems
in which the fee to be paid by the drivers depends on a variety of parameters related to their
actual usage of the roads such as, for example, the type of roads they have used, the time of use,
the traffic conditions, weather conditions, etc. These systems can be used to provide incentives
for drivers to avoid using congested roads during peak hours and thus contributing to reduce
traffic jams and pollution. For this reason, there are more and more initiatives around the
world to deploy this kind of system on sections of roads, in urban areas, or even at the level of
entire countries such as the Netherlands. These systems have obvious benefits, but they can also
represent new risks for privacy. In this section, we review different architectural choices for ETP
and analyze their impact in terms of privacy.

2.1 First option (centralized)

The first and maybe most natural option is the centralized architecture. This option relies on the
idea that the on board equipment (OBE) of each vehicle includes a device to get its geographical
position (e.g. GPS) and communication means (e.g. GSM) to send all location data to the server
of the traffic pricing authority. The server computes the fee due for each car and the authority
periodically sends the bill to the driver (e.g. every quarter). In addition, in order to make it
possible to detect potential misbehaviors from the drivers (e.g. drivers tampering with their
GPS device or turning it off), the authority is allowed to perform sporadic spot checks (similar
to existing speed limitation spot checks).

This option is rather secure for the traffic pricing authority but it is highly intrusive for
the drivers because the authority becomes aware of all the whereabouts of all the vehicles. This
solution had originally been chosen by the Dutch government but it has trigerred a lot of protests,
precisely for this reason, and the project has been suspended.

2.2 Second option (secure OBE)

A first alternative is to avoid the disclosure of any location information, which is possible if the
computation of the fee can be performed by the OBE. In this case, the only data sent by the
vehicles is the fee due at the end of each period (e.g. quarter). However, for this option to be
acceptable for the pricing authority, the computation of the fee should be performed by a trusted
device (e.g. a smart card). In addition, for the same reasons as above, the authority should be
able to conduct spot checks. These spot checks are a bit more sophisticated than in the first
option though, because it is necessary to communicate with the car to check that the observed
location has been correctly provided as input to the OBE2.

2Even if the OBE is secure, its result might be wrong if the location values provided as inputs have been
tampered with.

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 5

This solution is excellent with respect to data minimization but it requires more expensive
OBEs. In addition, it is necessary to provide a solution to update the fee calculation software
securely (because the fees are likely to evolve during the life time of the equipment).

2.3 Third option (commitments)

A possibility to avoid the drawbacks of the previous solution is to resort to a commitment
scheme [22]. Commitment schemes provide two key guarantees: (1) a commitment γ about a
value η is such that η cannot be discovered (or “opened”) by the receiver without the help of
the sender and (2) it binds the sender (it is not feasible for the sender to find another value η′
consistent with γ). In this solution, the OBE sends commitments to the location data to the
server of the pricing authority. Like in the previous option, it performs the computation of the fee
and sends it to the operator at the end of each period. The authority can initiate a verification
protocol after each spot check. This protocol leads to the disclosure of partial sums of the fee to
allow the authority to check that the observed position has been correctly taken into account in
the computation of the global fee.

In contrast with the previous option, no secure device is required in this solution: the con-
fidence of the authority relies on the commitment scheme and the possibility to conduct spot
checks. This solution offers a high level of privacy protection to the drivers. It still leads to
non minimal disclosures of data during spot checks and it can be improved using homomorphic
commitments [2] (which allow for the verification of partial sums without any disclosure of the
actual values).

2.4 Need for reasoned decisions

Other solutions are possible for privacy friendly ETP such as the protocol proposed in [44] based
on anonymous communications and commitments to anonymous tags. The goal of this section is
not to provide a comprehensive survey on privacy in ETP but to illustrate the fact that, to provide
a given service, a wide variety of design choices may be available, relying on the same building
blocks (commitments, spot checks and secure computation here) and leading to more or less
privacy friendly solutions. One of the most important challenges for the development of privacy
by design is therefore to be able to provide tools to help designers facing this combination of
possibilities and to ensure they can make the best choices in terms of privacy following a rigorous
and reasoned approach.

3 Formal Framework

In order to be able to reason about architectural choices, it is necessary to integrate into a single
framework all the parameters that can have an impact on the architecture and its properties. The
first parameter is obviously the service to be provided by the system under design. The second
parameter is the set of actors involved and their respective requirements. These requirements
can express the need for an actor to get access to a given information or to ensure that another
actor cannot get access to the information. Other requirements are related to the possibility for
an actor to challenge the provider of the information to detect potential errors (“detectability” in
the sequel). Obviously, architectural choices also depend on the functionalities of the available
components (e.g. encryption, commitments, secure computation, etc.) and the associated guar-
antees. In the following subsections, we present successively our framework for the specification
of the architectures and the requirements of the actors (Subsections 3.1), the associated trace

RR n° 8229

6 Daniel Le Métayer

based semantics (Subsection 3.2) and an inference system that can be used for the verification
of detectability (Subsection 3.3).

3.1 Architectures
The starting point of the design phase is the identification of the set Ω of actors involved and
the specification of the service to be delivered. We assume in a first stage that the service is
defined as a set of equations Σ defined on variables in V ar with values in V al and we write X =Σ

F (Y1, . . . Y2) an equation in Σ. Dep(X) denotes the set of variables on whichX depends (involved
in the equations that contribute to the definition ofX) and In the set of input variables (variables
that do not appear in the left hand side of any equation). By convention, terminal variables are
the inputs of the system provided (computed) by a specific actor called the environment. For
example, variables representing the actual locations of the vehicles in the ETP use case are
terminal variables. To illustrate our approach, we use the following set of operations (or basic
blocks) in this paper :

Op = {Compute, Send,Commit,Open,Get}

Based on this set of operations, the domain of architectures is defined as follows:

Arch = (Comp× Send× Commit×
Means× Trusted)

Comp = Ω→ V ars

Send = (Ω× Ω)→ V ars

Commit = (Ω× Ω)→ V ars

Means = P((Open×Get))
Open = (Ω× Ω)→ V ars

Get = Ω→ V ars

Trusted = V ars

V ars = P(V ar)

An architecture (C, S,K,M, T) defines the sets of variables which can be computed (C), sent
(S), commited (K), spot checked or opened after a commitment (M), or trusted (T). A variable
is trusted if the correctness of the computation of the equation defining it in Σ can be assumed.
In practice, a trusted variable could be computed by a secure element such as a smart card or a
secure OBE as discussed in Section 2. Means is defined as a powerset because the sets of spot
checked or opened variables cannot be fixed once for all, they can be chosen randomly by the
actors allowed to perform these operations3. We consider only consistent architectures here, i.e.
architectures such that an actor cannot both receive and compute a variable, or compute it and
spot check it, etc.

