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Une caractérisation algorithmique de la P-matricité

Résumé : Nous montrons qu’une matrice réelle carrée non dégénérée M est une P-matrice
si, et seulement si, quel que soit le vecteur réel q, l’algorithme de Newton-min ne fait pas de
cycle de deux points lorsqu’il est utilisé pour résoudre le problème de complémentarité linéaire
0 6 x ⊥ (Mx+ q) > 0.

Mots-clés : Algorithme de Newton-min, caractérisation de la P-matricité, méthode de Newton
semi-lisse, NM-matrice, P-matrice, problème de complémentarité linéaire.
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1 Introduction

Being given a positive integer n, a matrix M ∈ Rn×n, and a vector q ∈ Rn, the linear complemen-

tarity problem consists in determining a vector x ∈ Rn such that

x > 0, Mx+ q > 0, and xT(Mx+ q) = 0.

Inequalities have to be understood componentwise; for example x > 0 means xi > 0 for all indices
i ∈ J1, nK := {1, . . . , n}. The Euclidean scalar product of two vectors u and v is denoted by
uTv =

∑

i uivi. This problem is sometimes written in compact form as follows

LCP(M, q) : 0 6 x ⊥ (Mx+ q) > 0,

where the sign ⊥ is used to denote the perpendicularity with respect to the Euclidean scalar
product.

Let MIJ denote the submatrix of a matrix M formed of its rows with indices in I and its
columns with indices in J . An n × n real matrix M is a P-matrix if its principal minors are
positive: for all I ⊆ J1, nK, detMII > 0 (by convention detM∅∅ = 1). The class of P-matrices
is denoted by P (the order n of the matrices is implicit and assumed fixed in that notation).
These matrices have an eminent role in linear complementarity problems since it can be shown
that M ∈ P if and only if LCP(M, q) has one and only one solution, whatever is q [25, 7; 1958].
Another characterization of P-matricity, which will be useful below, is the following [9, 7; 1962]:

M ∈ P ⇐⇒ any x verifying x · (Mx) 6 0 vanishes, (1.1)

where we have denoted by u · v the Hadamard product of the vectors u and v, which is a vector
whose ith component is uivi.

There are many other equivalent conditions for a matrix to be in P, than the three given
above [1, 14, 24, 7, 23]. This paper gives still another characterization of P-matricity, expressed
in terms of a property of the algorithm for solving LCP(M, q) that is described in section 2, the
Newton-min algorithm. It is shown that M ∈ P if and only if the Newton-min algorithm does not
cycle between two distinct points, whatever is q, when it is used to solve LCP(M, q).

2 The Newton-min algorithm

Let I be a subset of J1, nK. We denote by Ic := J1, nK \ I the complementary set of I in J1, nK and
by |I| the cardinality of I. For a vector v ∈ Rn, vI is the vector in R|I| whose components are the
components vi’s of v with index i ∈ I.
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The Newton-min algorithm is a short name for the semismooth Newton method [21, 22, 15, 27;
1977-2011] for solving the nonsmooth piecewise linear equation

min(x,Mx+ q) = 0 ∈ Rn,

which is equivalent to LCP(M, q) [18, 20; 1976-1977]. Above, the “min” operator acts componen-
twise. More specifically, at the current iterate x ∈ Rn, the algorithm determines a set of indices

I ≡ I(x) := {i ∈ J1, nK : xi > (Mx+ q)i} (2.1)

and computes the next iterate x+ as the unique solution to the system

x+
Ic = 0 and (Mx+ + q)I = 0. (2.2)

The uniqueness of the solution to the system (2.2) is certainly ensured if M is nondegenerate,
meaning that the principal minors of M do not vanish (we denote by Dc the set of nondegenerate
matrices), so that this well-posedness condition of the algorithm will always be assumed. In that
case,

x+
I = −M−1

II qI ,

where M−1
II is a compact notation for (MII)

−1. The Newton-min algorithm can be traced back
at least to Aganagić in [1; 1984]; see paragraph 7 of the introduction of [3] for more details on its
origin and a discussion on the contributions from [6, 17, 10, 5, 4, 13, 16]; see also [12].

A more general form of the algorithm allows the iteration to put in I any of the indices in

E ≡ E(x) := {i ∈ J1, nK : xi = (Mx+ q)i}

(see section 2 in [3] for instance). We do not consider such a general version of the algorithm
below. The choice of the present version of the Newton-min algorithm, which imposes I ∩E = ∅,
is motivated by the following considerations. First, it would certainly be more difficult to analyze
the cycles of the Newton-min algorithm, which is what we do below, if this one was not a Markov

process in x, i.e., if the next iterate x+ would not only depend on the current iterate x, as this
would be the case if the indices in E going in I were not determined by a rule depending only
on x. Next, with the rule (2.1), the linear system to solve at each iteration has a smaller size |I|,
which makes this rule numerically natural.

By definition (see (2.2)), except possibly for the initial iterate, the Newton-min algorithm only
visits points x satisfying x · (Mx+ q) = 0 or equivalently

xIc = 0 and (Mx+ q)I = 0, (2.3)

for some (possibly empty) index set I ⊆ J1, nK. The unique point x, related to some index set I,
satisfying (2.3) is denoted by

x(I)

and is called a node. Clearly, there holds x(∅) = 0. Since there are 2n different index sets I, there
are at most 2n nodes (two different index sets may yield the same node; for example, there is a
single node, zero, if and only if q = 0).

