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The four chapters of this PhD thesis all concern panel unit-root tests, i.e., tests 
for the stationarity properties of a large number of time-series. The first chapter 
analyzes the testing problem in case stationary alternatives offset explosives 
ones. While the panel units are assumed to be independent in the first chapter, 
the subsequent chapters consider ‘second-generation’ panel unit-root tests which 
allow the different time series to be correlated through a factor structure. Chapter 
2 considers two common approaches of modeling this dependence and shows that 
the associated unit-root testing problems are asymptotically equivalent. Using 
Le Cam’s theory of statistical experiments, an optimal test is derived jointly in 
both setups. Chapter 3 studies unit-root tests for the underlying common factors 
rather than the idiosyncratic parts. It is demonstrated that unit root tests can be 
applied to a number of different factor estimates as if the factor was observed. A 
similar result is obtained for the case in which the factors have non-zero mean 
innovations. The final Chapter 4 revisits the testing problem for the unobserved 
common factors but exploits additional observed covariates that are known to be 
stationary to obtain higher powers.
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Introduction

This thesis studies unit-root tests in large panels. ‘Large’ means here that

both the number of panel units n as well as the number of time periods T are

large; in our asymptotic analyses we typically assume that both n and T go to

infinite jointly. Unit-Root Tests have long been a key research topic in both

statistics and econometrics. Given a time series of observations, the aim of a

unit-root test is to discriminate between stationary behavior and a stochastic

trend.

The long-run properties of a stationary time series and that with a stochas-

tic trend are vastly different. Based on a finite number of observations, how-

ever, it is challenging to differentiate between the two regimes. A time series

can be stationary but look almost identical to a unit-root process in the short

run. For example, consider the AR(1) process {yt}∞t=0 defined by y0 = 0 and,

for t = 1, . . . , T ,

yt = ρyt−1 + εt, (0.1)

where, say, εt is i.i.d. standard normally distributed. If ρ = 1, we have a unit-

root process, while for |ρ| < 1 the process is stationary. However, whenever ρ

is close to one, the first few observations of the process will have almost the

same distribution as if ρ was actually equal to one. In the long run, on the

other hand, the behavior under ρ = 1 is vastly different from that under ρ < 1.

This is why unit-root tests have important policy implications as well as being

an important ingredient for the statistical analysis of time-series data.

For example, the hypothesis of purchasing power parity is often tested by

applying a unit-root test to the real exchange rate. Rejecting a unit-root in the

real exchange rate means that the price levels of the two countries will roughly

1
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be the same in the long-run and is thus evidence for purchasing power parity.

When real exchange rates exhibit unit-root behavior, on the other hand, price

levels could diverge in the long run.

One approach to overcome the difficulty of distinguishing between station-

ary and unit-root series based on a limited number of time periods is to use

multiple series at once. For example, when testing for purchasing power par-

ity, one can exploit the real exchange rates of multiple countries jointly. That

is, for each country i = 1, . . . , n, one observes

yit = ρiyi,t−1 + εit. (0.2)

By using n such series, the power of the unit root test can typically be im-

proved at a rate of
√
n. Of course, this comes at the cost of imposing some

homogeneity on the stationarity properties of the individual series. Typically,

the null hypothesis is that all units have a unit root, while they are all station-

ary under the alternative. Sometimes, the units are allowed to have different

values of ρi under the alternatives, but are on average stationary in the sense

that the average ρi is smaller than one.

In Chapter 1, we relax the assumption that the units are on average sta-

tionary under alternatives and derive the power envelope for panel unit root

tests where heterogeneous alternatives are modeled via zero-expectation ran-

dom perturbations, i.e.,

ρi = 1 +
h

Tn1/4
Ui, h ≤ 0, (0.3)

for mean-zero perturbations Ui. While (0.3) is a common way to model het-

erogeneous alternatives, it is typically assumed that their mean is positive.

We show that relaxing this assumption means that power gains are only pos-

sible at rate n1/4. We obtain an asymptotically uniformly most powerful test

and discuss how to proceed when one is agnostic about the expectation of the

perturbations.

For the subsequent chapters, we go back to the more standard assumption

of the Ui having a positive mean, or, for simplicity, assume Ui = 1 altogether.

However, we relax one of the main limitations of the ‘first-generation’ panel
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unit-root tests as described in (0.2): the independence across units. In most

applications, the panel units will not be independent of each other, but instead

may depend on some common shocks. For example, the real exchange rates of

different countries may all depend on events in the numeraire country or other

global powers, as well as, for example, global health crises. In panel unit root

tests, this is typically accounted for by adding unobserved common factors to

the specification.

In Chapter 2, we reconsider the two prevalent approaches in the litera-

ture, that of Moon and Perron (2004), who specify a factor model for the

innovations, and the PANIC setup proposed in Bai and Ng (2004), who test

common factors and idiosyncratic deviations separately for unit roots. While

these frameworks have been considered as completely different, we show that,

in case of Gaussian innovations, testing for a unit-root in the observations a la

Moon and Perron (2004) is asymptotically equivalent to the testing problem

for the idiosyncratic parts in PANIC. Using Le Cam’s theory of statistical

experiments we derive an optimal test jointly in both setups. We show that

the popular Moon and Perron (2004) and Bai and Ng (2010) tests only attain

the power envelope in case there is no heterogeneity in the long-run variance

of the idiosyncratic components. The new test is asymptotically uniformly

most powerful irrespective of possible heterogeneity. Moreover, it turns out

that for any test, satisfying a mild regularity condition, the size and local

asymptotic power are the same under both data generating processes. Monte

Carlo simulations corroborate our asymptotic results and document significant

gains in finite-sample power if the variances of the idiosyncratic shocks differ

substantially among the cross sectional units.

One way to phrase the results of Chapter 2 is that specifying a factor

model in the innovations is equivalent to testing the idiosyncratic parts for a

unit root in a component specification. However, nonstationarity in the obser-

vations may also be due to nonstationary factors, which would not be picked

up by the unit-root tests considered in Chapter 2. Chapter 3, therefore studies

unit-root tests for unobserved common factors in large panels. Recent panel

unit-root tests typically allow for cross-sectional correlation due to common
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unobserved factors. As originally proposed in Bai and Ng (2004) (‘PANIC’),

unit-root tests are applied separately to the common factors and idiosyncratic

deviations. While the testing problem for the idiosyncratic parts is in many

cases well understood, the testing problem for the factors has received much

less attention. Bai and Ng (2004) show that using principal component es-

timates in ADF tests does not change their properties. We generalize this

result to other unit-root tests and other factor estimates, which can lead to

higher finite sample powers. In particular, we show that a Kalman smoother

imposing the null hypothesis to estimate the factors often has a simple closed-

form solution that avoids the computational issues usually associated with

such methods.

We also discuss the implications of including deterministic trends in the

factor equation, i.e., having factors with non-zero mean innovations. This

specification can be considered as an alternative to including individual deter-

ministic trends for each unit. Although this leads to nontrivial powers closer

to the unit root, we can again attain these powers based on estimated fac-

tors. In particular, we propose tests based on simple cross-sectional averages

that are asymptotically uniformly most powerful. We derive the properties

of these unit root tests in the presence of multiple potentially cointegrated

factors and show that they can be interpreted as unit-root tests for the ob-

servations. The cross-sectional averaging approach can lead to higher powers

than cointegration-rank based tests and does not require pre-estimation of the

total number of factors.

The final Chapter 4 revisits the testing problem for the unobserved com-

mon factors, but exploits additional observed covariates that are known to

be stationary to obtain higher powers. A typical macroeconomic example for

such a covariate would, for example, be changes in the unemployment rate.

The starting point is the popular PANIC framework and we analyze the poten-

tial power gains due to observing additional stationary covariates, focusing on

panel unit-root tests that are robust to cross-sectional cointegration, i.e., tests

for a unit root in the common unobserved factors. The stationary, observed

covariates are assumed to be unit-specific but allowed to be cross-sectionally
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correlated. We differentiate two cases: one in which the contribution of the

factor of interest to the covariance structure of the covariate can be perfectly

identified, and a more general one, where the contribution of the factor inno-

vations in the covariate equation is perturbed by another unobserved common

shock.

In the former case, the inclusion of stationary covariates leads to vastly

more powerful tests, entailing a faster convergence rate. We first analyze the

problem for an observed factor, and show that the statistical experiment is

locally asymptotically mixed normal (LAMN). This implies that no UMP test

exists, but we obtain an asymptotically optimal invariant test. We demon-

strate how to conduct valid inference also based on estimated factors. The

improved rate allows us to compare different factor estimation schemes in

terms of resulting asymptotic power. When implemented well, the asymptotic

power of estimated factor based tests is relatively close to the observed-factor

power envelope.

In the second case, the statistical problem is closely related to that of

univariate unit-root tests with stationary factors that have been studied in El-

liott and Jansson (2003) and Hansen (1995). We demonstrate that the original

time-series experiment is locally asymptotically Brownian Functional (LABF)

but converges to the better understood LAMN case as the contribution of the

covariate grows to 1. Moreover, we show that the CADF test of Hansen (1995)

becomes optimal invariant as the share of the variation explained by the co-

variate converges to unity. This explains why the tests of Hansen (1995) are

competitive in terms of power to those of Elliott and Jansson (2003), in par-

ticular when the covariate is more important. We show that both the CADF

tests and the point-optimal tests can also be implemented in a panel setting

with unobserved common factors and that their optimality properties carry

over to the panel setup.
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Chapter 1

The power envelope of panel

unit root tests in case

stationary alternatives offset

explosive ones1

Abstract

We derive the power envelope for panel unit root tests where hetero-

geneous alternatives are modeled via zero-expectation random perturba-

tions. We obtain an asymptotically UMP test and discuss how to proceed

when one is agnostic about the expectation of the perturbations.

1 This chapter is based on Becheri, Drost, Van den Akker, and Wichert (2016).

7
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CHAPTER 1. STATIONARY AND EXPLOSIVE ALTERNATIVES 8

1.1 Introduction

We start from the setup of Moon, Perron, and Phillips (2007), followed by

Becheri, Drost, and Van den Akker (2015a), which study the asymptotic power

envelope for the unit root testing problem in a Gaussian cross-sectionally in-

dependent panel where the observations Yit for i = 1, . . . , n and t = 1, . . . , T,

are generated by

Yit = mi + Y 0
it ,

Y 0
it = ρiY

0
it−1 + σiεit,

with mi a deterministic observed fixed effect, Y 0
i0 = 0, and εit satisfying As-

sumption 1.1(a) below. Both papers assume the heterogeneous autoregression

coefficients ρi to be generated according to the random coefficient structure

ρi = 1 + hUi/(
√
nT ) where U1, . . . , Un are i.i.d. unobserved random variables

with mean 1 and unknown distribution. The results from Moon, Perron, and

Phillips (2007) and Becheri, Drost, and Van den Akker (2015a) cannot be ex-

tended to the case where the perturbations have zero mean since the power

envelopes would be flat (which intuitively means that there do not exist tests

that can detect alternatives at the localizing rate
√
nT ).

In this note we assume Ui to have mean zero and, more specifically, to

satisfy Assumption 1.1(c) below and we reparameterize ρi as

ρi = 1 +
h

Tnγ
Ui, h ≤ 0, (1.1)

for some appropriate value of γ. Note that, Ui being unobserved, the sign of

h is unidentified; thus there is no loss of generality in assuming h ≤ 0.

Remark 1.1.1 Alternatively, one could restate our local alternatives as ρi =

1 + Ui where the variance of Ui is
h2

T 2n2γ , h ≤ 0. This highlights the fact that

the sign of h is not identified.

Assumption 1.1 (a) The innovations εit, i, t ∈ N, are i.i.d. N(0, 1).

(b) The deterministic scale parameters σi are positive, i.e. σi > 0 for i ∈ N.
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9 1.2. MAIN RESULTS

(c) The perturbations Ui, i ∈ N, are i.i.d. with mean 0 and variance 1,

have bounded support, and are independent of the idiosyncratic shocks

εit, i, t ∈ N. Moreover, the moment generating function of U1 exists on

an open interval containing 0.

Throughout, we are interested in testing the unit root hypothesis

H0 : h = 0 versus Ha : h < 0. (1.2)

Under the null hypothesis, each panel unit has a unit root whereas, under the

alternative, there are both explosive and stationary time series {Yit, t ∈ N}.
Assumption 1.1 allows the Ui to have an atom at zero, so a random fraction

of the time series {Yit, t ∈ N} might have a unit root under the alternative.

In this note we show that, under Assumption 1.1, the alternatives are

contiguous to the null hypothesis if γ = 1/4. Note that this is a different rate

than the one in Moon, Perron, and Phillips (2007) and Becheri, Drost, and

Van den Akker (2015a) (where U1 has expectation 1 and γ = 1/2). We derive

the UMP test for (1.2) and we also compare this test to the UMP test for

the setting where the expectation of U1 is 1. The mi and σi are treated as

unknown nuisance parameters.

1.2 Main results

First we derive the limit experiment of the model where mi and σi are known.

This yields the power envelope for the testing problem (1.2). In Section 2.2,

we prove adaptivity of our problem with respect to the nuisance parameters

mi and σi and propose an optimal test.

1.2.1 Limit experiment and Power envelope

In this section we assume the parameters mi and σi to be known. The limit

experiment for this model is given in Proposition 1.2.1.

Let P(n,T )
h denote the law of Y := {Yit, i = 1, . . . , n, t = 1, . . . , T}, P̃(n,T )

h

the law of Y conditional on U1, . . . , Un, and Pu the law of U1, . . . , Un. Note
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that, thanks to Assumption 1.1(c), under the null, the law of U1, . . . , Un con-

ditional on Y is still Pu. Unless otherwise indicated, all expectations are taken

under H0.

In order to derive the limit experiment, we have to study the likelihood

ratio of our model, that is dP(n,T )
h /dP(n,T )

0 . To compute it, we use the following

relation between likelihood ratios:

dP(n,T )
h

dP(n,T )
0

= E

[
dP̃(n,T )

h

dP̃(n,T )
0

∣∣∣∣ Y
]
, (1.3)

where dP̃(n,T )
h /dP̃(n,T )

0 is the likelihood ratio of the model where both Yit and

Ui are observed.

Let ∆Yit = Yit−Yit−1 for i = 1, . . . n and t = 1, . . . , T , and let us introduce

the partial sum process W
(T )
i as

W
(T )
i (u) :=

1√
Tσi

[Tu]∑
t=1

∆Yit,

and define

X
(T )
i :=

∫ 1

0
W

(T )
i (u−)dW

(T )
i (u) and J

(T )
i :=

∫ 1

0

(
W

(T )
i (u−)

)2
du, (1.4)

where W (u−) = limx→u− W (x). The likelihood ratio dP̃(n,T )
h /dP̃(n,T )

0 can be

easily computed thanks to Assumption 1.1(a) and it is given by

dP̃(n,T )
h

dP̃(n,T )
0

=

n∏
i=1

exp

(
Ui

h

n1/4
X

(T )
i − h2U2

i

2
√
n
J
(T )
i

)
. (1.5)

In the following proposition, we make use of (1.3)–(1.5) to establish the

LAN property for the model of interest under joint asymptotics (T, n) → ∞,

as in Becheri, Drost, and Van den Akker (2015a). The proof is postponed to

the appendix.

Remark 1.2.1 Note that (T, n) → ∞ means that min(T, n) → ∞.

Proposition 1.2.1 Let Assumption 1.1 hold and put γ = 1/4. Then, under

P(n,T )
0 as (T, n) → ∞,

log
dP(n,T )

h

dP(n,T )
0

= h2∆n,T − 1

2
h4J + op(1), (1.6)
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11 1.2. MAIN RESULTS

where J = 5/8 and, under P(n,T )
0

∆n,T =
1

2

n∑
i=1

(X
(T )
i )2 − J

(T )
i√

n

d→ N(0, J). (1.7)

Moreover, under P(n,T )
h , ∆n,T

d→ N(h2J, J) as (T, n) → ∞.

Remark 1.2.2 In Assumption 1.1 a), it might be possible to replace the Gaus-

sian assumption by some milder conditions. Plausibly, the results of this note

still hold if εi,t satisfy a functional central limit theorem for arrays that would

ensure convergence of the partial sums to Wiener processes. However, this is

beyond the aim of this note.

Remark 1.2.3 Note that the first moment of Ui being zero implies that the

first term of the typical likelihood-ratio expansion drops out. The new central

sequence mirrors the typical unit-root testing statistic X
(T )
i , but we now have

to consider its square. At the same time, the contiguity rate is slower. One

might wonder whether one could attain an even slower rate and even higher

powers of X by setting additional moments to zero. However, if the second

moment is also zero, the Ui have no cross-sectional variation anymore, likely

necessitating an analysis that is not at all in the spirit of this chapter.

This proposition and an application of Theorem 9.4 in Van der Vaart (2000)

imply that the sequence of experiments {P(n,T )
h : h ∈ R−} converges to the

experiment {N(h2J, J) : h ∈ R−} under P(n,T )
h .2 Using the Asymptotic Rep-

resentation Theorem,3 we can thus obtain the (asymptotic) power envelope

for testing hypothesis (1.2). The resulting power envelope is presented in the

following corollary.

Corollary 1.2.1 Let Assumption 1.1 hold, γ = 1/4, α ∈ (0, 1), and denote

zα = Φ−1(1−α). Consider a test ϕ(Y11, . . . , YnT ) of level α with power πn,T (h).

2 Note that Theorem 9.4 in Van der Vaart (2000) needs to be applied to the model where

ρi is re-parameterized in terms of the local parameter h̃ = h2 as ρi = 1−
√

h̃

Tn1/4Ui.

3 See, for example, Chapter 15 in Van der Vaart (2000).
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Then, for all h, we have

lim sup
(T,n)→∞

πn,T (h) ≤ Φ
(
−zα + h2

√
J
)
, (1.8)

where Φ denotes the cumulative distribution function of the standard normal

distribution. Moreover, let

tn,T =
∆n,T√

J
=

√
2

5

1√
n

n∑
i=1

(
(X

(T )
i )2 − J

(T )
i

)
. (1.9)

Then, for all h, the test ψn,T = 1{tn,T ≥ zα} attains the upper bound (1.8)

uniformly in h.

Remark 1.2.4 Note that this test is semiparametrically optimal in the sense

that the power envelope (1.8) does not depend on the distribution of the per-

turbations Ui.

1.2.2 A feasible test

In this section we treat mi and σi as unknown nuisance parameters. We show

that the unit root testing problem is adaptive with respect to these parameters,

that is the power envelope can still be attained when mi and σi are unknown

when n/T → 0.4 In fact, we can define a test whose (local and asymptotic)

power achieves the power envelope (1.8) while being invariant with respect to

mi and where σi are estimated. This test is based on a feasible version of the

central sequence ∆n,T , obtained by replacing σ2
i , i = 1, . . . , n, by

σ̂2
i =

1

T − 1

T∑
t=2

(∆Yit)
2.

Our test statistic t̂n,T is thus defined on the basis of (1.9) as:

t̂n,T =

√
2

5

1√
n

n∑
i=1



(

1

T

T∑
t=3

(
t−1∑
s=2

1

σ̂i
∆Yis

)
1

σ̂i
∆Yit

)2

− 1

T 2

T∑
t=3

1

σ̂2
i

(
t−1∑
s=2

∆Yis

)2



4 The additional assumption on n and T is needed to handle an increasing number of

nuisance parameters; this assumption is standard in the literature, see, for instance,

Moon, Perron, and Phillips (2007) and Becheri, Drost, and Van den Akker (2015a).
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=

√
2

5

1√
n

n∑
i=1

[(
σ4
i

σ̂4
i

(X
(T )
i )2 − σ2

i

σ̂2
i

J
(T )
i

)
− σ4

i

σ̂4
i

rai,T +
σ2
i

σ̂2
i

rbi,T

]
, (1.10)

where

rai,T =
1

σ4
i

(
1

T

T∑
t=2

∆Yi1∆Yit

)2

+
2

σ4
i

(
1

T

T∑
t=2

∆Yi1∆Yit

)(
1

T

T∑
t=3

t−1∑
s=2

∆Yis∆Yit

)
, and

rbi,T =
T − 1

T 2

∆Y 2
i1

σ2
i

+
2

T 2

∆Yi1
σ2
i

T∑
t=3

t−1∑
s=2

∆Yis.

Note that rai,T and rbi,T are remainder terms due to not observing Yi0 = mi.

The following proposition proves that t̂n,T is asymptotically equivalent to

tn,T in the sense that they differ only for order oP (1) terms.

Proposition 1.2.2 Let Assumption 1.1 hold and suppose n/T → 0. Then we

have, for all h ∈ R and under P
(n,T )
h as (T, n) → ∞,

t̂n,T = tn,T + oP (1). (1.11)

Remark 1.2.5 From (1.11) and Corollary 1.2.1, it readily follows that the

test ψ̂n,T = 1{t̂n,T > zα} is asymptotically UMP.

1.3 Testing for a unit root when EU1 is unknown

In practice, it may be difficult to determine whether some data were generated

under the DGP introduced in Section 4.2, where EU1 = 0, or under the DGP

considered in Moon, Perron, and Phillips (2007) and Becheri, Drost, and Van

den Akker (2015a), where U1 satisfies Assumption 1.2 below, i.e. EU1 = 1.

In this section we address the problem of testing for a unit root while being

agnostic about the first moment of U1. For notational simplicity, we consider

the test statistics tn,T and τn,T (introduced below) which, as in Section 1.2.1,

rely on the nuisance parameters being known; the extension to their estimated,

feasible counterparts is immediate as long as n/T → 0.
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Assumption 1.2 The perturbations Ui, i ∈ N, are i.i.d. with mean 1 and

independent of the idiosyncratic shocks εit, i, t ∈ N. Moreover, the moment

generating function of U1 exists on an open interval containing 0.

Note that we need γ = 1/2 to ensure contiguity of the alternatives with

respect to the null hypothesis under Assumption 1.2 (see Moon, Perron, and

Phillips (2007) and Becheri, Drost, and Van den Akker (2015a)).

In Section 1.2, we have shown that optimal inference for the testing prob-

lem (1.2) can be based on tn,T when EU1 = 0. Becheri, Drost, and Van den

Akker (2015a) shows that, if EU1 = 1, optimal inference can be based on

τn,T =

√
2√
n

n∑
i=1

X
(T )
i .

Let us denote by Q(n,T )
h the law of Y when the Ui satisfy Assumption 1.2

and ρi satisfies (1.1) with γ = 1/2. Clearly, since Q(n,T )
0 = P(n,T )

0 , the statistics

tn,T and τn,T converge to a standard normal distribution under both P(n,T )
0

and Q(n,T )
0 (see Proposition 1.2.1 and Proposition 4.2 in Becheri, Drost, and

Van den Akker (2015a)). This implies that both statistics are valid in terms

of size for testing the unit root hypothesis (1.2) irrespective of the expectation

of the U1.

In what follows, we propose two tests based on the statistics tn,T and τn,T

having power against h < 0 even when we do not know whether U1 satisfies

Assumption 1.1(c) or Assumption 1.2.

Lemma 1.3.1 provides the distribution of tn,T and τn,T under P(n,T )
h and

Q(n,T )
h . Its proof relies on a straightforward application of Le Cam’s third

lemma and can be found in the appendix.

Lemma 1.3.1 Let Assumption 1.1(a)-(b) hold.

(i) Let Assumption 1.1(c) hold and γ = 1/4. Then, under P(n,T )
h , as

(T, n) → ∞,

tn,T
d→ N(h2

√
5/8, 1) and τn,T

d→ N(h2
√
2/9, 1). (1.12)
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(ii) Let Assumption 1.2 hold and γ = 1/2. Then, under Q(n,T )
h , as (T, n) →

∞,

tn,T
d→ N(h

√
8/45, 1) and τn,T

d→ N(h/
√
2, 1).

This result provides guidance on defining tests that do not rely on knowing

the expectation of U1 and it enables us to compute their (local and asymptotic)

power.

From Lemma 1.3.1(i), we conclude that, under P(n,T )
h , one would reject for

a large value of either test statistic. On the contrary, under Q(n,T )
h , one would

reject for small values. This suggests that, when it is not known whether

EU1 = 0 or EU1 = 1, one should reject for both large and small values of tn,T

and τn,T . Following this lead, we can define two tests having power both under

P(n,T )
h and Q(n,T )

h . Let us define the tests:

ϕn,T = 1−1{−zα/2 < tn,T < zα/2} and ϕ̃n,T = 1−1{−zα/2 < τn,T < zα/2}.

From Lemma 1.3.1, we easily obtain the (local and asymptotic) powers of these

tests which are presented in the following corollary.

Corollary 1.3.1 Let Assumption 1.1(a)-(b) hold.

(i) Let Assumption 1.1(c) hold and ρi satisfy (1.1) with γ = 1/4. Then,

under P(n,T )
h ,

lim
(T,n)→∞

(1− P(n,T )
h [−zα/2 < tn,T < zα/2])

=Φ(−zα/2 − h2
√
5/8) + Φ(−zα/2 + h2

√
5/8),

and

lim
(T,n)→∞

(1− P(n,T )
h [−zα/2 < τn,T < zα/2])

=Φ(−zα/2 − h2
√

2/9) + Φ(−zα/2 + h2
√
2/9)

(ii) Let Assumption 1.2 hold and ρi satisfy (1.1) with γ = 1/2. Then, under

Q(n,T )
h ,

lim
(T,n)→∞

(1− Q(n,T )
h [−zα/2 < tn,T < zα/2])
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= Φ(−zα/2 − h
√

8/45) + Φ(−zα/2 + h
√

8/45)

and

lim
(T,n)→∞

(1− Q(n,T )
h [−zα/2 < τn,T < zα/2])

=Φ(−zα/2 − h/
√
2) + Φ(−zα/2 + h/

√
2),

Corollary 1.3.1(i) shows that under P(n,T )
h , the power of the test ϕn,T is

(asymptotically) higher than that of ϕ̃n,t, while, from Corollary 1.3.1(ii) it

follows that under Q(n,T )
h the power of ϕ̃n,t is higher than that of ϕn,T . Fur-

thermore, from Corollary 3.1 it is clear that neither ϕn,t nor ϕ̃n,T is optimal.

It is, however, important to note that the one-sided test ψn,T , which is optimal

under P(n,T )
h , always has power less than the size α in the Q(n,T )

h -model. A

similar remark applies to the test 1{τ < −z}, which is optimal under Q(n,T )
h ,

but has power less than α under P(n,T )
h . This implies that these tests are

pretty useless when it is not possible to decide on the model P(n,T )
h or Q(n,T )

h .

Therefore, when it is not possible to determine under which DGP the data

were generated, we recommend to use the two-sided tests.

1.A Proofs

1.A.1 Proof of Proposition 1.2.1

In the following, we first establish convergence (1.7), then we prove the expansion (1.6),

and finally we establish the convergence result under the alternative. All probabilities and

expectations are evaluated under P(n,T )
0 unless otherwise stated.

Form = 2, . . . , 8, we introduce the random variablesKmi = fm(X
(T )
i , J

(T )
i ), i = 1, . . . , n,

where

f2(x, j) =
x2−j

2
, f3(x, j) =

x3−3xj
6

, f4(x, j) =
x4−6x2j+3j2

24
,

f5(x, j) =
3xj2−2x3j

24
, f6(x, j) =

3x2j2−j3

48
, f7(x, j) =

−xj3

48
, f8(x, j) =

j4

384
,

and X
(T )
i and J

(T )
i are as defined in (1.4). Note that these are approximations to the

stochastic integrals Xi =
∫ 1

0
Wi(u)dWi(u) = 1/2(W 2

i (1) − 1) and Ji =
∫ 1

0
W 2

i (u)du, based

on independent Brownian motions Wi and that, for fixed m, the variables Kmi, i = 1, . . . , n,

are i.i.d.

Put µ
(T )
m = EKm1, σ

(T )
m =

√
Var(Km1). Some tedious calculations show, as T → ∞,

µ(T )
m = Efm(X

(T )
1 , J

(T )
1 ) → µm = Efm(X1, J1) and
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σ(T )
m =

√
Var(fm(X

(T )
1 , J

(T )
1 )) → σm =

√
Var(fm(X1, J1)).

Although it is not strictly necessary to demonstrate convergence to the moments of the

limiting process (Xi, Ji), it provides some additional intuition why the sequences µ
(T )
m and

σ
(T )
m are bounded. Furthermore, the limits µm and σm can be easily obtained from Ito

calculus. In particular, we obtain µ
(T )
2 = µ2 = µ

(T )
3 = µ3 = 0, µ

(T )
4 → µ4 = 0, and σ

(T )
2 →

σ2 =
√

5
8
. Using once again the Gaussianity of our innovations, it can be demonstrated that

higher moments of Km1 are bounded as well.

The previous considerations on the moments of Km1 enable us to apply a Central Limit

Theorem for a double array of random variables see p. 32 in Serfling (1980),

∑n
i=1(Kmi − µ

(T )
m )

√
nσ

(T )
m

d→ N(0, 1) and
1

n

n∑

i=1

(K2
mi − (σ(T )

m )2 − (µ(T )
m )2)

P→ 0. (1.A.1)

As µ
(T )
2 = 0 and σ

(T )
2 →

√
5
8
, (1.A.1) establishes the limiting distribution (1.7) of the central

sequence ∆nT as well as a useful approximation to the Fisher information J = 5
8
, namely

∆nT =
1√
n

n∑

i=1

K2i
d→ N(0, J) and

1

n

n∑

i=1

K2
2i

P→ J.

Next, we obtain the desired expansion of the loglikelihood ratio. Define ai = h Ui

n1/4X
(T )
i

and bi = −h2 U2
i

2
√

n
J
(T )
i . From (1.3) and (1.5) and using the independence across i, we get

log
dP(n,T )

h

dP(n,T )
0

=

n∑

i=1

log E(exp(ai + bi) | Y).

Expanding the exponential, we have, for some 0 ≤ |ξ1,i| = |ξ1(Ui, n, T,X
(T )
i , J

(T )
i )| ≤ |ai+bi|,

log
dP(n,T )

h

dP(n,T )
0

=

n∑

i=1

log E
(
1 +

4∑

k=1

1

k!
(ai + bi)

k +
1

5!
eξ1,i(ai + bi)

5 | Y
)
=

n∑

i=1

log(1 + L
(T,n)
i ).

Recall Ui, with EUi = 0 and EU2
i = 1, is independent of both X

(T )
i and J

(T )
i (see Assump-

tion 1.1); hence

L
(T,n)
i = E

( 4∑

k=1

1

k!
(ai + bi)

k +
1

5!
eξ1,i(ai + bi)

5 | Y
)

= h2 1√
n
K2i +

8∑

m=3

hmn−m/4(EUm
1 )Kmi +

1

120
E(eξ1,i(ai + bi)

5 | Y). (1.A.2)

Using boundedness of moments and employing the following inequality for i.i.d. random

variables due to Gumbel (1954),

Emax
i≤n

|Kmi|� ≤ E|Km1|� +
√

Var(|Km1|�) n− 1√
2n− 1

, � > 0,

we obtain Emaxi≤n |Kmi|� = O(
√
n). Therefore, the Markov inequality implies,

max
i≤n

|Kmi| = op(n
α) for any α > 0.
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CHAPTER 1. STATIONARY AND EXPLOSIVE ALTERNATIVES 18

A similar reasoning shows ζnT = n1/5 maxi≤n

{
| h

n1/4X
(T )
i |+ h2

2
√
n
J
(T )
i

}
= op(1). This im-

plies that the final term of L
(T,n)
i is asymptotically negligible. Indeed, using again a similar

reasoning as before, we find that, for all ε > 0, there exist n, T and k such that

max
i≤n

|E(eξ1,i(ai + bi)
5 | Y)| ≤ k

n
ekζnT ζ5nT = op(n

−1),

where k is a finite positive constant that depends on the support of U1 (use Assump-

tion 1.1(c)).

Collect the previous results and repeatedly use the Central Limit Theorem for a double

array of random variables (Serfling (1980), p.32), to obtain

P(n,T )
0 [max

i≤n
|L(T,n)

i | < ε] → 1, (1.A.3)

n∑

i=1

L
(T,n)
i = h2 1√

n

n∑

i=1

K2i + op(1)
d→ N(0, h4J), (1.A.4)

n∑

i=1

(L
(T,n)
i )2 = h4 1

n

n∑

i=1

K2
2i + op(1) =

5

8
h4 + op(1)

p→ h4J. (1.A.5)

Subsequently, proceed with an expansion of the logarithm in the loglikelihood ratio,

yielding

log
dP(n,T )

h

dP(n,T )
0

=

n∑

i=1

log(1 + L
(T,n)
i ) =

n∑

i=1

L
(T,n)
i −

n∑

i=1

(L
(T,n)
i )2

2
+

n∑

i=1

(L
(T,n)
i )3

3(1 + ξ2,i)3
,

for some ξ2,i between 0 and L
(T,n)
i . Since |ξ2,i| ≤ |L(T,n)

i | ≤ ε (with probability converg-

ing to one), we find the bound

∣∣∣∣
∑n

i=1

(L
(T,n)
i )3

3(1+ξ2,i)3

∣∣∣∣ ≤
∑n

i=1

|L(T,n)
i |3

3(1−ε)3
≤ ε

3(1−ε)3

∑n
i=1 |L

(T,n)
i |2.

Therefore, (1.A.3)–(1.A.5) establish the desired expansion.

Finally, an application of Le Cam’s third lemma immediately yields convergence of the

central sequence to a normal N(hJ, J) distribution under the local alternatives.

1.A.2 Proof of Proposition 1.2.2

As we have shown that our model is LAN, contiguity is obtained from Le Cam’s first lemma.

Hence we only have to prove (1.11) under P(n,T )
0 . In the remainder of this proof, all expres-

sions, probabilities and expectations are evaluated under P(n,T )
0 .

We have

t̂n,T − tn,T =

√
2

5

1√
n

n∑

i=1

(
rXi,nT − rJi,nT − σ4

i

σ̂4
i

rai,T +
σ2
i

σ̂2
i

rbi,T

)
,

where

rXi,nT =

(
σ4
i

σ̂4
i

− 1

)
(X

(T )
i )2 and rJi,nT =

(
σ2
i

σ̂2
i

− 1

)
J
(T )
i .
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19 1.A. PROOFS

Below, we analyze one term at the time and prove each one is oP (1). First we obtain

some handy relationships on replacing the scale parameters σi by estimates. We obtain
∑n

i=1

(
σ̂2
i

σ2
i
− 1

)2

= oP (1) since

E
n∑

i=1

(
σ̂2
i

σ2
i

− 1

)2

=
2n

T − 1
→ 0.

Hence we also have mini≤n
σ̂2
i

σ2
i

P→ 1 and maxi≤n
σ̂2
i

σ2
i

P→ 1. This also implies

n∑

i=1

(
σ2
i

σ̂2
i

− 1

)2

≤
n∑

i=1

(
σ̂2
i

σ2
i

− 1

)2

/min
i≤n

σ̂4
i

σ4
i

= oP (1),

n∑

i=1

(
σ4
i

σ̂4
i

− 1

)2

≤
n∑

i=1

(
σ̂2
i

σ2
i

− 1

)2 (
max
i≤n

σ̂2
i

σ2
i

+ 1

)2

/min
i≤n

σ̂8
i

σ8
i

= oP (1).

Since the averages 1
n

∑n
i=1(X

(T )
i )4 and 1

n

∑n
i=1(J

(T )
i )2 are bounded in probability, the

Cauchy-Schwarz inequality yields that the leading remainder terms due to rXi,nT and rJi,nT

are negligible,

∣∣∣∣∣
1√
n

n∑

i=1

rXi,nT

∣∣∣∣∣

2

≤
n∑

i=1

(
σ4
i

σ̂4
i

− 1

)2
1

n

n∑

i=1

(X
(T )
i )4 = oP (1),

∣∣∣∣∣
1√
n

n∑

i=1

rJi,nT

∣∣∣∣∣

2

≤
n∑

i=1

(
σ2
i

σ̂2
i

− 1

)2
1

n

n∑

i=1

(J
(T )
i )2 = oP (1).

Finally, we show that the remainder terms due to not observing the initial observations

Yi0, are negligible. Using (a+ b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz, we have

∣∣∣∣∣
1√
n

n∑

i=1

σ4
i

σ̂4
i

rai,T

∣∣∣∣∣

2

≤2max
i≤n

σ8
i

σ̂8
i

n∑

i=1

ε2i1

(
1

T

T∑

t=2

εit

)2


 1

n

n∑

i=1

ε2i1

(
1

T

T∑

t=2

εit

)2

+
4

n

n∑

i=1

(
1

T

T∑

t=3

t−1∑

s=2

εisεit

)2

 ,

∣∣∣∣∣
1√
n

n∑

i=1

σ2
i

σ̂2
i

rbi,T

∣∣∣∣∣

2

≤2max
i≤n

σ4
i

σ̂4
i

1

T

n∑

i=1

ε2i1


 1

nT

n∑

i=1

ε2i1 +
4

n

n∑

i=1

(
1

T
√
T

T∑

t=3

t−1∑

s=2

εis

)2

 .

To obtain the desired negligibility of these two remaining terms, observe (take expectations

and note the similarity to the proofs of the LAN theorem)

n∑

i=1

ε2i1

(
1

T

T∑

t=2

εit

)2

= oP (1),
1

n

n∑

i=1

(
1

T

T∑

t=3

t−1∑

s=2

εisεit

)2

= OP (1),

1

T

n∑

i=1

ε2i1 = oP (1),
1

n

n∑

i=1

(
1

T
√
T

T∑

t=3

t−1∑

s=2

εis

)2

= OP (1).
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1.A.3 Proof of Lemma 1.3.1

Note that the first part of the statement (i) and the second part of statement (ii) follow from

Proposition 1.2.1 above and Proposition 4.2 of Becheri, Drost, and Van den Akker (2015a),

respectively. The other two statements can also be obtained by a straightforward application

of Le Cam’s third lemma. To obtain the appropriate shifts under local alternatives, we

calculate the covariance between the central sequences in both set-ups (see also Section 1.A.1)

Cov

(
X2

1 − J1

2
, X1

)
= E

X3
1 − 3X1J1

6
+

1

3
EX3

1 = EK31 +
1

3
=

1

3
.

To compute the distribution of τn,T under P(n,T )
h , we need to consider the (asymptotic)

covariance between τn,T and the log-likelihood ratio log dP(n,T )
h /dP(n,T )

0 . Since, the central

sequence ∆n,T is multiplied by h2 and the τn,T -test has a factor
√
2 in front of the Xi, the

shift under local alternatives P(n,T )
h is h2

√
2/3: τn,T

d→ N(h2
√

2/9, 1).

Similarly, we compute the distribution of tn,T under Q(n,T )
h . To obtain the covariance

between tn,T and the log-likelihood ratio log dQ(n,T )
h /dQ(n,T )

0 note that, in the quadratic

expansion of log dQ(n,T )
h /dQ(n,T )

0 from Proposition 4.2 of Becheri, Drost, and Van den Akker

(2015a), the central sequence is multiplied by h while the tn,T -test has a factor
√

8/5. Hence,

under Q(n,T )
h , we obtain a shift of h

√
8/5/3: tn,T

d→ N(h
√

8/45, 1).

This completes the proof of the lemma.
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Chapter 2

Local Asymptotic Equivalence

of the Bai and Ng (2004) and

Moon and Perron (2004)

Frameworks for Panel Unit

Root Testing1

Abstract

This chapter considers unit root tests in dependent panels with a large

cross-sectional and time dimension. We reconsider the two prevalent ap-

proaches in the literature, that of Moon and Perron (2004), who specify a

factor model for the innovations, and the PANIC setup proposed in Bai

and Ng (2004), who test common factors and idiosyncratic deviations

separately for unit roots. While these frameworks have been considered

as completely different, we show that, in case of Gaussian innovations,

testing for a unit-root in the observations à la Moon and Perron (2004)

is asymptotically equivalent to the testing problem for the idiosyncratic

parts in PANIC. Using Le Cam’s theory of statistical experiments we

derive an optimal test jointly in both setups. We show that the popular

1 Based on joint work with I.G. Becheri, F.C. Drost, and R. van den Akker.

21
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CHAPTER 2. EQUIVALENCE OF FRAMEWORKS 22

Moon and Perron (2004) and Bai and Ng (2010) tests only attain the

power envelope in case there is no heterogeneity in the long-run variance

of the idiosyncratic components. The new test is asymptotically uni-

formly most powerful irrespective of possible heterogeneity. Moreover,

it turns out that for any test, satisfying a mild regularity condition, the

size and local asymptotic power are the same under both data generating

processes. Monte Carlo simulations corroborate our asymptotic results

and document significant gains in finite-sample power if the variances

of the idiosyncratic shocks differ substantially among the cross sectional

units.

Testing for unit roots is an important aspect of time series and panel data anal-

ysis. See, for example, the monographs Patterson (2011), Patterson (2012),

and Choi (2015) for overviews. A well-known problem with univariate unit

roots tests is their low power. In the last two decades, increased data availabil-

ity led to the development of panel unit root tests that increase the statistical

power by exploiting the cross-sectional data dimension. The “first generation”

of panel unit root tests imposes the panel observations Zit to be independent

over panel units i. Surveys of this literature are provided by Banerjee (1999),

Baltagi and Kao (2000), Choi (2006), Breitung and Pesaran (2008), and West-

erlund and Breitung (2013). O’Connell (1998) and Gutierrez (2006) showed

that presence of cross-sectional dependence typically leads to invalidity of “first

generation tests”. For this reason, a “second generation” of models and tests

has been introduced.