We call a context a set of tuples made of the sets of variables which can be respectively
received, opened or spot checked by an actor in a run:

Context = P(V ars× V ars× V ars)

The function V C returns, for each architecture and actor, the associated valid context:

V C ∈ (Arch× Ω)→ Context

3In the same way as car drivers cannot generally predict if and where their speed will be checked by a radar.

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 7

V C((C, S,K,M, T), A) = {(R,O,G)|
R = {X|∃B ∈ Ω, X ∈ S(B,A)}
∧ ∃(FO, FG) ∈M
O = {X|∃B ∈ Ω, X ∈ FO(B,A)}
G = FG(A)}

The intuition behind this definition is that, for a given architecture A and actor A, the operations
available to A for collecting information is characterized by V C(A, A). In other words, each run
of A must be covered by an element (R,O,G) of V C(A, A): all variables received, opened or spot
checked by A should belong respectively to R, O and G. The role of the function V C is therefore
to extract, for a given actor, the set of operations (context) authorized by the architecture.

A first way to express the requirements of the actors is to use constraints on the components
of the architecture. For example, if (C, S,K,M, T) denotes the architecture, the fact that an
actor A does not want to disclose the value of a variable X to an actor B, neither in clear nor as
a commitment, can be expressed as X /∈ S(A,B) ∪K(A,B). If A wants to restrict spot checks
to variables {X1, . . . , Xn} and to limit them to 1 in a run, the constraint can be expressed as
∀(FO, FG) ∈ M,FG(B) ⊆ {X1, . . . , Xn} ∧ Card(FG(B)) ≤ 1. Constraints on the side of the
controller can be expressed in the same way. For example, the fact that A wants to compute
himself the value of X is expressed as X ∈ C(A). We show in the following sections how to
express detectability properties.

3.2 Semantics

In order to be able to reason about the correctness of an architecture with respect to detectability
requirements, it is necessary to define the semantics of the operations. We first define the domains
of global traces and local traces (respectively Θ and Θ).

Θ = Ω→ Θ

Θ = Seq(Event)

Event = {OB
A(X,V)|A ∈ Ω, B ∈ Ω, X ∈ V ar,

V ∈ V al,O ∈ {Send,Commit,Open}}
∪{OA(X,V)|A ∈ Ω, X ∈ V ar, V ∈ V al,
O ∈ {Compute,Get}}

A local trace is a consistent sequence of events associated with a given actor, each event corre-
sponding to the occurrence of an operation involving this actor. ComputeA(X,V), GetA(X,V),
SendBA(X,V), CommitBA(X,V) and OpenBA(X,V) are events denoting respectively : the com-
putation of variable X by A (resulting in the value V), the spot check of variable X by A, the
communication of the value V of the variable X from B to A, the commitment of B (towards
A) to the value V of X, and the opening of the commitment by A. Note that the value V which
appears in CommitBA(X,V) is not revealed to A; in contrast, OpenBA(X,V) discloses to A a value
V to which B is commited (i.e. for which B has previously issued a CommitBA(X,V) event).

We consider only consistent sequences of events in this report, which are sequences of events
in which variables are used consistently: a variable cannot be both computed and received by an
actor, is received or computed only once, can be opened only to the value corresponding to an
earlier commitment and sent only if it has been previously received or computed. The definition
of consistent sequences is provided in Annex 1.

RR n° 8229

8 Daniel Le Métayer

It should be noted that focusing on consistent sequences is not a restriction of the framework.
For example, executions in which an opened value is not consistent with an earlier commitment
can be immediately detected by the actor performing the opening. Similarly, receiving a value
which has already been computed or received would be a breach of the architecture detected
by the receiver. As far as the threat model is concerned, any tampering with the variables or
malicious action from an actor can be expressed through the Compute operations which are
completely unrestricted: the value V in a ComputeA(X,V) event does not need to satisfy the
equation defining X in Σ. As shown in the case study in Section 4, it is possible to introduce as
many intermediate variables as necessary in the set of equations Σ to account for all potential
threats.

The state of an actor is defined as a function in

St = V ar → V al⊥

where V al⊥ is the domain of values extended with ⊥, which denotes the undefined value, and
values of type “Commitment”, which are written symbolically as Ξ(V). As explained above, Ξ(V)
does not provide any information about V itself. By abuse of notation, we also write ⊥ the error
state.

Definition 1 The state of an actor A after the execution of the operations in a trace σ is
defined by SA(σ, η0), where η0 stands for the initial state. By abuse of notation, we write SA(σ)
for SA(σ, ∅) in the sequel, with ∅ the empty environment.

SA(〈〉, η) = η

SA(e.σ, η) = SA(σ, TA(e, η))

TA(ComputeA(X,V), η) = η[V/X]

TA(ComputeB(X,V), η) = η if A 6= B

TA(SendBA(X,V), η) = η[V/X]

TA(SendAB(X,V), η) = η if A 6= B

TA(CommitBA(X,V), η) = η[Ξ(V)/X]

TA(CommitAB(X,V), η) = η if A 6= B

TA(OpenBA(X,V), η) = η[V/X] if η(X) = Ξ(V)

= ⊥ otherwise

TA(OpenAB(X,V), η) = η if A 6= B

TA(GetA(X,V), η) = η[V/X]

The expression η[V/X] denotes a state similar to η except that V is bound to X. The only opera-
tions that have an impact on the state ofA are ComputeA(X,V), SendBA(X,V) , CommitBA(X,V)
, OpenBA(X,V) and GetA(X,V). Note that the value discovered through an Open operation must
be consistent with a commitment received previously (η(X) = Ξ(V)); otherwise the resulting
state is ⊥.

3.3 Detectability
The requirements on the possibility (or impossibility) for an actor to have access to a given
variable (either by default, or sporadically through a spot check or the opening of a commitment)

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 9

can be verified by simple static reasoning (akin to flow analysis) based on the definition of the
architecture. The situation is much more complex for the possibility to detect a potential error
(or fraud) in the computation of a variable. Indeed, because an actor may not control entirely
the computation of a variable, he can generally not be sure that the value of this variable in his
environment is correct. To be able to reason about the possibility for an actor to detect errors,
we introduce an inference system and we establish its correctness with respect to the semantics
defined in the previous subsection.