Since the Newton-min algorithm (2.1)-(2.2) is a Markov process in x and only visits nodes and
since the number of nodes is finite, either the algorithm converges or it cycles by visiting a finite
number of distinct nodes repetitively. The identification of the conditions of convergence of the
Newton-min algorithm may, therefore, go through the analysis of the conditions that prevent cycles
from occurring. The case of the 2-cycles is considered in the next section (for k > 2, a k-cycle is a
cycle made of k distinct nodes). Let us formalize this a bit more.
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An algorithmic characterization of P-matricity 5

For k > 2, we denote by NMk the set of nondegenerate matrices M ∈ Rn×n such that the
Newton-min algorithm does not produce k-cycles when it is used to solve LCP(M, q), whatever
is q. Therefore, for the reasons given at the beginning of the previous paragraph,

NM :=
⋂

k>2

NMk (2.4)

is the class of nondegenerate matrices M ∈ Rn×n such that the Newton-min algorithm converges,
whatever are q and the initial point. In this paper, we prove that

NM2 = P.

Since NM is included in NM2, this identity implies in particular that

NM ⊆ P, (2.5)

i.e., the set of matrices ensuring the convergence of the Newton-min algorithm, whatever are q and
the initial point, is contained in P. It has been shown in [2, 3; 2009] that P ⊆ NM if n = 1 or
n = 2 (hence P = NM in that case) and that P * NM if n > 3 (hence the inclusion (2.5) is strict
in that case).

We recall that an M-matrix is a P-matrix with nonpositive off-diagonal elements (Mij 6 0
when i 6= j). According to [1; 1984, theorem 6.2],

M ⊆ NM.

It is also known that M ∈ NM if M is sufficiently close to an M-matrix [13; 2003].

3 A dual characterization of the absence of 2-cycle

The Newton-min algorithm makes a 2-cycle if it generates successively the iterates

x(I) → x(J) → x(I) → x(J) → · · · ,

for distinct nodes x(I) 6= x(J) associated with index sets I and J ⊆ J1, nK. The dual characterization
of the absence of 2-cycle of the Newton-min algorithm given in this section is a first step in the
derivation of our main result (theorem 4.2).

We start by recalling Motzkin’s theorem of the alternative (see [11; 2010, theorem 3.15 or 7.17]
for instance), on which the dual characterization of proposition 3.2 rests.

Lemma 3.1 (Motzkin) Let A ∈ RmA×n and B ∈ RmB×n be two matrices with the same

number of columns. Then, there is a vector x ∈ Rn satisfying

Ax < 0 and Bx 6 0 (3.1)

if and only if there is no vector α ∈ RmA

+ \ {0} and β ∈ RmB

+ such that

ATα+BTβ = 0. (3.2)

Strict inequalities on vectors must also be understood componentwise; hence Ax < 0 in (3.1) means
(Ax)i < 0 for all i ∈ J1,mAK. The (components of the) vectors α and β in the lemma will be called
Motzkin multipliers below. There is one such scalar multiplier for each inequality in (3.1).
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The next proposition gives a dual condition on the matrix M such that the Newton-min algo-
rithm does not cycle between two given nodes when it is used to solve LCP(M, q), whatever is the
vector q. The dual aspect of condition (3.3) comes from lemma 3.1 and therefore involves, like in
(3.2), the transpose of (modified) submatrices of M . The symmetric difference of two index sets I
and J ⊆ J1, nK is denoted by

I△ J := (I ∩ Jc) ∪ (Ic ∩ J) = (I ∪ J) \ (I ∩ J).

For a subset K ⊆ J1, nK, we also note M−T

KK := ((MKK)−1)T.

Proposition 3.2 (no cycle x(I)
→ x(J)

→ x(I)) Suppose that M ∈ Dc and let be given

two different subsets I and J ⊆ J1, nK. Then the following conditions are equivalent:

(i) there is an α ∈ R|I △ J|
+ \ {0} such that

(
M(I∩Jc)(I∩Jc) −M(I∩Jc)(Ic∩J)

−M(Ic∩J)(I∩Jc) M(Ic∩J)(Ic∩J)

)T

α

>
(
−M(I∩J)(I∩Jc) M(I∩J)(Ic∩J)

)T
M−T

(I∩J)(I∩J)

(
−M(I∩Jc)(I∩J)

M(Ic∩J)(I∩J)

)T

α, (3.3)

where the right hand side is zero when I ∩ J = ∅,

(ii) whatever is q, the Newton-min algorithm does not make the cycle x(I) → x(J) → x(I)

when it is used to solve LCP(M, q).

Proof. 1) Preliminaries. Let us first specify the conditions on q such that the Newton-min
algorithm makes the cycle x(I) → x(J) → x(I) when it is used to solve LCP(M, q). Let x1 = x(I),
so that by (2.3),

{
x1
I = −M−1

II qI
x1
Ic = 0

and

{
(Mx1 + q)I = 0
(Mx1 + q)Ic = qIc −MIcIM

−1
II qI .