This chapter considers two widely used setups for second generation panel

unit root tests: the ‘PANIC’ framework of Bai and Ng (2004) and the frame-

work of Moon and Perron (2004) (‘MP’).2 To this end we introduce the follow-

ing data generating process that covers both frameworks. The observations

Zit, i = 1, . . . , n and t = 1, . . . , T , are assumed to be generated by the compo-

nents specification

Zit = mi + Yit, (2.1)

2 These setups are also popular in applied work, see, for example Carvalho and Júlio

(2012) and Sald́ıas (2013) for applications to testing Purchasing Power Parity and sys-

temic risk.
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Yit =
K∑
k=1

λkiFkt + Eit, (2.2)

Eit = ρEi,t−1 + ηit, (2.3)

Fkt = ρkFk,t−1 + fkt, (2.4)

where λki is the loading of unobserved factor Fkt on panel unit i, the mi

are fixed effects, and the innovations {ηit} and {fkt} are assumed to be mu-

tually independent, Gaussian, stationary time series. The innovations {ηit}
are idiosyncratic in the sense that they are cross-sectionally independent, i.e.,

the cross-sectional dependence in the panel is generated by the common fac-

tors. The number factors, K, is assumed to be deterministic and known.3

Section 2.1.2 discusses the precise assumptions.

For ρk = 1, k = 1, . . . ,K, we obtain the PANIC framework and with ρk =

ρ, k = 1, . . . ,K, we obtain the MP framework, in which we can also rewrite

(2.2)-(2.4) as

Yit = ρYi,t−1 + εit and εit =
K∑
k=1

λkifkt + ηit. (2.5)

Note that MP uses an autoregressive structure with the factors appearing in

the innovations εit in (2.5), whereas the factors are part of the “mean specifi-

cation”, i.e. (2.2), in the PANIC setup. Consequently, the PANIC framework

allows for non-stationarity of Zit generated by the factors Fkt and for non-

stationarity generated by the idiosyncratic components Eit, while the factors

and the idiosyncratic components have the same order of integration in the

MP framework. Following Bai and Ng (2010), Pesaran, Smith, and Yamagata

(2013) and Westerlund (2015), when considering the PANIC framework we

focus on testing for unit roots in the idiosyncratic components, i.e. H0 : ρ = 1

versus Ha : ρ < 1. Note that, under the null hypothesis, the model equations

of both models coincide. The two main restrictions on the DGP considered

here are the absence of idiosyncratic deterministic trends and the assumption

3 This number can be estimated consistently, so this makes no difference for the asymp-

totic analysis. See, for example, Section 2.3 in Moon and Perron (2004) and Section 5

in Bai and Ng (2010) for a discussion of this issue.
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of Gaussian innovations {ηit}. As shown in Moon, Perron, and Phillips (2007),

in the presence of deterministic trends the contiguity rate changes and thus

an entirely separate analysis is required. Optimality theory extending beyond

Gaussian innovations is not available even in a first-generation setting. Thus,

we restrict ourselves to demonstrating that our proposed tests remain valid

under deviations from Gaussianity.

This chapter offers four contributions. Firstly, we show that in case the

nuisance parameters are known the MP experiment is Locally Asymptotically

Normal (LAN) when n, T → ∞ (jointly). This means that the limit exper-

iment, in the Le Cam sense, is a simple Gaussian shift experiment; see, for

example, Van der Vaart (2000). We further establish that the PANIC experi-

ment for the idiosyncratic parts, in case of known nuisance parameters, is also

LAN with the same central sequence and Fisher information as for the MP

experiment.

Secondly, the LAN results imply that for any test satisfying a mild reg-

ularity condition, it suffices to determine its asymptotic size and local power

in one of the frameworks, since the same results automatically hold for the

other one. This appears to be a surprising result as the two frameworks, as

well as tests and power analyses, have been considered to be completely dif-

ferent. To our best knowledge, the equivalence has not even been observed for

the well-studied tests proposed in Moon and Perron (2004) and Bai and Ng

(2010).

Thirdly, we derive the local asymptotic power envelope. The LAN results,

which are based on known nuisance parameters, directly yield an upper bound,

which is the same for PANIC and MP, to the local asymptotic power of unit

root tests. We demonstrate that we can attain this upper bound also for the

case the O(n) nuisance parameters are unknown. In other words, we establish

adaptivity : the obtained upper bound yields the local asymptotic power enve-

lope. This result extends the work by Moon, Perron, and Phillips (2007),

Becheri, Drost, and Van den Akker (2015a), Moon, Perron, and Phillips

(2014), and Juodis and Westerlund (2018) on first generation frameworks,

to the second generation. It turns out that the level of the local asymptotic
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power envelope only depends on the (local) deviation to the unit root. Thus,

contrary to the asymptotic powers of existing tests, the level of the power en-

velope is not affected by the nuisance parameters. The power loss attributed

by Moon and Perron (2004) and Westerlund (2015) to the heteroskedasticity

in ηit is thus a feature of the test statistics under consideration, rather than

of the MP and PANIC models.

Fourthly, we show that the popular Moon and Perron (2004) and Bai and

Ng (2010) tests are optimal only in case there is no heterogeneity in the long-

run variances of the idiosyncratic components ηit. We propose a new test that

is asymptotically uniformly most powerful (irrespective of the presence of het-

erogeneity). Westerlund (2015) derived, via “triangular array asymptotics”,

the local asymptotic power function, only for the PANIC, framework, of the

tests proposed in Bai and Ng (2010). Using our LAN results and Le Cam’s

third lemma, we provide a new and shorter derivation of these results and also

derive the local asymptotic power functions of the tests proposed in Moon and

Perron (2004). On comparing these power functions to the power envelope, it

is seen that these tests are optimal only in case there is no heterogeneity in the

long-run variances of the idiosyncratic components. Our new asymptotically

UMP test is motivated by our LAN results. We report numerical asymptotic

powers for commonly encountered amounts of heterogeneity and use Monte

Carlo experiments to show that the new test also compares favorably in finite

samples.

The chapter is organized as follows. Section 2.1 presents and discusses

the precise assumptions we impose. Section 2.2 derives the common approx-

imation to the local likelihood ratios in the two experiments and derives its

limiting distribution. Section 2.3 introduces our new UMP test based on the

limit experiment. Section 2.4 computes the local asymptotic power functions

of the tests proposed in Moon and Perron (2004) and Bai and Ng (2010) and

Section 2.5 compares their asymptotic and finite-sample power to those of the

new UMP test. Section 2.6 concludes. All proofs are organized in several

appendices.
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2.1 Notation and Assumptions

2.1.1 Matrix notation

Before we introduce our assumptions, we introduce some notation in

order to write the model in matrix form. We write In and IT for

identity matrices of dimension n and T , respectively, while ι denotes

a T -vector of ones. Introduce the n-vectors λk = (λk1, . . . , λkn)
′,

k = 1, . . . ,K and the n × K matrix Λ = (λ1, . . . , λK). Collect the

observations as Z = (Z11, Z12, . . . , Z1T , . . . , Zn1, . . . , ZnT )
′. We also write

Z−1 = (Z10, Z11, . . . , Z1,T−1, . . . , Zn0, . . . , Zn,T−1)
′, ∆Z = Z−Z−1, and define

ε, η, E, E−1, ∆E, Y , Y−1, and ∆Y analogously. Write m = (m1, . . . ,mn)
′,

ηi = (ηi1, . . . , ηiT )
′, i = 1, . . . , n, fk = (fk1, . . . , fkT )

′, k = 1, . . . ,K, and

denote their corresponding covariance matrices by Σf,k = var fk ∈ RT×T and

Ση = diag(Ση,1, . . . ,Ση,n), with Ση,i = var ηi ∈ RT×T .

The long-run variances of {fkt} and {ηit}, see Remark 2.1.3 below, are denoted

by ω2
f,k and ω2

η,i, respectively. In addition, we define the approximate long-run

variances ω2
f,k,T = ι′Σfkι/T and ω2

η,i,T = ι′Ση,iι/T . For a given T , these ignore

the contribution of any autocovariances further than T apart. We will use the

approximate long-run variances to simplify notation and the structure of our

proofs. We add the subscript T to the approximate versions to emphasize the

difference and define

Ωη = diag(ω2
η,1,T , . . . , ω

2
η,n,T ) and ΩF = diag(ω2

f,1,T , . . . , ω
2
f,K,T ).

In addition to this ‘vectorized’ notation, it will also be useful to consider

the observations as T × n matrices. Thus, let η̃ = (η1, . . . , ηn), and define ε̃,

Ỹ , Z̃, Ẽ, f̃ = (f1, . . . , fK), and F̃ analogously. With this notation, (2.5) can

be rewritten as

ε̃ = f̃Λ′ + η̃, (2.6)

while for the vectorized versions we have

ε =
K∑
k=1

λk ⊗ fk + η.
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27 2.1. NOTATION AND ASSUMPTIONS

Finally, we introduce the T × T matrix A by Ast := 1 if s > t and 0

otherwise and we put A := In ⊗A ∈ RnT×nT , i.e.

A =




0 0 . . . 0

1 0 . . . 0
...

. . .
. . .

...

1 . . . 1 0




and A =




A 0T×T . . . 0T×T

0T×T A . . . 0T×T

...
. . .

. . . 0T×T

0T×T . . . 0T×T A




.

The matrix A can be considered a cumulative sum operator and premultiply-

ing the vectorized panel with A takes the cumulative sum in the time direction

for each panel unit. It is also related to ‘approximate one-sided long-run vari-

ances’, which we can define by δη,i,T = tr[AΣη,i/T ] and δf,k,T = tr[AΣf,k/T ].

Note A+A′ = ιι′ − IT , so that, analogous to the long-run variances, we have

2δη,i,T = ω2
η,i,T − γη,i(0).

2.1.2 Assumptions

Now we can formally state the full specifications of our DGPs in (2.1)–(2.4).

The distributional assumptions on the time series of the factors {fkt} and

idiosyncratic shocks {ηit} are given in Assumption 2.1 and we formulate the

assumptions on the (deterministic) factor loadings λki in Assumption 2.2. As-

sumption 2.3 states the assumption on the initial values Ei0 and Fk0. Assump-

tion 2.4 specifies the joint asymptotics we consider in this chapter. Finally,

Assumption 2.5 differentiates between the two setups discussed in Section 2.1.

Assumption 2.1

(a) Each factor innovation, indexed k = 1, . . . ,K, is a zero-mean ergodic

stationary time series {fkt} independent of the other factors and all id-

iosyncratic parts ηit. Its autocovariance function γf,k satisfies

∞∑
m=−∞

(|m|+ 1)|γf,k(m)| < ∞

and is such that the variance of each factor innovation {fkt} is positive.
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(b) For each panel unit i ∈ N, the idiosyncratic part {ηit} is a Gaussian

zero-mean stationary time series independent of the other idiosyncratic

parts and all factors. The autocovariance function γη,i satisfies

sup
i∈N

∞∑
m=−∞

(|m|+ 1)|γη,i(m)| < ∞ (2.7)

and is such that the eigenvalues of the T × T covariance matrices are

uniformly bounded away from zero, i.e., infi,T λmin (Ση,i) > 0.

Remark 2.1.1 The Gaussianity of ηit facilitates a relatively easy proof of

the LAN-results and it seems to be very difficult to generalize this assumption;

even for first-generation frameworks no results on limit experiments and power

envelopes are available yet for the non-Gaussian case. For the proposed asymp-

totically uniformly most powerful test, we stress that it is also valid (i.e., has

correct asymptotic size, under suitable moment-conditions) in non-Gaussian

settings.

Remark 2.1.2 The imposed restrictions on serial correlation are sometimes

phrased in terms of spectral densities. Note that our assumption on the bound-

edness of the eigenvalues is implied by the spectral density being uniformly

bounded away from zero (see, for example, Proposition 4.5.3 in Brockwell

and Davis (1991)). Similarly, they are sometimes phrased in terms of lin-

ear processes on which analogous assumptions are imposed; see, for example,

Assumption C in Bai and Ng (2004) and Assumption 2 in Moon and Per-

ron (2004). Finally, note that a collection of causal ARMA processes satisfies

Assumption 2.1 if the roots are uniformly bounded away from the unit-circle.

Remark 2.1.3 Note that, under Assumption 2.1, the long-run variances of

the {ηit}, ω2
η,i, are also uniformly bounded and uniformly bounded away from

zero.4 Moreover, the one-sided long-run variances

δη,i =

∞∑
m=1

γη,i(m) =
1

2

(
ω2
η,i − γη,i(0)

)
, i ∈ N,

4 The former directly follows from (2.7) whereas the latter follows from ω2
η,i =

limT→∞
1
T
ι′Ση,iι ≥ limT→∞

1
T
λmin (Ση,i) ι

′ι ≥ infi,T λmin (Ση,i) > 0.
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are also well-defined.

As already announced, we also need to impose some stability on the factor

loadings λki, which we assume to be fixed. Assumption 2.2 is standard in the

literature, c.f. Assumption A in Bai and Ng (2004) or Assumption 6 in Moon

and Perron (2004). It is commonly referred to as the factors being ‘strong’.

Assumption 2.2 There exists a positive definite K×K matrix ΨΛ such that

limn→∞
1
nΛ

′Λ = ΨΛ. Moreover, maxk=1,...,K supi∈N |λki| < ∞.

For univariate time series it is known (see, for example, Müller and Elliott

(2003)) that the initial value can have a non-negligible impact on the asymp-

totic behavior of unit root tests. Our assumption on the initial values is as

follows.

Assumption 2.3 We assume zero starting values: Ei0 = 0 and Fk0 = 0.

We refer to Section 6.2 in Moon, Perron, and Phillips (2007) for a discussion

on why relaxing initial conditions can be problematic in a panel context and

do not pursue this issue further, except by noting that our tests are invariant

with respect to the mi.

Assumption 2.4 below specifies the asymptotic framework we consider

throughout this chapter. We follow Moon and Perron (2004), Bai and Ng

(2010), and Westerlund (2015) in considering large ‘macro panels’, where both

n and T go to infinity, but T will be the larger dimension. We derive all our

results using joint asymptotics, which yields more robust results than taking

sequential limits where first T → ∞ and subsequently n → ∞.

Assumption 2.4 We consider joint asymptotics, in the Phillips and Moon

(1999) sense, with n/T → 0.

Finally, Assumption 2.5 below specifies that we either operate in the PANIC

(case (a)) or in the MP (case (b)) framework. In the PANIC framework, we

allow the long-run variance of the factor innovations to be zero, so that we con-

sider both integrated and stationary factors. This is ruled out in the MP case,

in which the factors have the same order of integration as the idiosyncratic

parts.
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Assumption 2.5 One of the below holds:

(a) For each factor Fk, k = 1, . . . ,K, we have ρk = 1, or,

(b) For each factor k = 1, . . . ,K, we have ρk = ρ. Moreover, {fkt} is

Gaussian and its long-run variance exists and is positive.

2.2 Limit Experiment and Power Envelope

We phrase our hypotheses about ρ in (2.1)–(2.4) using the local parameteri-

zation

ρ = ρ(n,T ) = 1 +
h√
nT

. (2.8)

As shown below, these rates indeed lead to contiguous alternatives, which

allow us to obtain the (local) power of our tests.5 The unit root hypothesis

can be reformulated in terms of the “local parameter” h:

H0 : h = 0 versus Ha : h < 0.

Remark 2.2.1 We do not allow for ‘heterogeneous alternatives’, i.e. we im-

pose that ρ does not differ across panel units. This helps to unify the treatment

of the two setups. Indeed, a more general MP framework, Yit = ρiYi,t−1 + εit,

can no longer be rewritten in the PANIC form of (2.1)–(2.4). Becheri, Drost,

and Van den Akker (2015a) prove that, for the case without factors, unob-

served heterogeneity in the autoregressive parameters has no impact on the

power envelope or optimal tests. Therefore, in Section 2.5 we also investi-

gate the performance of our tests in the presence of heterogeneous alternatives;

those results seem to confirm their conclusion that there is no impact on power

also for the general factor case.

5 Note that the rate depends favourably both on n and T . This can be interpreted as a

‘blessing of dimensionality’ that originally motivated the use of panel unit-root tests.
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In this section we show that likelihood ratios related to the unit root hy-

pothesis, for the MP and for the PANIC framework, exhibit the same local

asymptotic expansion. For both setups, we consider the likelihood ratio for

observing Zit in case ρ is the only unknown parameter. Hence, the number

of factors K, the factor loadings λki, the autocovariance functions, and the

fixed effects mi are considered as known in this section. We will first show, for

each model separately, that its likelihood ratio satisfies an expansion, under

the null hypothesis, of the form

log
dPh,n,T

dP0,n,T
= h∆n,T − h2J/2 + op(1)

with Fisher-information J = 1/2. In Section 2.2.3, we consider the limiting

distribution of their common central sequence ∆n,T and will conclude that

both experiments enjoy the LAN-property. This result allows us to treat the

two setups jointly and to obtain three main results. Firstly, it yields an upper

bound to the local asymptotic powers of tests (that are valid in case the nui-

sance parameters are unknown). Secondly, in Section 2.3 we propose a new

test, valid in case the nuisance parameters are unknown, that attains this up-

per bound. This demonstrates that our test is locally asymptotically uniformly

most powerful (UMP) and that the Gaussian MP and PANIC experiments are

adaptive with respect to the nuisance parameters. Thirdly, the LAN results

allow us to show that any test, satisfying a mild regularity condition, has the

same, typically nonoptimal, local asymptotic power function under both data

generating processes.

Remark 2.2.2 For unit root problems in (univariate) time series, limit ex-

periment theory has been exploited by, amongst others, Jansson (2008) and

Zhou, Van den Akker, and Werker (2019). That limit experiment is of the

Locally Asymptotically Brownian Functional (LABF) type for which asymp-

totically UMP tests do not exist. Also in our case, the central sequence could

be written as an (approximate) stochastic integral. However, we obtain an

additional sum across panel units. Combined with a CLT-type argument, but

now in the more complicated joint (n, T )-convergence case, this sum is the

intuition for the Gaussian limits we obtain in this panel setting.
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2.2.1 Expanding the likelihood in the PANIC setup

For the PANIC case we will assume, in this subsection, that the factors Fkt are

observed. Just as for the nuisance parameters, we show in Section 2.3 that the

resulting likelihood ratio can still be approximated by an observable version

(up to a negligible term). This result implies that observing the factors will not

lead to an increase in local asymptotic power for the PANIC framework. This

appears to be a surprising result. Indeed, Moon, Perron, and Phillips (2014)

derived the power envelope for a first-generation data generating process that

basically corresponds to PANIC with observed factors. Our analysis implies

that, for the PANIC framework, the same power envelope applies. We stress

that for the MP setting the situation is different: Becheri, Drost, and Van den

Akker (2015b) report higher powers in case factors are observed and Juodis

and Westerlund (2018) show power gains when covariates correlated to the

innovations are observed.

Denote the joint law of F and Z under Assumptions 2.1, 2.2 and 2.4

and Item (a) of Assumption 2.5 by PPANIC
h,n,T . Using η ∼ N(0,Ση) and η =

∆E − hE−1/(
√
nT ), we obtain the log-likelihood ratio

log
dPPANIC

h,n,T

dPPANIC
0,n,T

=
h√
nT

∆E′A′Σ−1
η ∆E − h2

2nT 2
∆E′A′Σ−1

η A∆E

=: h∆PANIC
n,T − 1

2
h2JPANIC

n,T .

Note, from (2.6), ∆Ẽ = ∆Ỹ − ∆F̃Λ′ , implying ∆E is indeed observable in

this PANIC framework (with observed factors as considered here). Moreover,

under PPANIC
0,n,T , ∆E = η. We now show that we can replace variances by long-

run variances, to obtain a more tractable version of the central sequence and

empirical Fisher information.

Lemma 2.2.1 Suppose that Assumptions 2.1, 2.2 and 2.4 and Item (a) of

Assumption 2.5 hold. Then we have, under PPANIC
0,n,T , (∆PANIC

n,T , JPANIC
n,T ) =

(∆n,T ,
1
2) + op(1), where

∆n,T =
1√
nT

∆E′A′Ψ−1
η ∆E − 1√

n

n∑
i=1

δη,i,T
ω2
η,i,T

, with Ψ−1
η = Ω−1

η ⊗ IT .
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Remark 2.2.3 The simplified central sequence ∆n,T is the result of substitut-

ing Σ−1
η by Ψ−1

η . To obtain the correct centering, a correction term involving

the one-sided long-run variance is needed for each panel unit. This is anal-

ogous to the univariate case, see Elliott, Rothenberg, and Stock (1996), and

arises due to the fact that, contrary to Σ
−1/2
η ∆E, Ψ

−1/2
η ∆E exhibits serial

correlation.

2.2.2 Expanding the likelihood in the Moon and Perron (2004)

setup

Let us denote the law of Z under Assumptions 2.1, 2.2 and 2.4 and Item (b) of

Assumption 2.5 by PMP
h,n,T . Then the log-likelihood ratio of PMP

h,n,T with respect

to PMP
0,n,T is given by, using ε ∼ N(0,Σε) and ε = ∆Y − hY−1/(

√
nT ),

log
dPMP

h,n,T

dPMP
0,n,T

=
h√
nT

∆Y ′A′Σ−1
ε ∆Y − h2

2nT 2
∆Y ′A′Σ−1

ε A∆Y

=: h∆MP
n,T − 1

2
h2JMP

n,T .

In this more complicated model, we simplify the central sequence and also

the Fisher information in two steps. The first is analogous to the approxi-

mation in the PANIC setup, i.e., we replace variances by long-run variances.

Note that thanks to our independence assumptions, the nT × nT covariance

matrix of the ε can be written as

Σε = var ε =

K∑
k=1

(
λkλ

′
k ⊗ Σf,k

)
+Ση. (2.9)

Replacing Σf,k by ω2
f,k,T IT and Ση,i by ω2

η,i,T IT in (2.9) we obtain the simplified

versions of central sequence

∆̃MP
n,T :=

1√
nT

∆Y ′A′Ψ−1
ε ∆Y − 1√

n

n∑
i=1

δη,i,T
ω2
η,i,T

, (2.10)

where the nT × nT matrix Ψε is defined by

Ψε := ψε ⊗ IT :=
(
ΛΩFΛ

′ +Ωη

)
⊗ IT , (2.11)



575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert
Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022 PDF page: 42PDF page: 42PDF page: 42PDF page: 42

CHAPTER 2. EQUIVALENCE OF FRAMEWORKS 34

with Ωη = diag(ω2
η,1,T , . . . , ω

2
η,n,T ) and ΩF = diag(ω2

f,1,T , . . . , ω
2
f,K,T ). The

following lemma demonstrates that applying these replacements to the central

sequence and Fisher information do not affect their asymptotic behavior.

Lemma 2.2.2 Suppose that Assumptions 2.1, 2.2 and 2.4 and Item (b) of

Assumption 2.5 hold. Then we have, under PMP
0,n,T , (∆

MP
n,T , J

MP
n,T ) = (∆̃MP

n,T ,
1
2)+

op(1).

Remark 2.2.4 In the MP case, the covariance matrix that is approximated by

long-run variances is not block diagonal. Therefore, contrary to Lemma 2.2.1,

the proof of Lemma 2.2.2 exploits the Assumption that n/T → 0.

Exploiting the Sherman-Morrison-Woodbury formula we obtain

Ψ−1
ε = ψ−1

ε ⊗ IT =
(
Ω−1
η − Ω−1

η Λ
(
Ω−1
F + Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

)
⊗ IT . (2.12)

Note that removing Ω−1
F from (2.12) yields a projection matrix correspond-

ing to ‘projecting out the factors’. Thus, basing a central sequence on such a

projection matrix would simplify approximating it based on observables by re-

moving the need to estimate Ω−1
F and, more importantly, by ensuring that the

factors are projected out. The next lemma shows that using such a projection

version ψ∗
ε
−1 of ψ−1

ε in the central sequence does not change its asymptotic

behaviour.

Lemma 2.2.3 Suppose that Assumptions 2.1, 2.2 and 2.4 and Item (b) of

Assumption 2.5 hold. Then we have, under PMP
0,n,T , ∆̃MP

n,T = ∆∗
n,T + op(1),

where

∆∗
n,T =

1√
nT

∆Y ′A′(ψ∗
ε
−1 ⊗ IT )∆Y − 1√

n

n∑
i=1

δη,i,T
ω2
η,i,T

, with (2.13)

ψ∗
ε
−1 =Ω−1

η − Ω−1
η Λ

(
Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η . (2.14)

2.2.3 Asymptotic normality

Having simplified each framework’s central sequence and Fisher information

separately, we are now ready to show that they are asymptotically equiva-

lent and the central sequences converge to a normal distribution. We begin
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this section by showing that the central sequence in the MP framework is

asymptotically equivalent to the one in the PANIC framework.

Lemma 2.2.4 Suppose that Assumptions 2.1, 2.2, 2.4 and 2.5 hold. Then we

have, under PPANIC
0,n,T and PMP

0,n,T , ∆
∗
n,T = ∆n,T + op(1).

Finally, we consider the weak limit of the central sequence ∆n,T (and there-

fore also of ∆∗
n,T ), showing that both experiments are locally asymptotically

normal.

Proposition 2.2.1 Suppose that Assumptions 2.1, 2.2, 2.4 and 2.5 hold.

Then we have, under PPANIC
0,n,T and PMP

0,n,T , ∆n,T
d−→ N(0, J) with J = 1

2 .

Remark 2.2.5 Under the null hypothesis, the model equations of both mod-

els coincide. Hence, the additional distributional Item (b) of Assumption 2.5

implies that under the null, the MP framework is a special case of the PANIC

framework. Therefore, it is sufficient to show the desired convergence for

PPANIC
0,n,T . This principle applies to all calculations under the hypothesis. As

the central sequences are equal as well and thanks to the LAN result below, it

even extends to many calculations under alternatives, through Le Cam’s Third

Lemma.

Proposition 2.2.1 is an important result as it establishes that the unit root

testing problem in both models is locally asymptotically normal, i.e., it is

asymptotically equivalent to testing h = 0 against h < 0 based on one obser-

vation X ∼ N(Jh, J). This equivalence prescribes how to perform asymptot-

ically optimal inference and yields the asymptotic local power envelope and

the power functions of various test statistics: The asymptotic representation

theorem (see, for example, Chapter 9 in Van der Vaart (2000)) implies that

in our framework no unit root test can have higher power than the optimal

test in the limit experiment. This best test is clearly rejecting for small val-

ues of X, leading to a power (for a level-α test) of Φ(Φ−1(α)− J1/2h). Thus,

with J = 1/2, this constitutes the power envelope for our unit root testing

problems:
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Corollary 2.2.1 Suppose that Assumptions 2.1, 2.2 and 2.4 and Item (a) of

Assumption 2.5 hold. Let φn,T = φn,T (Z11, . . . , ZnT ) be a sequence of tests

and denote their powers, under PPANIC
h,n,T , by πn,T (h). If the sequence φn,T is

asymptotically of level α ∈ (0, 1), i.e. lim supn,T→∞ πn,T (0) ≤ α, we have, for

all h ≤ 0,

lim sup
n,T→∞

πn,T (h) ≤ Φ

(
Φ−1(α)− h√

2

)
. (2.15)

Replacing Item (a) of Assumption 2.5 by Item (b) of Assumption 2.5, the same

bound applies to powers under PMP
h,n,T .

The above power envelope would be reached by any of our previously intro-

duced central sequences.6 In the next section we show that we can approxi-

mate these central sequences based on observables, yielding a feasible test that

attains the asymptotic power envelope.

2.3 An Asymptotically UMP Test

In the previous section we derived a testing procedure that reaches the power

envelope for the unit root testing problem. This test, however, is not feasible

when the nuisance parameters are unknown. In this section, we demonstrate

how to estimate the nuisance parameters to obtain a feasible version that also

attains the power envelope. We provide a feasible version of ∆∗
n,T , which is

motivated by the likelihood ratio in the MP experiment. As (2.14) projects

out the factors, basing our feasible version on ∆∗
n,T instead of ∆n,T spares us

the approximation of the idiosyncratic parts.

Recalling our LAN results in Section 2.2 and that the central sequences are

asymptotically equivalent across the two setups (see Lemma 2.2.4) it is clear

that a feasible version of ∆∗
n,T would be optimal. Therefore, we show that

replacing all nuisance parameters with estimates does not change the limiting

behavior of ∆∗
n,T . Specifically, we need estimates Λ̂ of the factor loadings, as

6 This always holds in LAN experiments and follows from Le Cam’s Third Lemma (see,

for example, Chapter 6 in Van der Vaart (2000).
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well as estimates δ̂η,i and ω̂2
η,i of the (one-sided) long-run variances of each

idiosyncratic part. The feasible test statistic is then

∆̂n,T =
1√
nT

T∑
t=2

t−1∑
s=2

∆Z ′
·,sψ̂

−1
ε ∆Z·,t −

1√
n

n∑
i=1

δ̂η,i
ω̂2
η,i

, where (2.16)

ψ̂−1
ε :=Ω̂−1

η − Ω̂−1
η Λ̂(Λ̂′Ω̂−1

η Λ̂)−1Λ̂′Ω̂−1
η . (2.17)

Assumption 2.6 Let δ̂η,i, ω̂
2
η,i and Λ̂ be estimators of δη,i, ω

2
η,i and Λ satis-

fying, under PMP
0,n,T and PPANIC

0,n,T ,

1. maxi=1,...,n E|δ̂η,i − δη,i|2 = o(1/n),

2. maxi=1,...,n E|ω̂2
η,i − ω2

η,i|2 = o(1/n), and

3. for a K × K matrix HK satisfying ‖HK‖F = Op(1) and
∥∥H−1

K

∥∥
F

=

Op(1), we have
∥∥∥ΛHK − Λ̂

∥∥∥
F
= op(1).

Under suitable restrictions on the bandwidth and the kernel, conditions

Items 1 and 2 hold for kernel spectral density estimates; see Remark 2.9 in

Moon, Perron, and Phillips (2014). Item 3, on the other hand, is stronger

that the results in Moon and Perron (2004), so we show in Lemma 2.3.1 that

it indeed holds under our assumptions.

Lemma 2.3.1 Let Λ̄ be
√
n times the n × K matrix containing the K or-

thonormal eigenvectors corresponding to the K largest eigenvalues of ∆Z̃′∆Z̃
nT .

Take Λ̂ = ∆Z̃′∆Z̃
nT Λ̄. There exists a K ×K matrix HK such that, under PMP

0,n,T

and PPANIC
0,n,T ,

∥∥∥ΛHK − Λ̂
∥∥∥
F
= op(1) and both ‖HK‖F and

∥∥H−1
K

∥∥
F
are Op(1).

Remark 2.3.1 These factor estimates are the same as those used in Moon

and Perron (2004) and correspond to factor estimates based on classical prin-

cipal component analysis. We adapt the proof of Moon and Perron (2004), who

have demonstrated
∥∥∥ΛHK − Λ̂

∥∥∥
F

= Op(1), but we treat one term differently,

see Remark 2.A.2.

Remark 2.3.2 The factors are only identified up to a ‘rotation’ HK . Note

that ∆∗
n,T is (indeed) invariant under such rotations, as ψ∗

ε
−1 also equals

Ω−1
η − Ω−1

η ΛHK

(
H ′

KΛ′Ω−1
η ΛHK

)−1
H ′

KΛ′Ω−1
η .
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Lemma 2.3.2 Under Assumptions 2.1, 2.2 and 2.4–2.6 we have, under PMP
0,n,T

and PPANIC
0,n,T , ∆̂n,T = ∆∗

n,T + op(1).

Although Lemma 2.3.2 only concerns adaptivity under the null hypothesis H0,

we can use Le Cam’s First Lemma to obtain that, thanks to contiguity, also

under PMP
h,n,T or PPANIC

h,n,T , ∆̂n,T has the same limiting distribution as ∆∗
n,T , so

that tests based on ∆̂n,T will be uniformly most powerful. Formally, the size

and power properties of our optimal test follow from the following theorem.

Theorem 2.3.1 Let tUMP =
√
2∆̂n,T . Under Assumptions 2.1, 2.2 and 2.4–

2.6 we have, under PMP
h,n,T and PPANIC

h,n,T ,

tUMP
d−→ N

(
1√
2
h, 1

)
.

Rejecting H0 for tUMP ≤ Φ−1(α), α ∈ (0, 1), leads to an asymptotic power

of Φ
(
Φ−1(α)− h√

2

)
, implying that tUMP is asymptotically uniformly most

powerful.

Remark 2.3.3 The asymptotic size of our test can also be obtained under

weaker assumptions not exploiting Gaussianity, see Remarks 2.A.1 and 2.A.3.

In such a situation, our test is still valid although perhaps non-optimal. For

optimal inference with non-Gaussian innovations a new analysis of the likeli-

hood ratio would be needed, but this is not feasible here.

Remark 2.3.4 Note that the limiting distribution of tUMP, both under the null

hypothesis and under local alternatives, does not depend on the autocorrelations

or the heterogeneity of the long-run variances. This shows that the decrease

in asymptotic power attributed to these features, for example in Remark 2 of

Westerlund (2015) was due to the specific tests under consideration rather

than being a feature of the unit root testing problem.

Remark 2.3.5 Note that ∆̂n,T only involves differenced data, so that our test

is invariant with respect to the incidental intercepts mi.

Here is one way to obtain the UMP test in practice:
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1. Compute an estimator K̂ of the number of common factors on the basis

of the observations ∆Z·t, t = 2, . . . , T using information criteria from

Bai and Ng (2002).7

2. Use the observations ∆Z·t, t = 2, . . . , T , and K̂ to determine the factor

loadings Λ̂ and the factor residuals η̂·t, t = 2, . . . , T , using principal

components.

3. Determine estimates ω̂2
η,i of ω2

η,i and δ̂η,i of δη,i from η̂·t, t = 2, . . . , T ,

using kernel spectral density estimates. Let Ω̂ = diag(ω̂2
η,1, . . . , ω̂

2
η,n).

4. Calculate the estimated central sequence ∆̂n,T as in (2.16) and reject

when tUMP =
√
2∆̂n,T ≤ Φ−1(α). Alternatively, based on small sample

considerations, also estimate the empirical Fisher information

Ĵn,T :=
1

nT 2

T∑
t=2

t−1∑
s=2

∆Z ′
·,sψ̂

−1
ε

t−1∑
u=2

∆Z·,u,

and reject the null hypothesis when temp
UMP := ∆̂n,T /

√
Ĵn,T ≤ Φ−1(α).

Remark 2.3.6 Although the uniformly most powerful test tUMP does not re-

quire a complicated estimate of the known J = 1/2, it can be undersized in

small samples, whereas the empirical version temp
UMP behaves very well in most

DGPs, both in terms of size and power. Thus we recommend to use the temp
UMP

in small samples. See Section 2.5 for details.

2.4 Comparing Powers Across Tests and Frame-

works

This section derives the asymptotic powers of commonly used tests in both the

Moon and Perron (2004) and the Bai and Ng (2004) frameworks. Recall that

the two frameworks are identical under the null hypothesis and write P0,n,T for

both PPANIC
0,n,T and PMP

0,n,T . We start by formalizing our observation that local

powers are equal across the two frameworks.

7 As (n, T → ∞), these criteria select the correct number of factors with probability one.

Therefore, we can treat the number of factors as known in our asymptotic analyses.
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Corollary 2.4.1 Let tn,T be a test statistic that, under P0,n,T , converges in

distribution jointly with ∆n,T . Then, for all x ∈ R, and all h,

lim
(n,T→∞)

PMP
h,n,T [tn,T ≤ x] = lim

(n,T→∞)
PPANIC
h,n,T [tn,T ≤ x].

If, more specifically, tn,T
P0,n,T→ N(µ, σ2) and if tn,T and ∆n,T are jointly

asymptotically normal under P0,n,T with asymptotic covariance σ∆,t, its lim-

iting distribution under local alternatives is given by

tn,T
PPANIC
h,n,T→ N(µ+ hσ∆,t, σ

2), and tn,T
PMP
h,n,T→ N(µ+ hσ∆,t, σ

2).

Thus, rejecting for small values of tn,T leads to an asymptotic power for a

level-α test of Φ(Φ−1(α)− hσ∆,t/σ) in both frameworks.

Once again, our result on the asymptotic equivalence of the two experiments

allows us to obtain results for both frameworks at the same time. By demon-

strating the joint normality under the null as in Corollary 2.4.1 we obtain sim-

ple proofs of the powers of commonly used tests in these frameworks, without

ever relying on triangular array calculations. To show the elegance of this

approach, we include here the full argument for the first part of this corol-

lary. The second part follows immediately from a more specific version of Le

Cam’s third lemma, which directly prescribes the desired normal distribution

under alternatives. We can use this simple way to obtain powers under local

alternatives thanks to our LAN results of Section 2.2.

Denote the weak limit of (tn,T ,∆n,T ) under P0,n,T by (t,∆). Thanks to

our results in Section 2.2, both (tn,T ,
dPPANIC

h,n,T

dPPANIC
0,n,T

) and (tn,T ,
dPMP

h,n,T

dPMP
0,n,T

) converge in

distribution to (t, exp(h∆ − h2/4)). By a general form of Le Cam’s third

lemma, the distribution of tn.T under local alternatives only depends on this

joint limiting law and is thus equal across the two frameworks (see Theorem

6.6 in Van der Vaart (2000)).

Remark 2.4.1 The equality of powers across the two frameworks applies to

the practically relevant case of the factors being unobserved. In the PANIC set-

ting, observing the factors does not yield any additional power. This in sharp

contrast to other data generating processes, used in the literature on panel unit
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roots, where observing factors or correlated covariates does yield additional

power; see, for example, Pesaran, Smith, and Yamagata (2013), Becheri,

Drost, and Van den Akker (2015b), and Juodis and Westerlund (2018).

Before we apply Corollary 2.4.1 to derive asymptotic powers, we first de-

scribe the relevant test statistics in some detail. We focus on the tests proposed

in Bai and Ng (2010) (‘BN tests’) and Moon and Perron (2004) (‘MP tests’).

Following these papers, we denote

ω2 = lim
n→∞

1

n

n∑
i=1

ω2
η,i, φ4 = lim

n→∞

1

n

n∑
i=1

(
ω2
η,i

)2
, δ = lim

n→∞

1

n

n∑
i=1

δη,i, (2.18)

all assumed to be positive, and their estimated counterparts

ω̂2 =
1

n

n∑
i=1

ω̂2
η,i, φ̂4 =

1

n

n∑
i=1

(
ω̂2
η,i

)2
, and δ̂ =

1

n

n∑
i=1

δ̂η,i.

Finally, we define ω4 = (ω2)2 and ω̂4 = (ω̂2)2.

Both the MP and BN tests rely on a two stage procedure. In the first stage,

the unobserved idiosyncratic innovations E are estimated. Subsequently, a

pooled regression procedure is used to estimate the (pooled) autoregression

parameter. This pooled estimator is then used to construct a t-test. The

main difference between the MP and the BN procedures lies in the way the

idiosyncratic innovations are estimated.

Bai and Ng (2010) propose to estimate the idiosyncratic errors E by the

PANIC approach introduced in Bai and Ng (2004), which in turn relies on

principal component analysis applied to the differences ∆Yit. Denoting this

estimator of Ei by Êi, the BN tests are

Pa =

√
nT (ρ̂+ − 1)√

2φ̂4/ω̂4

and

Pb =
√
nT (ρ̂+ − 1)

√√√√ 1

nT 2

n∑
i=1

Ê′
−1,iÊ−1,i

ω̂2

φ̂4
, where

ρ̂+ =

∑n
i=1 Ê

′
−1,iÊi − nT δ̂∑n

i=1 Ê
′
−1,iÊ−1,i

is a bias-corrected pooled estimator for the autoregressive coefficients.
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Remark 2.4.2 Recall that temp
UMP is a modification of tUMP that replaces the

asymptotic Fisher Information J = 1/2, with its finite sample equivalent in

the MP setup, J̃MP
n,T . The resulting statistics can be considered a version of Pb:

In the case of homogeneous long-run variances, inserting the true long-run

variances into temp
UMP yields Pb. Conversely, temp

UMP is a version of Pb that takes

into account the heterogeneity in the long-run variances.

The MP tests are based on a different estimator of ρ. The idiosyncratic

components Ei are estimated by projecting the data on the space orthogonal

to the common factors. Let Λ̂ be a consistent estimators for Λ as defined on

p. 89–90 of Moon and Perron (2004), and Y·,t = (Y1t, . . . , Ynt)
′. Then the MP

test statistics are given by

ta =

√
nT (ρ+pool − 1)√

2φ̂4/ω̂4

, and

tb =
√
nT (ρ+pool − 1)

√√√√ 1

nT 2

T∑
t=1

Y ′
·,t−1Qγ̂Y·,t−1

ω̂2

φ̂4
, where

ρ+pool =

∑T
t=1 Y

′
·,tQγ̂Y·,t−1 − nT δ̂∑T

t=1 Y
′
·,t−1Qγ̂Y·,t−1

, and Qγ̂ = I − Λ̂(Λ̂′Λ̂)−1Λ̂′.

We are now ready to compute the asymptotic behaviour of the MP and BN

tests under local alternatives by an application of Corollary 2.4.1. The power

of the MP tests in the MP framework has been derived in Moon and Perron

(2004) and that of the BN tests in the PANIC framework has been derived in

Westerlund (2015). Given our LAN result, we can provide simple independent

proofs of these results. These rely on the second part of Corollary 2.4.1; we

demonstrate the required joint asymptotic normality in a supplementary ap-

pendix. More importantly, our approach also leads to new results, namely the

asymptotic powers of the MP test in the PANIC framework and the asymp-

totic powers of the BN tests in the MP framework. In fact, those results can

be considered an immediate consequence of the first part of Corollary 2.4.1

and the existing power results in the literature.
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Proposition 2.4.1 Suppose that Assumptions 2.1, 2.2 and 2.4–2.6 hold.