Definition 2 The inference system is made of the following three rules:

(R1) If X =Σ F (Y1, . . . , Yn) and X ∈ T then

∀i ∈ {1, . . . , n}, Ui `T Yi
n⋃

i=1

Ui `T X

(R2) If X =Σ F (Y1, . . . , Yn) and X /∈ T and

R′ ∪O′ ∪G′ = {X,Y1, . . . , Yn} then

∀i ∈ {1, . . . , n}, Ui `T Yi
U `T X

with U = {(R ∪R′, O ∪O′, G ∪G′)|(R,O,G) ∈
n⋃

i=1

Ui}

(R3) If X ∈ In then U `T X

The intuition behind these rules is as follows:

• Rule R1 corresponds to the case of a trusted variable (X ∈ T). As stated in Section 3.1, a
trusted variable is a variable such that the computation of the associated equation can be
assumed to be correct. Therefore it is sufficient to be able to check the variables Y1, . . . , Yn
used to compute X.

• The motivation for rule R2 is similar except that X cannot be trusted. Therefore, it must
be possible in addition to check that the equation X =Σ F (Y1, . . . , Yn) itself is satisfied.
To this aim, it is necessary to be able to collect the values of all variables involved, hence
the definitions of R′, O′, G′ and U : the variables X,Y1, . . . , Yn are split up into the sets
R′, O′ and G′ which are added to the respective sets R, O and G in the context of the
conclusion of the rule.

• Rule R3 deals with terminal variables (elements of In as introduced in Subsection 3.1). By
assumption, these variables are the genuine values provided by the environment. Therefore
they can be trusted in any context.

Before stating the correctness of this inference system, we need to introduce some properties
on traces.

Definition 3 If A ∈ Ω, σ ∈ Θ, U ∈ Context, CompleteA(U, σ) holds if and only if
∀(R,O,G) ∈ U ,

∀X ∈ R,∃V ∈ V al,∃B ∈ Ω, SendBA(X,V) ∈ σ and

∀X ∈ O,∃V ∈ V al,∃B ∈ Ω, CommitBA(X,V) ∈ σ

RR n° 8229

10 Daniel Le Métayer

By abuse of notation, we use the symbol ∈ to denote membership to a sequence. A trace
σ is complete with respect to a context U if all the variables that can be sent or committed
have actually been sent or committed. Hence, completeness here means that all communications
which are at the initiative of the sender have occured.

Definition 4 If σ ∈ Θ and X ∈ V ar, Incorrect (σ,X) holds if and only if

S(σ)(X) 6= ⊥ ∧ ∀V ∈ V al, S(σ)(X) 6= Ξ(V) ∧ S(σ)(X) 6= Eval(X,S(σ))

A variable X is incorrect after the execution of a trace σ if it has a value that is different
from the value derived from the equations in Σ. Note that the incorrectness of a variable X may
remain unknown from the actor A after the execution of a trace σ (because A may not know the
values of the terminal variables). Eval(X, η) defines the correct value of a variable X assuming
that the input variables are defined by η:

Definition 5 If X ∈ V ar and η ∈ St,
Eval(X, η) = if X =Σ F (Y1, . . . , Yn)

then F (Eval(Y1, η), . . . , Eval(Xn, η))
else η(X)

The trust assumption associated with the T component of an architecture can now be defined
in terms of the Incorrect relation:

Definition 6 ∀σ ∈ Θ, ∀(C, S,K,M, T) ∈ Arch, ∀X ∈ T ,
X =Σ F (Y1, . . . , Yn) and Incorrect(σ,X) ⇒ ∃j ∈ [1, n], Incorrect(σ, Yj).
The definition expresses the fact that if the value V of a trusted variable X defined by

X =Σ F (Y1, . . . , Yn) is incorrect, it must be the case that the value of one of the variables Yj is
incorrect because the computation of the equation associated with X itself must be correct.

We can now introduce the function Detect which defines what we mean by “being able to
detect any error in the computation of variable”.

Definition 7 If A ∈ Ω, σ ∈ Θ, X ∈ V ar and U ∈ Context, DetectUA(σ,X) holds if and only
if

∃Z ∈ Dep(X), Z =Σ F (Z1, . . . , Zn),∃(R,O,G) ∈ U,
∃Y1, . . . , Ym ∈ G,∃Y ′

1 , . . . , Y
′
m′ ∈ O,

E(Y1) = . . . = E(Ym) = ⊥
E(Y ′

1) = Ξ(V ′
1), . . . , E(Y ′

m′) = Ξ(V ′
m′)

∧ σ′ = σ. Get(Y1, V1) . . . Get(Ym, Vm).

Open(Y ′
1 , V

′
1) . . . Open(Y ′

m′ , V ′
m′)

∧ E′(Z) 6= F (E′(Z1), . . . , E′(Zn))

with E = SA(σ) and E′ = SA(σ′)

The intuition behind the definition of DetectUA(σ,X) is that, in order to be able to detect
an error in the value of X, A should be able to apply Get and Open operations allowed in the
context U (definition of σ′) to reach a state E′ in which he has the proof of an inconsistency
in the values of variables Z,Z1, . . . , Zn. This inconsistency (E′(Z) 6= F (E′(Z1), . . . , E′(Zn)))
reveals an error in the value of X itself because Z ∈ Dep(X) (which means that the value of X
depends on the value of Z).

We can now state the correctness property of our inference system:

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 11

Theorem 1 ∀A ∈ Ω,∀X ∈ V ar, ∀U ∈ Context,∀T ∈ V ars,

if U `T X then ∀σ ∈ Θ

CompleteA(U, σ) ∧ Incorrect(σ,X)⇒
DetectUA(σ,X)

The correctness property states that if U is a valid context for an actor A in an architecture
(C, S,K,M, T) and we can derive U `T X, then it must be the case that A can detect any error
in the computation of X. In other words, any complete trace can be extended by A into a trace
leading to an inconsistent state (with respect to the equations of Σ).

The correctness of Theorem 1 can be proved by induction on the derivation tree of statements
U `T X considering each rule in turn. The proof is provided in Annex 1.

4 Application
In this section, we illustrate the framework presented in the previous section with the ETP
case study described in Section 2. In order to instantiate the framework to a given application,
we need to define the service to be delivered, the set of actors involved and their respective
requirements. We assume that the ETP service is the computation of the fee due by each driver
for a given period of time, for example a quarter. This service can be defined by the following
system of equations Σ:

Q =Σ M1 +M2 +M3

Mi =Σ Di,1 + . . . Di,31

Di,j =Σ Hi,j,1 + . . . Hi,j,144

Hi,j,k =Σ F (Pi,j,k)

Pi,j,k =Σ Ai,j,k

Variables Q,Mi, Di,i, Hi,j,k represent the fees due for, respectively, a quarter, a month, a day
and a ten minutes slot. Pi,j,k are the position variables used to compute the fees whereas Ai,j,k

denote the actual (genuine) positions of the vehicle. In general, it is useful to distinguish different
occurrences of variables to account for potential discrepencies resulting from frauds or errors
occuring during their communication. It is necessary to distinguish between Ai,j,k and Pi,j,k

here because the former is an environment variable whereas the latter is under the control of the
OBE. Similar distinctions could have been introduced between the other variables to account for
potential communication errors, but we choose to limit the number of variables for the sake of
conciseness.