We have used the nonsingularity of MII , which comes from the nondegeneracy of M . Now, by
definition of the Newton-min algorithm (2.1)-(2.2), the next iterate x2 is x(J) if and only if

−(M−1
II qI)Jc 6 0

︸ ︷︷ ︸

βI∩Jc

, (M−1
II qI)J < 0

︸ ︷︷ ︸

α′

I∩J

,

qIc∩J < M(Ic∩J)IM
−1
II qI

︸ ︷︷ ︸

αIc∩J

, and M(I∪J)cIM
−1
II qI 6 q(I∪J)c .

(3.4)

The vectors under the braces are Motzkin multipliers, which will be used below. In that case

{
x2
J = −M−1

JJ qJ
x2
Jc = 0

and

{
(Mx2 + q)J = 0
(Mx2 + q)Jc = qJc −MJcJM

−1
JJ qJ .

We have used the nonsingularity of MJJ , which comes from the nondegeneracy of M . Now, the
next iterate is x(I) if and only if

−(M−1
JJ qJ)Ic 6 0

︸ ︷︷ ︸

βIc∩J

, (M−1
JJ qJ )I < 0

︸ ︷︷ ︸

α′′

I∩J

,

qI∩Jc < M(I∩Jc)JM
−1
JJ qJ

︸ ︷︷ ︸

αI∩Jc

, and M(I∪J)cJM
−1
JJ qJ 6 q(I∪J)c .

(3.5)

RR n° 8004
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The vectors under the braces are Motzkin multipliers, which will be used below. We have shown
that the Newton-min algorithm makes the cycle x(I) → x(J) → x(I) if and only if q satisfies the
linear inequalities in (3.4)-(3.5).

Observe now that the components of q with indices in (I ∪ J)c intervene only in the last
inequalities in (3.4)-(3.5) and that these inequalities can be satisfied by taking these components
of q sufficiently large. Therefore, below, we do not have to consider the satisfiability of these last
inequalities. This is the reason why we have not assigned Motzkin multipliers to these inequalities.

By Motzkin’s theorem of the alternative (lemma 3.1), there is a q satisfying the linear inequal-
ities in (3.4)-(3.5) if and only if one cannot find

(α, α′, α′′, β) ∈ R|I △ J|
+ × R|I∩J|

+ × R|I∩J|
+ × R|I △J|

+

(these are the vectors under the braces in (3.4)-(3.5)) such that (α, α′, α′′) 6= 0 and

• (M−T

II )I∩Jc

(
−βI∩Jc

α′
I∩J

)

− (M−T

II )I∩JcMT

(Ic∩J)IαIc∩J + αI∩Jc = 0, (3.6a)

• (M−T

II )I∩J

(
−βI∩Jc

α′
I∩J

)

− (M−T

II )I∩JM
T

(Ic∩J)IαIc∩J + (M−T

JJ )I∩J

(
α′′
I∩J

−βIc∩J

)

− (M−T

JJ )I∩JM
T

(I∩Jc)JαI∩Jc = 0, (3.6b)

• αIc∩J + (M−T

JJ )Ic∩J

(
α′′
I∩J

−βIc∩J

)

− (M−T

JJ )Ic∩JM
T

(I∩Jc)JαI∩Jc = 0, (3.6c)

where AR denotes the submatrix of a matrix A formed of its rows with indices in R.
2) The case I ∩ J = ∅. Then equation (3.6b) is not present, there are no Motzkin multipliers

α′ and α′′, I ∩ Jc = I, Ic ∩ J = J , I△ J = I ∪ J , and the above claim simplifies as follows: there
is a q satisfying the linear inequalities (3.4)-(3.5) if and only if one cannot find

(α, β) ∈ R|I∪J|
+ × R|I∪J|

+ ,

such that α 6= 0 and
(

MII −MIJ

−MJI MJJ

)T(
αI

αJ

)

=

(
βI

βJ

)

> 0.

After discarding β, the contrapositive of the claim becomes the equivalence (i) ⇔ (ii) with zero in
the right hand side of (3.3).

3) The general case. With the notation

u :=

(
−βI∩Jc

α′
I∩J

)

−MT

(Ic∩J)IαIc∩J and v :=

(
α′′
I∩J

−βIc∩J

)

−MT

(I∩Jc)JαI∩Jc (3.7)

the system (3.6) reads equivalently





(M−T

II )I∩Jcu

(M−T

II )I∩Ju
0



+





αI∩Jc

0
αIc∩J



+





0

(M−T

JJ )I∩Jv

(M−T

JJ )Ic∩Jv



 = 0. (3.8)

If we multiply the first two equations to the left by MT

II , if we multiply the last two equations to
the left by MT

JJ , and if we use the second equation, we obtain the equivalent system

u+MT

(I∩Jc)IαI∩Jc −MT

(I∩J)I(M
−T

II )I∩Ju = 0, (3.9a)

v +MT

(Ic∩J)JαIc∩J +MT

(I∩J)J(M
−T

II )I∩Ju = 0. (3.9b)
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An algorithmic characterization of P-matricity 8

Now the rows with indices in I ∩ J of these last two equations read

α′
I∩J −MT

(Ic∩J)(I∩J)αIc∩J +MT

(I∩Jc)(I∩J)αI∩Jc −MT

(I∩J)(I∩J)(M
−T

II )I∩Ju = 0,

α′′
I∩J −MT

(I∩Jc)(I∩J)αI∩Jc +MT

(Ic∩J)(I∩J)αIc∩J +MT

(I∩J)(I∩J)(M
−T

II )I∩Ju = 0.