Then, under PPANIC
h,n,T or PMP

h,n,T , as (n, T → ∞), the test statistics Pa, Pb, ta,

and tb all converge in distribution to a normal distribution with mean h
√

ω4

2φ4

and variance one. Rejecting for small values of any of these statistics leads

to an asymptotic power for a level-α test of Φ(Φ−1(α) − h
√

ω4

2φ4 ) in both

frameworks.

Remark 2.4.3 It turns out that the powers are equal, no matter which test

statistic and which framework is considered. We have discussed in some detail

that, for a given test, the equality of powers across frameworks is a general

phenomenon. The fact that in each framework, the power of the MP tests is

equal to that of the BN tests, on the other hand, is a ‘coincidence’. Originally,

the MP tests have been developed for the MP experiment, whereas the BN

tests are designed for the PANIC experiment. It has been noted in Bai and

Ng (2010) that the MP tests are valid in term of size in the PANIC setup for

testing the idiosyncratic component of the innovation for a unit root but their

(local and asymptotic) power in the PANIC framework has not been considered.

More discussion on the use of the MP tests in the PANIC setup can be found

in Bai and Ng (2010) and Gengenbach, Palm, and Urbain (2010). Similarly,

to the best of our knowledge there are no studies on the local asymptotic power

of the BN tests in the MP framework.

The Cauchy-Schwarz inequality implies ω4

φ4 ≤ 1, thus Proposition 2.4.1 shows

that, in general, the local asymptotic power of the MP and BN tests lies

below the power envelope. In fact, they are all asymptotically UMP only

when ω4

φ4 = 1. This condition is satisfied when the long-run variances of the

idiosyncratic shocks ηit are homogeneous across i. The proposed test tUMP

is asymptotically UMP irrespective of possible heterogeneity. In Section 2.5

we assess whether the asymptotic power gains, compared to the MP and BN

tests, are also reflected in finite samples for realistic parametric settings.
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2.5 Simulation results

This section reports the results of a Monte-Carlo study with three main goals:

firstly, to assess the finite sample performance of our proposed test tUMP,

secondly, to see how the asymptotic equivalence between the Moon and Perron

(2004) and PANIC setups is reflected in finite samples, and, finally, to check

the robustness of our results to deviations from our assumptions.

2.5.1 The DGPs

We generate the data from (2.1)–(2.4) with mi = 0.8 Using sample sizes

n = 25, 50, 100 and T = n, 2n, 4n, we simulate both the MP and the PANIC

setups.9 Recall that, for a local alternative h, we take ρ = 1 + h√
nT

in both

setups. In the MP case we also set ρk = ρ, whereas in the PANIC case we set

ρk = 1 under the null and all alternatives. The factor loadings Λ are drawn

from a normal distribution with mean K−1/2 and covariance matrix K−1IK .10

Most of the simulations are run with K = 1 but we also explore what happens

with more factors. Throughout this section we assume the number of factors

to be known. For the innovation processes fkt and ηit we examine Gaussian

i.i.d., MA(1), and AR(1) processes. We fix the MA or AR parameter at 0.4

and set the variance such that the long-run variances of the fkt equal one, and

the long-run variance of the ηit is ω
2
i . The ω

2
i are drawn i.i.d. from a lognormal

distribution whose parameters are chosen to match different values of ω4/φ4

and a mean of one.11

8 Recall that our tests are invariant with respect to mi.

9 While it is not clear that the n/T → 0 asymptotics are a good approximation in the

T = n case, we consider this case to test the robustness of our results.

10 As done in Moon and Perron (2004), we scale by
√
K to ensure the contribution of the

factors is comparable across specifications.

11 Recall from Section 2.4 that the asymptotic relative efficiency of the existing tests com-

pared to our UMP test depends on the heterogeneity of the long-run variances and

more specifically on the ratio ω4/φ4. Therefore, the sample size at which it becomes

worthwhile to estimate the heterogeneous long-run variances (i.e., use the asymptoti-

cally UMP tests suggested here) mainly depends on this ratio. We present simulation

results for
√

ω4/φ4 between 0.6 and 1, where lower values indicate more heterogeneity.
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Figure 2.1: Difference between powers in the MP vs the PANIC framework

as a function of −h with i.i.d. factor innovations and i.i.d. idiosyncratic parts

and
√

ω4/φ4 = 0.8. Based on 1 000 000 replications.

2.5.2 The test statistics

In addition to the tests proposed in Section 2.3, tUMP and temp
UMP, we consider

the MP tests of Moon and Perron (2004) and the BN tests of Bai and Ng

(2010). However, the powers and sizes of the (MP) tb and (BN) Pb tests were

very similar also in finite samples, so we only report results for Pb. We omit

A cursory look at a few typical applications reveals that these ratios are mostly between

0.6 and 0.8 and match the skewed nature of the lognormal distribution.



575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert
Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022 PDF page: 54PDF page: 54PDF page: 54PDF page: 54

CHAPTER 2. EQUIVALENCE OF FRAMEWORKS 46

the comparison with Pa and ta since they tend to show large biases in terms

of size (see, for example, the Monte Carlo studies in Gengenbach, Palm, and

Urbain (2010) and Bai and Ng (2010)).

The sizes of all considered tests are highly sensitive to estimation of the

(one-sided) long-run variances. We have considered a variety of methods, for

example, using a Bartlett or quadratic spectral kernel and selection of the

bandwidth according to the Newey and West (1994) or the Andrews (1991)

rule with/without various forms of prewhitening. Whereas the differences

from using different kernels are small, the selection of both the bandwidth

and the prewhitening are essential. Our preferred method employs a Bartlett

kernel with prewhitening.12 There is a size-power tradeoff between using the

Andrews (1991) and the Newey and West (1994) bandwidth selection: The

Andrews (1991) bandwidth leads to higher powers for the smallest sample

sizes, but an oversized test when the innovations have a strong MA compo-

nent. The decision which bandwidth to use thus depends on the preferences

of the researcher. In this section, all results are based on the Andrews (1991)

bandwidth. However, the sizes and powers based on the Newey and West

(1994) bandwidth can be found in a supplementary appendix.

2.5.3 Sizes

Table 2.1 reports the sizes of our tests for the baseline DGP based on the An-

drews bandwidth. Many other specifications can be found in the supplemental

appendix. Recall that the sizes depend considerably on how the long-run vari-

ances are estimated. Using the method described above, the sizes of temp
UMP

reasonable across most DGPs and generally comparable to those of Pb. tUMP,

on the other hand, is undersized in many specifications, so that we focus on its

empirical version temp
UMP in the remainder. Only in the MA(1) example, both

temp
UMP and Pb are oversized (temp

UMP is more oversized for the smallest sample

sizes and marginally less oversized in the larger ones). Thus, when a strong

MA component is suspected, we recommend to use tests based on the Newey

12 As in Moon, Perron, and Phillips (2014), the prewhitening model is selected based on

the BIC between four simple ARMA models.
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Figure 2.2: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations and

i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on 100 000 replications.

and West (1994) bandwidth. Generally, the Newey and West (1994) band-

width provides better sizes, especially in the MA case. However, small sample

powers are slightly lower. Both sizes and powers based on the Newey and

West (1994) bandwidth can be found in a supplementary appendix.

2.5.4 Powers

We start this subsection by investigating the finite-sample differences between

the MP and the PANIC setups. Recall that we have shown that the asymp-
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.6 2.8 3.1 1.8 4.5 4.2 2.2 7.0 5.6

25 50 0.6 1.4 4.7 4.0 1.7 4.9 3.6 3.1 8.9 6.2

25 100 0.6 1.8 5.5 4.6 2.3 6.1 4.1 3.9 10.1 6.7

50 50 0.6 2.0 4.3 3.7 2.5 4.5 3.5 5.3 9.9 6.6

50 100 0.6 2.6 5.1 4.2 2.9 5.2 3.7 6.1 11.0 7.0

50 200 0.6 2.9 5.5 4.6 3.4 5.9 4.1 5.3 9.2 6.1

100 100 0.6 3.2 5.0 4.2 3.3 4.9 3.8 9.1 13.1 8.2

100 200 0.6 3.6 5.3 4.5 3.7 5.3 4.1 7.0 10.0 6.6

100 400 0.6 3.6 5.3 4.5 4.3 6.1 4.5 4.9 7.1 5.1

25 25 0.8 0.9 3.1 3.5 1.8 4.3 4.7 2.4 6.7 6.4

25 50 0.8 1.8 5.1 4.6 1.7 4.4 4.0 3.1 8.3 7.2

25 100 0.8 2.3 5.8 5.2 2.2 5.3 4.6 3.9 9.3 7.8

50 50 0.8 2.4 4.6 4.2 2.4 4.2 4.2 5.1 9.3 8.3

50 100 0.8 3.0 5.4 4.8 2.6 4.6 4.3 5.9 10.1 8.5

50 200 0.8 3.3 5.7 5.2 3.1 5.2 4.7 5.0 8.4 7.1

100 100 0.8 3.5 5.1 4.6 3.1 4.4 4.4 8.7 12.3 10.4

100 200 0.8 3.8 5.5 5.0 3.3 4.7 4.5 6.6 9.2 7.9

100 400 0.8 3.9 5.5 5.1 3.9 5.5 5.0 4.7 6.6 5.9

25 25 1.0 1.0 3.3 3.9 1.9 4.3 5.4 2.4 6.5 7.2

25 50 1.0 2.0 5.2 5.1 1.7 4.2 4.5 3.2 8.1 8.2

25 100 1.0 2.6 6.0 5.8 2.1 5.0 5.1 3.9 8.9 8.8

50 50 1.0 2.5 4.7 4.6 2.4 4.0 5.0 5.2 9.2 10.1

50 100 1.0 3.1 5.4 5.2 2.6 4.4 4.8 5.8 9.8 10.0

50 200 1.0 3.4 5.7 5.6 3.0 5.0 5.1 4.9 8.2 8.1

100 100 1.0 3.6 5.2 4.9 3.0 4.2 4.9 8.6 12.1 12.6

100 200 1.0 3.9 5.5 5.3 3.2 4.6 4.9 6.5 9.0 9.1

100 400 1.0 4.0 5.6 5.5 3.8 5.3 5.5 4.6 6.4 6.4

Mean abs. dev. from 5% 2.3 0.6 0.6 2.3 0.5 0.6 1.4 4.1 2.7

Table 2.1: Sizes (in percent) of nominal 5% level tests with no heterogeneity

in the alternatives. Based on 1 000 000 replications. Andrews Bandwidth.
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Figure 2.3: (Size-corrected) power gains from using temp
UMP over Pb for varying

values of
√
ω4/φ4 and sample sizes in the PANIC framework with i.i.d. factor

innovations and i.i.d. idiosyncratic parts. Based on 100 000 replications.

totic, local power functions are the same and that (under some regularity

conditions) all tests have the same asymptotic power in the MP framework as

they do in the PANIC framework. Figure 2.1 compares the powers of temp
UMP

and Pb across the two frameworks.13 Indeed, also in small samples the powers

are very similar. Moreover, both a larger n and a larger T contribute to re-

13 All figures show size-corrected powers, i.e., powers based on exact simulation-based

critical values.
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duce the difference. When the factor is stationary under the hypothesis, the

difference is considerably smaller still. Noting the small scale on the y axis

in these plots, in the remainder we will only present results for the PANIC

framework, as the lines would otherwise be mostly indistinguishable.

We now turn to comparing the performance of the UMP tests to existing

ones. As discussed in Section 2.3, we need to estimate the individual long-run

variance of each idiosyncratic part in order to attain the power envelope. Of

course, this becomes easier with a larger time series dimension and is more

beneficial when the long-run variances differ substantially between series.

Figure 2.2 presents the baseline power results for a medium amount of

heterogeneity (
√
ω4/φ4 = 0.8). It is evident that even for relatively small

samples using the optimal test pays off: except for n = T = 25, the power of

temp
UMP is uniformly higher than that of Pb.

Next, Figure 2.3 presents the power difference between the optimal test

and Pb for varying degrees of heterogeneity. As expected, the higher the

amount of heterogeneity, the more beneficial it is to use the optimal test, also

in finite samples. In the case of perfect homogeneity, the losses from estimating

individual long-run variances are minor, except for the n = T = 25 case.

0 2 4 6 8 10

n = 25, T = 50

0 2 4 6 8 10

n = 50, T = 100

0 2 4 6 8 10

n = 100, T = 200

temp
UMP Pb Asympt. Power Envelope Asympt. Power MP/BN

Figure 2.4: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations

and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Innovations drawn from a t5

distribution. Note that the power envelopes refer to the Gaussian experiment.

Based on 100 000 replications.
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Finally, Figure 2.4 investigates powers when the innovations have a t5 dis-

tribution, rather than the Gaussian one underlying our optimality results.

Finite sample powers are not significantly different in this case. In the supple-

mental appendix, we investigate the effects of serial correlation and multiple

factors. Qualitatively, the power results are not affected by these variations in

the DGP. We also consider the robustness of our results to further deviations

of our assumptions: we consider the power against heterogeneous alternatives

and further investigate the effects of non-Gaussian innovations.

2.6 Conclusion and Discussion

This chapter shows that the MP and PANIC frameworks are equivalent, for

unit root testing, from a local and asymptotic point of view. Using the un-

derlying LAN-result, the local asymptotic power envelope for the MP and

PANIC frameworks readily follows. We show that the tests proposed in Moon

and Perron (2004) and Bai and Ng (2010) only attain this bound in case the

long-run variances of the idiosyncratic component are homogeneous. We de-

velop an asymptotically uniformly most powerful test; a Monte Carlo study

demonstrates that this test also improves on existing tests for finite-samples.

To obtain the local and asymptotic equivalence of the MP and PANIC

frameworks, we need to impose some restrictions. First, we assume that the

driving innovations are Gaussian. Second, we impose the deviations to the

unit root, under the alternative hypothesis, to be the same for all panel units.

And third, we do not allow for (incidental) trends. The Gaussianity facilitates

a relatively easy proof of the LAN-result and it seems to be rather difficult

to generalize this assumption; even for first-generation frameworks no results

are available yet. For the proposed asymptotically uniformly most powerful

test, we stress that Gaussianity is not required for its validity. In view of

Becheri, Drost, and Van den Akker (2015a) we do not expect that imposing

constant deviations to the unit root, under the alternative hypothesis, affects

our main results. The Monte Carlo results seem to confirm this conjecture

for finite-samples. To allow for incidental trends the proper strategy seems to

be to first determine the maximal invariant (i.e. determine which part of the
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observations is invariant with respect to the incidental trends), and to analyze

if the resulting maximal invariant satisfies a LAN-result (yielding the power

envelope). On basis of Moon, Perron, and Phillips (2007) we expect that

the reduction of the data to the maximal invariant will result in a different

localizing rate compared to the situation in which there no incidental trends.

This indicates that the generalization to incidental trends really requires a

separate analysis.

2.A Detailed Proofs

2.A.1 Preliminaries

This section present some preliminary results that are heavily exploited in the proofs of our

main results.

First, we recall some elementary results from linear algebra (throughout we only consider

real matrices); see, e.g., Lütkepohl (1996) and Magnus and Neudecker (1999). Let tr[C]

denote the trace of a square, real matrix C and let λmin (C) (and λmax (C)) denote the

minimal (maximal) eigenvalue of a symmetric, real matrix C. For any real matrix C, let

‖C‖F =
√

tr [C′C] = ‖C′‖F denote its Frobenius norm, while ‖C‖spec =
√

λmax (C′C) =

‖C′‖spec denotes its spectral norm. Recall ‖C‖spec ≤ ‖C‖F .
The inequality ‖CD‖F ≤ ‖C‖spec ‖D‖F is immediate from Raleigh’s quotient. It follows

that the Frobenius is submultiplicative, ‖CD‖F ≤ ‖C‖F ‖D‖F . Moreover, the identity

‖C ⊗D‖F = ‖C‖F ‖D‖F easily follows from the alternative interpretation of the Frobenius

norm being the square-root of the sum of all squared individual matrix entries. Finally, we

note that for square matrices 〈C,D〉F = tr[C′D] defines an inner product, so we have the

Cauchy-Schwarz inequality | tr[C′D]| ≤ ‖C‖F ‖D‖F .
Next, we present a general lemma on approximating variances with long-run variances.

The results we present in this appendix are the main keys to many proofs in Section 2.2.

Moreover, they may be of general interest.

Lemma 2.A.1 Consider an indexed collection of stationary time series {X(h)
t }, h ∈ H.

Denote the T × T covariance matrix of (X
(h)
1 , . . . , X

(h)
T ) by Σh, the m-th autocovariance of

{X(h)
t } by γh(m), and its long run variance by ω2

h < ∞. Also write ω2
h,T = ι′Σhι/T . If

suph∈H
∑∞

m=−∞(|m|+ 1)|γh(m)| < ∞, then

1. suph∈H |ω2
h,T − ω2

h| = O(T−1),

2. suph∈H
∥∥A′(Σh − ω2

hIT )
∥∥
F
+ suph∈H

∥∥A(Σh − ω2
hIT )

∥∥
F
= O(

√
T ),

3. suph∈H
∥∥A′(Σh − ω2

h,T IT )
∥∥
F
+ suph∈H

∥∥A(Σh − ω2
h,T IT )

∥∥
F
= O(

√
T ),

4. suph∈H ‖A′Σh‖F + suph∈H ‖AΣh‖F = O(T ).
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Proof Item 1 follows from ω2
h,T = 1

T

∑
m<T (T − |m|)γh(m) and ω2

h =
∑∞

m=−∞ γh(m), so

|ω2
h,T − ω2

h| =
∣∣∣∣∣
1

T

∞∑

m=−∞

(min(|m|, T )γh(m)

∣∣∣∣∣ ,

which is indeed O(T−1) uniformly in h.

For Item 2, tedious but elementary calculations yield

∥∥A(Σh − ω2
hIT )

∥∥2

F
=

∥∥A′(Σh − ω2
hIT )

∥∥2

F

=

T∑

s=1

T∑

t=1

(
T−t∑

m=s−t+1

γh(m)− ω2
h1s<t

)2

=

T−1∑

s=1

(
s∑

t=1

(
T∑

m=s+1

γh(m− t)

)2

+
T∑

t=s+1

(
s∑

m=−∞

γh(m− t) +
∞∑

m=T+1

γh(m− t)

)2 )

=

T−1∑

s=1

T−s∑

t=1



(

T−t∑

m=s

γh(m)

)2

+

(
∞∑

m=s

γh(m) +
∞∑

m=t

γh(m)

)2



≤ 5T
T∑

s=1

(
∞∑

m=s

|γh(m)|
)2

≤ 5T

(
∞∑

m=−∞

|γh(m)|
)

∞∑

m=1

min(m,T )|γh(m)|.

Taking suprema, Item 2 follows immediately from this bound. Item 3 follows by combining

the first two parts and ‖A‖F =
√

T (T−1)
2

= O(T ). The order on ‖A‖F also yields

sup
h∈H

∥∥A′Σh

∥∥
F
≤ sup

h∈H

∥∥A′(Σh − ω2
hIT )

∥∥
F
+ sup

h∈H
ω2
h

∥∥A′∥∥
F

=O(
√
T ) +O(1)O(T ).

Again, the second part of Item 4 is analogous. �

Recall the covariance matrices Ση and Σε and their rough approximations Ψη and Ψε de-

fined in Lemma 2.2.1 and (2.11), respectively. The following three lemmas use Lemma 2.A.1

to show that these approximations do work well when considering partial sums.

Lemma 2.A.2 Under Assumption 2.1,
∥∥Σ−1

η

∥∥
spec

,
∥∥Ψ−1

η

∥∥
spec

,
∥∥Σ−1

ε

∥∥
spec

, and
∥∥Ψ−1

ε

∥∥
spec

are all O(1) as n, T → ∞.

Proof Note that Σε − Ση and Ψε − Ψη are positive semidefinite. Hence λmin (Σε) ≥
λmin (Ση) ≥ infi,T λmin (Ση,i) > 0 and, using Remark 2.1.3 (Remark 2.1.3) and Item 1 of

Lemma 2.A.1,

λmin (Ψε) ≥λmin (Ψη) = λmin (Ωη ⊗ IT ) = min
i=1,...,n

ω2
η,i,T
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≥ inf
i∈N

ω2
η,i − sup

i∈N

|ω2
η,i,T − ω2

η,i| → inf
i∈N

ω2
η,i > 0.

This shows the boundedness of all four norms. �

Lemma 2.A.3 Under Assumption 2.1 we have, as n, T → ∞,

∥∥A′ (Ση −Ψη)
∥∥
F
+ ‖A (Ση −Ψη)‖F = O(

√
nT ) = o(

√
nT ).

Proof Using block diagonality and Lemma 2.A.1, we obtain the bound

∥∥A′ (Ση −Ψη)
∥∥2

F
=

n∑

i=1

∥∥A′(Ση,i − ω2
η,i,T IT )

∥∥2

F

≤ n sup
i∈N

∥∥A′(Ση,i − ω2
η,i,T IT )

∥∥2

F
= O(nT ).

The other part is analogous; every A′ and A′ are replaced by A and A, respectively. �

Lemma 2.A.4 Under Assumptions 2.1, 2.2 and 2.4 we have, as n, T → ∞,

∥∥A′ (Σε −Ψε)
∥∥
F
+ ‖A (Σε −Ψε)‖F = O(n

√
T ) = o(

√
nT ).

Proof From the definitions of Σε and Ψε we obtain

A′ (Σε −Ψε) =
K∑

k=1

A′ (λkλ
′
k ⊗

(
Σf,k − ω2

f,k,T IT
))

+A′ (Ση − Ωη ⊗ IT ) ,

which yields the bound ‖A′ (Σε −Ψε)‖F ≤ I + II with

I =
K∑

k=1

∥∥(λkλ
′
k ⊗A′ (Σf,k − ω2

f,k,T IT
))∥∥

F
and II =

∥∥A′ (Ση − Ωη ⊗ IT )
∥∥
F
.

Part II is already treated in Lemma 2.A.3. For part I, again using Lemma 2.A.1, we

get a slightly weaker bound since for the factor part there is no block diagonality:

I =

K∑

k=1

∥∥λkλ
′
k

∥∥
F

∥∥A′ (Σf,k − ω2
f,k,T IT

)∥∥
F

≤
K∑

k=1

λ′
kλk

∥∥A′ (Σf,k − ω2
f,k,T IT

)∥∥
F
= O(n

√
T ) = o(

√
nT ).

The proof for ‖A (Σε −Ψε)‖F is analogous. �

We now present a general weak convergence result for partial sums using joint asymp-

totics. Proposition 2.2.1 is a special case of Lemma 2.A.5 with ai,n,T = 1. We provide

Lemma 2.A.5 in general terms here as it might be of independent interest and we also use

it in the proof of Proposition 2.4.1 to demonstrate the joint convergence of Pa and the local

likelihood ratio.
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Lemma 2.A.5 Let ai,n,T be a bounded sequence of non-random numbers and assume that
1
n

∑n
i=1 a

2
i,n,T → α. Then, under PMP

0,n,T or PPANIC
0,n,T , as (n, T → ∞),

1√
n

n∑

i=1

ai,n,T

ω2
η,i,T

(
1

T

T∑

t=1

t−1∑

s=1

ηisηit − δη,i

)
d−→ N(0, α/2).

Proof First consider the case of ai,n,T being identically equal to one and observe that this

implies convergence of ∆n,T . Recall A+A′ = ιι′ − IT and 2δη,i,T = ω2
η,i,T − γη,i(0), hence,

with ω2
η,i,T = 1

T
ι′Ση,iι,

∆n,T =
1√
nT

n∑

i=1

1

ω2
η,i,T

η′
i
A+A′

2
ηi − 1√

n

n∑

i=1

δη,i,T
ω2
η,i,T

=
1

2
√
n

n∑

i=1

((
ι′ηi√
Tωη,i,T

)2

− 1

)
− 1

2
√
n

n∑

i=1

1

ω2
η,i,T

(
1

T
η′
iηi − γη,i(0)

)
.

Observe that Xi,T := ι′ηi√
Tω2

η,i,T

∼ N(0, 1) and are independent across i ∈ N. Thus, for each

T , 1√
2n

∑n
i=1(X

2
i,T − 1) has the same distribution as 1√

2n

∑n
i=1(X

2
i − 1), where X2

i
iid∼ χ2(1).

Therefore, as the latter converges to a standard normal distribution as n → ∞ (CLT), so

does the former under joint limits. Thus, the first, leading term converges in distribution to

N(0, 1/2).

Asymptotic negligibility of the second, mean-zero term follows from

sup
i

var(
1

T
η′
iηi) =

2

T 2
sup
i

tr[Σ2
η,i] =

2

T 2
sup
i

‖Ση,i‖2F

=
2

T
sup
i

∣∣∣∣∣∣

T−1∑

m=−(T−1)

(1− |m|
T

)γ2
η,i(m)

∣∣∣∣∣∣
= O(T−1).

For general ai,n,T we can apply a double array CLT, see 1.9.3 in Serfling (1980), to the

first (slightly adapted) term in the expansion. The Lindeberg condition is readily verified

since we have a weighted sum of i.i.d. centered χ2 variables. Asymptotic negligibility of the

second remainder term follows from the boundedness condition on the ai,n,T . �

Remark 2.A.1 We can obtain the same conclusion without requiring Gaussian innovations:

as long as the Lindeberg condition holds, for example thanks to higher moment conditions,

the same Theorem 1.9.3 of Serfling (1980) applies.

We conclude this subsection by taking care of important terms that appear repeatedly

in the remainder.

Lemma 2.A.6 Suppose that Assumptions 2.1-2.4 hold. Then, under PMP
0,n,T or PPANIC

0,n,T and

as n, T → ∞, we have

1.
∥∥∥
(
1
n
Λ′Ω−1

η Λ
)−1

∥∥∥
F
= O(1),

2.
∥∥∥
∑T

t=2 η·,t

∥∥∥
F
= Op(

√
nT ),
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3.
∥∥∥
∑T

t=2 f·,t

∥∥∥
F
= Op(

√
T ),

4.
∥∥ι′η̃Ω−1

η Λ
∥∥
F
= Op(

√
nT ), and

5.
∥∥η̃Ω−1

η Λ
∥∥
F
= Op(

√
nT ).

Proof For Item 1, recall that K is fixed, so that the norm we consider is irrelevant. As

Λ′Ω−1
η Λ =

n∑

i=1

1

ω2
η,i,T

λiλ
′
i ≥

1

supi∈N ω2
η,i,T

n∑

i=1

λiλ
′
i,

the smallest eigenvalue of Λ′Ω−1
η Λ is larger than that of Λ′Λ. Thus,

∥∥∥∥∥

(
1

n
Λ′Ω−1

η Λ

)−1
∥∥∥∥∥
spec

≤ sup
i∈N

ω2
η,i,T

∥∥∥∥∥

(
1

n
Λ′Λ

)−1
∥∥∥∥∥
spec

→ sup
i∈N

ω2
i

∥∥Ψ−1
Λ

∥∥
spec

< ∞,

thanks to Assumptions 2.1 and 2.2.

Item 2 follows from

E

∥∥∥∥∥
T∑

t=1

η·,t

∥∥∥∥∥

2

F

= E
∥∥η̃′ι

∥∥2

F
= ι′Eη̃η̃′ι = ι′

n∑

i=1

Eηiη
′
iι = T

n∑

i=1

ω2
η,i,T = O(nT ).

Note that the expectation of
∥∥∥
∑T

t=2 η·,t

∥∥∥
2

F
is given by (T − 1)

∑n
i=1 ω

2
η,i,T−1 and is thus of

the same order. Item 3 can be obtained along a similar line of proof.

For Item 4, note Eη̃′ιιη̃ = TΩη, so that

E
∥∥ι′η̃Ω−1

η Λ
∥∥2

F
= trE[η̃′ιιη̃]Ω−1

η ΛΛ′Ω−1
η

= T tr ΛΛ′Ω−1
η ≤ T ‖Λ‖2F

∥∥Ω−1
η

∥∥
spec

= O(nT ).

Item 5 follows similarly from Eη·,tη′
·,t = diag(γη,1(0), . . . , γη,n(0)) =: D, so

E
∥∥η̃Ω−1

η Λ
∥∥2

F
= tr(Λ′Ω−1

η

T∑

t=1

E[η·,tη
′
·,t]Ω

−1
η Λ) ≤ T ‖Λ‖2F

∥∥Ω−1
η

∥∥2

spec
‖D‖spec ,

which is indeed O(nT ) thanks to Assumptions 2.1 and 2.2. �

2.A.2 Proofs of Section 2.2

Proof of Lemma 2.2.1

Proof In the following all probabilities and expectations are evaluated under PPANIC
0,n,T . To

obtain the desired result, we consider the difference between the two central sequences ∆n,T−
∆PANIC

n,T and the difference between the two Fisher informations JPANIC
n,T − 1

2
. We show that

expectations and variances of both differences converge to zero, implying L2 convergence.

Part A: Under the null, ∆E = η and hence

∆n,T −∆PANIC
n,T =

1√
nT

η′A′(Ψ−1
η − Σ−1

η )η − 1√
n

n∑

i=1

δη,i,T
ω2
η,i,T

.
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We first show that the difference has mean zero. We have, using tr(A) = 0 and block

diagonality of Ση,

E[∆n,T −∆PANIC
n,T ] =

1√
nT

tr(A′(Ψ−1
η − Σ−1

η )Ση)− 1√
n

n∑

i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr(A′Ψ−1
η Ση)− 1√

n

n∑

i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr((Ωη
−1 ⊗A′)Ση)− 1√

n

n∑

i=1

δη,i,T
ω2
η,i,T

=
1√
n

1

T

n∑

i=1

1

ω2
η,i,T

tr
[
A′Ση,i

]
− 1√

n

n∑

i=1

δη,i,T
ω2
η,i,T

= 0,

as tr [A′Ση,i] = Tδη,i,T .

To show that the variance of ∆PANIC
n,T −∆n,T goes to zero, observe

nT 2 var(∆PANIC
n,T −∆n,T ) = var(η′Cηη) (2.A.1)

= tr[CηΣηCηΣη] + tr[CηΣηC
′
ηΣη] (2.A.2)

≤‖CηΣη‖2F + ‖CηΣη‖F ‖ΣηCη‖F , (2.A.3)

with Cη = A′(Ψ−1
η − Σ−1

η ). Hence, it suffices to show ‖CηΣη‖F = o(
√
nT ) and ‖ΣηCη‖F =

o(
√
nT ). Since Ψ−1

η and A′ commute, we obtain

‖CηΣη‖F =
∥∥A′Ψ−1

η (Ση −Ψη)
∥∥
F
≤

∥∥Ψ−1
η

∥∥
spec

∥∥A′(Ση −Ψη)
∥∥
F
,

which is indeed o(
√
nT ) by Lemmas 2.A.2 and 2.A.3. For ‖ΣηCη‖F , we first have to approx-

imate AΣη with AΨη before we can use the commutativity as above:

‖ΣηCη‖F ≤ ‖ΨηCη‖F +
∥∥C′

η(Ση −Ψη)
∥∥
F

=
∥∥A′(Ση −Ψη)Σ

−1
η

∥∥
F
+

∥∥(Ψ−1
η − Σ−1

η

)
A(Ση −Ψη)

∥∥
F

≤
∥∥Σ−1

η

∥∥
spec

∥∥A′(Ψη − Ση)
∥∥
F

+
(∥∥Ψ−1

η

∥∥
spec

+
∥∥Σ−1

η

∥∥
spec

)
‖A(Ση −Ψη)‖F = o(

√
nT ).

Part B: First, we show that the expectation of JPANIC
n,T converges to 1

2
. We have

nT 2EJPANIC
n,T = tr

[
A′Σ−1

η AΣη

]
= tr

[
A′Ψ−1

η AΣη

]
− tr

[
A′C′

ηΣη

]

= tr[A′A] + tr[A′Ψ−1
η A(Ση −Ψη)]− tr[ΣηCηA].

This implies that the leading term is 1
2
nT 2, since the final two terms are o(nT 2): use the

arguments already presented in Part A together with the relation between the trace and the

Frobenius norm and

1

nT 2
‖A‖2F =

1

nT 2
tr
[
A′A

]
=

1

T 2
tr
[
A′A

]
=

T (T − 1)

2T 2
→ 1

2
.
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Next, we show that the variance converges to zero. By the arguments in (2.A.1), with

Dη = A′Σ−1
η A,

n2T 4 var(JPANIC
n,T ) ≤ 2 ‖ΣηDη‖2F .

The required order is now easily verified, since

‖ΣηDη‖F ≤
∥∥A′Ψ−1

η AΣη

∥∥
F
+ ‖ΣηCηA‖F

≤
∥∥A′A

∥∥
F
+

∥∥A′Ψ−1
η A(Ση −Ψη)

∥∥
F
+ ‖ΣηCηA‖F

and ‖A′A‖F =
√
n ‖A′A‖F ≤ √

n ‖A‖2F =
√
nT (T − 1)/2. �

Proof of Lemma 2.2.2

Proof In the following all probabilities and expectations are evaluated under PMP
0,n,T . The

proof of this lemma follows the idea of the proof of Lemma 2.2.1 by considering means and

variances. The proof that JMP
n,T converges to 1

2
in L2 is almost identical to its counterpart in

the proof of Lemma 2.2.1: just replace η by ε, Ση by Σε, Cη by Cε etc. The same replacements

yield that the variance of ∆̃MP
n,T −∆MP

n,T converges to zero, by applying them to the arguments

starting at (2.A.1). We are left to show that the expectation of ∆̃MP
n,T − ∆MP

n,T converges to

zero. This remaining expectation is more complicated since the variance matrices Σε and

Ψε have additional terms due to the presence of unobservable factors.

Recall, under PMP
0,n,T , ∆Y = ε and note

∆̃MP
n,T −∆MP

n,T =
1√
n

(
1

T
ε′A′ (Ψ−1

ε − Σ−1
ε

)
ε−

n∑

i=1

δη,i,T
ω2
η,i,T

)
.

Thus, we have

E[∆̃MP
n,T −∆MP

n,T ] =
1√
nT

tr[A′Ψ−1
ε Σε]− 1√

n

n∑

i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr[A′Ψ−1
η Ση]− 1√

n

n∑

i=1

δη,i,T
ω2
η,i,T

+
1√
nT

K∑

k=1

tr
[
ψ−1

ε λkλ
′
k ⊗A′Σf,k

]

+
1√
nT

tr
[(
(ψ−1

ε − Ω−1
η )⊗A′)Ση

]
=: I + II + III.

In the proof of Lemma 2.2.1 we have established that the first term equals zero. Therefore,

the current proof is complete once we show the final two terms converge to zero.

Convergence to zero of II follows from 1
T
tr(A′Σf,k) = δf,k,T = O(1) in combination

with

K∑

k=1

tr
[
ψ−1

ε λkλ
′
k

]
=tr[Λ′ψ−1

ε Λ] = tr
[
Ω−1

F − Ω−1
F

(
Ω−1

F + Λ′Ω−1
η Λ

)−1
Ω−1

F

]
(2.A.4)
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≤ tr
[
Ω−1

F

]
=

K∑

k=1

1

ω2
f,k,T

→
K∑

k=1

1

ω2
f,k

< ∞. (2.A.5)

Convergence to zero of III follows from

|III| ≤ 1√
nT

n∑

i=1

(
Ω−1

η Λ
(
Ω−1

F + Λ′Ω−1
η Λ

)−1
Λ′Ω−1

η

)
i,i

| tr
[
A′Ση,i

]
| (2.A.6)

≤ 1√
nT

tr(Ω−1
η Λ

(
Ω−1

F + Λ′Ω−1
η Λ

)−1
Λ′Ω−1

η ) sup
i

| tr
[
A′Ση,i

]
|. (2.A.7)

≤ 1√
nT

‖Λ‖2F
∥∥Ω−1

η

∥∥2

spec

∥∥∥
(
Ω−1

F + Λ′Ω−1
η Λ

)−1
∥∥∥
spec

sup
i

| tr
[
A′Ση,i

]
|. (2.A.8)

Observe supi tr [A
′Ση,i] = O(T ) by Item 4 of Lemma 2.A.1. From Assumption 2.2 we get

‖Λ‖F = O(
√
n) and

n
∥∥∥
(
Ω−1

F + Λ′Ω−1
η Λ

)−1
∥∥∥
spec

=

∥∥∥∥∥

(
1

n
Ω−1

F +
1

n
Λ′Ω−1

η Λ

)−1
∥∥∥∥∥
spec

= λ−1
min(

1

n
Ω−1

F +
1

n
Λ′Ω−1

η Λ) ≤ λ−1
min(

1

n
Λ′Ω−1

η Λ)

≤ λ−1
min(

1

n
Λ′Λ) sup

i∈N

ω2
η,i,T → λ−1

min(ΨΛ) sup
i∈N

ω2
η,i < ∞.

A combination of these observations with the penultimate display yields III = o(1). �

Proof of Lemma 2.2.3

Proof We have

|∆∗
n,T − ∆̃MP

n,T | =
1√
nT

| tr(Aε̃(ψ∗
ε
−1 − ψε

−1)ε̃′)|

≤ 1√
nT

∥∥∥ψ∗
ε
−1 − ψε

−1
∥∥∥
F

∥∥ε̃′Aε̃
∥∥
F
.

We consider each norm separately. We have
∥∥∥ψ∗

ε
−1 − ψε

−1
∥∥∥
F
≤

∥∥(Λ′Ω−1
η Λ + ΩF )

−1 − (Λ′Ω−1
η Λ)−1

∥∥
spec

∥∥Ω−1
η

∥∥2

spec
‖Λ‖2F

= O(n−2)O(1)O(n) = O(n−1),

as ‖Λ‖F = O(
√
n) by Assumption 2.2,

∥∥Ω−1
η

∥∥
spec

= O(1) by Assumption 2.1, and

n
∥∥(Λ′Ω−1

η Λ + ΩF )
−1 − (Λ′Ω−1

η Λ)−1
∥∥
spec

=

∥∥∥∥∥

(
Λ′Ω−1

η Λ

n
+

ΩF

n

)−1

−
(
Λ′Ω−1

η Λ

n

)−1
∥∥∥∥∥
spec

=

∥∥∥∥∥−
(
Λ′Ω−1

η Λ

n
+

ΩF

n

)−1
ΩF

n

(
Λ′Ω−1

η Λ

n

)−1
∥∥∥∥∥
spec

≤
∥∥∥∥
ΩF

n

∥∥∥∥
spec

∥∥∥∥∥

(
Λ′Ω−1

η Λ

n
+

ΩF

n

)−1
∥∥∥∥∥
spec

∥∥∥∥∥

(
Λ′Ω−1

η Λ

n

)−1
∥∥∥∥∥
spec

,
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which is O(n−1): the second norm converges to the third, which is O(1) by Item 1 of

Lemma 2.A.6. For ‖ε̃′Aε̃‖F , we note that ‖ε̃′Aε̃‖F =
∥∥∥ε̃′ A+A′

2
ε̃
∥∥∥
F

and recall that A+A′ =

ιι′ − IT , so that

2
∥∥ε̃′Aε̃

∥∥
F
=

∥∥ε̃′(ιι′ − IT )ε̃
∥∥
F
≤

∥∥ι′ε̃
∥∥2

F
+ ‖ε̃‖2F = Op(nT ), (2.A.9)

as ‖ε̃‖F ≤ ‖Λ‖F
∥∥∥f̃

∥∥∥
F
+ ‖η̃‖F = O(

√
n)Op(

√
T ) + Op(

√
nT ) and, using Items 2 and 3 of

Lemma 2.A.6, a similar bound holds for ‖ι′ε̃‖F . Conclude that the central sequence difference
is Op(n

−1/2). �

Proof of Lemma 2.2.4

Proof As ψ∗
ε
−1 projects out the factors, we have

∆∗
n,T −∆n,T =

1√
nT

tr(Aε̃ψ∗
ε
−1

ε̃′)− 1√
nT

tr(Aη̃Ωη
−1η̃′)

=
1√
nT

tr(Aη̃(ψ∗
ε
−1 − Ωη

−1)η̃′).

Note that for a symmetric matrix B,

tr(Aη̃Bη̃′) = tr(η̃Bη̃′A′) = tr(A′η̃Bη̃′) = tr

(
A+A′

2
η̃Bη̃′

)
,

so, as ψ∗
ε
−1 and Ωη are symmetric and A+A′ = ιι′ − IT , we have

| tr(Aη̃(ψ∗
ε
−1 − Ωη

−1)η̃′)| = 1

2
| tr((ιι′ − IT )η̃(ψ

∗
ε
−1 − Ωη

−1)η̃′)|

≤ | tr(ι′η̃(ψ∗
ε
−1 − Ωη

−1)η̃′ι)|+ | tr(η̃(ψ∗
ε
−1 − Ωη

−1)η̃′)|

≤
∥∥∥
(
Λ′Ω−1

η Λ
)−1

∥∥∥
F

(∥∥ι′η̃Ω−1
η Λ

∥∥2

F
+

∥∥η̃Ω−1
η Λ

∥∥2

F

)

= O(n−1)(Op(nT ) +Op(nT )) = Op(T ),

using Items 1, 4 and 5 of Lemma 2.A.6. �

Proof of Proposition 2.2.1

Proof Apply Lemma 2.A.5 with ai,n,T = 1 for all i, n, T . �

2.A.3 Proofs of Section 2.3

Proof of Lemma 2.3.1

Remark 2.A.2 The proof follows along similar lines as that of Moon and Perron (2004).