We consider three actors here, namely the driver δ, the pricing authority α and the environ-
ment ε: Ω = {δ, α, ε}. Let us denote by A = (C, S,K,M, T) the architecture to be defined. The
first requirement of the pricing authority, which is to be met in all scenarios, is that it should be
able to detect any error in the computation of the fee Q:

V C(A, α) `T Q

A first scenario corresponds to the additional requirement that the pricing authority receives all
position data Pi,j,k and performs all computations.

Pi,j,k ∈ S(δ, α) ∧ {Hi,j,k, Di,j ,Mi, Q} ∈ C(α)

RR n° 8229

12 Daniel Le Métayer

By convention, non quantified indexes are implictly quantified over their respective ranges (i ∈
[1..3], j ∈ [1, 31], k ∈ [1, 144]). There are several cases in which these requirements can conflict
with the requirements of the driver: the first and obvious case is when the driver does not
accept to disclose any location data (∀i, j, k, Pi,j,k /∈ S(δ, α)) or not all of them. But it is also
the case if the driver does not accept spot checks (∀(O,G) ∈ M,G = ∅) because it is then
impossible to establish V C(A, α) `T Q. The reason is that the authority is not able to detect
an error in the last equation of Σ: Pi,j,k = Ai,j,k. If this requirement is relaxed, for example
into ∀(O,G) ∈ M,G ⊆ {Ai,j,k} ∧ Card(G) ≤ 1, which allows for one single spot check in a
quarter, the conflict disappears and the inference system allows us to prove V C(A1, α) `T1

Q
with A1 = (C1, S1,K1,M1, T1) defined as follows:

C1(α) = {Q,Mi, Di,j , Hi,j,k}
S1(δ, α) = {Pi,j,k}

M1 = {(O,Gi,j,k)|Gi,j,k(α) = {Ai,j,k}}
T1 = {Q,Mi, Di,j , Hi,j,k}

By convention, all other sets are empty. This architecture corresponds to the first option of
Section 2 (centralized solution) and it is easy to check that U1 `T1

Q with U1 = V C(A1, α)
can be derived through the application of rules R2 and R3 (Subsection 3.3) on the system of
equations Σ defining Q.

Let us consider now another scenario in which the driver does not accept that any location
data is disclosed to the pricing authority but the OBE is equipped with a secure component for
the computation of the fee. If the driver imposes the same constraint as above on spot checks,
we get the architecture A2 = (C2, S2,K2, M2, T2) defined as follows:

C2(δ) = {Q,Mi, Di,j , Hi,j,k}
S2(δ, α) = {Q}

M2 = {(O,Gi,j,k)|Gi,j,k(α) = {Ai,j,k}}
T2 = {Q,Mi, Di,j , Hi,j,k}

However, this architecture does not satisfy V C(A2, α) `T2
Q because it is impossible to prove

U `T2
Pi,j,k for any valid context U . The reason is that, even if it can conduct spot checks, the

authority does not have any means to detect that the genuine location data have been provided
as inputs to the secure component (that is to say that Pi,j,k = Ai,j,k). To check this, the
authority must be able, after a spot check of a position Ai,j,k, to get also the corresponding
value Pi,j,k. This observation leads to the architecture A′

2 = (C ′
2, S

′
2,K

′
2,M

′
2, T

′
2) which satisfies

V C(A′
2, α) `T ′

2
Q:

C ′
2(δ) = {Q,Mi, Di,j , Hi,j,k}

S′
2(δ, α) = {Q}

M ′
2 = {(O,Gi,j,k)|Gi,j,k(α) = {Pi,j,k, Ai,j,k}}
T ′

2 = {Q,Mi, Di,j , Hi,j,k}

The proof of U ′
2 `T ′

2
Q with U ′

2 = V C(A′
2, α) can be derived by the application of rule R3 to

get U ′
2 `T ′

2
Ai,j,k, followed by the application of rule R2 to prove U ′

2 `T ′
2
Pi,j,k and the application

of rule R1 to derive successively U ′
2 `T ′

2
Hi,j,k, U ′

2 `T ′
2
Di,j , U ′

2 `T ′
2
Mi and U ′

2 `T ′
2
Q.

The above architecture corresponds to option 2 in Section 2. The third option, which is based

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 13

on commitments4, can be defined as A3 = (C3, S3,K3,M3, T3) with:

C3(δ) = {Q,Mi, Di,j , Hi,j,k}
S3(δ, α) = {Q}

M3 = {(Oi,j,k, Gi,j,k)|Oi,j,k(δ, α) =

{Pi,j,k, Hi,j,k′ , Di,j′ ,Mi′ |
i′ ∈ [1..3], j′ ∈ [1, 31], k′ ∈ [1, 144]} ∧
Gi,j,k(α) = {Ai,j,k}}

In this case, the only information that the authority can get by spot checks is, as in A1, one
position of the vehicle ({Ai,j,k}) per quarter. As in A′

2, all computations are done by the OBE.
However, in contrast with A′

2, no trust assumption is made here (T3 = ∅). Detectability comes
from the possibility to disclose commitments after a spot check: the intuition behind Oi,j,k(δ, α)
is that all variables contributing to the computation of the part of the fee in which {Ai,j,k} is
involved must be disclosed for the authority to be able to check that they have been correctly
included in the computation of the quarterly fee Q.

5 Related Work

Privacy by design has been strongly advocated by the Information and Privacy Commissioner
of Ontario [8, 9] and it has been praised by a number of academic lawyers as an essential step
towards a better privacy protection [45].

On the technological front, privacy enhancing technologies (PETs) have been an active re-
search topic in computer science during the last decades [15, 19, 46] and a variety of techniques
have been proposed (including anonymizers, identity management systems, privacy proxies, en-
cryption mechanisms, filters, anonymous credentials, commitment schemes, sanitization tech-
niques, etc.). As discussed in Section 1 and Section 2, these techniques have been applied in a
variety of areas5, but on a case by case basis and “privacy by design” is generally not addressed
from a general perspective. As pointed out in [20], privacy by design “requires the development
of generalizable methodologies that build upon the principle of data minimization”. The goal of
this report is precisely to propose a formal framework to address this need.