By adding these equations, we obtain α′
I∩J +α′′

I∩J = 0, which implies that α′
I∩J = α′′

I∩J = 0 since
the components of these two vectors are nonnegative. One deduces then from any of these last
equations that

(M−T

II )I∩Ju = M−T

(I∩J)(I∩J)

(

MT

(I∩Jc)(I∩J)αI∩Jc −MT

(Ic∩J)(I∩J)αIc∩J

)

. (3.10)

Now the I ∩ Jc component of equation (3.9a) and the Ic ∩ J component of equation (3.9b) read

−MT

(Ic∩J)(I∩Jc)αIc∩J +MT

(I∩Jc)(I∩Jc)αI∩Jc

−MT

(I∩J)(I∩Jc)M
−T

(I∩J)(I∩J)

(

MT

(I∩Jc)(I∩J)αI∩Jc −MT

(Ic∩J)(I∩J)αIc∩J

)

= βI∩Jc , (3.11a)

−MT

(I∩Jc)(Ic∩J)αI∩Jc +MT

(Ic∩J)(Ic∩J)αIc∩J

+MT

(I∩J)(Ic∩J)M
−T

(I∩J)(I∩J)

(

MT

(I∩Jc)(I∩J)αI∩Jc −MT

(Ic∩J)(I∩J)αIc∩J

)

= βIc∩J . (3.11b)

We have deduced the system (3.11) and α′
I∩J = α′′

I∩J = 0 from (3.9). Reciprocally, to show
that there has been no loss of information in that operation, let us show that one can recover the
system (3.9) from (3.11) and α′

I∩J = α′′
I∩J = 0, provided we define u and v by (3.7). Indeed, let us

denote by w the right hand side of (3.10) and let us first show that the identity (3.10) is verified:

(M−T

II )I∩Ju = (M−T

II )I∩J

(

−βI∩Jc −MT

(Ic∩J)(I∩Jc)αIc∩J

−MT

(Ic∩J)(I∩J)αIc∩J

)

[(3.7), α′
I∩J = 0]

= (M−T

II )I∩J

(

−MT

(I∩Jc)(I∩Jc)αI∩Jc +MT

(I∩J)(I∩Jc)w

−MT

(I∩Jc)(I∩J)αI∩Jc +MT

(I∩J)(I∩J)w

) [
(3.11a) and
definition of w

]

= (M−T

II )I∩JM
T

II

(
−αI∩Jc

w

)

= w.

Now the I ∩ Jc component of (3.9a) is a consequence of (3.11a); the I ∩ J components of (3.9a)
and (3.9b) are consequences of α′

I∩J = α′′
I∩J = 0 and (3.10); and the Ic ∩ J component of (3.9b)

is a consequence of (3.11b).

Therefore, getting rid of the vector β ∈ R|I △J|
+ in (3.11), we see that there is a q such that the

Newton-min algorithm makes the cycle x(I) → x(J) → x(I) when it is used to solve LCP(M, q) if

and only if one cannot find an α ∈ R|I △J|
+ \ {0} such that

(
M(I∩Jc)(I∩Jc) −M(I∩Jc)(Ic∩J)

−M(Ic∩J)(I∩Jc) M(Ic∩J)(Ic∩J)

)T

α

>
(
−M(I∩J)(I∩Jc) M(I∩J)(Ic∩J)

)T
M−T

(I∩J)(I∩J)

(
−M(I∩Jc)(I∩J)

M(Ic∩J)(I∩J)

)T

α.

The equivalence (i) ⇔ (ii) follows. 2
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An algorithmic characterization of P-matricity 9

Observe that, as expected, condition (3.3) is symmetric in I and J , in the sense that the
permutation I ↔ J does not modify the condition.

Proposition 3.2 is apparently difficult to use if the goal is to characterize the class NM2 of
matrices. It requires indeed to consider all the possible pairs of distinct subsets I and J ⊆ J1, nK.

In addition, for each of these pairs, each choice of α ∈ R|I △J|
+ \ {0} in (3.3) may yield different

conditions on M that make the Newton-min algorithm avoid the 2-cycle x(I) → x(J) → x(I). This
looks like a long-term and hazardous task. We show in theorem 4.2 below, however, that it is
equivalent to avoid all the 2-cycles or to avoid the small subset of 2-cycles x(I) → x(J) → x(I),
in which I = J ∪ {i} with i /∈ J . In other words, this small subset of 2-cycles contains all the
information on M that is needed to prevent the Newton-min algorithm from making 2-cycles. A
precious interest of the choice I = J∪{i} is that α is then a positive scalar, which can be eliminated
from the inequality (3.3). The task of characterizing the matrices M in NM2 is then much easier.
It is shown in the next section that these matrices are the P-matrices.

4 A characterization of P-matricity

Let us start by an elementary lemma.

Lemma 4.1 Suppose that I and J are two index sets included in J1, nK such that J \ I 6= ∅
and that x(I) = x(J) for some matrix M ∈ Dc and some vector q. Then the Newton-min

algorithm (2.1)-(2.2) does not make the null displacement x(I) → x(J) when it is used to solve

LCP(M, q).

Proof. We argue by contradiction, assuming that the Newton-min algorithm goes from x(I)

to x(J). Then, (Mx(I) + q)Ic∩J < x
(I)
Ic∩J [by the algorithm rule (2.1)] and x

(I)
Ic∩J = 0 [by the

definition of x(I), see (2.3)1], so that

(Mx(I) + q)Ic∩J < 0.