By treating the norm of η̃′η̃ differently, we obtain, under the assumptions of this chap-

ter,
∥∥∥ΛHK − Λ̂

∥∥∥
F

= op(1) instead of the Op(1) obtained by Moon and Perron (2004). In

particular, we exploit ‖η̃′η̃‖spec = op(
√
nT ), whereas Moon and Perron (2004) only use

‖η̃′η̃‖F = Op(
√
nT ).
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Proof As Moon and Perron (2004), we take HK = f̃ ′f̃
T

Λ′Λ̄
n

. First note that from the

definitions of HK and Λ̂ and using ε̃ = f̃Λ′ + η̃ we have

Λ̂− ΛHK =
1

nT
(ε̃′ε̃− Λf̃ ′f̃Λ′)Λ̄ =

1

nT
(η̃′f̃Λ′ + Λf̃ ′η̃ + η̃′η̃)Λ̄, (2.A.10)

so that

∥∥∥ΛHK − Λ̂
∥∥∥
F
≤

∥∥∥η̃′f̃Λ′Λ̄
∥∥∥
F

nT
+

∥∥∥Λf̃ ′η̃Λ̄
∥∥∥
F

nT
+

1

nT

∥∥η̃′η̃Λ̄
∥∥
F

(2.A.11)

≤2

√
n

T

∥∥∥η̃′f̃
∥∥∥
F√

nT

‖Λ‖F√
n

∥∥Λ̄
∥∥
F√
n

+
1

nT

∥∥η̃′η̃
∥∥
spec

∥∥Λ̄
∥∥
F
. (2.A.12)

By the definition of Λ̄,
∥∥Λ̄

∥∥
F
=

√
nK = O(

√
n). We have

E
∥∥∥η̃′f̃

∥∥∥
2

F
=E

K∑

k=1

n∑

i=1

(
T∑

t=1

fktηit

)2

=

K∑

k=1

n∑

i=1

T∑

t=1

T∑

s=1

γη,i(t− s)γf,k(t− s)

≤Mn

K∑

k=1

T∑

t=1

T∑

s=1

|γf,k(t− s)|

=Mn

K∑

k=1

T−1∑

m=−(T−1)

(T − |m|)|γf,k(m)| = O(nT ),

for some finite constant M , using that, thanks to Assumption 2.1, γη,i(t − s) is bounded

uniformly in i and t− s. Thus, each term of the first summand in (2.A.12) is Op(1).

Finally, we consider the second summand, which is treated differently from Moon

and Perron (2004). We obtain
∥∥∥ΛHK − Λ̂

∥∥∥
F

= op(1) if we can indeed show that

‖η̃′η̃‖spec = op(
√
nT ) (Moon and Perron (2004) only use ‖η̃′η̃‖F = Op(

√
nT )). For

this, note that 1
T
η̃′η̃ = 1

T

∑T
t=1 η̃·,tη̃

′
·,t, which can be considered an approximation to

Γη := diag(γη,1(0), . . . , γη,n(0)), the n × n cross-sectional covariance matrix of the η. From

Assumption 2.1, ‖Γη‖spec < ∞. We now show that indeed the approximation works. Using

Isserlis’ Theorem to write E[η2
i,tη

2
i,s] = 2γη,i(t− s)2 + E[η2

i,t]E[η
2
i,s], we have

E

∥∥∥∥∥
1

T

T∑

t=1

η̃·,tη̃
′
·,t − Γη

∥∥∥∥∥

2

F

=

n∑

i=1

n∑

j=1

E

(
1

T

T∑

t=1

ηi,tηj,t − E[ηi,tηj,t]

)2

=

n∑

i=1

n∑

j=1

1

T 2

T∑

t=1

T∑

s=1

E[ηi,tηj,tηi,sηj,s]− E[ηi,tηj,t]E[ηi,sηj,s]

=
n∑

i=1

1

T 2

T∑

t=1

T∑

s=1

2γη,i(t− s)2

+

n∑

i �=j

1

T 2

T∑

t=1

T∑

s=1

γη,i(t− s)γη,j(t− s)
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= O(n/T ) +O(n2/T ).

Conclude that the difference in Frobenius norm is Op(n/
√
T ).

Remark 2.A.3 Note that, even without Gaussianity, this conclusion holds as long as the

long-run variances of the {η2
i,t} are uniformly bounded.

Thus,

∥∥η̃′η̃
∥∥
spec

≤
∥∥∥∥∥

T∑

t=1

η̃·,tη̃
′
·,t − TΓη

∥∥∥∥∥
F

+ ‖TΓη‖spec

=Op(n
√
T ) +O(T ) = op(

√
nT ).

Finally, we show the boundedness properties of HK . First note that

‖HK‖F ≤

∥∥∥f̃ ′f̃
∥∥∥
F

T

‖Λ‖F√
n

∥∥Λ̄
∥∥
F√
n

= Op(1).

To show boundedness of the inverse, we will show that the limiting eigenvalues of HK are

positive. Introduce Γf := diag(γf,1(0), . . . , γf,K(0)), the K ×K covariance matrix of the f ,

and write
∥∥∥∥HK − Γf

Λ′Λ̄

n

∥∥∥∥
spec

≤
∥∥∥∥
Λ′Λ̄

n

∥∥∥∥
F

∥∥∥∥
f̃ ′f̃

T
− ΓF

∥∥∥∥
F

= Op(1)op(1),

where the latter follows from Assumption 2.1. As ΓF has full rank, it is sufficient to show that

the eigenvalues of Λ′Λ̄
n

are bounded away from zero. Λ̄ is defined through the eigenvectors

of ε̃′ε̃/(nT ). As the eigenvalues of ε̃′ε̃ are closely related to those of Λf̃ ′f̃Λ′, we can use this

relation to learn about the rank of Λ′Λ̄. Formally, define D to be the K × K matrix with

the K largest eigenvalues of ε̃′ε̃/(nT ). Then, from the definition of Λ̄,

D =
Λ̄′
√
n

ε̃′ε̃

nT

Λ̄√
n
.

Recalling some of the above results we obtain

∥∥∥∥
ε̃′ε̃

nT
− Λf̃ ′f̃Λ′

nT

∥∥∥∥
spec

= op(n
−1/2), (2.A.13)

so that

D =
Λ̄′
√
n

Λf̃ ′f̃Λ′

nT

Λ̄√
n
+ op(n

−1/2) =
Λ̄′Λ

n
Γf

Λ′Λ̄

n
+ op(1).

As the Kth largest eigenvalue of ε̃′ε̃/(nT ) is bounded away from zero (using (2.A.13) the

nonzero limiting eigenvalues are given by those of ΨΛΓF , a product of two rank K matrices),

so must the limit of Λ′Λ̄
n

and thus HK . �
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Proof of Lemma 2.3.2

Proof First note that

E
∥∥∥Ω̂η − Ωη

∥∥∥
2

F
=

n∑

i=1

E(ω̂2
η,i − ω2

η,i)
2 ≤ n max

i=1,...,n
E(ω̂2

η,i − ω2
η,i)

2 = o(1),

from Assumption 2.6. Thus both
∥∥∥Ω̂η − Ωη

∥∥∥
F

and
∥∥∥Ω̂η − Ωη

∥∥∥
spec

are op(1). Together with

Assumption 2.1 this also implies, with probability converging to one,

0 <
infi∈Nω2

η,i

2
< min

i=1,...,n
ω̂2
η,i ≤ max

i=1,...,n
ω̂2
η,i < 2 sup

i∈N
ω2
η,i < ∞. (2.A.14)

Therefore,
∥∥∥Ω̂−1

η

∥∥∥
spec

= Op(1), so that finally also
∥∥∥Ω̂−1

η − Ω−1
η

∥∥∥
F

and
∥∥∥Ω̂−1

η − Ω−1
η

∥∥∥
spec

are

op(1). Similarly, we note for the one-sided long-run variances that
∑n

i=1(δ̂η,i−δη,i)
2 = op(1)

follows from Assumption 2.6, so that, along the same lines, we obtain maxi=1,...,n δ̂η,i =

Op(1).

We split the central sequence difference in three parts: one for replacing ψ∗
ε with ψ̂ε,

one to take care of the initial value, and one for estimating the correction term. Thus

∆̂n,T −∆∗
n,T = I − II − III, with

I =
1√
nT

tr(A′ε̃
(
ψ̂−1

ε − ψ∗
ε
−1

)
ε̃′)

II =
1√
nT

T∑

t=2

ε′·,1ψ̂
−1
ε ε·,t

III =
1√
n

n∑

i=1

(
δ̂η,i
ω̂2
η,i

− δη,i
ω2
η,i

)
.

For part I, insert (2.14) and (2.17) to find

|I| = 1√
nT

| tr(ε̃′A′ε̃(ψ̂−1
ε − ψ∗

ε
−1

))|

≤ 1√
nT

| tr(ε̃′A′ε̃(Ω̂−1
η − Ω−1

η )|

+
1√
nT

∣∣∣∣tr
(
Λ̂′Ω̂−1

η ε̃′A′ε̃Ω̂−1
η Λ̂

(
Λ̂′Ω̂−1

η Λ̂
)−1

− Λ′Ω−1
η ε̃′A′ε̃Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1

)∣∣∣∣

≤ 1√
nT

| tr(ε̃′A′ε̃(Ω̂−1
η − Ω−1

η )|

+
1√
nT

∥∥∥∥Ω̂
−1
η Λ̂

(
Λ̂′Ω̂−1

η Λ̂
)−1

Λ̂′Ω̂−1
η − Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

∥∥∥∥
F

∥∥ε̃′A′ε̃
∥∥
F
.

As Ω̂−1
η − Ω−1

η is diagonal, the first summand is bounded by (using Cauchy-Schwarz)

1√
nT

(
n∑

i=1

(ε′iAεi)
2

)1/2 ∥∥∥Ω̂−1
η − Ω−1

η

∥∥∥
F
=

1√
nT

Op(
√
nT )op(1) = op(1).
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For II, we have

√
nTII ≤

∥∥∥ψ̂−1
ε

∥∥∥
spec

‖ε·,1‖F (
∥∥ι′ε̃

∥∥
F
+ ‖ε·,1‖F )

= Op(1)Op(
√
n)(Op(

√
nT ) +Op(

√
n) = Op(n

√
T ),

where ‖ε·,1‖F ≤ ‖Λ‖F
∥∥∥f̃·,1

∥∥∥
F
+ ‖η̃·, 1‖F = Op(

√
n) and

∥∥∥ψ̂−1
ε

∥∥∥
spec

= Op(1) follows from

Assumption 2.6 and Item 2 of Lemma 2.A.7 implying
∥∥∥ψ̂−1

ε − ψ∗
ε
−1

∥∥∥
spec

= Op(n
−1/2) and

∥∥∥ψ∗
ε
−1

∥∥∥
spec

≤
∥∥Ω−1

η

∥∥
spec

+
∥∥Ω−1

η

∥∥2

spec
‖Λ‖2F

∥∥∥
(
Λ′Ω−1

η Λ
)−1

∥∥∥
F

= O(1) +O(1)O(n)O(n−1) = O(1),

using Assumptions 2.1 and 2.2 and Item 1 of Lemma 2.A.6. We conclude that II =

Op

(√
n√
T

)
= op(1).

Finally, we obtain for III:

III =
1√
n

n∑

i=1

1

ω2
η,i

(δ̂η,i − δη,i) +
1√
n

n∑

i=1

δ̂η,i
ω̂2
η,iω

2
η,i

(ω2
η,i − ω̂2

η,i)

≤
(

1

n

n∑

i=1

1

(ω2
η,i)

2

)1/2 ( n∑

i=1

(δ̂η,i − δη,i)
2

)1/2

+

(
1

n

n∑

i=1

δ̂2η,i
(ω̂2

η,iω
2
η,i)

2

)1/2 ( n∑

i=1

(ω̂2
η,i − ω2

η,i)
2

)1/2

,

which is indeed op(1) thanks to the observations at the beginning of this proof. �

2.A.4 Auxiliary Lemmas

Lemma 2.A.7 Consider the factor estimates and the HK from Lemma 2.3.1. Then, under

Assumptions 2.1, 2.2 and 2.4–2.6, under PMP
0,n,T or PPANIC

0,n,T and as n, T → ∞, we have

1.

∥∥∥∥
(
Λ̂′Ω̂−1

η Λ̂
)−1

−
(
H ′

KΛ′Ω−1
η ΛHK

)−1

∥∥∥∥
F

= op(n
−3/2), and

2.

∥∥∥∥Ω̂
−1
η Λ̂

(
Λ̂′Ω̂−1

η Λ̂
)−1

Λ̂′Ω̂−1
η − Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

∥∥∥∥
F

= op(n
−1/2).

Proof We start by noting that
∥∥∥H ′

KΛ′Ω−1
η ΛHK − Λ̂′Ω̂−1

η Λ̂
∥∥∥
F

= op(
√
n): the terms for

approximating the loadings are negligible thanks to
∥∥∥ΛHK − Λ̂

∥∥∥
F

(Lemma 2.3.1) and
∥∥∥Ω−1

η − Ω̂−1
η

∥∥∥
spec

being op(1) in combination withHK being bounded and
∥∥Ω−1

η

∥∥
spec

= O(1).

The term due to approximating the long-run variances, H ′
KΛ′(Ω−1

η − Ω̂−1
η )Λ̂, can again be

treated using Cauchy-Schwarz: ignoring HK , its (k, l)th entry is given by

n∑

i=1

λikλ̂il((ω̂
2
η,i)

−1 − (ω2
η,i)

−1) ≤
(

n∑

i=1

λikλ̂il

)1/2 ∥∥∥Ω−1
η − Ω̂−1

η

∥∥∥
F
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=Op(
√
n)op(1),

thanks to the discussion at the beginning of Section 2.A.3.

Next, we have that

∥∥∥∥
1

n
H ′

KΛ′Ω−1
η ΛHK

∥∥∥∥
F

≤ ‖HK‖2F
‖Λ‖2F
n

∥∥Ω−1
η

∥∥
spec

= O(1),

and

λmin

(
1

n
H ′

KΛ′Ω−1
η ΛHK

)
=

∥∥∥∥∥H
−1
K

(
1

n
Λ′Ω−1

η Λ

)−1

(H ′
K)−1

∥∥∥∥∥

−1

spec

≥
∥∥H−1

K

∥∥−2

F

∥∥∥∥∥

(
1

n
Λ′Ω−1

η Λ

)−1
∥∥∥∥∥

−1

spec

,

which is bounded away from zero thanks to
∥∥H−1

K

∥∥
F

being bounded and Item 1

of Lemma 2.A.6. Thus, we can restrict attention to a compact subset of the

invertible matrices on RK , on which the matrix inverse is uniformly continuous.

Therefore,
∥∥∥ 1

n
H ′

KΛ′Ω−1
η ΛHK − 1

n
Λ̂′Ω̂−1

η Λ̂
∥∥∥
F

= op(n
−1/2) implies the same for

∥∥∥∥
(
1
n
H ′

KΛ′Ω−1
η ΛHK

)−1 −
(

1
n
Λ̂′Ω̂−1

η Λ̂
)−1

∥∥∥∥
F

.

For Item 2, let a = Ω−1
η ΛHK and b =

(
H ′

KΛ′Ω−1
η ΛHK

)−1
and define â = Ω̂−1

η Λ̂ and

b̂ =
(
Λ̂′Ω̂−1

η Λ̂
)−1

analogously. Thus

∥∥∥∥Ω̂
−1
η Λ̂

(
Λ̂′Ω̂−1

η Λ̂
)−1

Λ̂′Ω̂−1
η − Ω−1

η Λ
(
Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

∥∥∥∥
F

=
∥∥∥âb̂â′ − aba′

∥∥∥
F

≤ ‖â− a‖F
∥∥∥b̂

∥∥∥
F
‖â‖F + ‖a‖F

∥∥∥b̂− b
∥∥∥
F
‖â‖F + ‖a‖F ‖b‖F ‖â− a‖F .

From Assumption 2.2 and HK being bounded it follows that ‖b‖F = Op(n
−1) and in com-

bination with Assumption 2.1 we obtain

‖a‖F ≤
∥∥Ω−1

η

∥∥
spec

‖Λ‖F ‖HK‖F = Op(
√
n).

From Item 1,
∥∥∥b̂− b

∥∥∥
F
= op(n

−3/2) so that also
∥∥∥b̂

∥∥∥
F
= Op(n

−1). Finally, we have

‖â− a‖F ≤
∥∥∥Ω̂−1

η − Ω−1
η

∥∥∥
spec

∥∥∥Λ̂
∥∥∥
F
‖HK‖F +

∥∥Ω−1
η

∥∥
spec

∥∥∥Λ̂− ΛHK

∥∥∥
F

=op(1)Op(
√
n)Op(1) +O(1)op(1) = op(

√
n),

where
∥∥∥Λ̂− ΛHK

∥∥∥
F
= op(1) by Lemma 2.3.1. Combining all these results indeed yields the

correct rate. �

Proof (Independent proof of Proposition 2.4.1) Here we demonstrate the joint

asymptotic normality required to apply the second part of Corollary 2.4.1. We divide the
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proof into two parts. In Part A, we prove the theorem for Pa while in Part B we discuss ta.

We omit the proofs concerning Pb and tb as they follow along the same lines.

Part A: First, we establish the joint convergence, under PMP
0,n,T and PPANIC

0,n,T , of Pa and

the local likelihood ratio. As already hinted at in Remark 2.2.5, the results in Sections 2.2.1

and 2.2.2 imply that we only have to show this convergence once to get the powers in both

experiments, as both likelihood ratios are asymptotically equivalent and the models coincide

under the hypothesis. Having established this joint convergence, an application of Le Cam’s

third lemma will lead to the asymptotic distribution of Pa under PMP
h,n,T and PPANIC

h,n,T .

Specifically, Lemmas 2.2.1 and 2.2.4 imply that the limiting distributions of(
Pa, log

dPPANIC
h,n,T

dPPANIC
0,n,T

)
and

(
Pa, log

dPMP
h,n,T

dPMP
0,n,T

)
are equal to that of

(
Pa, h∆n,T − 1

4
h2

)
, under

PMP
0,n,T and PPANIC

0,n,T . From Lemma 1 and Lemma 2 in Bai and Ng (2010) we see that Pa

is adaptive with respect to the estimation of nuisance parameters while Lemma A.2 in

Moon and Perron (2004) shows that 1
nT2

∑n
i=1 E

′
i,−1Ei,−1 converges in probability to 1

2
ω2.

Therefore, Pa is asymptotically equivalent to P̃a =
1√
nT

∑n
i=1 E′

i,−1∆Ei− 1√
n

∑n
i=1 δη,i√

φ4/2
.

Under PMP
0,n,T or PPANIC

0,n,T , we can compute the asymptotic distribution of all possible

linear combinations of P̃a and ∆n,T by an application of Lemma 2.A.5. For all α, β in R,

we find, using ai,n,T = α
ω2
η,i,T√
φ4/2

+ β in Lemma 2.A.5,

αP̃a + β∆n,T
d−→ N

(
0,

(
α2 + αβ

√
2ω4

φ4
+

β2

2

))
.

Thus, the Cramér-Wold theorem and the asymptotic equivalence of Pa and P̃a, yield, still

under PMP
0,n,T or PPANIC

0,n,T ,

(Pa,∆n,T )
d−→ N



(

0

0

)
,


 1

√
ω4

2φ4√
ω4

2φ4 1/2




 .

Equivalently,

(
Pa, log

dPh,n,T

dP0,n,T

)
d−→ N



(

0

− 1
4
h2

)
,


 1 h

√
ω4

2φ4

h
√

ω4

2φ4 1/2h2




 .

Applying Le Cam’s third lemma, we obtain Pa
d−→ N

(
h
√

ω4

2φ4 , 1
)
under PMP

h,n,T or PPANIC
h,n,T .

Part B: As far as ta is concerned, we recall that ta is adaptive with respect to the

estimation of nuisance parameters (see proofs of Theorem 2a) and b) in Moon and Perron

(2004)) and that 1
nT2

∑T
t=1 Y

′
·,t−1QγY·,t−1 converges in probability to 1

2
ω2 under PMP

0,n,T .

Thus, ta is asymptotically equivalent to

t̃a =

1√
nT

∑n
i=1 Y

′
·,t−1QΛ∆Y·,t−1 −

√
n
∑n

i=1 δη,i√
φ4/2

.

Moreover, we have

1√
nT

T∑

t=1

Y ′
·,tQΛ∆Y·,t−1 =

1√
nT

T∑

t=1

E′
·,tQΛ∆E·,t−1
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=
1√
nT

T∑

t=1

E′
·,t∆E·,t−1 − 1√

nT

T∑

t=1

E′
·,tΛ(Λ

′Λ)−1Λ∆E·,t−1

=
1√
nT

n∑

i=1

E′
−1,i∆Ei + op(1),

where the last equality follows from the proof of Lemma 2 c) in Moon and Perron (2004).

Therefore, ta is asymptotically equivalent to P̃a. Thus, following the same steps as in Part A,

we find ta
d−→ N

(
h
√

ω4

2φ4 , 1
)
under PMP

h,n,T or PPANIC
h,n,T . �

2.B Additional Monte-Carlo Results

In this supplement we present sizes and powers for additional DGPs and additional long-run

variance estimates. The first subsection provides sizes and powers for additional DGPs. In

the second subsection, we consider the same DGPs as in Sections 2.B.1 and 2.5, but with

long-run variances estimated using the Newey and West (1994) bandwidth.

Tables 2.4–2.6 are analogous to Tables 2.1–2.3. Figures 2.11–2.19 are analogous to

Figures 2.1–2.3 and 2.5–2.10. In general, the sizes for the MA case are slightly better

controlled with the Newey and West (1994) bandwidth, at the expense of slightly lower

power for small sample sizes.

2.B.1 Sizes and Powers in Additional DGPs

First, Figures 2.5 and 2.6 consider the powers in the presence of MA and AR serial correlation,

respectively. The results are similar to those for i.i.d innovations. Figure 2.7 shows the

results when the factor innovations are overdifferenced, i.e., the factor is stationary under

the hypothesis. The powers appear to be unaffected. Figure 2.8 considers the case of

the dependence being generated by three factors, with the corresponding sizes reported in

Table 2.2. For very small sample sizes, powers of both tests are affected, but generally the

results are similar also here.

We now consider deviations from our assumptions. Figure 2.9 reports the size-corrected

powers of our tests against heterogeneous alternatives of the form

ρi = 1 +
hUi√
nT

, (2.B.1)

where the Ui are i.i.d. random variables with mean one. We draw the Ui from a Uni-

form(0.2,1.8) distribution. Once again, the finite-sample behaviour does not appear to be

affected significantly, for both small and large samples.

Finally, we consider non-Gaussian innovations. Figure 2.10 reports size corrected pow-

ers with the innovations drawn from a t distribution with five degrees of freedom. The

corresponding sizes are reported in Table 2.3. Also here, the conclusions remain the same.
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Figure 2.5: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with MA factor innovations and

MA idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 2.6: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with AR factor innovations and

AR idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 2.7: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with overdifferenced i.i.d. factor

innovations and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. The factor is

stationary. Based on 100 000 replications.
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Figure 2.8: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations

and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Dependence based on three

factors. Based on 100 000 replications.
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Figure 2.9: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations

and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Alternatives drawn from a

Uniform(0.2,1.8) distribution. Based on 100 000 replications.
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Figure 2.10: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations

and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Innovations drawn from a t5

distribution. Note that the power envelopes refer to the Gaussian experiment.

Based on 100 000 replications.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.8 3.9 5.9 4.6 10.5 9.5 3.9 10.8 9.6

25 50 0.6 1.4 5.7 6.6 3.1 8.2 6.4 4.2 12.0 9.4

25 100 0.6 1.8 6.5 7.1 3.5 9.3 6.5 5.1 13.7 9.9

50 50 0.6 1.7 4.4 4.7 4.8 8.2 5.6 6.8 12.9 8.4

50 100 0.6 2.1 5.1 5.1 4.3 8.0 4.8 7.4 14.0 8.4

50 200 0.6 2.4 5.5 5.4 4.6 8.5 5.0 6.4 11.9 7.3

100 100 0.6 2.9 5.0 4.6 5.4 7.8 4.7 11.3 16.6 9.3

100 200 0.6 3.1 5.2 4.8 5.0 7.4 4.5 8.5 12.5 7.4

100 400 0.6 3.3 5.3 5.0 5.7 8.3 4.9 6.0 8.9 5.7

25 25 0.8 1.0 3.7 5.2 4.9 9.8 9.6 4.1 10.0 9.5

25 50 0.8 1.9 5.7 6.0 2.8 6.7 6.0 4.0 10.1 9.0

25 100 0.8 2.5 6.6 6.6 2.9 7.0 6.0 4.7 11.1 9.5

50 50 0.8 2.4 5.0 5.0 4.5 7.1 6.5 6.7 11.4 9.9

50 100 0.8 3.0 5.6 5.5 3.6 6.2 5.3 6.8 11.7 9.6

50 200 0.8 3.3 6.0 5.8 3.7 6.3 5.3 5.7 9.7 8.1

100 100 0.8 3.6 5.4 5.0 4.6 6.3 5.7 10.2 14.2 11.6

100 200 0.8 3.8 5.6 5.3 4.0 5.6 5.0 7.4 10.4 8.6

100 400 0.8 3.9 5.6 5.4 4.4 6.2 5.4 5.2 7.3 6.4

25 25 1.0 1.2 4.0 5.2 5.1 9.6 10.2 4.4 9.8 10.1

25 50 1.0 2.4 6.0 6.1 2.8 6.2 6.3 4.1 9.6 9.5

25 100 1.0 3.1 7.0 6.8 2.8 6.2 6.1 4.8 10.4 10.1

50 50 1.0 2.9 5.3 5.4 4.5 6.8 7.7 6.6 10.9 11.5

50 100 1.0 3.4 5.9 5.7 3.4 5.6 5.8 6.7 10.9 10.9

50 200 1.0 3.8 6.2 6.1 3.4 5.5 5.6 5.6 9.0 8.9

100 100 1.0 3.9 5.6 5.3 4.4 5.9 6.6 9.9 13.6 13.9

100 200 1.0 4.1 5.7 5.5 3.7 5.1 5.4 7.2 9.9 9.9

100 400 1.0 4.2 5.8 5.7 4.1 5.6 5.7 5.0 6.8 6.8

Mean abs. dev. from 5% 2.3 0.8 0.6 1.0 2.2 1.2 1.7 6.1 4.2

Table 2.2: Sizes (in percent) of nominal 5% level tests with no heterogeneity in

the alternatives. Based on 1 000 000 replications. Andrews Bandwidth, three

factors.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.7 2.9 3.3 2.0 4.9 4.6 2.3 7.2 5.9

25 50 0.6 1.4 4.7 4.2 1.8 5.0 3.7 3.2 9.1 6.4

25 100 0.6 1.8 5.5 4.7 2.3 6.1 4.2 3.9 10.1 6.8

50 50 0.6 2.0 4.3 3.7 2.6 4.6 3.6 5.3 10.0 6.8

50 100 0.6 2.6 5.1 4.3 2.9 5.3 3.8 6.1 10.9 7.0

50 200 0.6 2.9 5.4 4.5 3.4 5.9 4.1 5.3 9.2 6.1

100 100 0.6 3.2 5.0 4.2 3.3 4.9 3.8 9.1 13.2 8.2

100 200 0.6 3.6 5.3 4.4 3.6 5.3 4.0 6.9 9.9 6.7

100 400 0.6 3.7 5.4 4.6 4.4 6.2 4.5 4.9 7.1 5.2

25 25 0.8 0.9 3.1 3.5 2.0 4.5 4.9 2.4 6.8 6.5

25 50 0.8 1.8 5.0 4.6 1.7 4.5 4.1 3.1 8.3 7.2

25 100 0.8 2.3 5.9 5.2 2.2 5.3 4.6 3.9 9.3 7.7

50 50 0.8 2.3 4.6 4.2 2.4 4.2 4.3 5.2 9.4 8.3

50 100 0.8 3.0 5.4 4.8 2.6 4.7 4.3 5.9 10.1 8.5

50 200 0.8 3.3 5.7 5.2 3.0 5.2 4.7 5.0 8.4 7.2

100 100 0.8 3.5 5.2 4.7 3.1 4.4 4.4 8.7 12.4 10.4

100 200 0.8 3.8 5.5 5.0 3.3 4.7 4.5 6.6 9.3 7.9

100 400 0.8 3.9 5.5 5.1 3.9 5.5 5.0 4.7 6.5 5.9

25 25 1.0 1.0 3.3 3.8 2.0 4.4 5.6 2.5 6.7 7.3

25 50 1.0 2.0 5.2 5.1 1.7 4.2 4.5 3.3 8.1 8.2

25 100 1.0 2.6 6.0 5.8 2.2 5.1 5.1 3.9 9.0 8.9

50 50 1.0 2.5 4.7 4.6 2.4 4.1 5.0 5.1 9.1 10.0

50 100 1.0 3.1 5.4 5.2 2.6 4.4 4.8 5.8 9.9 10.0

50 200 1.0 3.5 5.8 5.6 3.0 5.0 5.2 4.9 8.1 8.1

100 100 1.0 3.6 5.3 4.9 3.0 4.3 5.0 8.6 12.1 12.6

100 200 1.0 3.9 5.5 5.2 3.2 4.6 4.9 6.4 9.0 9.0

100 400 1.0 4.1 5.6 5.5 3.8 5.3 5.4 4.6 6.3 6.4

Mean abs. dev. from 5% 2.3 0.6 0.6 2.2 0.5 0.6 1.4 4.1 2.8

Table 2.3: Sizes (in percent) of nominal 5% level tests with no heterogeneity

in the alternatives. Based on 1 000 000 replications. Andrews Bandwidth,

t-distribution with five degrees of freedom.
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2.B.2 Finite-Sample Results with the Newey and West (1994)
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Figure 2.11: Difference between powers in the MP vs the PANIC framework

as a function of −h with i.i.d. factor innovations and i.i.d. idiosyncratic parts

and
√

ω4/φ4 = 0.8. Based on 1 000 000 replications.
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Figure 2.12: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations and

i.i.d. idiosyncratic parts and
√

ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 2.13: (Size-corrected) power gains from using temp
UMP over Pb for varying

values of
√
ω4/φ4 and sample sizes in the PANIC framework with i.i.d. factor

innovations and i.i.d. idiosyncratic parts. Based on 0 replications.
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Figure 2.14: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with MA factor innovations and

MA idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 2.15: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with AR factor innovations and

AR idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 2.16: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with overdifferenced i.i.d. factor

innovations and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on 100 000

replications.
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Figure 2.17: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations

and i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Dependence based on three

factors. Based on 100 000 replications.
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Figure 2.18: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations

and i.i.d. idiosyncratic parts and
√

ω4/φ4 = 0.8. Alternatives drawn from a

Uniform(0.2,1.8) distribution. Based on 100 000 replications.
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Figure 2.19: Size-corrected power of unit-root tests as a function of −h for

varying sample sizes in the PANIC framework with i.i.d. factor innovations and

i.i.d. idiosyncratic parts and
√
ω4/φ4 = 0.8. Based on 100 000 replications.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.3 1.2 1.5 1.3 3.4 3.6 1.0 3.3 3.6

25 50 0.6 0.6 2.5 2.3 1.4 4.2 3.1 1.3 4.1 3.3

25 100 0.6 1.3 4.2 3.6 2.3 6.0 4.0 2.2 6.3 4.4

50 50 0.6 0.9 2.1 1.9 2.1 3.9 3.0 1.9 3.8 3.1

50 100 0.6 1.9 3.8 3.1 2.9 5.3 3.6 3.1 6.0 4.2

50 200 0.6 2.4 4.6 3.7 3.4 6.0 3.9 2.8 5.1 3.6

100 100 0.6 2.3 3.7 2.8 3.4 5.1 3.6 4.1 6.1 4.3

100 200 0.6 2.9 4.4 3.5 3.8 5.5 3.8 3.2 4.7 3.4

100 400 0.6 3.2 4.8 3.9 4.2 6.0 4.1 3.1 4.6 3.5

25 25 0.8 0.4 1.3 1.7 1.4 3.2 4.1 1.1 3.2 4.1

25 50 0.8 0.9 2.8 2.6 1.4 3.7 3.4 1.4 3.9 3.7

25 100 0.8 1.7 4.6 4.0 2.1 5.3 4.4 2.3 5.9 5.0

50 50 0.8 1.2 2.4 2.1 2.0 3.6 3.6 1.9 3.7 3.7

50 100 0.8 2.2 4.2 3.4 2.6 4.7 4.1 3.1 5.6 4.8

50 200 0.8 2.8 4.9 4.2 3.1 5.3 4.4 2.7 4.7 4.0

100 100 0.8 2.6 3.9 3.0 3.2 4.6 4.2 4.0 5.8 5.1

100 200 0.8 3.2 4.6 3.8 3.5 4.9 4.2 3.0 4.4 3.7

100 400 0.8 3.5 5.0 4.3 3.9 5.4 4.6 3.0 4.3 3.8

25 25 1.0 0.5 1.5 1.9 1.4 3.3 4.8 1.1 3.2 4.5

25 50 1.0 1.1 3.0 2.9 1.4 3.6 3.9 1.4 3.9 4.2

25 100 1.0 2.0 4.8 4.5 2.1 5.0 4.9 2.4 5.7 5.6

50 50 1.0 1.3 2.5 2.2 2.0 3.5 4.2 2.0 3.6 4.4

50 100 1.0 2.4 4.2 3.7 2.6 4.5 4.6 3.1 5.5 5.4

50 200 1.0 2.9 5.0 4.4 3.0 5.0 4.8 2.8 4.7 4.4

100 100 1.0 2.7 4.0 3.1 3.1 4.4 4.7 3.9 5.7 5.7

100 200 1.0 3.3 4.8 3.9 3.4 4.8 4.5 3.0 4.3 3.9

100 400 1.0 3.7 5.1 4.5 3.8 5.3 4.9 3.0 4.2 3.9

Mean abs. dev. from 5% 3.0 1.3 1.8 2.4 0.7 0.9 2.5 0.9 0.9

Table 2.4: Sizes (in percent) of nominal 5% level tests with no heterogeneity

in the alternatives. Based on 1 000 000 replications. Newey Bandwidth.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.5 1.5 3.3 3.0 7.2 7.9 1.6 5.0 6.3

25 50 0.6 0.6 2.6 4.2 2.4 6.7 5.6 1.6 5.6 5.5

25 100 0.6 1.1 4.7 5.7 3.4 9.1 6.2 2.9 8.7 6.9

50 50 0.6 0.6 1.7 2.6 3.9 6.8 4.8 2.4 5.0 4.3

50 100 0.6 1.3 3.5 3.8 4.2 7.9 4.6 3.7 7.6 5.1

50 200 0.6 1.8 4.4 4.4 4.6 8.6 4.7 3.3 6.6 4.4

100 100 0.6 1.9 3.4 3.2 5.5 7.9 4.5 5.0 7.8 4.9

100 200 0.6 2.4 4.1 3.8 5.2 7.7 4.2 3.7 5.8 3.8

100 400 0.6 2.8 4.6 4.2 5.7 8.3 4.5 3.7 5.7 3.8

25 25 0.8 0.5 1.5 2.8 3.2 6.9 8.1 1.8 4.6 6.2

25 50 0.8 0.8 2.8 3.6 2.2 5.5 5.2 1.6 4.7 5.0

25 100 0.8 1.8 5.1 5.2 2.8 6.9 5.8 2.8 7.0 6.3

50 50 0.8 1.0 2.3 2.6 3.7 5.9 5.6 2.5 4.7 4.9

50 100 0.8 2.1 4.2 4.0 3.6 6.2 5.1 3.6 6.4 5.6

50 200 0.8 2.7 5.0 4.7 3.7 6.4 5.0 3.1 5.5 4.6

100 100 0.8 2.5 3.9 3.3 4.7 6.5 5.4 4.7 6.9 5.8

100 200 0.8 3.1 4.7 4.0 4.1 5.9 4.7 3.3 4.9 4.0

100 400 0.8 3.5 5.0 4.5 4.3 6.1 4.9 3.3 4.7 4.0

25 25 1.0 0.7 1.7 2.7 3.4 6.8 8.7 1.9 4.7 6.6

25 50 1.0 1.1 3.2 3.6 2.2 5.1 5.4 1.8 4.6 5.2

25 100 1.0 2.3 5.5 5.3 2.7 6.2 5.9 2.9 6.7 6.6

50 50 1.0 1.3 2.7 2.7 3.7 5.7 6.6 2.6 4.6 5.6

50 100 1.0 2.6 4.5 4.0 3.4 5.6 5.6 3.5 6.1 6.1

50 200 1.0 3.2 5.4 4.8 3.4 5.6 5.3 3.1 5.1 4.8

100 100 1.0 2.9 4.2 3.4 4.5 6.1 6.3 4.7 6.6 6.6

100 200 1.0 3.4 4.9 4.1 3.8 5.3 5.0 3.3 4.7 4.3

100 400 1.0 3.8 5.3 4.7 4.0 5.5 5.2 3.2 4.4 4.1

Mean abs. dev. from 5% 3.1 1.3 1.2 1.3 1.6 0.8 2.0 1.0 0.8

Table 2.5: Sizes (in percent) of nominal 5% level tests with no heterogeneity

in the alternatives. Based on 1 000 000 replications. Newey Bandwidth, three

factors.
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i.i.d. AR(1) MA(1)

n T
√
ω4/φ4 tUMP temp

UMP Pb tUMP temp
UMP Pb tUMP temp

UMP Pb

25 25 0.6 0.3 1.2 1.7 1.5 3.7 4.0 1.1 3.4 3.8

25 50 0.6 0.7 2.5 2.4 1.5 4.3 3.2 1.3 4.2 3.5

25 100 0.6 1.3 4.2 3.6 2.3 6.0 4.0 2.3 6.4 4.5

50 50 0.6 0.9 2.1 1.9 2.2 4.0 3.0 1.9 3.9 3.2

50 100 0.6 1.9 3.9 3.1 2.9 5.3 3.6 3.1 6.0 4.2

50 200 0.6 2.4 4.6 3.7 3.4 6.0 3.9 2.8 5.2 3.6

100 100 0.6 2.3 3.7 2.9 3.5 5.1 3.6 4.1 6.1 4.3

100 200 0.6 2.9 4.4 3.4 3.8 5.5 3.8 3.2 4.7 3.4

100 400 0.6 3.3 4.9 3.9 4.3 6.1 4.1 3.2 4.6 3.5

25 25 0.8 0.4 1.3 1.7 1.5 3.5 4.3 1.1 3.3 4.1

25 50 0.8 0.9 2.8 2.6 1.4 3.8 3.5 1.4 3.9 3.7

25 100 0.8 1.7 4.6 4.0 2.1 5.2 4.4 2.3 5.9 5.0

50 50 0.8 1.1 2.4 2.0 2.1 3.6 3.6 2.0 3.7 3.8

50 100 0.8 2.2 4.2 3.4 2.7 4.7 4.2 3.1 5.6 4.9

50 200 0.8 2.8 4.9 4.1 3.0 5.3 4.4 2.7 4.8 4.1

100 100 0.8 2.6 4.0 3.0 3.2 4.6 4.2 4.0 5.8 5.1

100 200 0.8 3.2 4.7 3.8 3.5 4.9 4.2 3.0 4.4 3.7

100 400 0.8 3.5 5.0 4.3 3.9 5.5 4.6 3.0 4.3 3.7

25 25 1.0 0.5 1.4 1.8 1.5 3.4 4.9 1.2 3.2 4.6

25 50 1.0 1.0 3.0 2.9 1.4 3.6 3.8 1.5 3.9 4.2

25 100 1.0 2.0 4.9 4.4 2.1 5.0 4.9 2.4 5.8 5.6

50 50 1.0 1.3 2.5 2.2 2.1 3.6 4.3 2.0 3.6 4.3

50 100 1.0 2.4 4.3 3.6 2.6 4.5 4.6 3.1 5.5 5.5

50 200 1.0 3.0 5.0 4.5 3.0 5.0 4.8 2.7 4.7 4.4

100 100 1.0 2.7 4.0 3.1 3.1 4.5 4.7 3.9 5.7 5.7

100 200 1.0 3.3 4.7 3.9 3.4 4.8 4.5 2.9 4.2 3.9

100 400 1.0 3.7 5.2 4.6 3.7 5.2 4.9 2.9 4.1 3.8

Mean abs. dev. from 5% 3.0 1.3 1.8 2.4 0.7 0.8 2.5 0.9 0.9

Table 2.6: Sizes (in percent) of nominal 5% level tests with no heterogeneity

in the alternatives. Based on 1 000 000 replications. Newey Bandwidth, t-

distribution with five degrees of freedom.
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Chapter 3

Panel Unit-Root Tests Under

Cross-Sectional Cointegration1

Abstract

We study unit-root tests for unobserved common factors in large pan-

els. Recent panel unit-root tests typically allow for cross-sectional corre-

lation due to common unobserved factors. As originally proposed in Bai

and Ng (2004) (‘PANIC’), unit-root tests are applied separately to the

common factors and idiosyncratic deviations. While the testing problem

for the idiosyncratic parts is in many cases well-understood, the testing

problem for the factors has received much less attention. Bai and Ng

(2004) show that using principal component estimates in ADF tests does

not change their properties. We generalize this result to other unit-root

tests and other factor estimates, which can lead to higher finite sample

powers. In particular, we show that a Kalman smoother imposing the

null hypothesis to estimate the factors often has a simple closed-form so-

lution that avoids the computational issues usually associated with other

methods.

We also discuss the implications of including deterministic trends in

the factor equation, i.e., having factors with non-zero mean innovations.

This specification can be considered as an alternative to including individ-

ual deterministic trends for each unit. Although this leads to nontrivial

powers closer to the unit-root, we can again attain these powers based on

1 Based on joint work with B.J.M. Werker.

89
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estimated factors. In particular, we propose tests based on simple cross-

sectional averages that are asymptotically uniformly most powerful. We

derive the properties of these unit-root tests in the presence of multiple

potentially cointegrated factors and show that they can be interpreted

as unit-root tests for the observations. The cross-sectional averaging ap-

proach can lead to higher powers than cointegration-rank based tests and

does not require pre-estimation of the total number of factors.