As far as formal models for privacy are concerned, previous work in this area can be classified
into three main categories:

• Language based approaches: a number of languages and logics have been proposed to
express privacy policies [1, 3, 4, 5, 11, 12, 13, 21, 23, 29, 24, 34, 37, 52]. These languages
may target citizens, businesses or organizations; they can be used to express individual
privacy policies, corporate rules or legal rules. Not all of them are endowed with a formal
semantics though. When it is the case (e.g. [1, 3, 4, 5, 29, 21, 34, 37, 52]), they can be
used to verify consistency properties or to check if a system complies with a privacy policy.
These verifications can be performed either a priori, through static verification techniques,
on the fly, using monitoring, or a posteriori in the context of audits or accountability
procedures. The policies expressed in these languages are usually more fine-grained than
the properties considered here and they tend to be more complete with respect to privacy

4For the sake of the example, we consider the version with commitment trees here, i.e. commitments on
location data and on partial sums.

5For example, ubiquitous systems in [28], smart metering in [18, 32, 47], pay as you drive in [22, 2, 44], or
location privacy in [14, 25, 26].

RR n° 8229

14 Daniel Le Métayer

(e.g. including notions of obligations or data deletion). In contrast with the framework
proposed here, they do not provide ways to reason about architectural choices, in particular
about the relationship between trust requirements and decentralization, which is the heart
of this report.

• Decentralized security models: the decentralized label model [41] makes it possible to reason
about information flows between principals that do not trust each other. Labels are used
to express confidentiality requirements on the data. They define, for each principal, the
authorized readers of their data. The model can be extended to include the authorized
writers in order to express integrity constraints. The decentralized label model has been
applied to the Jif programming language [41]: labels can be associated with variables and
checked by static analysis. They can also be used to split Jif programs securely, i.e. to
derive a distributed implementation that statisfies all policies of the principals [53]. Labels
have also been used in Fabric, another extension of Jif with support for secure distributed
programming [35]. The decentralized label model could be used to express certain aspects
of our framework, such as the Send component of our architectures, but it is not suitable
to reason about detectability properties.

• Privacy metrics: notions such as k -anonymity [33, 48], l-diversity [36] or ε-differential
privacy [16, 17] have been proposed as ways to measure the level of privacy provided by an
algorithm. Methods [17, 39, 38] have been proposed to design algorithms achieving these
privacy metrics (e.g. through the deletion of values, generalization or the introduction of
noise) or to verify that a system achieves a given level of privacy [49]. These contributions
on privacy metrics are complementary to the work described in this report. We have
followed a logical (or qualitative) approach here, proving that a given privacy property is
met (or not) by an architecture. As suggested in the next section, an avenue for further
research would be to cope with quantitative reasoning as well, using inference systems to
derive properties expressed in terms of privacy metrics.

6 Discussion and further work

The framework presented in this report has been applied to the verification of architectures
for electronic traffic payment systems and smart metering. The tool, which is implemented in
Haskell, provides different modes of use: fully automatic, assisted and manual. In all cases, the
first task of the user is to define the fixed parameters of the problem, as specified in Section 3 (the
service defined as a set of equations and the requirements of the actors defined as constraints on
sets of variables). In the fully automatic mode, the user just requests the proof of detectability
of a given variable X for an actor A. The tool then looks for all architectures meeting the
constraints that can lead to a proof of X by the inference system defined in Section 3. In the
assisted mode, the same principle applies but the search is limited to the application of a rule (R1,
R2 or R3) proposed by the user. In the manual mode, the user provides not only the rule to apply
but also the variable to check. The rationale for the use of these modes is the following: when
the designer is able to define sufficiently constraining requirements (either because he already
has a good intuition about the appropriate architecture or because the constraints imposed by
the actors are strong enough), he can use the fully automatic mode to confirm his intuition or
to check that the constraints can be met. The other modes can be used either if the initial
constraints are too loose6 or in “debugging mode” to understand why the system fails to find a

6The response time of the automatic mode can become unacceptable in such cases because the worst case
complexity of the search (when no constraint at all are imposed on the architecture) is exponential in terms of the

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 15

proof for a given variable. In general, the designer should strive to express from the start all
obvious constraints or to use in a first stage the tool in assisted mode to better understand the
options investigated by the system and possibly refine iteratively his initial set of constraints.

We would like to emphasize that several conditions have to be met for the above tool and the
overall approach to be applicable:

• First, it must be possible to define the service to be provided by the system as the result
of a computation involving the input data (e.g. the computation of a fee in ETP or smart
metering, or the computation of a test to decide whether a given ad should be sent to an
internet user). This definition plays a pivotal rôle in the analysis of acceptable architectures.
Thus the approach does not help in situations such as social networks where the service is
just the display of the data (and its access based on a given privacy policy).

• In addition, the framework proposed here does not provide off-the-shelf solutions nor an-
swers to broad questions such as: “What is the best architecture to solve this problem?”. It
provides answers to specific questions such as “Given this service to be delivered, this set of
constraints from the actors involved and this set of available operations (building blocks),
what are the acceptable architectures or is this architecture acceptable?”. In addition, it
is necessary to be able to provide a formal characterization of all the aforementioned pa-
rameters. Section 3 presents such a formalization for ETP systems, given a set of available
operations and we suggest below how other operations could be dealt with.

• In this report, we have considered only one of the privacy by design principles, namely data
minimization; other principles such as, for example, transparency or accountability [51] are
also of upmost importance and require further research.

Beyond this framework, the goal of this report is to put forward a formal approach to privacy
by design [31] which can be used as a foundation for a systematic exploration of the design space
and the justification of architectural choices. A systematic method is needed for at least two
reasons: first, privacy is a very complex issue, which may sometimes conflict (or seem to conflict)
with other requirements. Secondly, a wide variety of Privacy Enhancing Technologies (PETs) are
available and many more will be proposed in the future. Tools are thus badly needed to allow
designers to master this complexity and to take decisions based on rigorous grounds. Before
giving up on privacy on the pretext of apparently conflicting requirements, all options must be
considered and the controller should be in a position to prove that no other solution can meet
the functional constraints while collecting less personal data. This requirement is also in line
with the accountability principle of the draft regulation published by the European Commission
in January 20127.

The framework introduced in Section 3 is a first step in this direction and an illustration
of a more general approach. For example, the definition of architectures is based on the set of
operations or buiding blocks available. In this report, we have chosen a set of operations useful
to investigate a class of solutions for ETP. The same set of operations can be applied to other
application areas such as smart metering. But other techniques can be included as well in the
set of operations and the corresponding sets added to architectures and contexts. The condition
to be able to integrate a new operation in the framework is to be able to express the relevant
properties as inference rules. For example, in order to include homomorphic commitments into
the framework, we need to extend architectures with an additional set KF (for variables that are

number of variables involved in the definition of the services (because the system may have to explore all possible
contexts).