On the other hand,
(Mx(J) + q)Ic∩J = 0,

by the definition of x(J), see (2.3)2. Therefore (Mx(I) + q)Ic∩J 6= (Mx(J) + q)Ic∩J , contradicting
the fact that x(I) = x(J) for the given q. 2

Here is a comment on this lemma. It is known that if x(I) is a solution to LCP(M, q) and if M
is nondegenerate, then x(J) = x(I), where x(J) is the iterate following x(I) (see lemma 4.1 in [2]
and the references thereof). It is not difficult to see, however, that then J is included in I, so that
J \ I = ∅ and lemma 4.1 does not apply.

We denote by cof(M) the cofactor matrix of a matrix M ∈ Rn×n, whose element [cof(M)]ij is
the cofactor cof(Mij) of the element Mij of M , that is

cof(Mij) := (−1)i+j detM(J1,nK\{i})(J1,nK\{j}). (4.1)

We use the notation cofII(Mij) for the cofactor of the element Mij in MII . Recall [19; 1987,
chapter VI] that for any index i and j:

detM =
∑

i′

Mi′j cof(Mi′j) =
∑

j′

Mij′ cof(Mij′) (4.2)

and that
M−1 = (detM)−1 cof(MT). (4.3)
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Our main result is given in theorem 4.2 below. The implication (i) ⇒ (ii) of the theorem was
already proven in [2; 2009, lemma 4.3], but that part of the paper was not selected by the refereeing
process for appearing in the published version of the paper [3; 2012].

Theorem 4.2 (a characterization of P-matricity) Suppose that M ∈ Dc. Then the fol-

lowing conditions are equivalent:

(i) M ∈ P,

(ii) for any q, the Newton-min algorithm does not cycle between two different nodes when it

is used to solve LCP(M, q),
(iii) for any q, for any subset J ⊆ J1, nK, and for any index i ∈ J1, nK \ J , the Newton-min

algorithm does not cycle between the nodes x(J) and x(J∪{i}) when it is used to solve

LCP(M, q),
(iv) for any subset J ⊆ J1, nK and any index i ∈ J1, nK \ J , there holds

Mii > M{i}JM
−1
JJ MJ{i}, (4.4)

where the right hand side is zero when J = ∅.

Proof. [(i) ⇒ (ii)] We prove the contrapositive, assuming that the algorithm visits in order
the following nodes x(I) → x(J) → x(I), for some I and J ⊆ J1, nK and some q ∈ Rn such that
x(I) 6= x(J). We simplify the notation by setting x1 := x(I) and x2 := x(J). Since the Newton-min
algorithm goes from x1 to x2 and from x2 to x1, the very definition (2.1)-(2.2) of the algorithm
implies that

x1
Jc 6 (Mx1 + q)Jc and x1

J > (Mx1 + q)J , (4.5)

x2
Ic 6 (Mx2 + q)Ic and x2

I > (Mx2 + q)I . (4.6)

After a possible rearrangement of the component order, we get

x2 − x1 =







0I∩Jc

x2
I∩J

x2
Ic∩J

0Ic∩Jc







−







x1
I∩Jc

x1
I∩J

0Ic∩J

0Ic∩Jc







=







−x1
I∩Jc

(x2 − x1)I∩J

x2
Ic∩J

0Ic∩Jc







.

[+]

[?]

[−]

[0]

The extra column on the right gives the sign of each component, when appropriate: the components
of x2 − x1 with indices in I ∩ Jc are nonnegative since −x1

I∩Jc > −(Mx1 + q)I∩Jc [by (4.5)1] = 0
[by (2.2)2] and the components of x2 − x1 with indices in Ic ∩ J are nonpositive since x2

Ic∩J 6

(Mx2 + q)Ic∩J [by (4.6)1] = 0 [by (2.2)2]. On the other hand, by (2.2)2, there holds

M(x2 − x1) =







(Mx2)I∩Jc

−qI∩J

−qIc∩J

(Mx2)Ic∩Jc







−







−qI∩Jc

−qI∩J

(Mx1)Ic∩J

(Mx1)Ic∩Jc







=







(Mx2 + q)I∩Jc

0

−(Mx1 + q)Ic∩J

(M(x2 − x1))Ic∩Jc







.

[−]

[0]

[+]

[?]

The extra column on the right gives the sign of each component, when appropriate: the components
of M(x2 − x1) with indices in I ∩ Jc are nonpositive since (Mx2 + q)I∩Jc 6 x2

I∩Jc [by (4.6)2]
= 0 [by (2.2)1] and the components of M(x2 − x1) with indices in Ic ∩ J are nonnegative since
−(Mx1 + q)Ic∩J > −x1

Ic∩J [by (4.5)2] = 0 [by (2.2)1]. Therefore

(x2 − x1) ·M(x2 − x1) 6 0.

Since x1 6= x2, M cannot be a P-matrix (see (1.1)).
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[(ii) ⇒ (iii)] Let q ∈ Rn, J ⊆ J1, nK, and i ∈ J1, nK \ J . Set I := J ∪ {i}. If x(I) 6= x(J),
then (iii) is a clear consequence of (ii). If x(I) = x(J), then (iii) is a consequence of lemma 4.1,
according to which the Newton min does not go from x(J) to x(I) because I \ J 6= ∅.