3.1 Introduction

For some years now, panel unit-root tests have been developed that are ro-

bust to cross-sectional correlation, see, e.g., Breitung and Pesaran (2008) for

a review. In the presence of strong cross-sectional correlation (i.e., when the

eigenvalues of the cross sectional covariance matrix are not bounded), this

is modeled by assuming a factor structure, see, for example, Bai and Ng

(2004), Breitung and Das (2007), Moon and Perron (2004), Pesaran (2007),

and Phillips and Sul (2003).2 The PANIC (Panel Analysis of Nonstationarity

in Idiosyncratic and Common components) approach of Bai and Ng (2004)

that tests separately for unit roots in common factors and idiosyncratic com-

ponents has become a frequently used method of conducting panel unit root

tests. Instead of a unit-root test for the observations, the two components are

tested separately for a unit root. This approach allows the common factos and

idiosyncratic parts to have different orders of integration.

The vast majority of follow-up papers have focused on the testing prob-

lem for the idiosyncratic components.3 However, in many cases the testing

problem for the idiosyncratic parts is just as important. Firstly, this is the

2 Applications include O’Connell (1998), Papell (2006), and Silva, Hadri, and Tremayne

(2009).

3 A notable exception is the working paper Barigozzi and Trapani (2018), who consider

both the number of (nonstationary) factors and number of factors with deterministic

trends. However, their focus is different, as they attempt to consistently estimate

the number of factors under very general conditions. The cost of this is that they

do not consider local-to-unity specifications and thus cannot study systematically the

asymptotic local power of their tests.
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case whenever the main interest is the stationarity of the observations them-

selves and one does not assume that the factors and idiosyncratic parts are

either both stationary or both nonstationary4: When the idiosyncratic parts

are stationary, the stationarity of the common factor determines the long-run

behavior of the observations. For example, when the variable of interest is to

be used in a regression setting, rejecting a unit-root in the idiosyncratic parts

is not sufficient to avoid spurious regression issues – unless nonstationarity

in the other variables is exclusively due to the same nonstationary common

factor.

Secondly, one may be directly interested in the source of potential non-

stationarity, i.e., whether the factors, the idiosyncratic parts, or both are sta-

tionary. This may change the interpretation of the results. For example, if

one were to find that all non-stationarity in stock prices comes from common

factors, this may signal inefficient markets despite the stock prices being non-

stationary. Thus, the problem of testing the factors for a unit root has to

be solved as well, in particular when the idiosyncratic parts turn out to be

stationary. Providing a better understanding of this unit-root testing problem

for the unobserved factors is the goal of this chapter.

Our first contribution is to show that in many cases estimated factors can

be inserted into univariate unit-root tests without their asymptotic power be-

ing affected. In Section 3.3 we consider unit-root tests for the common factors

4 Some unit-root tests have been developed for the observations, however, Breitung and

Das (2007) show that when these tests are evaluated under DGPs where the order of

integration of the factors differs from that of the idiosyncratic parts, these tests do not

attain close to nominal size even in large samples. As shown by Wichert et al. (2019),

this is due to the fact that the Moon and Perron (2004) tests are equivalent to the tests

that only test the idiosyncratic components. Consider the case of a dependent panel

with a common stochastic trend but stationary idiosyncratic component. In this case,

the observations for each panel unit are nonstationary. However, the commonly used

panel unit-root tests would falsely reject, as they implicitly test only for a unit root

in the idiosyncratic components. On the other hand, a unit-root test that is robust to

this cross-sectional cointegration would essentially boil down to a unit root test for the

common factor, as this testing problem is harder. Based on the commonly employed

tests for the factors, this would negate many of the power gains that one sought out

panel data for in the first place.
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in the original PANIC setup, i.e., the setup most commonly used in practice.

In the single factor case, when principal component factor estimates based on

first-differenced observations are inserted into ADF statistics, their asymptotic

distribution (and thus power) is the same as when based on observed factors.

This was shown when the PANIC approach was originally introduced in Bai

and Ng (2004). We generalize this result to likelihood-based unit-root tests

such as the commonly used Elliott, Rothenberg, and Stock (1996) tests and

other factor estimates, for example principal components estimated in levels

as proposed in Bai (2004) and generalized principal components as in Choi

(2017). These alternative approaches are attractive, as ADF tests require ad-

hoc specifications of lag length and, if the idiosyncratic components are known

to be stationary, differencing makes the principal component estimates less ef-

ficient.5 Moreover, when the factor estimates are to be used for a unit-root

test, one can impose the unit-root in the estimation stage. We show that a

Kalman smoother that takes into account the joint distribution of the factors

and the observations under the null hypothesis also leads to correct asymptotic

sizes and powers. This can be exploited for finite-sample gains, but also in

iterative procedures to directly identify the factor of interest. We also develop

a computationally simple closed-form solution of the Kalman smoother and

relate it to existing factor estimates.

Our second contribution, in Section 3.4, reconsiders the unit-root testing

problem for the factors, but with non-zero mean factor innovations, i.e., de-

terministic trends in the factors. Throughout the unit-root literature, various

specifications with regards to how deterministic trends, regressors, and unob-

served factors enter have been considered. As mentioned earlier, we consider

5 In practice, of course one does not know the true DGP. However, the unit root tests

for the factors considered here will have power in T−1 neighbourhoods of the unit

root, whereas tests for the idiosyncratic parts have power in T−1n−1/2 or T−1n−1/4

neighbourhoods around unity. Thus, for testing the factors for a unit root, the order of

integration of the idiosyncratic parts can be considered as known and this knowledge

can be exploited to obtain better factor unit-root tests. Moreover, Banerjee, Marcellino,

and Masten (2017) argues that for most economic time series the idiosyncratic parts

are likely to be stationary.
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only a component specification for the factors, as the testing problem with

a factor structure in the innovation is well understood. However, we pay at-

tention to the role of deterministic trends and regressors entering either in a

component specification or as part of the innovations in the factor specifica-

tion. Allowing for deterministic trends is important in many applications of

unit-root tests. However, specifying individual-specific trends greatly reduces

the power of panel unit root tests: Instead of T−1n−1/2 neighbourhoods of the

unit root, testing with idiosyncratic trends leads to power only in T−1n−1/4

neighbourhoods, see Moon, Perron, and Phillips (2007). Depending on the ap-

plication and the hypothesis of interest, specifying trends in the factor equation

can be an attractive alternative that suits the data.

With observed factors, the deterministic trend in the factor equation would

lead to sizeable power gains, see Hallin, Van den Akker, and Werker (2011,

2016), who obtain power in T−3/2 neighbourhoods of the unit root. We show

that even with unobserved factors the gains due to nonzero-mean innova-

tions in the factor equation can be fully realized. First, we show that simple

cross-section averages can successfully estimate factors that have determin-

istic trends. Moreover, we do not only consider a single factor, but discuss

what exactly is estimated by cross-section averages in the presence of multi-

ple potentially cointegrated factors. In particular, we show that if the factors

are estimated using cross-sectional averages, the asymptotic size and power

of our unit root tests are unaffected when additional stationary factors are

present. Also, enlarging our null hypothesis to allow for more than one com-

mon stochastic trend does not lead to any size distortions and, as expected,

has a positive effect on the attainable local asymptotic powers.

Often, the most relevant question will be whether the observations are

stationary or not, rather than what the exact number of common stochastic

trends will be. We propose tests that nearly attain the power envelope for

the unit root testing problem and have correct size also if there are multiple

stochastic trends present. These tests have more power than the cointegration

tests previously considered, and, importantly, they do not require estimation
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of the number of factors.6

The chapter is structured as follows: Section 3.2 introduces the basic setup

and issues common to all specifications. Section 3.3 discusses alternative unit-

root tests in the most frequently considered model with zero-mean innovations

and Section 3.4 considers deterministic trends in the factor equation. Sec-

tion 3.5 presents simulation results for all specifications. Proofs are relegated

to Section 3.A.

3.2 Setup

Throughout this chapter, we consider the factor model of Bai and Ng (2004),

Yit =

r∑
k=1

λkiFkt + Eit, (3.1)

Eit = ρEEi,t−1 + ηit, (3.2)

Fkt = ρkFk,t−1 + µk + fkt, (3.3)

with λki the loading of the (unobserved) factor {Fkt} on panel unit i, and

r ∈ N being the fixed and known number of factors. The {ηit} and {fkt} are

zero-mean idiosyncratic and common shocks, respectively. For both the factors

and idiosyncratic parts we assume zero starting values. For ease of notation

suppose that 1 ≥ ρ1 ≥ ρ2 ≥ · · · ≥ ρr ≥ 0. Our starting point is the most

commonly found framework where µk = 0, i.e., the factor innovations have zero

mean. We consider the null hypothesis ρ1 = 1, with alternatives ρ1 = 1+ h
T ν ,

and ν ∈ {1, 3/2} depending on whether the factors contain a deterministic

trend, i.e., on whether µ1 �= 0. In case no trend is specified, ν = 1 implies

alternatives contiguous to the null hypothesis, see Proposition 3.3.1. With a

possible deterministic trend we have power even at ν = 3/2, see Theorem 3.4.1.

Throughout, we consider large panels in the sense that both n and T go to

infinity. This is standard in this literature. We require n-asymptotics in order

6 These are typically selected based on information criteria, see, for example Bai and Ng

(2002). However, it is known that in finite samples these often select the maximum

number of factors and can thus be of limited use in practice.
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to successfully estimate the unobserved common factors. Thus n → ∞ is

assumed although n does not appear in the local alternatives – after all one

cannot do better than the observed-factor benchmark.

Collect the panel units in the T × n matrices Y , E, and η. Also, write

Yi, Ei, and ηi for their ith columns, respectively. Introduce the n × r ma-

trix Λ to contain the factor loadings λi,k and write λk = (λ1,k, . . . , λn,k)
′.

Let Fk = {Fk,t}Tt=1 and define fk analogously. Finally, collect the factors

in F = (F1, . . . , Fr) and f = (f1, . . . , fr). Also, denote by F−1 and F̂−1,

(F0, . . . , FT−1)
′ and (F̂0, . . . , F̂T−1)

′, respectively. Note that with this nota-

tion, we have Y = FΛ′ + E. The T × T covariance matrices of f , ηi, are

denoted by Σf and Ση,i, respectively, with long-run variances ω2
f , ω2

η,i and

autocovariance functions γk and γi, respectively.

For a matrix A, let ‖A‖F denote its Frobenius norm and ‖A‖spec its spectral
norm. By → we denote convergence, of real-valued sequences, ⇒ denotes

convergence in distribution, and (n, T → ∞) refers to n and T going to infinity

jointly as in Phillips and Moon (1999).

For now, we make no assumptions on the idiosyncratic parts η, but instead

assume the existence of certain estimates of F1,t that are available under vari-

ous conditions on η. We first establish a sufficient condition for the estimated

factors to yield adaptive likelihood-ratio tests. Later, we show that several

factor estimates available in the literature satisfy this condition. To enable us

to write out likelihood ratios we impose the following assumption.

Assumption 3.1 The factor innovations fk are a stationary Gaussian time-

series with mean zero and variance one, independent of the idiosyncratic parts

η and satisfying
∑∞

m=0(|m|+ 1)γk(m) < ∞.

The zero mean assumption will be relaxed in the next section and the unit

variance is necessary for identification; it allows us to estimate the factor up to

its sign. The normality assumption could probably be relaxed at the expense

of slightly more complicated likelihood ratios (as in Jansson (2008)), but is in

line with the literature on panel unit-root tests even in much simpler settings.

We also impose the standard assumption of strong factors.
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Assumption 3.2 The factors are strong, i.e., there exists a positive definite

matrix ΨΛ such that limn→∞
1
nΛ

′Λ → ΨΛ.

3.3 Likelihood-Based Tests and Varying Factor Es-

timates

The goal of this section is to illustrate some features of the likelihood ratio

in the experiment where µk = 0. In a simple setting, we formally show that

panel unit-root tests that are robust to cross-sectional cointegration, can (only)

have power in T−1 neighbourhoods of the unit-root. This is one motivation

for considering an alternative framework in Section 3.4.

The case of µk = 0 is the case most commonly encountered in the literature

and originally proposed by Bai and Ng (2004). In case of a single factor, they

show that after estimating the factor by principal components these can be

used in ADF tests as if the factor was observed. We start by generalizing these

results to likelihood-based test statistics and various factor estimates.

In the spirit of applying existing unit-root tests to estimated factors, we

first consider the experiment where both Y and F are observed and recall the

local likelihood ratio. We consider local alternatives of the form

ρ1,T = 1 +
h

T
, h ∈ R− (3.4)

and rephrase our hypotheses as H0 : h = 0 vs. HA : h < 0. Let P̃h,n,T be the

joint law of Y and F under (3.1)–(3.4), write Ph,n,T for the marginal law of Y

and P̃h,T for the marginal law of F . Like the existing results for ADF tests,

we restrict ourselves to the single factor case in this section. When multiple

factors are present, typically cointegration-based methods are employed that

are beyond the scope of this chapter. However, we show in Sections 3.4.2

and 3.4.3 that such an approach is not necessary for factors with deterministic

trends as the distribution of our proposed test statistics does not change when

additional stationary factors are present.

Assumption 3.3 We have a single factor (r = 1) with unit variance and

µ1 = 0.
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Writing out a local likelihood ratio in the experiment where both Y and F are

observed yields, under Assumptions 3.1 and 3.2,

log
dP̃h,n,T

dP̃0,n,T

= −hST − 1

2
h2HT , (3.5)

with

ST =
1

T
∆F ′Σ−1

f F−1 and HT =
1

T 2
F ′
−1Σ

−1
f F−1. (3.6)

As expected, if the factor is observed there is no additional information

in Y , i.e., this is the same likelihood ratio as for only observing F and F

constitutes a sufficient statistic in this experiment.

dP̃h,n,T

dP̃0,n,T

=
dP̃h,T

dP̃0,T

.

This allows us to use the well-known results for the first-order autoregression,

i.e.,

(ST , HT )
P̃0,T⇒

(∫ 1

0
W (r) dW (r),

∫ 1

0
W 2(r) dr

)
=: (S,H), (3.7)

where W is a standard Brownian Motion, see, e.g., Elliott, Rothenberg, and

Stock (1996). It turns out that given sufficiently good estimates F̂1,t of the

factor, replacing F1,t by F̂1,t in (3.6) leads to an asymptotically negligible

difference between (ST , HT ) and the estimated counterparts. We now show

under which conditions ST and HT can be approximated based on observing

Y alone. This enables likelihood-based inference for the unobserved factor.

We first establish a sufficient condition for the estimated factor to yield adap-

tive likelihood-ratio tests. In Sections 3.3.1–3.3.4 we show that several factor

estimates available in the literature satisfy this condition.

Proposition 3.3.1 Let F̂1,t satisfy

MSET :=
1

T

T∑
t=1

(F̂1,t −Rn,TF1,t)
2 =oP̃0,n,T

(1) (3.8)

for some Rn,T satisfying ‖Rn,T ‖F = OP̃0,n,T
(1) and

∥∥∥R−1
n,T

∥∥∥
F
= OP̃0,n,T

(1), and

assume {F̂ 2
T /T}T∈N is uniformly integrable. Let ω̂2

f be a consistent estimator



575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert
Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022 PDF page: 106PDF page: 106PDF page: 106PDF page: 106

CHAPTER 3. CROSS-SECTIONAL COINTEGRATION 98

of the long-run variance of ∆F̂ and define ŜT and ĤT analogous to (3.6) by

ŜT =
1

T ω̂2
f

T∑
t=2

∆F̂1,tF̂1,t−1 −
δ̂f
ω̂2
f

and ĤT =
1

T 2ω̂2
f

T∑
t=2

F̂ 2
1,t−1, (3.9)

where δ̂f =
ω̂2
f−1

2 . Then, under Assumptions 3.1–3.3, (ŜT , ĤT ) = (ST , HT ) +

oP̃h,n,T
(1) as (n, T → ∞).

The proof is provided in Section 3.A.1. Note that as we have normalized the

factor innovations to have unit variance and δ̂f approximates the one-sided

long-run variance δ =
ω2
f−σ2

f

2 .

Remark 3.3.1 We use joint convergence as in Phillips and Moon (1999),

where both n and T go to infinity together without any particular relation

between the two; in this section we also do not require any restrictions on the

rates. These joint limits also imply sequential ones, but restricting ourselves

to sequential results would in our case entail potentially misleading results:

When first n → ∞ then T → ∞, we would conclude that any test statistic is

adaptive, as long as we plug in a factor estimate that is consistent for large

n. Therefore, the additional requirements of joint asymptotics are essential in

this problem.

Remark 3.3.2 Bai and Ng (2002) remark that for estimating the number of

factors, it is the ‘average convergence’ of the factor estimates as in (3.8) that

is needed, rather than uniform convergence. Proposition 3.3.1 implies that, for

a given factor, the same remark applies to judging its stationarity.

Certainly, not observing the factor cannot make the testing problem easier.

Also, note that neither does observing Y in addition to F , since the likelihood

ratios are the same. So, not surprisingly, the power envelope for the univariate

testing problem derived in Elliott, Rothenberg, and Stock (1996) is an upper

bound for testing an unobserved factor for stationarity. It is also attainable in

the same way as in the univariate case. Firstly, it is attainable pointwise: in

the model with an observed factor, the Neyman-Pearson Lemma applies (see

Elliott, Rothenberg, and Stock (1996)), so that likelihood-ratio tests are most
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powerful against specific alternatives. Therefore, against specific alternatives,

we can construct tests with the same asymptotic power without observed

factors.

It is well-known that no UMP tests exist, see e.g. Jeganathan (1995).

However, in the univariate setup, ‘nearly efficient’ tests in the sense that their

power is very close to the power envelope, have been suggested. Among these

are the pT tests from Elliott, Rothenberg, and Stock (1996), but also, for

example, the likelihood-ratio tests Jansson and Nielsen (2012). Also these

tests can be adapted based on (3.8).

Different factor estimates have been shown to satisfy Condition (3.8) under

a variety of assumptions. In particular, Bai (2004) shows it is satisfied for

the principal component estimator, Bai and Ng (2004) show it is satisfied

for principal components estimated in differences and Choi (2017) shows it is

satisfied for a generalized principal component estimator. We proceed to recall

these results and demonstrate their compatibility with our assumptions.7

3.3.1 Level Principal Components

To successfully estimate the factor using principal components estimated in

levels,8 we need to assume that |ρE | < 1, i.e., we have stationary idiosyncratic

parts; see Onatski and Wang (2019) for a discussion on the problems of level

principal components in combination with integrated idiosyncratic parts. Bai

(2004) discusses in detail the properties of level principal component estimators

in large panels with nonstationary factors. Lemma 1 in that paper states that

MSET = OP0

(
1

min{n,T 2}

)
, implying (3.8). In Bai (2004) these are shown

under four assumptions, A–D. Assumption A is indeed satisfied in our setup

thanks to Assumption 3.1: The first part (moments of the factor innovation)

is trivially satisfied due to the normality assumption. Part two just states

the convergence of HT which is certainly satisfied under Assumption 3.1, with

7 In the below we focus on verifying (3.8) for the existing factor estimates. To formally ap-

ply Proposition 3.3.1 to these estimates one should also verify the uniform integrability

requirement.

8 That is, based on the estimated covariance matrix of Y rather than ∆Y .
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Ωuu = 1. Similarly, the law of iterated logarithm is standard here. Part four

is also satisfied easily, since F1,0 = 0. Assumption B–D in Bai (2004) need to

be imposed; they concern only factor loadings and idiosyncratic errors.

3.3.2 Generalized Principal Components

Choi (2017) introduces generalized principal components for nonstationary

factors. These generalized principal components take the heteroskedasticity

of the idiosyncratic parts into account and can thus be more efficient. Our

condition (3.8) is verified in Lemma A.1 in the appendix to Choi (2017); it

states the same as the result in Bai (2004). The assumptions on both the

idiosyncratic errors and the ft are high level but examples are given. Assump-

tion 1 concerns the idiosyncratic innovations and needs to be imposed, as do

Assumptions 2(i) to 2(iii), which concern the factor loadings. The functional

central limit theorem in Assumption 2(iv) holds with ΦF = 1 based on our

Assumption 3.1. Assumption 3(i) and 3(ii)(a) also concern the idiosyncratic

parts.

3.3.3 Difference Principal Components

Difference principal components proceed by estimating ∆F based on the esti-

mated covariance matrix of ∆Y and taking cumulative sums. Our condition

in (3.8) is stated in levels, making it hard to verify for factor estimates that

are based on differences. However, the only such factor estimate we are aware

of are the difference principal components suggested in Bai and Ng (2004)

and the two conclusions of Proposition 3.3.1 regarding ŜT and ĤT are veri-

fied therein as Lemma B.(iv) and Lemma B.(ii), respectively. Therefore, our

conclusions concerning power envelopes and point-optimal tests apply also to

difference principal components, under the assumptions of Bai and Ng (2004).

3.3.4 The Kalman smoother

Recently, methods that use the time-series properties of the data in addition to

postulated cross-sectional correlation structure have been developed, see, for

example Doz, Giannone, and Reichlin (2011) and Poncela, Ruiz, and Miranda
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(2020). As we are interested in the unit-root testing problem, and thus know

the time-series properties of the factor under the hypothesis, the use of these

methods is particularly appropriate. A popular approach for this is to employ

the ‘Kalman smoother’ factor estimate, which is given by F̃KS = E[F1|Y ], i.e.,

the expectation of the factor given all observations Yit, i = 1, . . . n, t = 1, . . . T .

As common in this literature, we now also require Gaussianity of the factor

innovations. Moreover, we focus on the case where the nT × nT covariance

matrix of the innovations η can be written as a Kronecker-product, i.e., each

panel unit may have a different (long-run) variance, as long as the correlation

structure is the same across panel units. We focus on the case ρE = 0; the

theory for nonstationary idiosyncratic parts could be developed analogously.

Moreover, we impose the hypothesis of an integrated factor. Recall that (3.8)

only concerns the behavior under the null hypothesis; convergence to zero

under local alternatives is then implied by contiguity.

Assumption 3.4 The idiosyncratic innovations η are normally distributed

with mean zero and covariance matrix Ωη⊗Ση, where Ωη is a diagonal matrix

whose diagonal entries are bounded and bounded away from zero and Ση is a

covariance matrix of a stationary time series with summable autocorrelations.

The factor innovations f are normally distributed with mean zero and covari-

ance matrix Σf with spectral density bounded and bounded away from zero.

Finally, ρE = 0.

Under Assumption 3.4, we can rewrite the desired conditional expectation as

F̃KS = E[F1|Y ] = ΣF,Y Σ
−1
Y vec(Y ), (3.10)

where ΣF,Y is the T × nT ‘cross-covariance matrix’ of F1 and Y , that is

(ΣF,Y )t,(i−1)T+s = Cov(F1,t, Yis). To our knowledge, the Kalman smoother

has not been studied in the presence of nonstationary factors. However, in

the case of equal correlation structure among the idiosyncratic errors, it is

relatively straightforward to obtain condition (3.8). The key insight is that

the inverse nT ×nT covariance matrix of Y does not have to be computed, as

for the Kalman smoother we only need the inverse premultiplied by ΣF,Y . Let

Ã denote a cumulative sum operator, a T × T matrix with ones on and below
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the diagonal and zeros on and above, so that F = Ã∆F . More explicitly, we

have9

F̃KS = (λ′ ⊗ ÃΣf Ã
′)(λλ′ ⊗ ÃΣf Ã

′ +Ωη ⊗ Ση)
−1 vec(Y ) (3.11)

=

(
IT +Ση

(ÃΣf Ã
′)−1

λ′Ω−1
η λ

)−1

Y Ω−1
η

λ

λ′Ω−1
η λ

. (3.12)

This insight has three main consequences. First, it greatly reduces the com-

putational burden when implementing the Kalman smoother. Often, the

Kalman smoother is employed in an iterative procedure to jointly estimate

other nuisance parameters. However, repeatedly computing the nT × nT in-

verse is computationally prohibitive. (3.12), on the other hand, only involves

a T × T inverse. Second, the formulation disentangles the cross-sectional

and time-series manipulation of the observations, aiding interpretation of the

procedure. Indeed, with i.i.d. innovations and homoskedasticity, F̃KS =(
IT + (ÃÃ′)−1

λ′λ

)−1
F̃OLS , where F̃OLS is the estimate of a least squares regres-

sion of Y on λ. As expected, the Kalman smoother leaves intact the cross-

sectional correlation structure of principal components/OLS, but re-weighs

the estimates in the time direction. In the more general case, we can similarly

relate the Kalman smoother estimate to a GLS estimate, i.e.,

F̃KS =

(
IT +Ση

(ÃΣf Ã
′)−1

λ′Ω−1
η λ

)−1

F̃GLS .

Note that with unobserved factor loadings, the GLS estimate corresponds to

the Generalized Principal Components estimate of Section 3.3.2. This insight

also allows a relatively straightforward proof of the following proposition, im-

plying that the Kalman smoother can be used for panel unit-root tests.

Proposition 3.3.2 Let (λ̂,∆F̂ ) be GPC estimates of (λ, F ) and let Σ̂f , Σ̂η,

and Ω̂η be consistent estimators of Σf , Ση, and Ωη, respectively. Let F̂KS =(
IT + Σ̂η

(ÃΣ̂f Ã
′)−1

λ̂′Ω̂−1
η λ̂

)−1

Y Ω̂−1
η

λ̂
λ̂′Ω̂−1

η λ̂
. Under Assumptions 3.1–3.4, we have

MSET =
1

T

T∑
t=1

(F̂KS
t − F1,t)

2 = oP̃0,n,T
(1). (3.13)

9 For a proof of this relation see Section 3.A.1.
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Remark 3.3.3 Although we have imposed Assumption 3.4, joint Gaussianity

of the factor and idiosyncratic innovations is only necessary for F̂KS
t to be

the Kalman smoother, i.e., a conditional expectation. However, (3.13) can be

shown under weaker conditions. In particular, the proof in Section 3.A.1 uses

only the MSE condition of the GPC estimator as well as boundedness of the

spectral norms of the estimated covariance matrices.

3.4 Factors with Deterministic Trends

Having formally shown that in the standard setting cross-sectional cointegra-

tion robust unit-root tests cannot have a faster convergence rate than tests

based on a single time series, we now consider an alternative setup that allows

for more powerful tests: we consider factor innovations with non-zero mean,

i.e., µk �= 0. Hallin, Van den Akker, and Werker (2011) study such a univariate

autoregressive model with deterministic trends under the hypothesis, treating

the trend as a nuisance parameter. For Gaussian innovations, Equation (14)

in Hallin, Van den Akker, and Werker (2011) shows that the asymptotically

optimal test for the unit root hypothesis for an observed factor F1 is based on

T (∆F 1,T ) :=
1√
T

T∑
t=1

(
t

T + 1
− 1

2

)
∆F1,t. (3.14)

For contiguous alternatives of the form

(ρ1,T , µ1,T ) =

(
1 +

h1

T 3/2
, µ1 +

h2√
T

)
, (3.15)

where ρ1,T and µ1,T refer to the autoregressive parameter and the trend, re-

spectively, they show that the model is locally asymptotically normal (LAN).

Note that the presence of the trend makes it easier to identify ρ in the sense

that now the local alternatives are closer to the hypothesis. Once again, we

show that observing the factors ‘does not make a difference’ (asymptotically)

and suggest how to estimate them.

The literature on estimating factors in the presence of both a stochastic

and a deterministic trend is very limited. The papers by Bai (2004), Bai

and Ng (2004), and Choi (2017) do not allow for deterministic trends. In
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an unpublished working paper, Maciejowska (2010) shows that indeed the

solutions of Bai (2004) do not work in the presence of a deterministic trend

but that the method of principal components can still be used to get consistent

estimates. However, it turns out that much simpler estimates are sufficient

for optimal unit-root tests. In particular, we show that replacing ∆F 1,T with

scaled cross-section averages in (3.14) leads to asymptotically uniformly most

powerful unit-root tests.

In Section 3.4.1, we again consider a single factor and show how to im-

plement an asymptotically UMP unit-root test. In Section 3.4.2, we allow

for multiple factors, with at most one of them being nonstationary. We show

that the asymptotic distributions of the test we have proposed in Section 3.4.1

is not affected by additional stationary factors. Finally, in Section 3.4.3, we

allow for multiple potentially nonstationary factors. This implies that the

observations are nonstationary, so we do not want to reject the panel unit-

root hypothesis. We show that, also in the presence of multiple nonstationary

factors, the asymptotic size of the proposed test does not exceed its nominal

level.

3.4.1 A Single Factor with Trend

We now consider the case where µ1 �= 0. Once again, we are interested in

the unit-root hypothesis, i.e., testing H0 : ρ = 1, based on observing Y .

Under the hypothesis of a unit-root, this corresponds to the presence of both

a deterministic and a stochastic trend, whereas under the alternative neither

is present.

We allow for both stationary and integrated idiosyncratic parts. Moreover,

we do not require Gaussianity at this stage, relaxing Assumption 3.1. At the

same time, we impose restrictions on the idiosyncratic parts that allows us to

estimate the factors without relying on external estimates.

Assumption 3.5 The idiosyncratic parts {Ei} are cross-sectionally indepen-

dent. They also have mean zero and start at zero, i.e., Ei,0 = 0, EEi,t = 0,

we have E[(∆Ei,t)
2] = σ2

e < ∞ and one of the following holds:

1. The idiosyncratic parts are covariance stationary, or
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2. The first differences of the idiosyncratic parts, ∆Ei,t, are covariance

stationary with summable autocovariances, i.e., we have

∞∑
s=0

|E[∆Ei,t∆Ei,t−s]| < ∞.

Assumption 3.6 The factor innovations are covariance stationary and er-

godic with Ef1,t = 0 and Ef2
1,t = 1 and independent of the idiosyncratic inno-

vations E·,T .

The assumption of summable autocovariances in Assumption 3.5(2) implies

that the variance of EiT is of the same order as that of a random walk. The

assumption is satisfied, for example, for near epoch dependent processes on

a mixing process, as demonstrated in Theorem 17.7 in Davidson (1994) or in

particular a stationary ARMA process.

Under the alternatives (3.15), let P̃h1,h2,n,T be the joint law of Y and F1,

write P̃h1,h2,T for the marginal law of F1 and write Ph1,h2,n,T for the marginal

law of Y . As in Section 3.3, the likelihood ratio of the joint law of Y and F1

equals the likelihood ratio of the marginal law of F1 alone, i.e.,

dP̃h1,h2,n,T

dP̃h̃1,h̃2,n,T

=
dP̃h1,h2,T

dP̃h̃1,h̃2,T

, (3.16)

for all h1, h2, h̃1, h̃2. This is due to the independence between idiosyncratic

and factor innovations from Assumption 3.6 ensuring that the distribution of

Yi,t conditional on Ft and the past does not depend on the local parameters.

Because of (3.16), the asymptotically optimal test for the panel model with

observed factors is based on (3.14) as well. In fact, the same LAN result

as in Proposition 2.1 in Hallin, Van den Akker, and Werker (2011) holds,

which, analogous to Lemma 3.A.1 implies mutual contiguity of local alterna-

tives around the unit root; see also Remark 2.1 in Hallin, Van den Akker, and

Werker (2011). In our setting, where the factors are unobserved, we will show

that T (∆F 1,T ) can be approximated with Y -measurable estimates up to an

op(1) term, implying that the more complicated unobserved factor model is

adaptive.
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Lemma 3.4.1 Write ∆Y ·,t =
1
n

∑n
i=1∆Yi,t and let ∆F̂1,t = ∆Y ·,t/s(∆Y ·,t),

where s2(·) denotes the sample variance. Then, under Assumptions 3.2, 3.5

and 3.6, T (∆F 1,T )− T (∆F̂ 1,T ) = oP̃h1,h2,n,T
(1) as (n, T ) → ∞ jointly.

The proof is provided in Section 3.A.2. Lemma 3.4.1 allows us to use many

of the results in Hallin, Van den Akker, and Werker (2011) as summarized

in Proposition 3.4.1. In the spirit of the existing panel unit-root tests, this

chapter does not consider rank-based tests. Instead, we rely on their statis-

tics that are valid and optimal under normality.10 Therefore, we strengthen

Assumption 3.6:

Assumption 3.7 The factor innovations are independent of the idiosyncratic

ones and satisfy µ1 �= 0 as well as f1,t
iid∼ N(0, 1).

Theorem 3.4.1 Let τn,T be the test that rejects iff
√
12T (∆F̂ 1,T ) ≥ Φ1−α,

where Φ1−α is the 1 − α percentile of the standard normal distribution. Un-

der Assumptions 3.2, 3.5 and 3.7, this test is an asymptotically uniformly

most powerful level-α test for a unit-root in the unobserved factors: For any

asymptotic level α test tn,T let πtn,T (h1) = Ph1,0,n,T [tn,T rejects] be the power

function. Then

lim
(n,T )→∞

πtn,T (h1) ≤ lim
(n,T )→∞

πτn,T (h1) = 1− Φ

(
Φ1−α − h1µ1√

12

)
,

for all h1 ≥ 0, where Φ(·) refers to the standard normal CDF.

Proof These results follow immediate from those in Hallin, Van den Akker,

and Werker (2011), noting that any power function we can get with tests based

on Y only we can also get based on (Y, F ). Thus, if a test is optimal among on

(Y, F ) based tests, and it is just based on Y , it must also be optimal among

those tests. �

10 The rank-based versions of these test statistics require estimation of weights that depend

on the levels of the factor of interest. While these estimates can be obtained in case

the idiosyncratic parts are stationary, this is problematic if the idiosyncratic parts are

integrated.
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3.4.2 Additional Stationary Factors

We now extend the model from Section 3.4.1 to allow for multiple factors.

Here, many approaches are possible. Our choice of model and hypothesis are

motivated by our ultimate goal of conducting optimal unit-root tests for the

observations Yi,t under cross-unit cointegration. The observations have a unit

root if and only if at least one of the factors is nonstationary. In Section 3.4.2,

our null hypothesis is that exactly one of the factors is integrated, with the

alternative being all of them are stationary.

Since different factors usually represent completely different economic se-

ries, it makes little sense to impose any homogeneity on intercepts or autore-

gressive parameters. Our model therefore reads

Yi,t =

r∑
k=1

λkFk,t + Ei,t, i = 1, . . . , n, t = 1, . . . , T (3.17)

Fk,t =ρk,TFk,t−1 + fk,t + µk,T , Fk,0 = 0, k = 1, . . . , r, t = 1, . . . , T. (3.18)

For the first factor, we use the same local alternatives as in Section 3.4.1,

i.e., we impose (3.15). Under these alternatives, we write, just as in Sec-

tion 3.4.1, P̃h1,h2,n,T for the joint law of Y and FT , P̃h1,h2,T for the marginal

law of F1,T and write Ph1,h2,n,T for the marginal law of Y . Our null hy-

pothesis is ρ1,T = 1, treating the other autoregressive parameters as nuisance

parameters under the assumption that the other factors are stationary, see

Assumption 3.9 below. Since (3.16) also holds in this setting, once again an

optimal unit-root test for the model in (3.17) and (3.18) with observed factors

would be based on (3.14). Again, it turns out we can draw on Hallin, Van

den Akker, and Werker (2011), by showing that even in the presence of other

factors, we can estimate F1,T well enough to approximate the test statistic in

(3.14) up to an op(1) term.

The following assumption allows us to approximate the test statistic under

the null hypothesis. We maintain Assumption 3.2 on the loadings of the first

factor as well as Assumption 3.5 on the idiosyncratic parts from Section 3.4.1.

Assumption 3.8 is completely analogous to Assumption 3.6.
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Assumption 3.8 The factor innovations are covariance stationary and er-

godic with Efk,t = 0 and Ef2
k,t = 1 and independent of the idiosyncratic inno-

vations E·,T and the other factors.

Assumption 3.9 The number of factors is fixed at r < ∞. At most one

of them has a unit root, i.e., ρk,T = ρk < 1, k = 2, . . . , r. The loadings of

the stationary factors are bounded, i..e, λ̄k,· < M for some M ∈ R, k =

2, . . . , r, n ∈ N.

The following lemma, proved in Section 3.A.2, shows that the adaptivity result

is robust to the presence of additional stationary factors.

Lemma 3.4.2 Let ˆ̄λ2
1 be a consistent estimator of the long run variance of

∆Y ·,t and let ∆F̂1,t = ∆Y ·,t/
ˆ̄λ1. Then, under Assumptions 3.2, 3.5, 3.8

and 3.9, T (∆F 1,T )− T (∆F̂ 1,T ) = oP̃0,0,n,T
(1) as (n, T ) → ∞ jointly.

Remark 3.4.1 Once more we can use cross-section averages, however, now

we have to take more care to scale them correctly. We have, under the null

hypothesis,

∆Ȳ·,t =

r∑
k=1

λ̄k,·∆Fk,t +∆Ē·,t

=λ̄1,·(u1,t + µ1) +
r∑

k=2

λ̄k,·

(
µkρ

t−1
k + fk,t + (1− 1

ρk
)
t−1∑
s=1

ρt−s
k uk,s

)
,

so that the stationary factors indeed contribute something to the variance of the

differenced cross-sectional averages. Therefore, we cannot use the method from

Section 3.4.1 to scale our estimator. However, since the differenced stationary

factors are over-differenced, they do not impact the long-run variance, so that

scaling by the long-run variance correctly scales the nonstationary factor. Since

the model in this section generalizes the single-factor model of Section 3.4.1,

the long-run variance approach also works with a single factor. Simulations in

Section 3.5 compare the performance of the two approaches in finite samples.

Lemma 3.4.2 implies that we can also extend the results of Proposition 3.4.1

to the case of multiple factors. In particular, we get optimal unit-root tests
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109 3.4. FACTORS WITH DETERMINISTIC TRENDS

for the observations in case the idiosyncratic parts are stationary and we have

at most one nonstationary factor. As before, we need to assume normality of

the factor innovations for the optimality result, i.e., impose Assumption 3.7.

Theorem 3.4.2 Consider a cross-sectionally cointegrated panel generated by

(3.17) satisfying Assumptions 3.2, 3.5 and 3.7–3.9. Let ∆F̂1,t = ∆Y ·,t/
ˆ̄λ1.

For the problem of testing H0 : Yi,t are integrated for most i against HA : all

Yi,t are stationary, the test τ̃n,T that rejects iff
√
12T ((∆F̂1,t)

T
t=1) ≥ Φ1−α is

asymptotically uniformly most powerful.

Remark 3.4.2 The statement ‘for most i’ relates to the problem that some

units might not load on the nonstationary factor. Therefore, the precise null

hypothesis would depend on which assumptions are made concerning the num-

ber of λ1,i that can be zero. For example, if we assume that, for some ε > 0,

|λ1,i| > ε for a share c of the panel units i, the hypothesis would be that at

least a share c of the panel units have a unit root.

3.4.3 Multiple Common Trends

In the previous section we have derived an optimal test for testing one common

trend against none. What we really want, however, is a test for ‘at least one’

trend against no trend, i.e., a unit root test for the observations without the

restriction that there is at most one common trend.

Enlarging the null hypothesis in this way complicates optimal inference

significantly, since we can no longer immediately rely on the results for optimal

univariate unit root tests in Hallin, Van den Akker, and Werker (2011). Even

if we could perfectly estimate each nonstationary factor, it is unclear how to

conduct optimal inference based on those multiple factors. However, we can

still demonstrate that the test τ̃n,T proposed in Theorem 3.4.2 is robust to

multiple trends, in the sense that that it still has the correct size if more than

one factor is nonstationary. The assumptions Assumptions 3.10–3.13 adapt

Assumptions 3.2 and 3.7–3.9. Once again we maintain Assumption 3.5.

Assumption 3.10 The number of factors is fixed at r < ∞. The first r1 ≤ r

of them have a unit root.
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Assumption 3.11 The factor loadings are deterministic and satisfy∑r1
k=1 λ̄

2
k = σ2 �= 0, where λ̄k = limn→∞ λ̄k,· = limn→∞

1
n

∑n
i=1 λk,i.

Assumption 3.12 The factor innovations are covariance stationary and er-

godic with Efk,t = 0 and Ef2
k,t = 1 and independent of the idiosyncratic inno-

vations and each other.

Assumption 3.13 The nonstationary factors satisfy fk,t
iid∼ N(0, 1), k ≤ r1.

Proposition 3.4.1 Reconsider the model (3.17)–(3.18) but now under As-

sumptions 3.5 and 3.10–3.13. Denote the law of Y under this DGP by Pr1.

For r1 ≥ 1, we have

lim
(n,T )→∞

Pr1 [τ̃n,T rejects] = α

for the test τ̃n,T from Theorem 3.4.2.

Remark 3.4.3 With multiple nonstationary factors, the notation ∆F̂1,t on

which τ̃n,T is based, may be misleading, since ∆F̂1,t in fact estimates a certain

linear combination of the nonstationary factors. This linear combination will

not be stationary under the hypothesis, since the factors are independent and

thus not cointegrated. Therefore, intuitively, multiple nonstationary factors do

not create a problem for detecting nonstationarity in the observations.

Note that the problem of multiple nonstationary factors is not only a prob-

lem under the null hypothesis. Of course, against a fixed alternative the power

will be the same as before, since under a fixed alternative all factors are sta-

tionary. However, the power, and even size under local alternatives merits

another look here.