7http://ec.europa.eu/justice/newsroom/data-protection/news/120125-en.htm, Art. 22

RR n° 8229

16 Daniel Le Métayer

commited using an homomorphic encryption algorithm for operation F), extend valid contexts
to include this set KF and add the following rule:

(R4) If X =Σ F (Y1, . . . , Yn), X /∈ T and {X,Y1, . . . , Yn} ⊆ KF

∀i ∈ {1, . . . , n}, Ui `T Yi
n⋃

i=1

Ui `T X

This rule expresses the fact that if all the variables involved are commited using an homo-
morphic scheme, the only requirement is to be able to detect an error in the computation of
the variables Y1, . . . , Yn because the validity of the equation X =Σ F (Y1, . . . , Yn) can be checked
directly on the commitments.

Other straightforward enhancements to the formalism are possible, at the price of extra
administration burden, such as the distinction between nodes and actors or the introduction of
constraints on the physical architecture (such as, for example, the possibility to implement a
given computation on a given node or to have a communication link between two nodes). It
would also be possible to consider a richer input language to express services and to provide an
abstraction function to extract (from specifications in this richer language) the equations used
here to express the dependencies between variables.

A complementary extension would be the introduction of an inference system to reason about
the knowledge of the actors in a more abstract way than done in Section 3. In this report, we
decided to focus on the detectability constraint because it has received less attention so far, but
the possibility for an actor to know a given information (beyond the fact that he may receive or
not a given set of variables) is obviously at the heart of privacy protection. Inference systems to
prove knowledge properties (akin to epistemic logic [6, 10, 40]) can be defined independently of
the detectability system introduced in Section 3 and used to check additional constraints. Such
an inference system typically includes rules to prove that, from a given set of knowledge, an actor
can derive a new knowledge.

Another interesting problem for the future would be the analysis of the specification of the
service itself. In this report, we have taken this specification for granted and considered that
all variables involved in a definition were really necessary. There may be cases where this as-
sumption does not hold though, and it would be interesting to be able to detect this situation
and to transform the initial specification into an equivalent, but less “personal data consuming”
solution. This kind of analysis is reminiscent of strictness analysis in functional languages [27]
and inspiration can be taken in this area.

Last but not least, in this report, we have followed a “logical” (or qualitative) approach, as
opposed to a quantitative approach to privacy. An avenue for further research in this area would
be to study the integration of quantitative measures of privacy (such as differential privacy) into
the framework.

7 Acknowledgments

The author would like to thank the reviewers of the CODASPY 2013 conference for their valu-
able comments and suggestions to improve the document. The final version of this report has
benefited substantially from their comments. Many thanks are due also to Gustavo Grieco for
his implementation of the tool sketched in this report.

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 17

References

[1] M. Backes, M. Dürmuth, and G. Karjoth. Unification in privacy policy evaluation - trans-
lating EPAL into Prolog. In POLICY, pages 185–188, 2004.

[2] J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Verbauwhede, and C. Geuens. PrETP:
Privacy-preserving electronic toll pricing. In USENIX Security Symposium, pages 63–78,
2010.

[3] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In IEEE Symposium on Security and Privacy, pages 184–198,
2006.

[4] A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram. Privacy and utility in business
processes. In CSF, pages 279–294, 2007.

[5] M. Y. Becker, A. Malkis, and L. Bussard. A practical generic privacy language. In ICISS,
pages 125–139, 2010.

[6] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM Trans.
Comput. Syst., 8(1):18–36, 1990.

[7] L. Bygrave. Privacy-enhancing technologies - caught between a rock and the hard place.
Privacy Law and Policy Reporter, 9, 2002.

[8] A. Cavoukian. Privacy and radical pragmatism: change the paradigm. White Paper, Infor-
mation and Privacy Commissioner of Ontario, Canada, 2008.

[9] A. Cavoukian. Privacy by design. The 7 foundational principles. White Paper, Information
and Privacy Commissioner of Ontario, Canada, 2009.

[10] R. Chadha, S. Delaune, and S. Kremer. Epistemic logic for the applied pi calculus. In
FMOODS/FORTE, pages 182–197, 2009.

[11] O. Chowdhury, H. Chen, J. Niu, N. Li, and E. Bertino. On XACML’s adequacy to specify
and to enforce HIPAA. In USENIX Workshop on Health Security and Privacy, 2012.

[12] L. Cranor, B. Dobbs, S. Egelman, G. Hogben, J. Humphrey, M. Langheinrich, M. Marchiori,
M. Presler-Marshall, J. Reagle, M. Schunter, D. A. Stampley, and R. Wenning. The Platform
for Privacy Preferences 1.1 (P3P1.1) Specification. W3C, 2006.

[13] L. Cranor, M. Langheinrich, and M. Marchiori. A P3P Preference Exchange Language 1.0
(APPEL1.0). W3C, 2002.

[14] M. L. Damiani, E. Bertino, and C. Silvestri. The probe framework for the personalized
cloaking of private locations. Transactions on Data Privacy, 3(2):123–148, 2010.

[15] Y. Deswarte and C. A. Melchor. Current and future privacy enhancing technologies for the
internet. Annals of Telecommunications, 61(3):399–417, 2006.

[16] C. Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.

[17] C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86–95, 2011.

RR n° 8229

18 Daniel Le Métayer

[18] F. D. Garcia and B. Jacobs. Privacy-friendly energy-metering via homomorphic encryption.
In STM’10 Proceedings of the 6th international conference on Security and trust manage-
ment, pages 226–238. Springer, 2010.

[19] I. Goldberg. Privacy-enhancing technologies for the internet iii: ten years later. In Digital
Privacy: Theory, Technologies, and Practices, pages 84–89. TeX Users Group, December
2007.

[20] S. Gürses, C. Troncoso, and C. Diaz. Engineering privacy by design. In Conference on
Computers, Privacy and Data Protection (CPDP 2011), 2011.

[21] M. Jafari, P. W. L. Fong, R. Safavi-Naini, K. Barker, and N. P. Sheppard. Towards defining
semantic foundations for purpose-based privacy policies. In CODASPY, pages 213–224,
2011.

[22] W. D. Jonge and B. Jacobs. Privacy-friendly electronic traffic pricing via commits. In Pro-
ceedings of the Workshop of Formal Aspects of Securiy and Trust, pages 132–137. Springer,
LNCS 5491, 2009.