[(iii) ⇒ (iv)] Let J and i be like in (iv), and set I = J ∪ {i}. By (iii), whatever is q, the
Newton-min algorithm does not cycle between the nodes x(I) and x(J) when it is used to solve
LCP(M, q). Then, the implication (ii) ⇒ (i) of proposition 3.2 shows that there is a scalar α > 0
such that (3.3) holds. Since I ∩ Jc = {i}, Ic ∩ J = ∅, I ∩ J = J , I△J = {i}, and α is a positive
scalar that can be eliminated from (3.3), this inequality simplifies in (4.4) (use also the fact that
M{i}JM

−1
JJ MJ{i} is a scalar, hence equal to its transpose). In case J = ∅, the condition (i) of

proposition 3.2 indicates that the inequality (4.4) becomes Mii > 0.
[(iv) ⇒ (i)] We prove by induction that detMII > 0 for any I ⊆ J1, nK, which is equivalent

to M ∈ P. By applying (iv) with J = ∅, we obtain Mii > 0 for a nondegenerate matrix, so that
detMII > 0 when |I| = 1. Now, assume that J and i are chosen like in (iv), that I = J ∪{i}, that
detMJJ > 0 (induction assumption), and let us show that detMII > 0, which will conclude the
proof of (iv) ⇒ (i).

Let us denote the indices in J by jk, k ∈ J1, |J |K. Using the cofactor matrix of MJJ in (4.4)
and the induction assumption detMJJ > 0, one gets

0 6 Mii detMJJ −M{i}J cof(MT

JJ )MJ{i} [(4.4), (4.3), detMJJ > 0]

= Mii detMJJ −

|J|
∑

k=1

|J|
∑

l=1

Mijk cofJJ ([MJJ ]lk)Mjli

= Mii detMJJ −

|J|
∑

k=1

|J|
∑

l=1

Mijk(−1)l+k detM(J\{jl})(J\{jk}) Mjli [(4.1)]

= Mii detMJJ +

|J|
∑

k=1

(−1)k+|J|+1 Mijk

|J|
∑

l=1

Mjli (−1)l+|J| detM(J\{jl})(J\{jk})

= Mii detMJJ +

|J|
∑

k=1

(−1)k+|J|+1 Mijk det
(
MJ(J\{jk}), MJ{i}

)
[(4.2)]

= detMII [(4.2)].

Therefore detMII > 0 by the nondegeneracy of M . 2

Even though the following consequence of theorem 4.2 is clear and was already summarized
by formula (2.5) in the introduction, we quote it in a corollary to make easier a possible future
citation.

It is clear that NM is included in the set Dc ∩ Q of nondegenerate matrices ensuring that
LCP(M, q) has a solution, whatever is q; indeed, if M ∈ Dc \ Q, one can find a vector q such
that LCP(M, q) has no solution, in which case, the Newton-min algorithm has no other choice
than cycling (we recall from lemma 4.1 in [2] that, when M ∈ Dc, the sequence generated by
the Newton-min algorithm can be stationnary only at a solution). The stronger inclusion (4.7),
however, was not clear to us, before theorem 4.2 was establised.

Corollary 4.3 (NM is included in P) The set of matrices M ∈ Dc ensuring the conver-

gence of the Newton-min algorithm when it is used to solve LCP(M, q), whatever are the
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vector q and the initial point, is included in P. More compactly

NM ⊆ P. (4.7)

Proof. Observe first that NM is indeed the set of matrices M ∈ Dc ensuring the convergence of
the Newton-min algorithm when it is used to solve LCP(M, q), whatever is the vector q (see the
discussion before formula (2.4)). Next, NM ⊆ NM2 by the definition (2.4) of NM and NM2 = P
by theorem 4.2. 2

The implication (ii) ⇒ (i) of theorem 4.2, according to which only the P-matrices inDc prevent
the Newton-min algorithm from cycling between two nodes, is ultimately based on Motzkin’s
theorem of the alternative, which supports the implication (iii) ⇒ (iv) of theorem 4.2, while
the implication (ii) ⇒ (iii) is straightforward and the implication (iv) ⇒ (i) has an algebraic
nature. Motzkin’s theorem is not constructive whereas, for M ∈ Dc \ P, it would certainly be
interesting (and reassuring) to be able to construct a q and to select two nodes such that the
Newton-min algorithm cycles between these nodes when it is used to solve LCP(M, q). This is the
goal of the next proposition, which takes inspiration from the contrapositive of the implications
(iii) ⇒ (iv) ⇒ (i) of theorem 4.2: if M ∈ Dc \P, there are a vector q ∈ Rn, a subset J ⊆ J1, nK,
and an index i ∈ J1, nK \ J such that the Newton-min algorithm cycles between the nodes x(J)

and x(J∪{i}). According to the contrapositive of the implication (iv) ⇒ (i), when M ∈ Dc \ P,
there are index sets J and I := J ∪ {i} such that detMJJ > 0 and detMII < 0; this provides a
means to select the index sets. One still has to find the vector q and this is precisely what the next
proposition brings by exhibiting a whole family of vectors q such that the cycle x(J) → x(I) → x(J),
with the above J and I, occurs.