We have seen that neither the presence of stationary nor the presence of

additional nonstationary factors changes the distribution of our test statistic

under the hypothesis. However, adding multiple heterogeneous local-to unity

factors, i.e., localizing the autoregressive parameters of more than one factor

at once changes the distribution both under the null of at least one integrated

factor and under the local alternatives:
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Proposition 3.4.2 Reconsider the model (3.17)–(3.18) but now as-

suming ρk = 1 +
h1,k

T 3/2 for k ≤ r1 and ρk < 1 − ε for k > r1

and some ε > 0. Under Assumptions 3.5 and 3.10–3.13, we have

T (∆F̂ 1,T ) → N
(

1
12σ

∑r2
k=1 λ̄kh1,kµk,

1
12

)
.

Proof Since local alternatives of the form considered here are still contiguous,

it is sufficient to show the desired convergence for T (∆GT ). Note that T is

linear, so that

T (∆GT ) =
1

σ

r2∑
k=1

λ̄kT (∆F k,T ).

The result now follows from Theorem 2.2 in Hallin, Van den Akker, andWerker

(2011), together with independence of the factors. �

Remark 3.4.4 Note that even if one h1,k equals zero, i.e., we should not

reject the hypothesis of nonstationary observations, the test statistic will have

nonzero mean unless all h1,k equal zero. In this situation, τ̃n,T will not have

correct asymptotic size. The problem is that the ‘locally stationary’ factors are

close enough to one to be estimated as part of the cross-section average, while

being far enough from one to change the distribution of our test statistic. Of

course, the problem of incorrect size vanishes if we impose some homogeneity

under the null on the local parameters, e.g., h1,k = h1, k = 1, . . . , r1.

3.5 Finite Sample Performance

In this section, we investigate to what extent our asymptotic results remain

valid in finite samples.

3.5.1 Factors without Trends

Here we consider the setup from Section 3.3, where we confirm that estimating

the factors using the approaches of Bai (2004), Bai and Ng (2004), and Choi

(2017) leads to adaptive unit root tests, as do tests based on the Kalman filter.

We use different unit-root tests, applied to estimated or observed factors:
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1. Dickey-Fuller t-tests (labeled ‘ADF’): This is one of the most commonly-

used unit-root tests, based on OLS statistics in the univariate autore-

gression, see Dickey and Fuller (1979). We report three different kinds of

ADF statistics, corresponding to a regression without intercept (no extra

label), to one with an intercept under the alternative (labeled ‘Drift’),

and to one with a time trend (labeled ‘Trend’). Since, in Section 3.3,

we assumed that there is no intercept, all three specifications are valid

in the sense that they produce asymptotically correctly sized tests when

based on observed factors.

2. Test for the number of common trends (labeled ‘Q-Test’): These tests

establish, for a given multivariate time series, the number of underlying

common trends, see Stock and Watson (1988). As suggested in Bai and

Ng (2004), we apply these tests to the (observed or estimated) factors,

instead of the observations Y in order to analyze the stationarity of com-

mon and idiosyncratic parts separately. If more than one common trend

is suspected, these tests have the advantage of being able to determine

the number of underlying trends through sequential testing. However,

since we consider at most one trend and are interested in unit-root tests,

we only conduct the ‘final stage’, i.e., test for a single trend. We use the

version based on a first-order VAR, i.e., the Qc test in the notation of

Bai and Ng (2004).

3. Point-optimal tests from Elliott, Rothenberg, and Stock (1996) (labeled

‘ERS’): These are likelihood-ratio tests against a specific alternative. We

choose a fixed alternative of h = 10.

These three different classes of tests are applied to different factor estimates.

For reference, we also consider the infeasible estimator, labeled ‘observed’,

where the above tests are based on observed factors. The factors have been

estimated in four different ways.

1. Level Principal Components: This is the principal component estimator

discussed in Section 3.3.1 and studied in detail in Bai (2004). In the

notation of that paper, we use the estimate F̄ k, which is based on the
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n×n matrix X ′X. It does in fact, for the performance of the test, make

a difference which principal components solution is used. The solution

F̄ k is easy to compute for large values of T and has good size properties.

2. Difference Principal Components. This is the estimator originally pro-

posed in Bai and Ng (2004) and discussed in Section 3.3.3. Here, we use

the eigenvectors of XX ′, as suggested in Bai and Ng (2004) and again

note that using another principal components solution seriously affects

the tests. We also note that the relevant eigenvectors of the T × T ma-

trix XX ′ are equal to the left singular vectors of the T × n matrix X,

enabling us to do simulations also for large T .

3. Cross Section Averages: Here we estimate the factors using

cross-sectional averages scaled as in Section 3.4.1.

4. Cross Section Averages Multivariate: Here we estimate the factors using

cross-sectional averages scaled as in Section 3.4.2.

Table 3.1 shows the empirical sizes of various nominal 5% level tests for the

unit root hypothesis of a single factor without a trend based on these factor

estimates. All three ADF tests are almost perfectly sized when based on

observed factors, except for the zero-mean ADF test for T = 50 (see ‘ADF

Observed’, ‘ADF Observed (Trend)’,‘ADF Observed (Drift)’ in Table 3.1).

Estimating the factors with principal components also results in reasonably

well-sized tests, but we do note that level principal components consistently

outperform principal components based on differenced data, as advocated in

Bai and Ng (2004), especially for small T (see ‘ADF Difference’, ‘ADF Level’,

‘ADF Difference (Trend)’,‘ADF Level (Trend)’,‘ADF Difference (Drift)’,‘ADF

Level (Drift)’). This is expected, since our idiosyncratic parts are stationary.

The behavior of the pT tests from Elliott, Rothenberg, and Stock (1996),

labelled ‘ERS’, are very similar to the ADF tests.

To illustrate the virtue of the factor-based approach, we have added a test

just based on a single cross-section unit (see ‘Univariate ADF’, ‘Univariate

ADF (Trend)’, ‘Univariate ADF (Drift)’). This test appears to be completely

useless, both in terms of size and power. The reason might be that the factor
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loading will relatively often be close to zero, so that the test cannot detect the

nonstationarity.

We have also included tests based on the factor estimates suggested in

Section 3.4. Whereas we have demonstrated that the different principal com-

ponent estimators will lead to asymptotically correctly sized tests for all four

tests, we are unsure about the asymptotic behavior of the average-based tests.

In finite samples, they generally lead to oversized ADF and Q tests (see ‘ADF

Average Mult.’, ‘ADF Average Mult. (Trend)’, ‘ADF Average Mult. (Drift)’,

‘Q Test Average’, ‘Q Test Average Mult.’).

We conclude that, in terms of size, estimating the factors by principal

components indeed is almost as good as using observed ones, even for sample

sizes as small as T = 50, n = 40.

Now we consider the power in finite samples. In Figure 3.1, we compare the

power of the ADF tests to other unit root tests. The nearly efficient likelihood-

ratio tests show a very similar performance to the Dickey-Fuller ones, but now

even for small sample sizes the differences between observed and estimated

factors are negligible. This also holds for the ERS and Q tests, however, these

have considerably lower power. Whereas the Q-tests are significantly less

powerful than the nearly efficient tests for all sample sizes, the ERS tests can

perform even worse in small samples but on the other hand are nearly efficient

in large samples. We conclude that all considered unit root tests work well

with both level and difference estimated principal components even in small

samples.

3.5.2 Factors with Trends

In this section we turn to the DGP from Section 3.4 and the tests suggested for

it. Again, we are interested in the difference between observed and estimated

factor-based tests. We also want to see how the factor estimators suggested

in Sections 3.4.1 and 3.4.2 compare to each other and existing estimators.

Table 3.2 shows the empirical sizes in this setup. The only ADF tests

that are valid under the null hypothesis are those with a trend term, so only

these are included. Their power is close to the nominal power if the factors
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T 50 100 200 500 1000

ADF Observed 10.4 5.0 5.2 5.2 5.0

ADF Difference 6.5 6.0 5.9 5.7 5.4

ADF Level 5.4 5.4 5.5 5.6 5.4

ADF Average Mult. 15.1 9.3 9.3 9.7 9.4

Univariate ADF 48.2 49.9 50.2 50.8 51.4

ADF Observed (Trend) 5.1 5.0 4.8 4.9 4.9

ADF Difference (Trend) 6.9 6.4 6.0 6.1 5.7

ADF Level (Trend) 5.6 5.7 5.6 6.0 5.6

ADF Average Mult. (Trend) 11.0 11.7 12.1 12.3 12.4

Univariate ADF (Trend) 62.1 66.6 67.7 68.5 69.8

ADF Observed (Drift) 4.3 5.0 5.2 5.2 5.1

ADF Difference (Drift) 6.3 5.8 5.8 5.6 5.6

ADF Level (Drift) 5.5 5.6 5.4 5.5 5.5

ADF Average Mult. (Drift) 7.3 9.1 10.0 10.0 9.8

Univariate ADF (Drift) 42.6 56.3 57.2 57.8 58.5

Q Test Observed 3.6 6.1 6.7 6.5 6.5

Q Test Difference 5.3 7.3 7.4 6.9 6.6

Q Test Level 4.1 6.7 7.2 6.8 6.6

Q Test Average 9.6 11.9 11.0 9.1 8.2

Q Test Average Mult. 9.6 11.9 11.0 9.1 8.2

ERS 1.5 2.4 3.7 4.9 4.9

ERS Difference 1.3 2.3 3.7 4.8 4.9

ERS Level 1.4 2.3 3.7 4.8 4.9

Average ERS 1.2 2.2 3.7 4.8 5.0

Average ERS Mult. 1.2 2.2 3.7 4.8 5.0

Table 3.1: Empirical sizes (in percent) of nominal 5% level tests for different

sample sizes. We have n = 40 throughout, a single factor, µ1 = 0. Factor

innovations are i.i.d. standard normally distributed. The factor loadings are

drawn from a normal distribution with mean 1/2 and unit variance. The initial

values of factor and idiosyncratic innovations are zero.
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T 50 100 200 500 1000

ADF Observed (Trend) 4.8 5.1 5.2 5.1 5.1

ADF Difference (Trend) 6.3 6.2 6.3 5.8 5.4

ADF Level (Trend) 5.6 5.8 6.1 5.7 5.4

ADF Average Mult. (Trend) 10.9 11.7 12.4 12.7 12.9

Rank Observed 3.9 4.3 4.6 4.8 4.9

Rank Level 3.5 4.1 4.2 4.5 4.5

Rank Average 2.5 2.9 3.0 3.2 3.2

Rank Average mult. 2.5 2.9 3.0 3.2 3.2

Trend UMP Observed 3.0 3.4 3.8 4.2 4.5

Trend UMP Level 6.0 6.3 6.3 6.6 6.7

Trend UMP Average 1.8 2.2 2.5 2.8 2.9

Trend UMP Average Mult. 3.3 3.8 3.9 4.2 4.5

Table 3.2: Empirical sizes (in percent) of nominal 5% level tests for different

sample sizes. We have n = 40 throughout, a single factor with trend µ1 = 1.

Factor innovations are i.i.d. standard normally distributed. The factor load-

ings are drawn from a normal distribution with mean 1/2 and unit variance.

The initial values of factor and idiosyncratic innovations are zero.

are estimated using principal components, but using averages, as suggested

for the UMP tests, does not work well (see ‘ADF Average Mult. (Trend)’ in

Table 3.2). Concerning the optimal tests (‘Trend UMP’), we see in Table 3.2

that the method from Section 3.4.2 (labeled ‘Average Mult.’) is clearly supe-

rior to that of Section 3.4.1 (labeled ‘Average’) in terms of size. Although the

tests are a bit undersized (based on asymptotic critical values), the size of the

UMP test based on Section 3.4.2 is very close to that of the UMP test with

observed factors.

For reference, we have also included rank-based tests, as suggested in

Hallin, Van den Akker, and Werker (2011). Proving that our factor estimates

lead to adaptive rank-based tests is beyond the scope of this chapter, but they
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would be instrumental in getting valid tests for non-normal factor innovations

and they perform well in our simulations even under normality. They have the

added advantage, that the scaling has no influence, i.e., our factor estimators

from Sections 3.4.1 and 3.4.2 yield to identical rank-based tests.

Figure 3.2 displays the size-corrected powers of those tests with reasonable

sizes. The ADF tests have no power in excess of size. This again shows that

what we actually tests is the presence of the deterministic trend: in our model

it exists only under the hypothesis, allowing us to consider autoregressive

parameters closer to one. In the Dickey-Fuller specification, on the other

hand, the trend exists also under the alternative, so that we have no power at

these alternatives.

In general, Figure 3.2 demonstrates that, for all tests, the convergence to

the asymptotic power envelop is very slow; even for T = 1000 there is a con-

siderable gap. This is for a fixed n = 40, however, since even the tests based

on observed factors do not reach the power envelope quickly, a larger n would

have no impact. Throughout sample sizes, the tests based on cross-section av-

erages do considerable better than those based on principal components. It is

unclear whether the principal component-based factor estimates will even lead

to asymptotically adaptive tests. The Gaussian UMP tests do slightly better

than their rank-based counterparts, although this difference closes quickly as

T grows. Also, for small sample sizes, the scaling from Section 3.4.1 appears

to do slightly better than that from Section 3.4.2, but the difference is even

smaller.

3.6 Conclusion

We have shown how to conduct panel unit root tests for unobserved factors

in a variety of settings. Throughout our specifications, not observing the

factors does not preclude inference at the usual rate. However, the exact

specification of the factor equation matters as much as it does in time-series

case. Which specification is most realistic depends on the application as well

as the exact hypothesis of interest. However, if the factor innovations can

reasonably be augmented with deterministic trends this pays off not only in
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higher powers, but even in a faster convergence rate. In Section 3.4, we have

demonstrated that cross-sectional averages can lead to optimal panel unit-root

tests under cross-sectional cointegration when the factors have deterministic

trends. A natural question is whether these findings generalize to the more

commonly used setting, where the factor innovations have zero mean and but

more than one factor is present. For illustration, reconsider the setting of

Section 3.4.2, but with µk,T = 0, k = 1, . . . , r. When trying to estimate the

central sequence ST based on cross-sectional averages, the additional term

λ̄2
1
T

∑T
t=1 F2,t−1∆F2,t appears in the difference of the estimated and oracle

central sequence. Note that if F2 is integrated this converges to a Brownian

functional while in the stationary case it converges in probability to a nonzero

constant. Either way, additional factors do change the distribution of a central-

sequence based test statistic, so we end this conclusion on a cautionary note:

In the setting with zero-mean factor innovations, both sizes and powers of

average based unit-root tests will be affected by the presence of additional

stationary factors. When secondary factors are likely to be of importance

and one does not want to specify deterministic trends under the hypothesis,

cointegration-rank methods or Kalman-smoother based methods that directly

identify the nonstationary factor are likely the way forward. For the testing

problem with deterministic trends, however, cross-sectional averages provide

a convenient way of conducting uniformly most powerful unit-root tests.
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Figure 3.1: Size-corrected power of unit-root tests for n = 40 and different T .

Single factor with trend µ1 = 0 and λ̄ = 0.5. The factor loadings are drawn

from a normal distribution with mean 1/2 and unit variance. The initial values

of factor and idiosyncratic innovations are zero.
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Figure 3.2: Size-corrected power of unit-root tests for n = 40 and different T .

Single factor with trend µ1 = 1 and λ̄ = 0.5. The factor loadings are drawn

from a normal distribution with mean 1/2 and unit variance. The initial values

of factor and idiosyncratic innovations are zero.
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3.A Proofs

3.A.1 Factors without Trends

The following lemma establishes that negligibility under the hypothesis can be used inter-

changeably with negligibility under the alternatives.

Lemma 3.A.1 Local alternatives as in (3.4) are mutually contiguous.

Proof Using (3.5) and (3.7), we get that

dP̃0,n,T

dP̃0,n,T

P̃0,n,T⇒ exp(−hS − 1

2
h2H). (3.A.1)

We will show contiguity using Le Cam’s First Lemma as, e.g., in Van der Vaart (2000)

Lemma 6.4. To show that P̃h,n,T is contiguous to P̃0,n,T , we use the equivalence of (i)

and (iii) of that Lemma. Writing M(t) =
∫ t

0
hW (r) dW (r), we can rewrite the right-hand

side of (3.A.1) as exp(−hS − 1
2
h2H) = exp(−M(1)− 1

2
〈M〉1), i.e., a stochastic exponential

which indeed has expectation one. To show that P̃0,n,T is contiguous to P̃h,n,T we can use

the equivalence of part (i) and (ii) of the Lemma by again using (3.A.1) and noting that

exp(−hS − 1
2
h2H) > 0, since S and H are bounded in probability. �

Proof of Proposition 3.3.1

Proof Thanks to Lemma 3.A.1, we only have to prove Proposition 3.3.1 under the hypothe-

sis P̃0,n,T , as probability convergence to zero under alternatives then follows from contiguity.

Therefore, all following calculations proceed under the hypothesis P̃0,n,T . Let A be a lagged

cumulative sum operator, i.e., a T ×T matrix with ones below the diagonal and zero on and

above the diagonal. Rewrite ST as

ST =
1

Tω2
f

T∑

t=2

∆F1,tF1,t−1 +
1

T
f ′(Σ−1

f − ω−2
f I)Af

and note that

E
1

T
f ′(Σ−1

f − ω−2
f I)Af = tr((Σ−1

f − ω−2
f I)AΣf ) = −ω−2

f tr(AΣf ).

As A+A′ = ιι′ − I,

1

T
tr(AΣf ) =

1

T
ι′Σf ι− 1

T
tr(Σf ) =

T−1∑

m=−T+1

(1− |m|/T )γf (m)− γf (0) → ω2
f − γf (0).

For the variance, we obtain, using again the formulas for quadratic forms of Gaussian random

variables,

Var
1

T
f ′(Σ−1

f − ω−2
f I)Af

≤ 1

T 2

∥∥(Σ−1
f − ω−2

f I)AΣf

∥∥2

F
+

1

T 2

∥∥(I − ω−2
f Σf )A

∥∥
F

∥∥(Σ−1
f − ω−2

f I)AΣf

∥∥
F
.
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We have

∥∥(Σ−1
f − ω−2

f I)AΣf

∥∥
F
≤

∥∥Σ−1
f

∥∥
spec

∥∥(I − ω−2
f Σf )A

∥∥
F
‖Σf‖spec = O(1)o(T )O(1),

thanks to Assumption 3.1 and Lemma 2.A.1 Conclude that

ST = S̃T − 1

2
+

γf (0)

2ω2
f

+ oP (1) = S̃T − δf
ω2
f

+ oP (1),

where δf =
ω2
f−γf (0)

2
is the one-sided long-run variance of f and S̃T = 1

Tω2
f

∑T
t=2 ∆F1,tF1,t−1.

Similarly, we obtain, for H̃T = 1
T2ω2

f

∑T
t=1 F

2
t−1,

HT − H̃T =
1

T 2
f ′A′(Σ−1

f − ω−2
f I)Af → 0

in probability, as the (scaled) expectation of the difference is given by

tr(A′(Σ−1
f − ω−2

f I)AΣf ) ≤
∥∥A′(Σ−1

f − ω−2
f I)

∥∥
F
‖A‖F ‖Σf‖spec = o(T )O(T )O(1),

using the same arguments as above, and the (scaled) variance is bounded by

∥∥A′(Σ−1
f − ω−2

f I)AΣf

∥∥
F
,

to which the same bound applies.11

Having significantly simplified the likelihood ratio, we now show that |ĤT − HT | =

oP̃0,n,T
(1). We have

|ĤT − H̃T | =
∣∣∣∣∣
1

T 2

T∑

t=2

(
F̂ 2
1,t−1

ω̂2
f

− F 2
1,t−1

ω2
f

)∣∣∣∣∣

≤
∣∣∣∣∣

1

T 2R2
n,Tω

2
f

T∑

t=2

(
F̂ 2
1,t−1 −R2

n,TF
2
1,t−1

)∣∣∣∣∣+
∣∣∣∣∣
1

ω̂2
f

− 1

R2
n,Tω

2
f

∣∣∣∣∣
1

T 2

T∑

t=2

F̂ 2
1,t−1.

Since 1
T2

∑T
t=2 F̂

2
1,t−1 = OP̃0,n,T

(1) by (3.7) and (3.A.2), it is sufficient to show that the

two absolute values converge to zero. Using the identity a2 − b2 = (a− b)2 + 2b(a− b) and

Cauchy-Schwarz, we obtain
∣∣∣∣∣
1

T 2

T∑

t=2

(
F̂ 2
1,t−1 −R2

n,TF
2
1,t−1

)∣∣∣∣∣ ≤
1

T
MSET +

2

T 2

T∑

t=2

|Rn,TF1,t−1(F̂1,t−1 −Rn,TF1,t−1)|

(3.A.2)

≤ 1

T
MSET + 2

√
R2

n,THT
1

T
MSET . (3.A.3)

To show that ω̂2
f converges to R2

n,Tω
2
f , we recall that by assumption, ω̂2

f converges to the

long-run variance of F̂ , i.e., ω̂2
f → limT→∞ Var F̂T /

√
T . We have

1

T
(F̂T − R̂FT )

2 ≤ MSET → 0

11 Similar results on the simplification of the likelihood ratio could be obtained from

Phillips (1987a).
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in probability. As F̂ 2
T /T is assumed to be uniformly integrable, and the same applies to

F 2
T /T thanks to Gaussianity, we also obtain that 1

T
(F̂T −RFT )

2 converges to zero in L1, or

put differently, 1
T
Var(F̂T − RFT ) → 0. Conclude that ω̂2

f − R2
n,Tω

2
f → 0. As R2

n,Tω
2
f > 0,

this implies convergence to zero of 1
ω̂2
f
− 1

R2
n,T

ω2
f
.

Now consider ŜT . We first take care of the scaling as above, i.e.,

|ŜT +
δ̂f
ω̂2
f

− S̃T | ≤
∣∣∣∣∣

1

TR2
n,Tω

2
f

T∑

t=2

(
∆F̂1,tF̂1,t−1 −R2

n,T∆F1,tF1,t−1

)∣∣∣∣∣

+

∣∣∣∣∣
1

ω̂2
f

− 1

R2
n,Tω

2
f

∣∣∣∣∣

∣∣∣∣∣
1

T

T∑

t=2

∆F̂1,tF̂1,t−1

∣∣∣∣∣ .

From telescoping and triangle inequality, we have
∣∣∣∣∣
2

T

T∑

t=2

(
∆F̂1,tF̂1,t−1 −R2

n,T∆F1,tF̂1,t−1

)∣∣∣∣∣ ≤
|F̂ 2

1,1 −R2
n,TF

2
1,1|

T
+

|F̂ 2
1,T −R2

n,TF
2
1,T |

T

+
1

T

T∑

t=1

|(∆F̂1,t)
2 − (Rn,T∆F1,t)

2|. (3.A.4)

For the first two terms, use a2 − b2 = (a− b)2 + 2b(a− b) to note that

|F̂ 2
1,t −R2

n,TF
2
1,t|

T
≤ (F̂1,t −Rn,TF1,t)

2

T
+

2|Rn,TF1,t|√
T

|F̂1,t −Rn,TF1,t|√
T

.

From Assumption 3.1 we get that F1,t/
√
T = OP̃0,n,T

(1) even for a growing t = T , so that

the condition on MSET implies both summands converging to zero.

For the term in (3.A.4), write

1

T

T∑

t=2

|(∆F̂1,t)
2 − (Rn,T∆F1,t)

2| ≤ 1

T

T∑

t=2

(∆F̂1,t −Rn,T∆F1,t)
2 (3.A.5)

+
2

T

T∑

t=2

|Rn,T∆F1,t(∆F̂1,t −Rn,T∆F1,t)|

≤ 1

T

T∑

t=2

(∆F̂1,t −Rn,T∆F1,t)
2 (3.A.6)

+

√√√√R2
n,T

T

T∑

t=2

(∆F1,t)2
1

T

T∑

t=2

(∆F1,t −Rn,T∆F̂1,t)2.

By Assumption 3.1 and a Law of Large Numbers, 1
T

∑T
t=1(∆F1,t)

2 converges in probability

to γf (0). For the first summand and the second part under the root we use the identity

(a+ b)2 ≤ 2a2 + 2b2, to demonstrate that

1

T

T∑

t=2

(∆F̂1,t −Rn,T∆F1,t)
2 =

1

T

T∑

t=2

(F̂1,t −Rn,TF1,t +Rn,TF1,t−1 − F̂1,t−1)
2 ≤ 4MSET

converges to zero in probability.
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Note that we impose conditions on the factor estimates only under the null hypothesis

of an integrated factor, for which results are readily available. We have now shown that

(ŜT , ĤT ) = (ST , HT )+ oP̃0,n,T
(1). However, thanks to Lemma 3.A.1, we can use oP0(1) and

oPh(1) terms interchangeably. �

Proof of Proposition 3.3.2

Proof In the following, all probabilities are evaluated under P̃0,n,T . We first verify (3.12).

The key insight is that (λ′ ⊗ ÃΣf Ã
′)(λλ′ ⊗ ÃΣf Ã

′ + Ωη ⊗ Ση)
−1 can be written as the

Kronecker product ( λ′

λ′Ω−1
η λ

Ω−1
η )⊗

(
IT +Ση

(ÃΣf Ã′)−1

λ′Ω−1
η λ

)−1

. To verify this, note

(
(

λ′

λ′Ω−1
η λ

Ω−1
η )⊗

(
IT +Ση

(ÃΣf Ã
′)−1

λ′Ω−1
η λ

)−1
)
(λλ′ ⊗ ÃΣf Ã

′ +Ωη ⊗ Ση)

=λ′ ⊗
(
IT +Ση

(ÃΣf Ã
′)−1

λ′Ω−1
η λ

)−1

ÃΣf Ã
′ +

λ′

λ′Ω−1
η λ

⊗
(
IT +Ση

(ÃΣf Ã
′)−1

λ′Ω−1
η λ

)−1

Ση

=λ′ ⊗
(
IT +Ση

(ÃΣf Ã
′)−1

λ′Ω−1
η λ

)−1 (
ÃΣf Ã

′ +
Ση

λ′Ω−1
η λ

)

=λ′ ⊗
(
IT +Ση

(ÃΣf Ã
′)−1

λ′Ω−1
η λ

)−1 (
IT +

Ση

λ′Ω−1
η λ

(ÃΣf Ã
′)−1

)
(ÃΣf Ã

′)

=λ′ ⊗ ÃΣf Ã
′

=(λ′ ⊗ ÃΣf Ã
′)(λλ′ ⊗ ÃΣf Ã

′ +Ωη ⊗ Ση)
−1(λλ′ ⊗ ÃΣf Ã

′ +Ωη ⊗ Ση).

As λλ′ ⊗ ÃΣf Ã
′ +Ωη ⊗ Ση has full rank, this shows the desired equality.

We now prove Proposition 3.3.2, using (3.12) to relate the Kalman smoother to the

generalized principal component estimator. Note that MSET = 1
T

∥∥∥F̂KS − F1

∥∥∥
F
, so

from Section 3.3.2 we obtain
∥∥∥F̂GPC − F1

∥∥∥
F

= oP (T ). Thus it is sufficient to show that
∥∥∥F̂KS − F̂GPC

∥∥∥
F
= oP (T ). As F̂GPC = Y Ω̂−1

η
λ̂

λ̂′Ω̂−1
η λ̂

, we have

∥∥∥F̂KS − F̂GPC
∥∥∥
F
=

∥∥∥∥∥

((
IT + Σ̂η

(ÃΣ̂f Ã
′)−1

λ̂′Ω̂−1
η λ̂

)−1

− IT

)
F̂GPC

∥∥∥∥∥
F

≤
∥∥∥∥∥

(
IT + Σ̂η

(ÃΣ̂f Ã
′)−1

λ̂′Ω̂−1
η λ̂

)−1

− IT

∥∥∥∥∥
spec

∥∥∥F̂GPC
∥∥∥
F
.

Note that the matrix in the former norm equals (ÃΣ̂f Ã
′Σ̂ηλ̂

′Ω̂−1
η λ̂ + IT )

−1. Thus, as∥∥∥F̂GPC
∥∥∥
F
= OP (T ), we need

∥∥∥(ÃΣ̂f Ã
′Σ̂ηλ̂

′Ω̂−1
η λ̂+ IT )

−1
∥∥∥
spec

= oP (1). For this, write

∥∥∥(ÃΣ̂f Ã
′Σ̂ηλ̂

′Ω̂−1
η λ̂+ IT )

−1
∥∥∥
spec

=
1

λ̂′Ω̂−1
η λ̂

∥∥∥∥∥

(
ÃΣ̂f Ã

′Σ̂η +
IT

λ̂′Ω̂−1
η λ̂

)−1∥∥∥∥∥
spec

≤ 1

λ̂′Ω̂−1
η λ̂

∥∥∥∥
(
ÃΣ̂f Ã

′Σ̂η

)−1
∥∥∥∥
spec
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≤ 1

λ̂′Ω̂−1
η λ̂

∥∥∥Ã−1
∥∥∥
2

spec

∥∥∥Σ̂−1
f

∥∥∥
spec

∥∥∥Σ̂η

∥∥∥
spec

=OP (n
−1)O(1)OP (1)OP (1).

Ã−1 is a simple tridiagonal Toeplitz matrix whose spectral norm converges to 2 and is thus

O(1). The rates on the covariance matrices follow from the bounds on the spectral densities.�

3.A.2 Factors with Trends

Proof of Lemma 3.4.1

Proof By contiguity, it once more suffices to do all calculations under the hypothesis of a

unit-root, i.e. under P̃0,h2,n,T , where ∆Yi,t = λi1(µ1,T + f1,t) + ∆Ei,t. We first show that

s(∆Y ·,t) → λ̄1 in probability. For this, write

s2(∆Y ·,t) =
1

T

T∑

t=1

(
λ̄1,·(µ1,T + f1,t) + ∆E·,t − λ̄1,·µ1,T − λ̄1,·

T

T∑

t=1

f1,t − 1

T

T∑

t=1

∆E·,t

)2

=
1

T

T∑

t=1

(
λ̄1,·(f1,t − 1

T

T∑

t=1

f1,t) + ∆E·,t − 1

T

T∑

t=1

∆E·,t

)2

=λ̄2
1,·s

2(f1,t) + s2(∆E·,t) +
2

T

T∑

t=1

(f1,t − 1

T

T∑

t=1

f1,t)(∆E·,t − 1

T

T∑

t=1

∆E·,t).

Thanks to our second-moment assumptions on and ut and ergodicity, s2(f1,t) converges to

its population counterpart, i.e., one, as T → ∞. Using Cauchy Schwarz, we get

1

T

T∑

t=1

|f1,t − 1

T

T∑

t=1

f1,t||∆E·,t − 1

T

T∑

t=1

∆E·,t| ≤
√

s2(f1,t)s2(∆E·,t),

so that demonstrating that s2(∆E·,t) → 0 in probability is enough to show that

s2(∆Y ·,t) → λ̄2
1 in probability. (3.A.7)

We will demonstrate this by showing s2(∆E·,t) → 0 in L1. We have, using cross-sectional

independence,

Es2(∆E·,t) =E
1

T

T∑

t=1

(
1

n

n∑

i=1

∆Ei,t

)2

− E

(
1

T

T∑

t=1

1

n

n∑

i=1

∆Ei,t

)2

≤E
1

T

T∑

t=1

1

n2

n∑

i=1

(∆Ei,t)
2 =

σ2
e

n
→ 0 as n → ∞.

Now we can show the approximation of our test statistic. For convenience write wt :=(
t

T+1
− 1

2

)
and note that

∑T
t=1 wt = 0 and |wt| ≤ 1 for all t. We have

T (∆F̂ 1,T )− T (∆F̂ 1,T 1) =
1√
T

T∑

t=1

wt(∆F̂1,t −∆F1,t)
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=
1√
T

T∑

t=1

wt

(
λ̄1,·

s(∆Y ·,t)
− 1

)
(µ+ f1,t) +

1

s(∆Y ·,t)

1

n
√
T

T∑

t=1

wt

n∑

i=1

∆Ei,t

=

(
λ̄1,·

s(∆Y ·,t)
− 1

)
1√
T

T∑

t=1

wtf1,t +
1

s(∆Y ·,t)

(
T

T + 1
− 1

2

)
1

n

n∑

i=1

EiT√
T

− 1

s(∆Y ·,t)

1√
T

T−1∑

t=1

1

n

n∑

i=1

Eit

T + 1
.

First, note that

Var

(
1√
T

T∑

t=1

wtf1,t

)
=

∑T
t=1 w

2
t

T
≤ 1,

so that 1√
T

∑T
t=1 wtf1,t is bounded in probability. Combining this with (3.A.7), the first

summand converges to zero. For the second summand, note that 1
n

∑n
i=1

EiT√
T

has mean zero

and that

E

[(
1

n

n∑

i=1

EiT√
T

)2]
=

1

n2

n∑

i=1

EE2
iT

T
=

1

nT
EE2

iT , (3.A.8)

by the cross-sectional dependence of the idiosyncratic errors. Now, if the Ei,· are covariance

stationary, i.e., we impose Assumption 3.5(1), this converges to zero even for fixed n. Under

Assumption 3.5(2), however, we have

1

T
EE2

iT =

T∑

s=−T

T − |s|
T

γ(s) ≤ γ(0) + 2

∞∑

s=1

γ(s),

which is bounded by assumption. Therefore, under Assumption 3.5(2), the second summand

goes to zero in probability as long as also n → ∞. The last summand is treated similarly:
1√
T

∑T
t=1

1
n

∑n
i=1

Eit
T+1

has mean zero and the expectation of its square is given by

E



(

1

n

n∑

i=1

1√
T

T∑

t=1

Eit

T + 1

)2

 =

1

n2

n∑

i=1

1

T 3

T∑

t=1

T∑

s=1

EEitEis

=
1

nT 3

T∑

t=1

T∑

s=1

E

t∑

u=1

∆Eiu

s∑

v=1

∆Eiv

=
1

nT 3

T∑

t=1

T∑

s=1

t∑

u=1

s∑

v=1

E∆Eiu∆Eiv

=
1

nT 3

T∑

t=1

T∑

s=1

t∑

u=1

s∑

v=1

γ(u− v)

≤ 1

nT 3

T∑

t=1

T∑

s=1

T∑

u=1

T∑

v=1

γ(u− v) =
1

nT

T∑

u=1

T∑

v=1

γ(u− v)

=
T∑

s=−T

T − |s|
nT

γ(s) ≤ γ(0)/n+
2

n

∞∑

s=1

γ(s),

so we can conclude that the last term converges to zero as well as n, T → ∞. Finally, since

s2(∆Y ·,t) → λ̄2
1,

(
λ̄1,·

s(∆Y ·,t)
− 1

)
converges in probability to zero. �
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Proof of Lemma 3.4.2

Proof The long run variance of ∆Y ·,t equals

Var

(
Ȳ·,T√
T

)
= λ̄2

1,· Var(F1,T /
√
T ) +

r∑

k=2

λ̄2
k,· Var(Fk,T )/T +Var(Ē·,t/

√
T ).

Since all but the first factors are stationary, Var(Fk,T ) does not depend on T for k ≥ 2, so

the second summand converges to zero. Also the third part does, as shown in (3.A.8). By

assumption, Var(F1,T /
√
T ) = 1, so indeed the long run variance converges to λ̄2

1.

Now we have

1√
T

T∑

t=1

wt(∆F̂1,t −∆F1,t)

=
1√
T

T∑

t=1

wt

(
λ̄1,·
ˆ̄λ1

− 1

)
∆F1,t +

r∑

k=2

λ̄k,·
ˆ̄λ1

1√
T

T∑

t=1

wt∆Fk,t +
1
ˆ̄λ1

1√
T

T∑

t=1

wt∆Ē·,t.

The last term was handled in the proof of Lemma 3.4.1; it converges to zero. The second

term can be handled in a similar way: We have

1√
T

T∑

t=1

wt∆Fk,t =

(
T

T + 1
− 1

2

)
Fk,T√

T
+

1√
T

T−1∑

t=1

Fk,t

T + 1
, (3.A.9)

which, for k ≥ 2, goes to zero in probability: Due to Fk,t being stationary, E|Fk,t| is a

constant, so that both summands converge to zero in L1. �

Proof of Proposition 3.4.1

Proof We will show that T (∆F̂ 1,T )
Pr1→ N(0, 1/12) in distribution for the ∆F̂1,t introduced

in Lemma 3.4.2. First, we introduce the process Gt =
1
σ

∑r1
k=1 λ̄kFk,t, t = 1, . . . , T, that our

factor estimate will approximate. From Assumption 3.13, we have

∆Gt =
1

σ

r1∑

k=1

λ̄kµk +
1

σ

r1∑

k=1

λ̄kfk,t ∼ N

(
1

σ

r1∑

k=1

λ̄kµk, 1

)
.

Because of Assumption 3.13 and the unit variance, it follows from Theorem 2.1 in Hallin,

Van den Akker, and Werker (2011) that T (∆GT ) → N(0, 1/12) in distribution. We proceed

to show that T (∆GT ) − T (∆F̂ 1,T ) = oPr1
(1). Analogous to the proof of Lemma 3.4.2, we

first show that the long run variance of ∆Y ·,t converges to σ2: We have

Var

(
Ȳ·,T√
T

)
=

r1∑

k=1

λ̄2
k,· Var(Fk,T /

√
T ) +

r∑

k=r1+1

λ̄2
k,· Var(Fk,T )/T +Var(Ē·,t/

√
T ),

where we can handle all terms completely analogous to the proof of Lemma 3.4.2. Using

∆Y ·,t =

r1∑

k=1

λ̄k,·∆F1,t +

r∑

k=r1+1

λ̄k,·∆F1,t +∆Ē·,t,
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we have

1√
T

T∑

t=1

wt(∆F̂1,t −∆Gt) =
1√
T

T∑

t=1

wt(∆Y ·,t/
ˆ̄λ1 − 1

σ

r1∑

k=1

λ̄k∆Fk,t)

=
1√
T

T∑

t=1

wt




r1∑

k=1

(
λ̄k,·
ˆ̄λ1

− λ̄k

σ

)
∆Fk,t +

1
ˆ̄λ1




r∑

k=r1+1

λ̄k,·∆F1,t +∆Ē·,t






=

r1∑

k=1

(
λ̄k,·
ˆ̄λ1

− λ̄k

σ

)
1√
T

T∑

t=1

wt∆Fk,t

+
1
ˆ̄λ1




r∑

k=r1+1

λ̄k,·
1√
T

T∑

t=1

wt∆F1,t +
1√
T

T∑

t=1

wt∆Ē·,t


 .

The two elements of the second term have been handled in the proof of Lemma 3.4.2. Thus,

using that
(

1
ˆ̄λ1

− 1
σ

)
→ 0 and recalling from the same proof that 1√

T

∑T
t=1 wt∆Fk,t is

bounded in probability, we are done. �
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Chapter 4

Using Stationary Covariates

to Test for Common

Stochastic Trends in

High-Dimensional Panels

Abstract

This chapter considers panel unit-root tests in the presence of sta-

tionary covariates and cross-sectional dependence. Our starting point is

the popular PANIC framework and we analyze the potential power gains

due to observing additional stationary covariates, focusing on unit-root

tests that are robust to cross-sectional cointegration, i.e., tests for a unit

root in the common unobserved factors. The stationary, observed covari-

ates are assumed to be unit-specific but allowed to be cross-sectionally

correlated. We differentiate two cases: one in which the contribution of

the factor of interest to the covariance structure of the covariate can be

perfectly identified and a more general one, where the contribution of

the factor innovations in the covariate equation is perturbed by another

unobserved common shock.

In the former case, the inclusion of stationary covariates leads to

vastly more powerful tests, with a faster convergence rate. We first an-

alyze the problem for an observed factor, and show that the statistical

129
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experiment is locally asymptotically mixed normal (LAMN). This im-

plies that no UMP test exists, but we obtain an asymptotically optimal

invariant test. We also demonstrate how to conduct valid inference based

on estimated factors. The improved rate allows us to compare different

factor estimation schemes in terms of resulting asymptotic power. When

implemented well, the asymptotic power of estimated-factor based tests

is relatively close to the observed-factor power envelope.

In the second case, with the additional perturbation, the statistical

problem is closely related to that of univariate unit-root tests with sta-

tionary factors that have been studied in Elliott and Jansson (2003) and

Hansen (1995). We demonstrate that the original time-series experiment

is locally, asymptotically Brownian Functional (LABF) but converges to

the better understood LAMN case as the contribution of the covariate

grows to one. Moreover, we show that the covariate-augmented Dickey

Fuller (CADF) test of Hansen (1995) becomes optimal invariant as the

share of the variation explained by the covariate converges to unity. This

explains why the tests of Hansen (1995) are competitive in terms of power

to those of Elliott and Jansson (2003), in particular when the covariate

is more important. We show that both the CADF tests and the point-

optimal tests can also be implemented in a panel setting with unobserved

common factors and that their optimality properties carry over to this

panel setup.

4.1 Introduction

Exploiting stationary covariates to improve the power of unit-root tests was

first proposed by Hansen (1995) for univariate time series. It is assumed that,

in addition to the series to be tested, one observes a stationary covariate that is

correlated with the innovations for the series of interest. As the covariates are

assumed to be stationary under both the null and alternative hypotheses, they

can be used to remove part of the variation in the error term, leading to more

powerful tests. The original proposal by Hansen (1995) achieves this by aug-

menting a Dickey-Fuller regression with a covariate. This is easy to implement

and improves power significantly compared to the no-covariate setup. Elliott

and Jansson (2003) reconsider this setup and propose point-optimal tests, that
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are uniformly close to the power envelope if the alternative is chosen in a smart

way. Applications of covariate-augmented unit-root tests include Elliott and

Pesavento (2006), who study purchasing power parity on a country-by coun-

try basis, using macroeconomic time-series like differenced nominal exchange

rates, differences in money supply, and interest rate differentials as stationary

covariates.