[23] G. Karjoth, M. Schunter, and E. V. Herreweghen. Translating privacy practices into privacy
promises -how to promise what you can keep. In POLICY, pages 135–146, 2003.

[24] G. Karjoth, M. Schunter, E. V. Herreweghen, and M. Waidner. Amending P3P for clearer
privacy promises. In DEXA Workshops, pages 445–449, 2003.

[25] E. Kosta, J. Zibuschka, T. Scherner, and J. Dumortier. Legal considerations on privacy-
enhancing location based services using PRIME technology. Computer Law and Security
Report, 4:139–146, 2008.

[26] J. Krumm. A survey of computational location privacy. Pers Ubiquit Comput, 13:391–399,
2008.

[27] T.-M. Kuo and P. Mishra. Strictness analysis: A new perspective based on type inference.
In FPCA, pages 260–272, 1989.

[28] M. Langheinrich. Privacy by design - principles of privacy aware ubiquitous systems. In
Proceedings of the Ubicomp Conference, pages 273–291. Springer, LNCS 2201, 2001.

[29] D. Le Métayer. A formal privacy management framework. In FAST (Formal Aspects of
Security and Trust), pages 161–176. Springer, LNCS 5491, 2009.

[30] D. Le Métayer. Privacy by design: a matter of choice. In Data Protection in a Profiled
World, pages 323–334. Springer, 2010.

[31] D. Le Métayer. Formal methods a link between software code and legal rules. In SEFM
(Software Engineering and Formal Methods), pages 3–18. Springer, LNCS 7041, 2011.

[32] M. LeMay, G. Gross, C. A. Gunter, and S. Garg. Unified architecture for large-scale attested
metering. In HICSS, page 115, 2007.

[33] N. Li, W. H. Qardaji, and D. Su. Provably private data anonymization: Or, k-anonymity
meets differential privacy. CoRR, abs/1101.2604, 2011.

[34] N. Li, T. Yu, and A. I. Antón. A semantics based approach to privacy languages. Comput.
Syst. Sci. Eng., 21(5), 2006.

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 19

[35] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. Fabric: a platform for
secure distributed computation and storage. In SOSP, pages 321–334, 2009.

[36] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity: Privacy
beyond k-anonymity. In ICDE, page 24, 2006.

[37] M. J. May, C. A. Gunter, and I. Lee. Privacy APIs: Access control techniques to analyze
and verify legal privacy policies. In CSFW, pages 85–97, 2006.

[38] F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. Commun. ACM, 53(9):89–97, 2010.

[39] F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages
94–103, 2007.

[40] J.-J. C. Meyer and W. van der Hoek. Epistemic Logic for Computer Science and Artificial
Intelligence.

[41] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM
Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

[42] A. Narayanan, V. Toubiana, S. Barocas, H. Nissenbaum, and D. Boneh. A critical look at
decentralized personal data architectures. CoRR, abs/1202.4503, 2012.

[43] OECD. OECD guidelines on the protection of privacy and transborder flows of personal
data, Organization for Economic Co-operation and Development. OECD, 1980.

[44] R. A. Popa, H. Balakrishnan, and A. J. Blumberg. Vpriv: Protecting privacy in location-
based vehicular services. In USENIX Security Symposium, pages 335–350, 2009.

[45] Y. Poullet. About the e-privacy directive, towards a third generation of data protection
legislations. In Data Protection in a Profile World, pages 3–29. Springer, 2010.

[46] A. Rezgui, A. Bouguettaya, and M. Y. Eltoweissy. Privacy on the web: facts, challenges,
and solutions. IEEE Security and Privacy, pages 40–49, 2003.

[47] A. Rial and G. Danezis. Privacy-preserving smart metering. In Proceedings of the 2011
ACM Workshop on Privacy in the Electronic Society, WPES 2011. ACM, 2011.

[48] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[49] M. C. Tschantz, D. K. Kaynar, and A. Datta. Formal verification of differential privacy for
interactive systems. CoRR, abs/1101.2819, 2011.

[50] M. C. Tschantz and J. M. Wing. Formal methods for privacy. In FM, pages 1–15, 2009.

[51] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. A. Hendler, and G. J. Suss-
man. Information accountability. Commun. ACM, 51(6):82–87, 2008.

[52] T. Yu, N. Li, and A. I. Antón. A formal semantics for P3P. In SWS, pages 1–8, 2004.

[53] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program partitioning. ACM
Trans. Comput. Syst., 20(3):283–328, 2002.

RR n° 8229

20 Daniel Le Métayer

ANNEX 1

In this Annex, we provide some complementary definitions and the proof of Theorem 1
(Section 3). We start with the definition of consistent sequences of events suggested in Subsection
3.2.

Definition 8 A trace σ ∈ Θ of length n is consistent if and only if:

∀i ∈ [1, n],∀j ∈ [1, n], i 6= j, σi ∈ PA(X)⇒ σj /∈ PA(X)

∀i ∈ [1, n], σi ∈ OpenBA(X,V)⇒ ∃j ∈ [1, n], j < i, σj = CommitBA(X,V)

∀i ∈ [1, n], σi ∈ SendBA(X,V)⇒ ∃j ∈ [1, n], j < i, σj = EvB(X,V)

∀i ∈ [1, n], σi ∈ CommitBA(X,V)⇒ ∃j ∈ [1, n], j < i, σj = EvB(X,V)

∀i ∈ [1, n], σi ∈ GetA(X,V)⇒ ∃j ∈ [1, n], j < i, σj = ComputeB(X,V)

with PA(X) = {ComputeA(X,V), GetA(X,V), SendBA(X,V), CommitBA(X,V) | V ∈ V al}, B ∈
Ω and EvB(X,V) = ComputeB(X,V) or EvB(X,V) = SendCB(X,V) for any actor C.

As suggested in Subsection 3.2, a consistent sequence of events is a sequence of events in
which variables are used consistently: a variable cannot be both computed and received by an
actor, is received or computed only once, can be opened only to the value corresponding to an
earlier commitment and sent only if it has been previously received or computed. Focusing on
consistent sequences is not a restriction of the framework because, as illustrated in Section 4,
any tampering with the variables or malicious action from an actor can be expressed through
the Compute operations which are completely unrestricted: the value V in a ComputeA(X,V)
event does not need to satisfy the equation defining X in Σ.

Before embarking on the proof of Theorem 1, we introduce a variant of Definition 1 which
defines the global state after a trace σ. The intuition is that the state S(σ, η0) includes the values
of all variables (in all local states of all actors) after the execution of σ. As for Definition 1, by
abuse of notation, we write S(σ) for S(σ, ∅) in the sequel, with ∅ the empty environment.