We adopt the notation t+ := max(0, t) for t ∈ R. The “max” operator is supposed to act
componentwise on vectors.

Proposition 4.4 (2-cycle for M /∈ P) Suppose that M ∈ Dc \P. Then

1) there are two index sets I and J ⊆ J1, nK and an index i ∈ J1, nK such that I = J ∪ {i},
detMII < 0, and detMJJ > 0,

2) for any two index sets I and J ⊆ J1, nK and an index i ∈ J1, nK having the properties given

in point 1, the Newton-min algorithm cycles between x(I) and x(J) when the components

of q are determined in order as follows

qJ = −MJJe
J , (4.8)

qi = −MiJe
J − ε, with 0 < ε <

| detMII |

maxj∈J [cofII(Mij)]+
, (4.9)

qIc > max
(
MIcJM

−1
JJ qJ ,MIcIM

−1
II qI

)
, (4.10)

where eJ is the vector of all ones in R|J|.

Proof. 1) Since M /∈ P, some principal minor of M is negative. Then one can choose an index
set I with the smallest cardinal number |I| such that detMII < 0. Since |I| > 1, one can choose
an index i ∈ I and set J := I \ {i} (J may be empty). The properties in point 1 are verified for
the selected sets I and J , and the index i (recall that detM∅∅ = 1 by convention).

2) Let the index sets I and J and the index i be such that I = J ∪ {i}, detMII < 0, and
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detMJJ > 0. Suppose that q satisfies (4.8)-(4.10). Let x1 := x(J), so that

{
x1
J = −M−1

JJ qJ
x1
Jc = 0

and

{
(Mx1 + q)J = 0
(Mx1 + q)Jc = qJc −MJcJM

−1
JJ qJ .

For a q satisfying the assumption, there hold

−M−1
JJ qJ = eJ > 0 [(4.8)],

qi −MiJM
−1
JJ qJ = −ε < 0 [(4.8) and (4.9)],

qIc −MIcJM
−1
JJ qJ > 0 [(4.10)].

These inequalities imply that the next iterate visited by the Newton-min algorithm (2.1)-(2.2) is
x2 := x(I), so that

{
x2
I = −M−1

II qI
x2
Ic = 0

and

{
(Mx2 + q)I = 0
(Mx2 + q)Ic = qIc −MIcIM

−1
II qI .

We now want to show that appropriate inequalities on q are verified that ensure that the iterate
following x2 is x1. Observe that by (4.8), (4.9), and (4.3)

M−1
II qI = −M−1

II MIJe
J − εM−1

II eI,i = −(eI − eI,i)− ε (detMII)
−1 cofII(MiI)

T,

where eI,i ∈ R|I| is a vector whose components are all zero, except the one at the position of i in I
whose value is 1. Therefore

∀ j ∈ J : (−M−1
II qI)j = 1+ ε (detMII)

−1 cofII(Mij) > 0, (4.11)

since −ε (detMII)
−1 cofII(Mij) 6 ε | detMII |

−1 maxj∈J [cofII(Mij)]
+ < 1, by the choice of ε in

(4.9). On the other hand,

(−M−1
II qI)i = ε (detMII)

−1 cofII(Mii) = ε (detMII)
−1(detMJJ) < 0, (4.12)

since (detMII) < 0 and (detMJJ) > 0 by assumption. Finally, by (4.10), there holds

qIc −MIcIM
−1
II qI > 0. (4.13)

The inequalities (4.11), (4.12), and (4.13) imply that the iterate following x2 is indeed x1. Hence
the Newton-min algorithm cycles between the nodes x(J) and x(I). 2

Thanks to proposition 4.4, the equivalence (i) ⇔ (ii) of proposition 4.2 can now be proven
without proposition 3.2 and Motzkin’s theorem of the alternative, so that one can wonder whether
section 3 is still useful. We have maintained it in the paper for two reasons. First, proposition 3.2
has brought a clear indication on the way of choosing the index sets I and J in proposition 4.4,
whose origin could be obscure otherwise. Next, the dual characterization of the absence of 2-cycle
that it provides may be useful in the extension of this work.

5 Discussion and perspectives

A natural extension of the present work would consist in looking at the possibility to give a
simple algebraic description of the classes NMk, for k > 3, and NM. A puzzling feature of
the approach followed in this paper to characterize NM2 is its intrinsic conjunctive-disjunctive
nature. It is conjunctive in the sense that it provides conditions to satisfy for each possible
2-cycle that the matrix must prevent. Its disjunctive aspect comes from the use of Motzkin’s
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theorem of the alternative (lemma 3.1), which provides a possibility to avoid a given cycle for
each acceptable choice of multipliers α in proposition 3.2, and there may be many. For example,
when M ∈ P, the same approach shows that the Newton-min algorithm does not make the 3-cycle
x({i}) → x({j}) → x({k}) → x({i}), for three different indices i, j, and k ∈ J1, nK, when it is used to
solve LCP(M, q), whatever is q ∈ Rn, if and only if one of the following eight conditions holds

MikMjj 6 M+
ijMjk, MjiMkk 6 M+

jkMki, MkjMii 6 M+
kiMij ,

M+
jiMik 6 MjkMii, M+

kjMji 6 MkiMjj , M+
ikMkj 6 MijMkk,

M+
ikM

+
kjM

+
ji 6 MiiMjjMkk, or M+

ijM
+
jkM

+
ki > MiiMjjMkk.