Testing the stationarity properties of unobserved common factors and id-

iosyncratic deviations separately when dealing with panel data was first pro-

posed by Bai and Ng (2004). As part of their PANIC (Panel Analysis of

Nonstationarity in Idiosyncratic and Common components) approach, they

suggest to apply Dickey-Fuller tests to common factors estimated by princi-

pal component analysis. More recently, covariates have been used to further

improve the power of panel unit-root tests. However, these papers have only

dealt with testing the idiosyncratic deviations of each panel unit for a unit

root, rather than testing the common shocks as is the focus of this chapter.

We take the PANIC framework as a starting point and analyze the conse-

quences of observing additional stationary covariates.

Unobserved latent factors are commonly used in the panel unit-root litera-

ture, introducing cross-sectional correlation either in the observations directly,

as in the PANIC approach, or in the innovations, as in Moon and Perron

(2004). Although these two setups are equivalent in the absence of observed

covariates (see Wichert et al. (2019)), studies that augment these setups with

stationary covariates obtain very different conclusions. Becheri, Drost, and

Van den Akker (2015b), who consider the Moon and Perron (2004) setup with

cross-sectionally correlated errors, show that covariates can improve the power

of unit-root tests for the idiosyncratic parts. However, the statistical problem

in that case becomes more complex, as the experiment is locally asymptoti-

cally mixed normal (LAMN) instead of locally asymptotically normal (LAN).

Juodis and Westerlund (2018), on the other hand, consider observed covari-

ates in the PANIC setting of Bai and Ng (2004) and conclude that the limit

experiment is of the same type as when no covariates are considered.1

1 This holds for the case of no idiosyncratic trends being present, however, the observed
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As a further difference, Becheri, Drost, and Van den Akker (2015b) only

consider covariates that do not differ per cross-sectional unit. Juodis andWest-

erlund (2018) consider the other extreme: their covariates are cross-sectionally

independent. Moreover, both papers focus on the testing problem for the id-

iosyncratic parts and not the common factors. In this chapter, we propose an

intermediate framework, where the covariates are unit-specific but correlated,

with the correlation being driven by common factors. To realize power gains,

the factor of interest must also drive (part of) the correlation between the

covariates. As Hansen (1995), we assume that the covariates (and thus their

common factor innovations) are known to be stationary.

Our approach can be considered a panel-analogue of Hansen (1995), where

again the testing problem for the factors is isolated from that of the idiosyn-

cratic parts. However, in the panel setting the potential gains from using

stationary covariates are more pronounced: depending on the exact specifica-

tion, rather than just a fixed increase in local power, the covariates here can

even deliver a faster convergence rate. Nevertheless, the intuition for the addi-

tional power is the same: observing stationary covariates allows us to predict

part of the innovations in addition to the observations of interest. If both the

innovations and the levels were observed, checking for a unit-root would be

trivial algebra. Thus, the covariate being known to be stationary and related

to the innovations offers an additional way of testing the unit-root hypothesis.

Following this intuition, the amount of power that can be gained by in-

cluding the covariate then depends on how well the covariate approximates the

innovations of the factor of interest. We consider two specifications: In the

first, the factor of interest’s innovations determine the cross-sectional correla-

tion of the covariate as an additively separable factor. In this case, intuition

suggests that, as the cross-sectional dimension grows, the covariates’ factor

structure can be estimated more accurately and the power of the test will

increase both with the number of cross-section units as well as the number of

time periods. In fact, we formally show that the convergence rate will be equal

covariate can prevent the large loss of power due to estimating heterogeneous determin-

istic trends.
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to that of typical unit-root tests that are not robust to cross-sectional cointe-

gration, highlighting the large potential gains that covariates may deliver in

this setting.

On the other hand, estimating this factor structure in the presence of

multiple factors in the covariate equation is nontrivial.2 More importantly, the

assumption of the factor innovation entering without further perturbation does

not always follow from economic theory and will be hard to verify empirically.

Therefore, we also consider a more robust version of this problem, where not

the innovation of interest, but only a correlated disturbance enters the factor

structure of the covariate.3 In this case, the original power envelope of Elliott

and Jansson (2003) applies, so that the number of cross-sectional units will

not enter the convergence rate. The challenge is now to find tests that get

close to this power envelope, despite being applied to estimated factors.

We offer the following contributions. In the first setting, where the contri-

bution of the factor of interest to the covariance structure of the covariate can

be perfectly identified, we analyze how to optimally combine the information

inherent in the series with that of the covariates by deriving the limit exper-

iment. We find that the experiment is of the Locally Asymptotically Mixed

Normal (LAMN) type .4 The LAMN result suggests tests with certain opti-

mality properties. In particular, we show that an easily implementable test

corresponding to a t test in the limit experiment is optimal invariant, asymp-

totically normal and we derive its asymptotic power. Moreover, simulations

demonstrate good finite sample performance.

2 Principle components would not be sufficient here, as one would need to take into

account the time-series structure of the innovations to prevent a lagged level of the

factor to appear as an additional factor.

3 When considering the first setup, this is equivalent to the presence of an additional

factor with exactly the same loadings, so that they cannot be identified separately.

4 This is the same limit experiment as Becheri, Drost, and Van den Akker (2015b) ob-

tain for testing the idiosyncratic parts with observed common factors. In both cases,

observing a common component leads to a term in the likelihood ratio that does not

abide by a cross-sectional central limit theorem. However, the origins of the common

and idiosyncratic parts in the likelihood ratios are completely different.
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As the focus of this chapter is on panel unit root tests with unobserved

factors, we consider the implications of applying these tests to unobserved fac-

tors. Contrary to other common setups, the limiting distribution of our test

statistics is not unaffected by using estimates when the idiosyncratic parts

are nonstationary. However, we develop the appropriate size-corrections for a

general class of linear factor estimates. Moreover, we derive the local asymp-

totic powers of these tests based on estimated factors and show that power is

maximized by using weights corresponding to principal component estimates.5

For the second setting, in which the covariate is related to the innovations

less directly, we also start by considering the observed factor case. Contrary

to the first setting, this observed factor case is now the same as that studied

in Elliott and Jansson (2003) and Hansen (1995). However, the limit exper-

iment has not been derived to the best of our knowledge. It is of the more

general Local Asymptotic Brownian functional (LABF) type, making optimal

inference even more complicated than in the first case. However, we observe

that as the correlation between the innovation and the covariate approaches

one, we again obtain a simpler LAMN experiment, motivating the use of a

t-test in the original limit experiment. This test turns out to be identical to

the Covariate Augmented Dickey Fuller (CADF) test of Hansen (1995) and is

thus simple to implement. This sheds light on why the CADF test performs

well compared to the point-optimal tests by Elliott and Jansson (2003), espe-

cially when the influence of the covariate is large.6 As a final step, we again

show that the asymptotic distribution of this test is unaffected when applied

5 The efficiency of the factor estimation method appearing in the asymptotic powers is an

additional benefit of the faster convergence of our first setting. While some authors have

argued for using cross-sectional averages instead of principal component estimates to

estimate the factor, in this setting we show that using principal components is preferable

asymptotically.

6 Elliott and Jansson (2003) liken the relation of their point-optimal tests to the Hansen

(1995) tests to the relation between the Elliott, Rothenberg, and Stock (1996) and

Dickey and Fuller (1979) tests. However, in the setting with an additional covariate, the

case for using the point-optimal tests is weaker, as the choice of a reasonable alternative

depends on the importance of the covariate and due to our optimality result when the

correlation approaches one.
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to the unobserved factor of interest.

4.2 Setup and Assumptions

We consider a panel analogue of Hansen (1995), featuring unit-specific, sta-

tionary covariates in addition to the observations of interest. Cross-sectional

dependence is accounted for using unobserved common factors in the spirit of

the PANIC approach of Bai and Ng (2004). This leaves us with, for i = 1, . . . , n

and t = 1, . . . T ,

yit = λiFt + Eit, (4.1)

Ft = ρFt−1 + ft, (4.2)

Eit = ρEEi,t−1 + ηit, (4.3)

xit = γift + uit, (4.4)

where y is observed, F is an unobserved univariate common factor, E are

unobserved idiosyncratic shocks and x is a stationary covariate. We assume

zero starting values, i.e., F0 = 0, Ei0 = 0 and ui0 = 0 for all i = 1, . . . , n.7

In a panel context, stationary covariates have only been used in the unit-

root testing problem for the idiosyncratic components E. Becheri, Drost, and

Van den Akker (2015b) consider the case of observed factors.8 Thus, their

observed covariates are cross-section common and not unit-specific. On the

other hand, Juodis and Westerlund (2018), consider unit specific covariates

that are cross-sectionally independent and for each unit exhibit correlation

7 When starting values are large, these can have a significant influence on the power

of panel unit-root tests, see Müller and Elliott (2003) for a general discussion and

Aristidou, Harvey, and Leybourne (2017) and Westerlund (2013) for the special case

of covariate-augmented unit-root tests. As the goal of our chapter is to study the

implications of observing panel data, we focus on the most studied case of zero (or

small) starting values.

8 Becheri, Drost, and Van den Akker (2015b) consider the influence of observing the factor

innovations ft in an alternative setup where the factor model is in the innovations and

the factors and idiosyncratic parts are of the same order on integration, on the power

of unit root tests for the observations Y .
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with the error term ηit. We assume an intermediate case, where the covariates

as well as the observations of interest have cross sectional dependence based on

a factor structure. Moreover, we focus on the testing problem for the factor F .

Equation (4.4) assumes that x satisfies a factor model, with f , the innovation

of the factor under investigation, being one of the factors.9 Depending on

the application, one might not be comfortable with the assumption that the

factor innovation of interest enters the covariate equation directly. Therefore,

we also consider an alternative specification

xit = γi(ft + gt) + uit, (4.5)

where g can be considered an extra factor that happens to have the same

loadings as f . Alternatively, g can be interpreted as the difference between

the factor that drives the correlation in the covariate equation and that in the

observations. Contrary to having separately identifiable additional factors, i.e.,

factors that do not share their loadings with ft, having a factor with exactly

the same loadings significantly changes the testing problems and entails an

entirely new analysis (see Section 4.4).

Throughout, the null hypothesis is ρ = 1, i.e., F and (therefore) each panel

unit has a unit root, with local alternatives

ρ = 1 +
h

Tnν
. (4.6)

The coefficient of the idiosyncratic parts, ρE , is assumed to be fixed. We

choose ν depending on the specification to ensure alternatives contiguous to

the null hypothesis. In the first specification, where the covariate satisfies

(4.4), we obtain ν = 1/2, i.e., a faster convergence rate thanks to the presence

of the stationary covariates, see Theorem 4.3.1. However, the robustified,

second specification (using (4.5)) means that even as n → ∞, f cannot be

perfectly estimated, so, as we formally show in Section 4.4, the time-series

power envelope and a convergence rate with ν = 0 apply.

9 In this chapter we consider the case of a single factor, but the results are expected to

be robust to additional factors entering (4.4). However, estimating these is non-trivial

and left for future work.
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4.2.1 Notation

Collect the panel units in the T × n matrices Y , E, x, η, and u. Also, write

Yi, Ei, xi, ηi, and ui for their ith columns, respectively. Introduce the n × 1

matrix Λ to contain the factor loadings λi and the n×1 matrix Γ to contain the

covariate loadings γi. Finally, let F = {Ft}Tt=1 and define f analogously. Also,

denote F−1 = (F0, . . . , FT−1)
′ and F̂−1 = (F̂0, . . . , F̂T−1)

′ and note that with

this notation, we have y = FΛ′ + E and x = fΓ′ + u. The T × T covariance

matrices of f , ηi, and ui are denoted by Σf , Ση,i and Σu,i, respectively, with

long-run variances ω2
f , ω

2
η,i, and ω2

u,i.

For a matrix C, let ‖C‖F denote its Frobenius norm and ‖C‖spec its spec-
tral norm. Henceforth, A will denote a cumulative sum operator (a T ×T ma-

trix with ones below the diagonal and zeros on and above) so that F−1 = A∆F ,

while I denotes an identity matrix. Throughout, W1 and W2 are independent

standard Brownian motions, (time) integrals of these are understood to be

from zero to one and we abbreviate
∫ 1
0 W1(t)dt by

∫
W1. By → we denote

convergence in Rd, ⇒ denotes convergence in distribution, while combining

any convergence mode with the statement (n, T → ∞) refers to n and T going

to infinity jointly as in Phillips and Moon (1999).

4.2.2 Basic Assumptions

In line with the existing optimality literature on panel unit-root tests, we re-

strict ourselves to Gaussian innovations.10 In our baseline specification (4.1)–

(4.4) we allow for very general serial correlation. This is nontrivial from a

methodological point of view, as we deal with both a growing number of time

series and cross-sectional observations, so that, despite the imposed Gaussian-

ity, we are dealing with infinite-dimensional nuisance parameters.

Assumption 4.1 For each i, the covariate innovations {uit}, factor innova-

tions {ft}, {gt} and idiosyncratic innovations {ηit} are stationary Gaussian

10 Without distributional assumptions we could not write out the likelihood ratios that

form the basis of our asymptotic analysis. Thus, Gaussianity is required for our opti-

mality results. Nevertheless, we expect the test statistics to have good sizes even with

non-Gaussian observations.
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time series independent of each other. Moreover, the spectral densities fi of the
uit are uniformly bounded away form zero and twice continuously differentiable

with uniformly bounded second derivative, i.e.,

inf
i,m

fi(m) > 0, sup
i,m

|f ′′
i (m)| < ∞. (4.7)

Similarly, the spectral density of the factors is bounded away from zero and

their autocorrelation functions γf satisfy

∞∑
m=0

(m+ 1)|γf (m)| < ∞.

Remark 4.2.1 The condition on the second derivative of the spectral density

ensures a uniform (across panel units) decay of the autocorrelation function,

while the bound on the infimum is necessary to obtain bounds on the inverse

of the covariance matrices. If the {uit} were causal ARMA processes, these

conditions would be satisfied as long as the roots are uniformly (across cross-

section units) bounded away from the unit circle.

Assumption 4.2 The factors are strong, i.e., there exist positive definite con-

stants ΨΛ and ΨΓ such that limn→∞
1
nΛ

′Λ = ΨΛ and limn→∞
1
nΓ

′Γ = ΨΓ.

Moreover, we have, for some ω−2
u,Γ > 0, as n → ∞,

1

n

n∑
i=1

γ2i
ω2
u,i

→ ω−2
u,Γ.

4.3 Limit Experiments and Feasible Tests

We now analyze the statistical problems related to testing h = 0, i.e., the

presence of unit roots in Y induced by a unit root in the common factor.

This analysis yields power envelopes and suggests tests with certain optimality

properties. Section 4.3.1 considers the experiment where the factor of interest

is observed. Section 4.3.2 adapts the resulting procedure for use with an esti-

mated factor and Section 4.3.3 relaxes the requirement that the idiosyncratic

parts of the covariate are independent of those in the main covariate.
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139 4.3. LIMIT EXPERIMENTS AND FEASIBLE TESTS

4.3.1 Observed Factors

In the presence of unit-specific covariates, optimal unit-root tests are not avail-

able in the literature, even if the factor is observed.11 Thus, in this section,

we treat the simplest case: a single observed factor F that drives both the

cross-sectional correlation in the Y as well as that in the x. Moreover, we

assume all nuisance parameters are known; this will be relaxed later.

If the factor of interest F is observed, the observations Y are not relevant

for the testing problem, i.e., observing Y in addition to F and x yields no addi-

tional power.12 They will, however, be used later to approximate unobserved

factors and nuisance parameters.

Denote by Ph the joint law of F , x, and Y under (4.1)–(4.4) and (4.6).

The following proposition characterizes the limit experiment associated with

the testing problem h = 0 vs h < 0.

Proposition 4.3.1 Under Assumptions 4.1 and 4.2, the likelihood ratio in

the experiment with a single, observed factor and known nuisance parameters,

satisfies, under P0,

log
dPh

dP0
= h∆n,T − 1

2
h2Jn,T + oP (1),

with

∆n,T =
−1√
nT

n∑
i=1

T∑
t=1

γi
ω2
u,i

Ft−1(xit − γi∆Ft)

and

Jn,T =
1

nT 2

n∑
i=1

γ2i
ω2
u,i

T∑
t=1

F 2
t−1.

Moreover, under P0, (∆n,T , Jn,T ) ⇒ (∆, J) as (n, T → ∞), where J =

ω2
fω

−2
u,Γ

∫
W 2

1 , and ∆|J ∼ N(0, J).

11 Hansen (1995) has studied the testing problem in a time-series context, i.e., with a finite

number of covariates. Here, however, we assume that covariates are unit specific.

12 This changes when we allow for correlation between the u and η, see Section 4.3.2.
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Proposition 4.3.1, proved in Section 4.A.1, implies that the testing problem

is of the LAMN type. Although this limit experiment is well understood,

this implies that no asymptotically UMP test exist, see Jeganathan (1995).

If all nuisance parameters were known, we could, however, conduct simple

inference by using the asymptotic normality of tn,T := ∆n,T /
√
Jn,T , leading

to optimal invariant13 tests. Note that in ∆n,T and Jn,T we have replaced

covariance matrices by long-run matrices as even with an observed factor,

estimating the entire variance-covariance matrix of the innovations u and f

is impractical. Thanks to this replacement, as we show in Section 4.3.2, we

can implement tests based on tn,T that do not require any knowledge about

nuisance parameters.

Proposition 4.3.2 states the distributions under alternatives. As we are

dealing with a mixed Gaussian shift limit experiment instead of the standard

Gaussian shift limit experiment, the distribution contains stochastic integrals

and no simple closed form solutions for powers exist. However, Figure 4.1,

plots powers for varying values of ωfω
−1
u,Γ.

Proposition 4.3.2 Suppose Assumptions 4.1 and 4.2 hold. Under Ph,

tn,T ⇒ Z − h

√
ω2
fω

−2
u,Γ

∫
W 2

1 dt,

as (n, T → ∞), where Z is standard normally distributed and independent of

W1.

Our LAMN result facilitates a simple proof of Proposition 4.3.2 using only

the properties of the limit experiment, see Section 4.A.2. In the simple case

of i.i.d. time series without cross sectional heterogeneity and variances σ2
u and

σ2
f , the result can also be derived using direct calculations that might be more

intuitive to some readers. As ∆Ft = ft +
h√
nT

Ft−1 we have

∆n,T =
1√

nTσ2
u

T∑
t=1

Ft−1

n∑
i=1

γiuit −
h

nT 2σ2
u

n∑
i=1

γ2i

T∑
t=1

F 2
t−1. (4.8)

13 That is, tests that achieve nominal size even conditional on Jn,T .
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Note that, from Lemma 4.A.1 in Section 4.A.6, under all alternatives, the

limiting distribution of the first part equals that of ∆n,T under the null hy-

pothesis. Further, note that the second part equals Jn,T and, again using

Lemma 4.A.1 its distribution is the same irrespective of the alternative,14 i.e.,

Jn,T ⇒ ΨΓ

σ2
f

σ2
u

∫
W 2

1 dt.

Combining yields

tn,T =
1√

nTσ2
u

√
Jn,T

T∑
t=1

Ft−1

n∑
i=1

γiuit − h
√

Jn,T ⇒ Z − h

√
ΨΓ

σ2
f

σ2
u

∫
W 2

1 dt.

4.3.2 Tests when the Factor is Unobserved

In the previous section we have established how to conduct optimal tests when

the factor is observed and that we can exploit the covariates to obtain power

in
√
nT instead of T neighbourhoods of the unit root. We now show that even

for testing an unobserved factor, we can achieve the improved rate. If the

idiosyncratic parts are stationary, the power envelope and the power of our

proposed tests are the same as if the factor was observed. If ρE = 1, however,

we observe a modest loss in asymptotic power. Note that this loss in power is

atypical: both in the no-covariate case as studied in Bai and Ng (2004) and

in our robust specification in Section 4.4 using estimated factors in place of

observed ones does not change the limiting distributions of the test statistics,

even when the idiosyncratic parts are nonstationary. In our setting, however,

not observing the factors necessitates a size correction, which leads to a loss

of power. In this section we discuss how to implement a version of the test

that can be applied to unobserved factors and compare the power loss relative

to the observed factor case for different factor estimates.

Our method of choice estimates ∆F by applying principal components to

∆y. The resulting estimates, ∆F̂ , are then used in combinations with the co-

variates x to estimate Γ using OLS. Next, consider the limiting distribution of

14 This is thanks to our alternatives being in
√
nT neighbourhoods around the unit root.

See Phillips (1987b) for the behaviour in T regions around the unit root. The present

case is obtained by letting the local parameter converge to zero.
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a version of tn,T based on those estimates. To estimate the factors sufficiently

well we need to make additional assumptions on the relative size of n and T .

This is common in the literature, as these unit-root tests are typically applied

to panels of macroeconomic time-series.

Assumption 4.3 We have n/T → 0 as (n, T → ∞).

To create tests that can be implemented in practice, we also need estimates

of the long-run variances. These requirements are standard, and satisfied, for

example, by kernel estimates, see Remark 2.9 in Moon, Perron, and Phillips

(2014).

Assumption 4.4 We have estimators ω̂2
u,i and ω̂2

η,i of the long-run variances

of the {uit} and {ηit}, respectively, satisfying, under P0, as (n, T → ∞),

max
i=1,...,n

E(ω̂2
u,i − ω2

u,i)
2 = o(1/n), max

i=1,...,n
E(ω̂2

η,i − ω2
η,i)

2 = o(1/n).

Theorem 4.3.1 Let (∆F̂ , Λ̂) be the principal components estimator based on

∆y and let

Γ̂′ = (∆F̂ ′∆F̂ )−1∆F̂ ′x

with its i-th element denoted γ̂i. Assume κ2η := limn→∞
1
n

∑n
i=1 λ

2
iω

2
η,i exists

and define the estimators κ̂η
2 = 1

n

∑n
i=1 λ̂

2
i ω̂

2
η,i, ˆωu,Γ

−2 = 1
n

∑n
i=1

γ̂2
i

ω̂2
u,i

, and

Ψ̂Λ = 1
n Λ̂

′Λ̂, using the long-run variance estimators of Assumption 4.4. Let

t̃n,T = t̂n,T /

√
1 + Ψ̂−2

Λ ˆωu,Γ
−2κ̂η

2,

where t̂n,T =
∆̂n,T√
Ĵn,T

with

∆̂n,T =
−1√
nT

n∑
i=1

T∑
t=1

γ̂i
ω̂2
u,i

F̂t−1(xit −∆F̂tγ̂i) and

Ĵn,T =
1

nT 2

n∑
i=1

γ̂2i
ω̂2
u,i

T∑
t=1

F̂ 2
t−1.

Then, under Assumptions 4.1–4.4, with ρE = 1 and under Ph, as (n, T → ∞),

t̃n,T ⇒ Z − h

√
ω2
fω

−2
u,Γ

∫
W 2

1 dt√
1 + Ψ−2

Λ ω−2
u,Γκ

2
η

.
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The proof is provided in Section 4.A.3. Theorem 4.3.1 implies that we can

again use standard normal inference, based on the adapted test statistic t̃n,T .

The loss in power due to not observing the factors can be attributed to

the term

F ′
−1∆EΛ(Λ′Λ)−1Γ′Ω−1Γ,

which constitutes part of the difference between the central sequence ∆n,T and

its estimated counterpart ∆̂n,T . Under ρE = 1, 1√
n
∆EΛ gives rise to κ2η as

its long-run variance. However, if E is stationary and ∆E is thus overdiffer-

enced, the corresponding long-run variance is zero, making a size correction

superfluous.15 Thus we obtain the following corollary.

Corollary 4.3.1 Under the assumptions of Theorem 4.3.1 but with ρE = 0,

we have, under Ph, as (n, T → ∞),

t̂n,T ⇒ Z − h

√
ω2
fω

−2
u,Γ

∫
W 2

1 dt.

Therefore, whether t̂n,T or t̃n,T is to be used depends on whether the idiosyn-

cratic parts are stationary. If this is unclear, one can use t̃n,T for robust (but

potentially conservative) inference.

Remark 4.3.1 To avoid identification problems, in Theorem 4.3.1, we im-

mediately replace both factor and their loadings by estimates. Its proof demon-

strates that the power loss occurs due to having to estimate the factor in

(xit −∆F̂tγ̂i) in the central sequence. The estimation of the loadings is then

adaptive, i.e., we show that the terms due to estimating the loadings converge

to zero. Note that, thanks to Le Cam’s First Lemma and our LAMN result,

we only have to show this adaptivity under the null hypothesis. Convergence to

zero of these terms under the local alternatives is then implied by contiguity.

Remark 4.3.2 Instead of using principal components, one could also use

cross-sectional averages as a simple way to show that unit-root tests are pos-

sible in
√
nT neighbourhoods of the unit root even when the factor is not

15 More formally, note that if E = η, then F ′
−1∆Ei =

∑T−1
t=0 ∆Ft(ηiT − ηit) = OP (

√
T ).
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observed. For panel unit-root tests in the PANIC framework this is a well-

documented technique (see Reese and Westerlund (2015)) and it is often con-

sidered to be competitive with principal components. However, in this testing

problem, we can clearly identify the increase in asymptotic power due to using

principal components instead of simple averages when ρE = 1.

To gain intuition, again assume i.i.d. innovations and normalize the av-

erage of the λi to one. Consider, in addition to tn,T and t̃n,T , a version of

t̃n,T that is based on cross-sectional averages. To ensure a standard normal

limiting distribution under the null hypothesis, this requires a different normal-

ization than when using principal components: the asymptotic distributions of

all three test statistics under alternative h can be written as

Z − h

√
σ2
fΨΓ

σ2
u + p

∫
W 2

1 dt,

where p = 0 when the factor is observed, p = σ2
ηΨΓΨ

−1
Λ in case of principle

components, and p = σ2
ηΨΓ when using averages. As expected, the efficiency

loss due to using averages over principal components depends on the variabil-

ity of the factor loadings in the observations (ΨΛ), while the loss from not

observing the factor depends mainly on the variance of the idiosyncratic terms

(σ2
η). For general weights w, satisfying w′λ = 1, the variance of the weighted

η is w′w. If λ were known, one could use the OLS weights λ/(λ′λ) to obtain a

variance of (λ′λ)−1 instead of 1. This explains why the variance correction is

divided by ΨΛ and it also shows that there is no asymptotic loss in efficiency

from the λ being estimated by principal components rather than being observed.

Figure 4.1 compares these asymptotic powers for a range of typical parameter

values.
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Figure 4.1: Asymptotic power of unit-root t-tests as a function of −h for

varying values of σ2
η and ΨΛ. Here σ2

f = σ2
u = 1. The dotted line represents

the observed-factor benchmark, the solid line presents the asymptotic power

of t̃n,T and the dashed line represents a version of t̃n,T where the factor is

estimated using cross-sectional averages rather than principal components.
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4.3.3 Correlated Innovations

We now consider the more complicated case where the idiosyncratic parts of

the observations are correlated with those of the covariate. To allow for such

correlation in a simple way we augment (4.3) as

Eit = ρEEi,t−1 + ηit + βuit. (4.9)

Note that now it becomes worthwhile to exploit the observations y to improve

on the tests even when the factor of interest is observed. The aim of this

section is to demonstrate that exploiting the correlation between the error

terms leads only to minor increases in power, so we focus on the observed

factor case. For this more complicated setup, we also consider the simplifying

Assumption 4.5. The results in this section can be extended to allow for serial

correlation along the same lines as in Section 4.3.1.

Assumption 4.5 The covariate innovations {uit}, factor innovations {fkt}
and idiosyncratic innovations {ηit} are i.i.d. normally distributed, with vari-

ances σ2
u, σ2

f , and σ2
η, respectively. Moreover, ρE = 0 and the factors are

independent of {uit} and {ηit}.

Proposition 4.3.3 below demonstrates that, based on a similar t-test, one can

again use standard normal critical values for testing the stationarity of the

observed factor. The proof, found in Section 4.A.4, also demonstrates that

the experiment is LAMN and the proposed t-test is thus conditionally optimal.

This test is again motivated by the limit-experiment, which is of the same type

as the one in Section 4.3.1. However, thanks to the correlation between the

two equations, this test can also exploit the fact that, under the hypothesis

η = Eit − β(xit − γi∆Ft), but that the right-hand side will be correlated with

Ft−1 under (local) alternatives. This leads to an increase in asymptotic power,

depending on the magnitude of β, as shown in Figure 4.2. Some limited gains

are possible when σ2
η is small relative to σ2

u and σ2
f .

Proposition 4.3.3 Suppose Assumptions 4.2 and 4.5 hold and let

tβn,T := ∆β
n,T /

√
Jβ
n,T ,
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with

∆β
n,T = ∆̃n,T − β

1√
nTσ2

η

n∑
i=1

T∑
t=1

γiFt−1(Eit − β(xit − γi∆Ft))

and

Jβ
n,T =

1

nT 2

n∑
i=1

(
1

σ2
u

+
β2

σ2
η

)
γ2i

T∑
t=1

F 2
t−1.

Under Ph, and (4.9), as (n, T → ∞),

tβn,T ⇒ Z − h

√√√√ΨΓ

(
σ2
f

σ2
u

+ β2
σ2
f

σ2
η

)∫
W 2

1 dt,

where Z is standard normally distributed and independent of W1.

0 5 10 15
0
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.4

.6

.8

1

−h

σ2
η = 0.5

0 5 10 15−h

σ2
η = 1

0 5 10 15−h

σ2
η = 2

β = 0 β = 0.5 β = 1

Figure 4.2: Asymptotic power of observed factor unit-root test tβn,T for varying

values of σ2
η and β. Here σ2

f = σ2
u = 1.

Remark 4.3.3 Here we allow for any fixed value of β. Note that while the

gains in asymptotic power are small for the magnitudes of β that are likely to

be encountered in practice, as β → ∞, the power for any fixed h converges to

1.

Remark 4.3.4 Proposition 4.3.3 assumes that ρE = 0, i.e., the idiosyncratic

parts are stationary. If the idiosyncratic parts E are known to have an autore-

gressive unit root, one can simply replace Eit by ∆Eit in the central sequence.
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The intermediate case, however, where the persistence parameter of the id-

iosyncratic parts is local-to-unity at the contiguous rate
√
nT is left for further

research. 16

Remark 4.3.5 Note that the correlation between E and u also implies a typ-

ical regression relation between x and ∆y. In particular, under the null hy-

pothesis and with ρE = 1, we obtain

∆yit = (λi − βγi)∆Ft + βxit + ηit.

4.4 Robust Specification

In this section we consider the alternative covariate setup as introduced in

(4.5). That is, we introduce a new factor

bt := ft + gt, (4.10)

that can be considered as the relevant factor in the covariate equation. bt

is allowed to differ from the factor that is to be tested for a unit root, with

the perturbation gt representing their difference. The assumptions on gt are

analogous to Assumption 4.5.

Assumption 4.6 The covariate factor innovations bt are i.i.d. normally dis-

tributed, with variance σ2
g and independent of all other innovations.

Similarly to the previous section, we first consider an auxiliary model,

where the factor is observed. In this setup it turns out to be beneficial to as-

sume that bt is observed as well. This will be relaxed later, but for now brings

16 When β 
= 0, we need to remove the influence of the xit before removing the factors.

However, to understand how xit enters the observations yit in this setup we need to

to know ρE with sufficient accuracy. If, for example, we impose a unit root in the

E equation whereas in fact ρE = 0.5, ft directly enters the y equation. So when we

estimate the factors based on y, we in fact do not only obtain F but also f , which

leads to size distortions for the unit-root tests based on those estimates. Therefore, if

ρE was localized at the contiguous rate it becomes a non-adaptive nuisance parameter.

The joint likelihood ratio then involves both equations. The joint experiment appears

to also be of the LAMN type, but the resulting test statistics are more complicated.
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one back to the univariate covariate setup as studied by Elliott and Jansson

(2003) and Hansen (1995). While Hansen (1995) has suggested adding the co-

variate bt to ADF regressions, Elliott and Jansson (2003) derive point-optimal

tests. However, in the spirit of the previous sections, we do not start from a

specific test statistic, but first investigate the structure of the limit experiment.

We show that the limit experiment in the time-series covariate setup is LABF

and that it gets closer to the LAMN case considered in the previous section

as the influence of the observed factor grows.17 This observation motivates

the use of a simple t-test (albeit with slightly adjusted critical values) that

turns out to be competitive in power with the point optimal tests proposed

by Elliott and Jansson (2003) but more robust to the choice of alternative. It

turns out that this test is equivalent to the approach of Hansen (1995) and

can thus be easily implemented using OLS regression. In Proposition 4.4.2 we

exploit our expansion of the likelihood ratio to show that both tests can be

applied to estimated common factors with no loss in asymptotic power.

In this more robust specification, we localize the autoregressive parameter

of the factor as ρ1 = 1 + h
T and denote by Ph the joint law of Y, x, F , and

b under (4.2) and (4.10). The following proposition characterizes the limit

experiment associated with the testing problem h = 0 vs h < 0. The result is

immediate from the Gaussian likelihood ratio and we omit the proof.

Proposition 4.4.1 Under Assumptions 4.1, 4.2, 4.5 and 4.6, the likelihood

ratio in the experiment with an observed factor, known nuisance parameters,

and a known covariate b, satisfies

log
dPh

dP0
= h∆̃T − 1

2
h2J̃T , (4.11)

with

∆̃T =
1

T

T∑
t=1

Ft−1

(
∆Ft

σ2
f

+
∆Ft − bt

σ2
g

)

17 Indeed the DGP in Section 4.3 corresponds to R2 = 1. However, note that the contiguity

rate is different, and that the LAMN result here arises from an entirely different sequence

of experiments. This also implies that the optimality properties of the tests developed

in this section for R2 < 1 do not carry over to the case of Section 4.3.
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and

J̃T =
1

T 2

T∑
t=1

F 2
t−1

(
1

σ2
f

+
1

σ2
g

)
.

Note that, under the null hypothesis, with W1 and W2 being independent

Brownian motions,

∆̃T ⇒
∫

W1d(W1 +
σf
σg

W2) and J̃T ⇒
(
1 +

σ2
f

σ2
g

)∫
W 2

1 dt,

as T → ∞. Thus, as σ2
f gets large, relative to σ2

g (or, in the notation of Elliott

and Jansson (2003), R2 =
σ2
f√

σ2
f+σ2

gσf

goes to one), i.e., the influence of the

covariate increases, the limit experiment mimics more and more the LAMN

case of the previous sections.18 This suggests to use again the simple t-statistic

tT :=
∆̃T√
J̃T

,

as this will yield optimal invariant tests in the setting of the previous section

where R2 → 1. Note, on the other hand, that tT approaches the regression

Dickey Fuller statistic as R2 → 0. Therefore, we expect this test statistic

to behave reasonably well also for intermediate R. Figure 4.3 compares the

powers of tT to that of the point-optimal tests. As expected, the CADF test

tT performs particularly well when R2 is large.

Remark 4.4.1 For easier intuition we have again treated this case based on

i.i.d. errors. However, due to the standard ingredients of our test, existing re-

sults for time series (as stated, for example, in Elliott, Rothenberg, and Stock

(1996)) imply that our test could be applied to serially correlated data by re-

placing variances by long-run variances and subtracting the correction term

δf/ω
2
f , where δf and ω2

f are estimates of the one-sided long-run variance and

18 To see the relation to Proposition 4.3.1, note that
∫
W1dW2 indeed has a normal dis-

tribution conditional on
∫
W 2

1 dt. As σ2
f gets large relative to σ2

g , the term
∫
W1dW1

becomes negligible. It is also evident that as σf/σg → ∞, one needs a different stan-

dardization to obtain a non-degenerate limiting distribution. This corresponds to the

analysis in Section 4.3, which uses a different contiguity rate.
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long-run variance based on ∆F , respectively. Note that this is the same correc-

tion term as in the no-covariate case, as the contribution of
∫
W1dW2 requires

no correction term, c.f., Proposition 4.3.1. Although the test statistic is iden-

tical to that of Hansen (1995) in the i.i.d. case, this suggests an alternative

way of handling serial correlation.

Remark 4.4.2 Contrary to the model studied in Section 4.3, a correlation

between the idiosyncratic parts, as in (4.9), would not change the likelihood

ratio or the attainable power. Thus, the results in this section apply regardless

of whether β is zero or not.

Remark 4.4.3 To allow for multiple factors in the covariate equation, one

could generalize (4.5) to

xit =

K∑
k=1

γi,k(ft + gk,t) + uit.

With bk,t = ft + gk,t observed for k = 1, . . . ,K, and σ2
k denoting the variance

of gk,t, the central sequence and Fisher information would read

∆̃K
T =

1

T

T∑
t=1

Ft−1

(
∆Ft

σ2
f

+

K∑
k=1

∆Ft − bk,t
σ2
k

)
and

J̃K
T =

1

T 2

T∑
t=1

F 2
t−1

(
1

σ2
f

+

K∑
k=1

1

σ2
k

)
.

Note that we have chosen this formulation of the generalized setup over a

formulation with K + 1 independent factors, as this allows us to treat the bk,t

as observed without worrying about identifying the single relevant factor.19

4.4.1 Implementing the tests with unobserved factors

In this section we demonstrate that ∆̃T and J̃T can be approximated without

actually observing F or b. This not only enables adaptive testing based on

19 As principal components only identifies factors up to a rotation, imposing a rotation

that eliminates ft from K − 1 factors would make it harder to implement the resulting

test statistic in practice.
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Figure 4.3: Local asymptotic powers of unit-root tests and pointwise power en-

velope. The ’Point Optimal’ test of Elliott and Jansson (2003) is implemented

for a fixed alternative h = −7 as recommended by the authors.

tT , but also based on (4.11) for a fixed h, i.e., based on point-optimal tests.

Contrary to the case in Section 4.3, here there is no change in the asymptotic

distribution of the test statistics, and thus no loss in power due to not observing

the factors.

Proposition 4.4.2 Reconsider the principal components estimator Λ̂, F̂ based

on ∆F from Theorem 4.3.1 and similarly denote the principal components

estimator based on x by Γ̂ and b̂.20 With σ̂2
f and σ̂2

g consistent estimates of σ2
f

and σ2
g , respectively, we have, under Assumptions 4.1–4.5 and 4.6, and under

Ph, as (n, T → ∞),

∆̂T − ∆̃T = oP (1) and ĴT − J̃T = oP (1),

with

∆̂T =
1

T

T∑
t=1

F̂t−1

(
∆F̂t

σ̂2
f

+
∆F̂t − b̂t

σ̂2
g

)
and

ĴT =
1

T 2

T∑
t=1

F̂ 2
t−1

(
1

σ̂2
f

+
1

σ̂2
g

)
.

20 Note that with our identification assumptions it is necessary to get a common scaling

of the principal component estimates across the two equations. We achieve this by

recovering the scaling of Γ̂ from a regression on ∆F̂ on x.
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Proposition 4.4.2 implies that, even in this robust specification, there are

sizeable gains from using observed covariates when testing unobserved common

factors, as the covariate-based tests maintain their asymptotic powers as if the

factors were observed. The following corollaries formalize this notion.

Corollary 4.4.1 Let

t̂T :=
∆̂T√
ĴT

.

Then, under Ph and as (n, T → ∞), t̂T has the same limiting distribution

as tT . Consider a test that rejects for small values of t̂T . Using the critical

values from Table 1 in Hansen (1995), this test has correct asymptotic size

and, as (n, T → ∞) and subsequently R2 → 1, its power converges to that of

the optimal invariant test.

Corollary 4.4.2 Let

pc̄ = c̄∆̂T − 1

2
c̄2ĴT .

A test rejecting for large values of pc̄ is asymptotically point optimal for testing

Pc̄ against P0 and critical values from Table 1 in Elliott and Jansson (2003)

lead to correct asymptotic sizes as (n, T → ∞).

Remark 4.4.4 Natural estimators for the variances are σ̂2
f = ∆F̂ ′∆F̂ /T and

σ̂2
g = (∆F̂ ′ − b̂)′(∆F̂ − b̂)/T and these indeed lead to the asymptotically well-

behaved tests. However, in small samples and with estimated factors, other

estimates lead to significantly higher powers. In particular, take

σ̂2
f =

b̂′b̂∆F̂ ′∆F̂ − (∆F̂ ′b̂)2

T (b̂′b̂−∆F̂ ′b̂)
and σ̂2

g =
b̂′b̂∆F̂ ′∆F̂ − (∆F̂ ′b̂)2

T∆F̂ ′b̂
. (4.12)

These are the estimators implicitly used in the point-optimal tests proposed in

Elliott and Jansson (2003) and although unintuitive, simple algebra confirms

that these are indeed consistent estimators of the variances. Figure 4.6 shows

that using these estimates over the natural estimator significantly improves

small-sample powers for both CADF and point-optimal tests.



575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert
Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022 PDF page: 162PDF page: 162PDF page: 162PDF page: 162

CHAPTER 4. COVARIATES 154

4.5 Finite-Sample Performance

In this section, we demonstrate to what extent observing stationary covariates

can improve inference in finite samples. We treat the specifications of Sec-

tions 4.3 and 4.4 separately as the contiguity rates are different and even in

small samples a comparison is not insightful.

For Section 4.3, we simulate (4.1)–(4.4), drawing the factor loadings λ and

γ from independent normal distributions with means and variances equal to

one. For the innovations, we consider i.i.d., AR(1) and MA(1) specifications

(both with parameter 0.4). The long-run variances of the η and u are drawn

from a log-normal distribution with mean and variance one (except where a

different ω2
u is indicated, this refers to the mean of the lognormal distribution),

to create heterogeneous long-run variances. The long-run variances of the f

are unity. All results are based on 20 000 replications.