S(〈〉, η) = η

S(e.σ, η) = S(σ, T (e, η))

T (ComputeA(X,V), η) = η[V/X]

TA(Ev, η) = η for Ev 6= ComputeA(X,V)

The intuition is that the only events adding some information to the global state are the
Compute events. The effect of all other events is the communication of information about a
variable from an actor to another one.

An interesting benefit of trace consistency is that a variable cannot take two different values
for two different actors. The only difference between the states of two different actors is that
some variables may be defined in one state and undefined or defined only in terms of a committed
value in the other state. In other words, all local states are consistent approximations of the
global state:

Lemma 1 ∀σ ∈ Θ,∀A ∈ Ω, SA(σ) 6 S(σ)

Definition 9 ∀η ∈ St,∀η′ ∈ St, η 6 η′ if and only if ∀X ∈ V ar,

η(X) = η′(X) or

η(X) = Ξ(η′(X)) or

η(X) = ⊥

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 21

Lemma 1 can be proved by induction on the length of sequences σ (using Definition 8 to
show that no additional event in the sequence can introduce any inconsistency between the local
states of the actors). Let us now show further intermediate results which are useful for the proof
of Theorem 1.

Lemma 2 ∀U ∈ Context,∀U ′ ∈ Context,∀T ∈ V ars,∀X ∈ V ar, U ⊆ U ′ and U `T X ⇒
U ′ `T X

Lemma 2 can be proved by induction on the derivation tree of U `T X.

Lemma 3 ∀A ∈ Ω,∀U ∈ Context,∀U ′ ∈ Context,∀σ ∈ Θ, U ⊆ U ′ and CompleteA(U ′, σ)⇒
CompleteA(U, σ)

Lemma 3 follows directly from Definition 3.

Lemma 4 ∀A ∈ Ω,∀U ∈ Context,∀σ ∈ Θ,∀X ∈ V ar, ∀X ′ ∈ V ar,X ′ ∈ Dep(X) and
DetectUA(σ,X ′)⇒ DetectUA(σ,X)

Lemma 5 ∀A ∈ Ω,∀U ∈ Context,∀U ′ ∈ Context, U ⊆ U ′, ∀σ ∈ Θ,∀X ∈ V ar, ∀X ′ ∈
V ar,DetectUA(σ,X)⇒ DetectU

′

A (σ,X)
Lemma 4 and Lemma 5 follow directly from Definition 7. We can now prove Theorem 1 by

induction of the tree expression defining variable X in Σ (which amounts to an induction on the
derivation tree for statements U `T X) considering each rule of Definition 2 in turn.

Proof of Theorem 1:
Rule R1:
We assume that Theorem 1 holds for each variable Yi (Induction Hypothesis) and show that

it holds for X.
Let σ ∈ Θ such that CompleteA(U, σ) and Incorrect(σ,X). From X ∈ T and the trust as-

sumption (Definition 6), we have ∃i, Incorrect(σ, Yi). By Lemma 3, we also have CompleteA(Ui, σ).
Applying the Induction Hypothesis, we can thus derive DetectUi

A (σ, Yi). From Lemma 5 we then
have DetectUA(σ, Yi) and Lemma 4 allows us to derive DetectUA(σ,X) which concludes the proof
for Rule R1.

Rule R2:
We assume that Theorem 1 holds for each variable Yi (Induction Hypothesis) and show that

it holds for X.
Let σ ∈ Θ such that CompleteA(U, σ) and Incorrect(σ,X). Let E1 and E2 be the subsets of

{X,Y1, . . . , Yn} defined as follows:
E1 = {Z ∈ {X,Y1, . . . , Yn} | SA(σ)(Z) =⊥}
E1 = {Z ∈ {X,Y1, . . . , Yn} | ∃V ∈ V al, SA(σ)(Z) = Ξ(V)}
Let σ′ = σ.Get(Z1

1) . . . (Z1
n1

).Open(Z2
1) . . . (Z2

n2
)

with E1 = {Z1
1 . . . Z

1
n1
} and E2 = {Z2

1 . . . Z
2
n2
}

Let E = SA(σ) and E′ = SA(σ′)
Case 1: E′(X) 6= F (E′(Y1), . . . , E′(Yn))
From CompleteA(U, σ), we can infer:
∀Z ∈ E1,∀(R,O,G) ∈ U,Z /∈ R and Z /∈ O, hence Z ∈ G and ∀Z ∈ E2,∀(R,O,G) ∈ U,Z /∈

R and Z /∈ G, hence Z ∈ O, which allows us to prove DetectUA(σ,X)8.
Case 2: E′(X) = F (E′(Y1), . . . , E′(Yn))
We also have E′(X) = SA(σ′)(X) = S(σ′)(X) = S(σ)(X) from Lemma 1, the defini-

tion of 6 and S respectively. Similarly E′(Yi) = SA(σ′)(Yi) = S(σ′)(Yi) = S(σ)(Yi). From
Incorrect(σ,X), we have S(σ)(X) 6= Eval(X,S(σ)), which allows us to derive ∃i, S(σ)(Yi) 6=
Eval(Yi, S(σ)) and, therefore ∃i, Incorrect(σ, Yi). By Lemma 3, we also have CompleteA(Ui, σ).

8With Z in the definiton of Detect instantiated to X.

RR n° 8229

22 Daniel Le Métayer

Applying the Induction Hypothesis, we can thus derive DetectUi

A (σ, Yi). From Lemma 5 we then
have DetectUA(σ, Yi) and Lemma 4 allows us to conclude DetectUA(σ,X) which concludes the proof
for Rule R2.

Rule R3:
From the definition of S and Eval, we cannot have Incorrect(σ,X) with X an input variable

(X ∈ In) because Eval(X,S(σ)) = S(σ)(X), which concludes the proof for Rule R3 and for
Theorem 1.

Inria

Privacy by Design: a Formal Framework for the Analysis of Architectural Choices 23

Contents
1 Motivation 3

2 Motivating example 4
2.1 First option (centralized) . 4
2.2 Second option (secure OBE) . 4
2.3 Third option (commitments) . 5
2.4 Need for reasoned decisions . 5

3 Formal Framework 5
3.1 Architectures . 6
3.2 Semantics . 7
3.3 Detectability . 8

4 Application 11

5 Related Work 13

6 Discussion and further work 14

7 Acknowledgments 16

RR n° 8229

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Motivation
	Motivating example
	First option (centralized)
	Second option (secure OBE)
	Third option (commitments)
	Need for reasoned decisions

	Formal Framework
	Architectures
	Semantics
	Detectability

	Application
	Related Work
	Discussion and further work
	Acknowledgments