Note that conditions 1, 2, 3, and 7 are satisfied by an M-matrix. We don’t know whether this
disjunctive form of the conditions disappears for the whole classes NMk or NM, i.e., when all the
possible cycles must be avoided, as it does for NM2 = P.

Another natural question is whether the membership to NM can be determined in polynomial
time; we recall that the membership to P is a co-NP-complete problem [8, 26; 1994-2000]. It would
also be important to know whether the Newton-min algorithm solves the linear complementarity
problem LCP(M, q) in polynomial time when M ∈ NM; recall that it does when M ∈ M [16;
2004].
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[11] O. Güler (2010). Foundations of Optimization. Graduate Texts in Mathematics 258. Springer. [doi].
5

RR n° 8004

http://dx.doi.org/10.1007/BF02612339
http://hal.archives-ouvertes.fr/inria-00442293/en
http://dx.doi.org/10.1007/s10107-010-0439-6
http://dx.doi.org/10.1137/S1052623498343131
http://dx.doi.org/10.1137/S0363012997328609
http://dx.doi.org/10.1007/BF01582570
http://dx.doi.org/10.1007/BF02592200
http://dx.doi.org/10.1007/978-0-387-68407-9


An algorithmic characterization of P-matricity 15

[12] P.T. Harker, J.-S. Pang (1990). A damped-Newton method for the linear complementarity problem.
In E.L. Allgower, K. Georg (editors), Computational Solution of Nonlinear Systems of Equations,
Lecture in Applied Mathematics 26. AMS, Providence, RI. 4

[13] M. Hintermüller, K. Ito, K. Kunisch (2003). The primal-dual active set strategy as a semismooth
Newton method. SIAM Journal on Optimization, 13, 865–888. [doi]. 4, 5

[14] R.A. Horn, Ch.R. Jonhson (1991). Topics in Matrix Analysis. Cambridge University Press, New York,
NY, USA. 3

[15] K. Ito, K. Kunisch (2008). Lagrange Multiplier Approach to Variational Problems and Applications.
Advances in Design and Control. SIAM Publication, Philadelphia. [doi]. 4

[16] Ch. Kanzow (2004). Inexact semismooth Newton methods for large-scale complementarity problems.
Optimization Methods and Software, 19, 309–325. [doi]. 4, 14

[17] M. Kojima, S. Shindo (1986). Extension of Newton and quasi-Newton methods to systems of PC1

equations. Journal of Operations Research Society of Japan, 29, 352–375. 4

[18] M.M. Kostreva (1976). Direct algorithms for complementarity problems. PhD Thesis, Rensselaer
Polytechnic Institute, Troy, New York. 4

[19] S. Lang (1987). Linear algebra. Undergraduate Texts in Mathematics. Springer. (third edition). 9

[20] O.L. Mangasarian (1977). Solution of symmetric linear complementarity problems by iterative meth-
ods. Journal of Optimization Theory and Applications, 22, 465–485. [doi]. 4

[21] R. Mifflin (1977). Semismooth and semiconvex functions in constrained optimization. SIAM Journal

on Control and Optimization, 15, 959–972. [doi]. 4

[22] L. Qi, J. Sun (1993). A nonsmooth version of Newton’s method. Mathematical Programming, 58,
353–367. [doi]. 4

[23] J. Rohn (2012). On Rump’s characterization of P -matrices. Optimization Letters, 6, 1017–1020. [doi].
3

[24] S.M. Rump (2003). On P -matrices. Linear Algebra and its Applications, 363, 237–250. [doi]. 3

[25] H. Samelson, R.M. Thrall, O. Wesler (1958). A partition theorem for the Euclidean n-space. Pro-

ceedings of the American Mathematical Society, 9, 805–807. [editor]. 3

[26] P. Tseng (2000). Co-NP-completeness of some matrix classification problems. Mathematical Program-

ming, 88, 183–192. 14

[27] M. Ulbrich (2011). Semismooth Newton Methods for Variational Inequalities and Constrained Opti-

mization Problems in Function Spaces. MPS-SIAM Series on Optimization 11. SIAM Publications,
Philadelphia, PA, USA. [doi]. 4

Index

cofactor, 9

Hadamard product, 3

k-cycle, 4

linear complementarity problem, 3

Markov process, 4
matrix

cofactor, 9
nondegenerate, 4

matrix class
Dc, 4

M, 5
NM, 5
NMk, 5
P, 3
Q, 11

Motzkin
multiplier, 5
theorem of the alternative, 5

Newton-min algorithm, 4
node, 4

symmetric difference (△), 6

RR n° 8004

http://dx.doi.org/10.1137/S1052623401383558
http://dx.doi.org/10.1137/1.9780898718614
http://dx.doi.org/10.1080/10556780310001636369
http://dx.doi.org/10.1007/BF01268170
http://dx.doi.org/10.1137/0315061
http://dx.doi.org/10.1007/BF01581275
http://dx.doi.org/10.1007/s11590-011-0318-y
http://dx.doi.org/10.1016/S0024-3795(01)00590-0
http://www.jstor.org/stable/2033091
http://dx.doi.org/10.1137/1.9781611970692


RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt

B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	The Newton-min algorithm
	A dual characterization of the absence of 2-cycle
	A characterization of P-matricity
	Discussion and perspectives
	References
	Index