Table 4.1 presents sizes in the observed-factor benchmark tn,T , for nomi-

nal 5% level tests. We consider the test statistics based on kernel-estimated

long-run variances, using a Bartlett kernel with Newey-West bandwidth. It is

evident that the proposed corrections for serial correlations work well even in

small samples. Table 4.2 presents the corresponding results for an unobserved

factor and also here the sizes are reasonably closer to nominal (but slightly

under-sized rather than over-sized for small sample sizes). Finally, Table 4.3

presents sizes in the robust framework of Section 4.4. Here we treat all pa-

rameters the same as in the previous framework, while adapting the variance

of g to yield the desired level of R2. We use the variance estimates from (4.12)

for better finite-sample powers, c.f. Remark 4.4.4. We observe that sizes are

close to nominal levels, but slightly lower when n is large relative to T .

We now study the powers of the aforementioned tests, with the same DGP

as before (but focusing on i.i.d. innovations) and local alternatives generated

by (4.6). Figure 4.4 considers the tests from Section 4.3. Here the emphasis is

on the finite-sample implications of not observing the factors. Recall that not

observing the factors does lead to an asymptotic power loss here. However,

when the variance of the error terms across the two equations is comparable,

the loss of not observing the factor is not large: even in small samples the
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convergence to the asymptotic powers appears quite fast. In particular, the

distance to the asymptotic power envelope in small samples appears to mirror

the case of observed factors. Combining the insights from Figure 4.4 with the

asymptotic powers presented in Figure 4.1 gives a good idea of the expected

finite sample powers for other parameter values.

Figure 4.5 considers powers in the robust framework of Section 4.4. We

compare our proposed CADF tests based on estimated factors to the esti-

mated Dickey-Fuller tests proposed in Bai and Ng (2004). For a moderately

correlated covariate of R2 = 0.5, the proposed CADF test outperforms Dickey-

Fuller tests even in small samples. However, when n is small, its power is sig-

nificantly lower than the asymptotic power envelope. Figure 4.6 revisits the

phenomenon discussed in Remark 4.4.4, highlighting how a particular set of

variance estimates outperforms the more intuitive ones. For small n, the finite

sample gains from using the more complicated variance estimates are sizeable.

It is evident that the power gains from exploiting the stationary covariates

are very large even in small samples. This applies in the robust specification of

Section 4.4, where the tests that take into account the covariate significantly

outperform Dickey-Fuller tests even in the smallest sample sizes and with a

moderately correlated covariate. In the baseline specification, where the factor

contribution can be perfectly identified, the gains are very significant even in

small samples and small correlations.
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i.i.d., ω2
u = AR(1), ω2

u = MA(1), ω2
u =

n T 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

50 25 6.8 6.9 7.1 6.0 6.0 5.9 5.9 6.0 5.7

50 50 5.2 5.2 5.3 5.2 5.1 5.0 5.3 5.1 5.2

50 100 5.0 4.9 4.7 4.6 5.1 4.8 4.7 4.8 4.7

100 50 5.5 5.4 5.5 5.3 5.1 5.1 5.4 5.5 5.1

100 100 4.8 4.8 4.8 5.0 4.9 4.9 4.6 4.7 4.8

100 200 5.0 4.9 4.8 4.7 4.9 4.9 5.1 4.9 4.9

200 100 4.8 4.9 4.9 5.0 4.7 4.9 4.6 4.5 4.8

200 200 5.0 4.7 4.8 4.9 4.9 4.8 4.9 4.9 4.8

200 400 5.0 4.8 4.9 4.9 5.0 5.1 5.0 4.9 4.9

Table 4.1: Sizes (in percent) of nominal 5% level test based on tn,T (observed

factor).

i.i.d., ω2
u = AR(1), ω2

u = MA(1), ω2
u =

n T 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

50 25 2.9 3.1 3.4 2.0 2.2 2.4 2.4 2.5 2.8

50 50 3.4 3.5 3.6 3.1 2.9 3.3 3.1 3.1 3.2

50 100 4.2 4.1 4.0 4.0 4.1 4.1 3.9 3.9 3.8

100 50 3.2 3.1 3.3 2.7 2.8 3.1 2.8 2.9 2.9

100 100 4.1 4.0 3.9 3.8 3.9 3.9 3.6 3.7 3.7

100 200 4.5 4.3 4.2 4.4 4.3 4.3 4.2 4.3 4.4

200 100 4.0 4.0 4.0 3.6 3.6 3.8 3.5 3.6 3.7

200 200 4.3 4.2 4.3 4.5 4.3 4.3 4.2 4.3 4.4

200 400 4.7 4.6 4.6 4.6 4.7 4.6 4.6 4.5 4.6

Table 4.2: Sizes (in percent) of nominal 5% level test based on t̃n,T (unobserved

factor).
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i.i.d., R2 = AR(1), R2 = MA(1), R2 =

n T 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

50 25 3.6 4.8 6.2 3.4 3.7 4.3 3.9 4.2 4.6

50 50 4.3 5.5 6.5 3.8 4.2 4.8 4.2 4.3 4.8

50 100 5.1 6.3 7.1 4.1 4.5 5.1 4.2 4.6 5.4

100 50 3.2 4.0 4.8 3.8 4.0 4.5 3.7 3.8 4.3

100 100 3.9 4.8 5.3 3.9 4.3 4.6 4.1 4.2 4.5

100 200 4.8 5.1 5.6 4.5 4.7 5.3 4.3 4.4 5.2

200 100 3.3 4.0 4.4 3.8 4.0 4.8 3.6 3.8 4.3

200 200 3.8 4.1 4.6 4.2 4.4 5.0 4.1 4.6 4.8

200 400 4.5 4.4 5.0 4.3 4.6 5.3 4.2 4.4 5.1

Table 4.3: Sizes (in percent) of nominal 5% level test based on t̂T (unobserved

factor).
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Figure 4.4: Size-corrected powers and asymptotic powers of unit-root tests as

a function of −h for varying sample sizes. All innovations are i.i.d. normally

distributed.
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Figure 4.5: Size-corrected powers and asymptotic powers of unit-root tests as

a function of −h for varying sample sizes. All innovations are i.i.d. normally

distributed and R2 = 0.5.
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Figure 4.6: Size-corrected powers and asymptotic powers of unit-root tests as

a function of −h for varying sample sizes. All innovations are i.i.d. normally

distributed and R2 = 0.5.

4.6 Conclusion

We have demonstrated that, also for testing unobserved common factors, it can

be highly beneficial to use observed stationary covariates. The gains over the

classical PANIC procedure are particularly large when the contribution of the

factor innovation to the covariate can be separately identified, in which case the

covariate overcomes the rate-disadvantage due to allowing for cross-sectional

cointegration in panel unit-root tests. Even when one is not comfortable as-

suming that the factor in the covariate equation can be perfectly identified,

there are gains from taking into account the covariate. In this case the statisti-

cal problem is reduced to that of the well-studied time-series case, i.e., there is

no improvement in the convergence rate, but the covariate nevertheless signifi-

cantly improves local powers. Whether the rate improvement from having the

covariates is attainable depends on the application at hand. Most applications

would likely require multiple factors, requiring more advanced factor estimates

than principal components. Although they do not suffer from these problems,

the robust tests provide considerably higher finite-sample powers compared

to tests without covariates, even if the convergence rate is the same. Finally,

the analysis under the faster convergence rate also facilitates the asymptotic
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comparison of different factor estimation methods, highlighting the optimality

properties of principal components even asymptotically.

4.A Proofs

4.A.1 Proof of Proposition 4.3.1

Proof Noting that, conditional on F , the observations Y and x are both cross-sectionally

independent, we obtain the Gaussian likelihood ratio

log
dPh

dP0
=− 1

2

n∑

i=1

(xi· − γi(∆F − h√
nT

F−1))
′Σ−1

u,i(xi· − γi(∆F − h√
nT

F−1))

− 1

2
(∆F − h√

nT
F−1)

′Σ−1
f (∆F − h√

nT
F−1)

+
1

2

n∑

i=1

(xi· − γi∆F )′Σ−1
u,i(xi· − γi∆F ) +

1

2
∆F ′Σ−1

f ∆F

=h

(
−1√
nT

n∑

i=1

γiF
′
−1Σ

−1
u,i(xi· − γi∆F ) +

1√
nT

F ′
−1Σ

−1
f ∆F

)

− 1

2
h2 1

T 2
F ′
−1

(
n∑

i=1

γ2
i

n
Σ−1

u,i +
1

n
Σ−1

f

)
F−1

=:h∆̃n,T − 1

2
h2J̃n,T .

We start by characterizing the limiting distribution of (∆̃n,T , J̃n,T ) under the null hypothesis.

Then, we will show that (∆n,T , Jn,T ) = (∆̃n,T , J̃n,T )+oP (1). Throughout the proofs, we use

freely the well-known results of weak convergence to stochastic integrals in the time-series

case, namely, with ũt being i.i.d standard normally distributed innovations independent of

F , we have, under the null hypothesis of F being a random walk,21

1

T

T∑

t=1

Ft−1ft ⇒
∫

W1dW1,
1

T

T∑

t=1

Ft−1ũt ⇒
∫

W1dW2,
1

T 2

T∑

t=1

F 2
t−1 ⇒

∫
W 2

1 (t)dt,

(4.A.1)

with the convergences also holding jointly.22

21 This also extends to stationary Gaussian processes with more general autocovariance

functions, if one normalizes by the square-root of the long-run variance. One way to

obtain this generalization is an application of Lemma 4.A.2.

22 In this very simple case, this is a direct consequence of the probability convergence

(formally on a different probability space) to the stochastic integral, which then implies

joint convergence. For similar convergence under more general conditions, see, for

example, Kurtz and Protter (1991) and Phillips (1987b).
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First, we show that, under the null hypothesis, the direct contribution of the factor

innovations to the likelihood ratio is negligible. For this, recall the cumulate sum operator

A, a matrix with ones below the diagonal and zeros on and above, so that F−1 = A∆F . We

have, under the null hypothesis,

1

T
F ′
−1Σ

−1
f ∆F =

1

T
f ′A′Σ−1

f f = OP (1),

since it has mean trA′ = 0 and a variance given by

1

T 2
tr((A′Σ−1

f +Σ−1
f A)Σf (A

′Σ−1
f +Σ−1

f A)Σf )

≤ 1

T 2

∥∥(A′Σ−1
f +Σ−1

f A)Σf

∥∥2

F

≤
(

1

T
‖A‖F +

1

T

∥∥Σ−1
f

∥∥
spec

‖AΣf‖F
)2

= O(1),

using that ‖A‖F = O(T ) and the eigenvalues of Σf are bounded and bounded away from

zero. As this term is divided by
√
n it indeed becomes negligible.

Under the null hypothesis, xit − γi∆Ft = uit, so under P0, the remaining term of ∆̃n,T

is given by

∆∗
n,T :=

−1

T
√
n
F ′
−1

n∑

i=1

γiΣ
−1
u,iui,·. (4.A.2)

Note that, with Σ−1 = 1
n

∑n
i=1 γ

2
i Σ

−1
u,i and Σ−1/2 the matrix square root of Σ−1,

Σ1/2 1√
n

n∑

i=1

γiΣ
−1
u,iui· ∼ N(0, IT ).

Therefore, ∆∗
n,T is equal in distribution to

∆̌n,T :=
1

T
F ′
−1Σ

−1/2ũ·, (4.A.3)

for a ũ· ∼ N(0, IT ) independent of F−1. Moreover, for each n, T , (∆∗
n,T , Jn,T ) has the same

distribution as (∆̌n,T , Jn,T ). We proceed to derive the limiting distribution of (∆̌n,T , Jn,T ).

A direct application of (4.A.1) is precluded by the presence of Σ−1/2. However, it turns

out that it is possible to replace Σ−1/2 by a scalar in (4.A.3) without changing the limiting

distribution. For this, let ΣT (f ) denote a T×T Toeplitz matrix based on the spectral density

function23 f , i.e.

(ΣT (f ))k,j =
1

2π

∫ 2π

0

f (λ)e−i(k−j)λdλ, (4.A.4)

with i2 = −1. Lemma A.1 in Wichert et al. (2019) implies that, for f the spectral den-

sity function of a time series with m-summable autocovariances,
∥∥A′(ΣT (f )− f (0)I)

∥∥
F

=

23 Conversely, f (λ) =
∑∞

k=−∞ γ(k)eikλ. Often, the spectral density is defined as this

divided by 2π, but we stick to (4.A.4) for convenience. This normalization implies that

the long-run variance equals f (0).
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O(
√
T ). To apply this result to (4.A.3), we make use of both the inverse of a Toeplitz matrix

and its square root being asymptotically equivalent to certain Toeplitz matrices as well, see,

for example, Section 5 in Gray (2005). In particular, let fi be the spectral density of {uit}.
Then

∥∥Σ−1
u,i − ΣT (1/fi)

∥∥
spec

= o(1). Thanks to the uniform bounds on the spectral densities,

this result also holds uniformly across cross-section units, see Lemma 4.A.3. Therefore,
∥∥∥∥∥Σ

−1 − ΣT (
1

n

n∑

i=1

γ2
i

fi
)

∥∥∥∥∥
spec

≤ sup
i∈N

∥∥Σ−1
u,i − ΣT (1/fi)

∥∥
spec

1

n

n∑

i=1

γ2
i → 0

as (n, T → ∞). Thanks to a uniform continuity property of the matrix square-root (see

Schmitt (1992), Lemma 2.2), and the fact that the eigenvalues of ΣT (
1
n

∑n
i=1

γ2
i

fi
) are bounded

away from zero thanks to the bound on the spectral densities, this also implies that
∥∥∥∥∥Σ

−1/2 − ΣT (
1

n

n∑

i=1

γ2
i

fi
)1/2

∥∥∥∥∥
spec

→ 0.

Combined, this implies, together with the statement on the matrix square root above,
∥∥∥∥∥Σ

−1/2 − ΣT ((
1

n

n∑

i=1

γ2
i

fi
)1/2)

∥∥∥∥∥
spec

= o(1). (4.A.5)

So define fn :=
(

1
n

∑n
i=1

γ2
i

fi

)1/2

, ω−1
u,Γ,n := fn(0) and split

1

T
F ′
−1Σ

−1/2ũ· =
ω−1
u,Γ,n

T
F ′
−1ũ· +

1

T
f ′A′(Σ−1/2 − ΣT (fn))ũ· +

1

T
f ′A′(ΣT (fn)− ω−1

u,Γ,nI)ũ·.

We will show that only the first summand contributes to the limiting distribution. To see

that the second summand is asymptotically negligible, note that it has zero mean conditional

on f and its variance is given by

EVar
1

T
f ′A′(Σ−1/2 − ΣT (fn))ũ·|f =

1

T 2
Ef ′A′(Σ−1/2 − ΣT (fn))(Σ−1/2 − ΣT (fn))Af

=
1

T 2
trA′(Σ−1/2 − ΣT (fn))(Σ−1/2 − ΣT (fn))AΣf

≤ 1

T 2
‖A‖F

∥∥∥Σ−1/2 − ΣT (fn)
∥∥∥
2

spec
‖AΣf‖F

=
1

T 2
O(T )o(1)O(T ) = o(1).

Similarly, the variance of the third summand is given by

1

T 2
trA′(ΣT (fn)− ω−1

u,Γ,nI)(ΣT (fn)− ω−1
u,Γ,nI)AΣf ≤ 1

T 2

∥∥A′(ΣT (fn)− ω−1
u,Γ,nI)

∥∥2

F
‖Σf‖spec

=
1

T 2
o(T 2)O(1).

We obtain the o(T 2) rate by an application of Lemma 4.A.2, which requires the fn to be

twice continuously differentiable with uniformly bounded second derivative. This follows

from the analogous assumption on the fi, as

f ′′
n (λ) =

1

n

n∑

i=1

2

f 3
i (λ)

f ′
i (λ)−

1

n

n∑

i=1

1

f 2
i (λ)

,
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so as the fi are uniformly bounded away from zero and their second derivatives are uniformly

bounded, the same applies to fn.
Thanks to these calculations, the dependence on n has disappeared, allowing us to use

the existing convergence results recalled in (4.A.1), i.e.,

1

T

T∑

t=1

Ft−1ũ·,t → ωf

∫
W1dW2,

as T → ∞ and thus also as (n, T → ∞). Conclude that, under the null hypothesis

∆̃n,T ⇒ ωfω
−1
u,Γ

∫
W1dW2 =: ∆.

Moreover, also from (4.A.1), this convergence holds jointly with

1

T 2

T∑

t=1

F 2
t−1 ⇒ ω2

f

∫
W 2

1 (t)dt.

Thus, the weak limit of J̃n,T equals that of

Jn,T :=
1

nT 2

n∑

i=1

γ2
i

ω2
u,i

T∑

t=1

F 2
t−1 ⇒ ω2

fω
−2
u,Γ

∫
W 2

1 (t)dt =: J.

Thus we have demonstrated the joint convergence the central sequence ∆̃n,T and em-

pirical Fisher information J̃n,T : (∆̃n,T , J̃n,T ) ⇒ (∆, J).

For completeness, we now demonstrate that ∆|J ∼ N(0, J), by considering its moment

generating function. Note that, conditional on W1,
∫
W1dW2 ∼ N(0,

∫
W 2

1 dt). Thus

E[exp(t∆)|J ] = E[E[exp(t∆)|W1]|J ] = E[exp(t2J/2)|J ] = exp(t2J/2),

as required.

Finally, we show that (∆n,T , Jn,T ) = (∆̃n,T , J̃n,T ) + oP (1). We have, under the null

hypothesis,

∆n,T − ∆̃n,T =
1√
nT

n∑

i=1

γif
′A′(ω2

u,iI − Σu,i)Σ
−1
u,i

1

ω2
u,i

ui,·,

which has zero mean and a variance of

1

nT 2

n∑

i=1

γ2
i

ω4
u,i

Ef ′A′(ω2
u,iI − Σu,i)Σ

−1
u,i(ω

2
u,iI − Σu,i)Af

=
γ2
i

nT 2

n∑

i=1

2

ω4
u,i

trA′(ω2
u,iI − Σu,i)Σ

−1
u,i(ω

2
u,iI − Σu,i)AΣf

≤ γ2
i

nT 2

n∑

i=1

2

ω4
u,i

∥∥A′(ω2
u,iI − Σu,i)

∥∥2

F

∥∥Σ−1
u,i

∥∥
spec

‖Σf‖spec

=
2

nT 2

n∑

i=1

O(1)o(T )2O(1)O(1) = o(1),
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as the orders are uniform across i, thanks to Lemma 4.A.2. The analogous difference for the

Fisher information is given by

J̃n,T − Jn,T =
1

nT 2

n∑

i=1

γ2
i F

′
−1(Σ

−1
u,i −

1

ω2
u,i

IT )F−1

=
1

nT 2
f ′

n∑

i=1

γ2
i

ω2
u,i

A′(ω2
u,iIT − Σu,i)Af.

Its mean is given by

1

nT 2
tr

n∑

i=1

γ2
i

ω2
u,i

A′(ω2
u,iIT − Σu,i)AΣf ≤ 1

nT 2

n∑

i=1

γ2
i

ω2
u,i

sup
i

∥∥A′(ω2
u,iIT − Σu,i)

∥∥
F
‖AΣf‖F

(4.A.6)

=
1

T 2
o(T )O(T ) = o(1).

As the variance is bounded by twice the square of the right-hand side of (4.A.6), the difference

between the two Fisher informations converges to zero in L2, as does the difference between

the central sequences, implying joint convergence. �

4.A.2 Proof of Proposition 4.3.2

Proof As the experiment is LAMN, we can apply the general version of Le Cam’s Third

Lemma (see, for example, Chapter 6 in Van der Vaart (2000)). Here, it states that the

limiting distribution of tn,T under under Ph is given by the probability measure Lh, defined

by

Lh(B) = E1B(∆/
√
J) exp(h∆− 1

2
h2J).

This implies that the distribution of tn,T under local alternatives matches that of its analogue

in the limit experiment. For completeness, we show that this distribution indeed has the

representation given in Proposition 4.3.2: its moment generating function is given by (using

the conditional normality of ∆)
∫

exp(tx)dLh(x) =E exp(t
∆√
J
) exp(h∆− 1

2
h2J)

=EE[exp(t
∆√
J

+ h∆− 1

2
h2J)|J ]

=E[exp(−1

2
h2J)E[exp((

t√
J

+ h)∆)|J ]]

=E[exp(−1

2
h2J) exp(

J

2
(

t√
J

+ h)2)]

= exp(t2/2)E[exp(th
√
J)],

which is indeed the moment generating function of an independent normal distribution added

to h
√
J . �



575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert575299-L-bw-Wichert
Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022Processed on: 16-3-2022 PDF page: 174PDF page: 174PDF page: 174PDF page: 174

CHAPTER 4. COVARIATES 166

4.A.3 Proof of Theorem 4.3.1

Proof Due to the complexity of this proof, we now switch to vector notation. To obtain

estimates of F , Λ, and Γ, we first estimate Λ and F using principal components based

one ∆y. Note that it is crucial to obtain the estimates of F from the y equation and not

estimating the x equation directly. We only use the x equation to obtain estimates of Γ, by

applying OLS to estimated factors.

First, we establish some preliminary results. Lemma 3.1 in Wichert et al. (2019) implies

that principal components applied to ∆y yield estimates Λ̂ satisfying
∥∥∥Λ̂− ΛHK

∥∥∥
F
= op(1),

with HK a K ×K matrix satisfying ‖HK‖F = OP (1) and
∥∥H−1

K

∥∥
F

= OP (1). As HK does

nothing but complicate notation, we will suppose HK = IK in the remainder of this proof.

Given loading estimates Λ̂, we can estimate F using OLS, i.e.,

F̂ =yΛ̂(Λ̂′Λ̂)−1 = yΛ(Λ′Λ)−1 + y(Λ̂(Λ̂′Λ̂)−1 − Λ(Λ′Λ)−1) (4.A.7)

=F + EΛ(Λ′Λ)−1 + y(Λ̂(Λ̂′Λ̂)−1 − Λ(Λ′Λ)−1). (4.A.8)

Note
∥∥∥(Λ̂′Λ̂)−1 − (Λ′Λ)−1

∥∥∥
F
≤ 1

n3/2

∥∥∥(Λ̂′Λ̂/n)−1
∥∥∥
F

∥∥∥Λ′Λ/
√
n− Λ̂′Λ̂/

√
n
∥∥∥
F

∥∥(Λ′Λ/n)−1
∥∥
F

=
1

n3/2
OP (1)oP (1)O(1) = op(n

−3/2),

so
∥∥∥Λ̂(Λ̂′Λ̂)−1 − Λ(Λ′Λ)−1

∥∥∥
F
≤
∥∥∥Λ̂− Λ

∥∥∥
F

∥∥(Λ′Λ)−1
∥∥
F
+

∥∥∥Λ̂
∥∥∥
F

∥∥∥(Λ̂′Λ̂)−1 − (Λ′Λ)−1
∥∥∥
F

=oP (1)oP (n
−1) + oP (

√
n)op(n

−3/2) = oP (n
−1). (4.A.9)

Both ‖y‖F and ‖E‖F are OP (
√
nT ), and the same holds for ‖EΛ‖F as

‖EΛ‖2F =

T∑

t=1

n∑

i=1

λ2
iE

2
it = OP (nT

2).

Therefore, using (4.A.8), we obtain
∥∥∥F − F̂

∥∥∥
F
=
∥∥∥EΛ(Λ′Λ)−1 + y(Λ̂(Λ̂′Λ̂)−1 − Λ(Λ′Λ)−1)

∥∥∥
F

(4.A.10)

≤OP (
√
nT )O(n−1) +OP (

√
nT )oP (n

−1) = OP (T/
√
n). (4.A.11)

Using that ‖∆y‖F and ‖∆EΛ‖F are OP (
√
nT ), the same arguments yield

∥∥∥∆F −∆F̂
∥∥∥
F
= OP (

√
T/n).

Further, again using the ∆F version of (4.A.8), we have
∥∥∥∆F ′(∆F̂ −∆F )

∥∥∥
F
≤
∥∥∆F ′∆E

∥∥
F
O(n−1/2) + ‖∆F‖F ‖∆y‖F oP (n

−1)
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=OP (
√
nT )O(n−1/2) +OP (

√
T )OP (

√
nT )oP (n

−1) = oP (T/
√
n).

Finally, for the estimated loadings in the x equation, we obtain, under the null hypothesis,
∥∥∥Γ̂′ − Γ′

∥∥∥
F
=
∥∥∥(∆F̂ ′∆F̂ )−1∆F̂ ′x− Γ′

∥∥∥
F

=
∥∥∥(∆F̂ ′∆F̂ )−1∆F̂ ′(∆F̂Γ′ + (∆F −∆F̂ )Γ′ + u)− Γ′

∥∥∥
F

=
∥∥∥(∆F̂ ′∆F̂ )−1∆F̂ ′((∆F −∆F̂ )Γ′ + u)

∥∥∥
F

≤
∥∥∥(∆F̂ ′∆F̂ )−1

∥∥∥
F

∥∥∥∆F ′(∆F −∆F̂ )
∥∥∥
F
‖Γ‖F

+
∥∥∥(∆F̂ ′∆F̂ )−1

∥∥∥
F

∥∥∥∆F −∆F̂
∥∥∥
2

F
‖Γ‖F +

∥∥∥(∆F̂ ′∆F̂ )−1
∥∥∥
F

∥∥∥∆F̂ ′u
∥∥∥
F

=OP (T
−1)oP (T/

√
n)OP (

√
n)

+OP (T
−1)OP (T/n)OP (

√
n) +OP (T

−1)Op(
√
nT )

=oP (1) +OP (n
−1/2) +OP (

√
n/T ) = oP (1).

We now show that the distribution of the empirical Fisher information Jn,T is not affected

by estimating the factors, loadings, and long-run variances. Denote by Ω be the n×n matrix

with the long-run variances of the uit on the diagonal, i.e., Ωi,i = ω2
u,i, and zeros off the

diagonal. Let Ω̂ be analogously defined, using the estimates ˆωu,i from Assumption 4.4 in

place of ωu,i. We have

Ĵn,T − Jn,T =
1

nT 2
(Γ̂′Ω̂−1Γ̂F̂ ′

−1F̂−1 − Γ′Ω−1ΓF ′
−1F−1)

≤ 1

nT 2

∥∥∥Γ̂′Ω̂−1Γ̂− Γ′Ω−1Γ
∥∥∥
F

∥∥∥F̂−1

∥∥∥
2

F
+

∥∥Γ′Ω−1Γ
∥∥
F

∥∥∥F̂−1 − F−1

∥∥∥
F
(‖F−1‖F +

∥∥∥F̂−1

∥∥∥
F
)

=
1

nT 2

(
oP (n)OP (T ) +O(n)OP (T/

√
n)O(T )

)
= oP (T

−1) +OP (n
−1/2) = oP (1),

where the rate on the first norm follows from
∥∥∥Γ̂′Ω̂−1Γ̂− Γ′Ω−1Γ

∥∥∥
F

≤
∥∥∥Γ̂− Γ

∥∥∥
F

∥∥∥Ω̂−1
∥∥∥
spec

∥∥∥Γ̂
∥∥∥
F
+ ‖Γ‖F

∥∥∥Ω̂−1 − Ω−1
∥∥∥
spec

∥∥∥Γ̂
∥∥∥
F
+ ‖Γ‖F

∥∥Ω−1
∥∥
spec

∥∥∥Γ̂− Γ
∥∥∥
F

=oP (1)OP (1)OP (
√
n) +O(

√
n)oP (1)OP (

√
n) +O(

√
n)O(1)oP (1) = oP (n),

as the ω2
u,i are bounded away from zero. Conclude that the limiting distribution of Jn,T is

not affected by using factor and loading estimates instead of observed factors. Thanks to

our LAMN result and Le Cam’s First Lemma, this also holds under local alternatives.

Now consider ∆̂n,T . We have

√
nT (∆̂n,T −∆n,T ) = F̂ ′

−1(x−∆F̂ Γ̂′)Ω̂−1Γ̂− F ′
−1(x−∆FΓ′)Ω−1Γ

= F ′
−1(∆F −∆F̂ )Γ′Ω−1Γ + F ′

−1∆F̂ (Γ′ − Γ̂′)Ω−1Γ

+
(
F̂ ′
−1 − F ′

−1

)
(x−∆F̂ Γ̂′)Ω−1Γ + F̂ ′

−1(x−∆F̂ Γ̂′)(Ω̂−1 − Ω−1)Γ

+ F̂ ′
−1(x−∆F̂ Γ̂′)Ω̂−1(Γ̂− Γ)
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=: I + II + III + IV + V.

Term I will be responsible for the loss of power from not observing the factors. We first

show that terms II, III, and IV are asymptotically negligible. We have, under H0,

II ≤
∥∥∥F ′

−1∆F̂
∥∥∥
F

∥∥∥Γ′ − Γ̂′
∥∥∥
F

∥∥Ω−1
∥∥
spec

‖Γ‖F = OP (T )oP (1)OP (1)OP (
√
n) = oP (

√
nT ),

where we have used the difference version of (4.A.10) to bound the first norm. For III, note

that

x−∆F̂ Γ̂′ =u+∆F (Γ′ − Γ̂′) + (∆F −∆F̂ )Γ̂′ (4.A.12)

Using (4.A.10) twice, noting that Λ′E′uΩ−1Λ = O(nT ), y′uΩ−1Λ = O(nT ), Λ′E′∆F =

O(
√
nT ), y′∆F = O(

√
nT ), Λ′E′∆EΛ = O(nT ), y′∆EΛ = O(nT ), Λ′E′∆y = O(nT ),

y′∆y = O(nT ), and recalling (4.A.9), we have

III ≤
(
(Λ′Λ)−1Λ′E′ + ((Λ̂′Λ̂)−1Λ̂′ − (Λ′Λ)−1Λ′))y′

)

(
u+∆FoP (1) + ∆EΛ(Λ′Λ)−1 +∆y(Λ̂(Λ̂′Λ̂)−1 − Λ(Λ′Λ)−1)

)
Ω−1Γ

≤(oP (n
−1) +OP (n

−1))O(nT ) + (oP (n
−1) +OP (n

−1))O(
√
nT )oP (1)OP (1)OP (

√
n)

+ (oP (n
−1) +OP (n

−1))O(nT )(oP (n
−1) +OP (n

−1))O(1)O(
√
n)

=OP (T ) + oP (T ) +OP (T/
√
n) = oP (

√
nT ).

For IV , we use Hoelder’s inequality, then Cauchy-Schwarz and once more (4.A.12) to obtain

IV ≤ ‖F̂ ′
−1(u+∆F (Γ′ − Γ̂′) + (∆F −∆F̂ )Γ̂′)(Ω̂−1 − Ω−1)‖1‖Γ‖∞

≤
∥∥∥F̂ ′

−1(u+∆F (Γ′ − Γ̂′) + (∆F −∆F̂ )Γ̂′)
∥∥∥
F

∥∥∥Ω̂−1 − Ω−1
∥∥∥
F
‖Γ‖∞

= OP (
√
nT )oP (1)OP (1),

as
∥∥∥F̂ ′

−1(u+∆F (Γ′ − Γ̂′) + (∆F −∆F̂ )Γ̂′)
∥∥∥
F

≤
∥∥∥F̂ ′

−1u
∥∥∥
F
+

∥∥∥F̂ ′
−1∆F

∥∥∥
F

∥∥∥Γ− Γ̂
∥∥∥
F
+

∥∥∥F̂ ′
−1(∆F −∆F̂ )

∥∥∥
F

∥∥∥Γ̂
∥∥∥
F

=OP (
√
nT ) +OP (T )oP (1) +OP (Tn

−1/2)OP (
√
n) = OP (

√
nT ),

where we have used
∥∥∥F̂ ′

−1(∆F −∆F̂ )
∥∥∥
F
=
∥∥∥F̂ ′

−1∆EΛ(Λ′Λ)−1 + F̂ ′
−1∆y(Λ̂(Λ̂′Λ̂)−1 − Λ(Λ′Λ)−1)

∥∥∥
F

≤
∥∥∥F̂ ′

−1∆EΛ
∥∥∥
F

∥∥(Λ′Λ)−1
∥∥
F
+

∥∥∥F̂ ′
−1∆y

∥∥∥
F

∥∥∥Λ̂(Λ̂′Λ̂)−1 − Λ(Λ′Λ)−1
∥∥∥
F

=OP (
√
nT )O(n−1) +OP (

√
nT )oP ((n

−1) = OP (Tn
−1/2). (4.A.13)

Similarly,

V ≤
∥∥∥F̂ ′

−1u
∥∥∥
F

∥∥∥Γ̂− Γ
∥∥∥
F
+

∥∥∥F̂ ′
−1∆F

∥∥∥
F

∥∥∥Γ− Γ̂
∥∥∥
2

F
+

∥∥∥F̂ ′
−1(∆F −∆F̂ )

∥∥∥
F

∥∥∥Γ̂
∥∥∥
F
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=OP (
√
nT )oP (1) +OP (T )oP (1) +OP (Tn

−1/2)OP (
√
n) = oP (

√
nT ).

Finally, we consider the first, non-negligible term. From (4.A.13) it follows that

I =F ′
−1∆EΛ(Λ′Λ)−1Γ′Ω−1Γ + oP (

√
nT ).

The long-run variance of ∆EΛ/
√
n is given, under ρE = 1, by

lim
T→∞

Var
1√
nT

T∑

t=1

n∑

i=1

λiηit =
1

n

n∑

i=1

λ2
i Var lim

T→∞

1√
T

T∑

t=1

ηit =
1

n

n∑

i=1

λ2
iω

2
η,i =: κ2

η,n

Thus, with κ2
η := limn→∞ κ2

η,n,

1√
nT

I ⇒ Ψ−1
Λ ω−2

u,Γωfκη

∫
W1dW2.

Inserting this this into t̂n,T yields

t̂n,T =
1√

nT
√

Jn,T

F ′
−1

(
−uΩ−1Γ−∆EΛ(Λ′Λ)−1Γ′Ω−1Γ

)
− h

√
Jn,T + oP (1).

Thanks to independence of u and ∆E, the limit of the long-run variance of

1√
nT

(
uΩ−1Γ−∆EΛ(Λ′Λ)−1Γ′Ω−1Γ

)

is given by

ω−2
u,Γ +Ψ−2

Λ ω−4
u,Γκ

2
η,

so

t̂n,T ⇒
√

1 + Ψ−2
Λ ω−2

u,Γκ
2
ηZ − h

√
ω2
fω

−2
u,Γ

∫
W 2

1 dt. �

4.A.4 Proof of Proposition 4.3.3

Proof Considering the same likelihood ratio as in Proposition 4.3.1 but under (4.9) instead

of (4.3), the additional terms

− 1

2σ2
η

n∑

i=1

T∑

t=1

(
Eit − β(xit − γi(∆Ft − h√

nT
Ft−1))

)2

+
1

2σ2
η

n∑

i=1

T∑

t=1

(Eit − β(xit − γi∆Ft))
2

appear. This entails a new central sequence of

∆β
n,T = ∆̃n,T − β

1√
nTσ2

η

n∑

i=1

T∑

t=1

γiFt−1(Eit − β(xit − γi∆Ft))

and a new empirical Fisher information of

Jβ
n,T =

1

nT 2

n∑

i=1

(
1

σ2
u

+
β2

σ2
η

)
γ2
i

T∑

t=1

F 2
t−1 ⇒ σ2

fΨΓ

(
1

σ2
u

+
β2

σ2
η

)∫
W 2

1 dt.
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Similarly, under the null hypothesis,

∆β
n,T =∆̃n,T − β

1√
nTσ2

η

n∑

i=1

T∑

t=1

γiFt−1ηit =
1√
nT

n∑

i=1

T∑

t=1

γiFt−1

(
1

σ2
u

uit − β

σ2
η

ηit

)

⇒σf

√
ΨΓ

(
1

σ2
u

+
β2

σ2
η

)∫
W1dW2.

To obtain the distribution under alternatives, again inserting ∆Ft = ft +
h√
nT

Ft−1 yields

∆β
n,T =∆̃n,T − β

1

σ2
η

√
nT

n∑

i=1

T∑

t=1

γiFt−1(ηit + βγi
h√
nT

Ft−1)

=
1√
nT

n∑

i=1

γi

T∑

t=1

Ft−1

(
uit

σ2
u

− β

σ2
η

ηit

)
− h

(
1

σ2
u

+
β2

σ2
η

)
1

nT 2

n∑

i=1

T∑

t=1

γiF
2
t−1,

where we used (4.8) in the last step. Thus,

tn,T =
1

√
nT

√
Jβ
n,T

n∑

i=1

γi

T∑

t=1

Ft−1

(
uit

σ2
u

− β

σ2
η

ηit

)
− h

√
Jβ
n,T .

Recalling Lemma 4.A.1 and the discussion under the null hypothesis above, this indeed has

the desired limiting distribution. �

4.A.5 Proof of Proposition 4.4.2

Proof Thanks to contiguity, we only have to show the desired approximation under the

null hypothesis. From the proof of Theorem 4.3.1 recall that
∥∥∥F − F̂

∥∥∥
F

= OP (T/
√
n)

and
∥∥∥∆F −∆F̂

∥∥∥
F

= OP (
√

T/n). By the same logic, we obtain
∥∥∥b− b̂

∥∥∥
F

= OP (
√

T/n).

Therefore, ∆F̂ ′∆F̂ −∆F̂ ′∆F̂ = OP (n
−1/2) and σ̂2

f converges in probability to σ2
f . Similarly,

σ̂2
g converges to σ2

g , so that replacing the variances by its estimates does not change the

limiting distribution. To show that ∆̂T − ∆̃T = oP (1) it therefore suffices to demonstrate

that F̂ ′∆F̂ −F ′∆F = oP (T ) and F̂ ′b̂−F ′b = oP (T ). For the former, recall (4.A.9) to write

F̂ ′∆F̂ − F ′∆F =F ′(∆F̂ −∆F ) + ∆F̂ ′(F̂ − F )

≤F ′∆EΛ(Λ′Λ)−1 + F ′∆yoP (n
−1) + ∆F̂ ′EΛ(Λ′Λ)−1 +∆F̂ ′yoP (n

−1)

≤
∥∥F ′∆EΛ

∥∥
F

∥∥(Λ′Λ)−1
∥∥
F
+ (

∥∥F ′∆F
∥∥
F
‖Λ‖F +

∥∥F ′∆E
∥∥
F
)oP (n

−1)

+
∥∥∥∆F̂ ′EΛ

∥∥∥
F

∥∥(Λ′Λ)−1
∥∥
F
+ (

∥∥∥∆F̂ ′FΛ′
∥∥∥
F
+

∥∥∥∆F̂ ′E
∥∥∥
F
)oP (n

−1)

=OP (
√
nT )OP (n

−1) + (OP (T )OP (
√
n))oP (n

−1) = OP (n
−1/2T ).

For the latter part, the same rates apply. This is due to the fact, that, under the null

hypothesis, the assumptions on b mimic those on ∆F . �
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4.A.6 Additional Lemmas

Lemma 4.A.1 states that certain stochastic integral limits are not affected by considering

local alternatives in
√
nT neighbourhoods of the unit-root. The first two results follow

directly as a limiting case of Lemma 1 in Phillips (1987b), who considers T neighbourhoods

of unity.

Lemma 4.A.1 Let {vt}∞t=1 be i.i.d. normally distributed and independent of F , denote its

variance by σ2
v, let V be its cumulative sums and let W1 and W2 be two independent Brownian

motions. Then, for any alternative h, we have, as T → ∞,

1. 1
T

∑T
t=1 Ft−1vt ⇒

∫
W1dW2,

2. 1
T2

∑T
t=1 F

2
t−1 ⇒

∫
W 2

1 dt,

3. 1
T2

∑T
t=1 Ft−1Vt−1 = OP (1).

Proof For Item 3, note

T∑

t=1

t−1∑

s=1

∆Fs

t−1∑

s=1

vs =
T∑

t=1

vt

T∑

s=1

(T −max(s, t))∆Fs.

Note that this term has mean zero (also conditionally on the f) while the variance is given

by

EVar(

T∑

t=1

vt

T∑

s=1

(T −max(s, t))∆Fs|f) =
T∑

t=1

E(
T∑

s=1

(T −max(s, t))∆Fs)
2σ2

v

=
T∑

t=1

Var(
T∑

s=1

(T −max(s, t))∆Fs)σ
2
v.

Again we split ∆Fs = fs+
h√
nT

Fs−1 and treat both variances separately. We have, for every

t,

Var(

T∑

s=1

(T −max(s, t))fs) =

T∑

s=1

(T −max(s, t))2σ2
f ≤ T 3σ2

f

and, for every t,

Var(
h√
nT

T∑

s=1

(T −max(s, t))Fs−1)

=
h2

nT 2

T∑

s1=1

T∑

s2=1

(T −max(s1, t))(T −max(s2, t)) Cov(Fs1−1, Fs2−1)

≤ h

nT 2

T∑

s1=1

T∑

s2=1

(T 2
√

T 2σ4
f =

h

n
T 3.

Thus Var
∑T

t=1 Ft−1Vt−1 = O(T 4) as required. �
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Lemma 4.A.2 Consider a collection H of spectral densities fh, h ∈ H, define ω2
h = 2πfh(0)

and denote by ΣT (fh) the T × T Toeplitz matrix associated with fh (i.e., (ΣT (fh))k,l is

the |k − l|th Fourier coefficient of fh). If the fh are twice continuously differentiable with

supλ,h |f ′′
h (λ)| < ∞, then

sup
h

∥∥A′(ΣT (fh)− ω2
hI)

∥∥
F
= o(T ).

Proof Calculation analogous to Lemma A.1 in Wichert et al. (2019) yield, with γh(m) the

mth Fourier coefficient of fh,

∥∥A′(ΣT (fh)− ω2
hIT )

∥∥2

F
=

T∑

s=1

T∑

t=1

(
T−t∑

m=s−t+1

γh(m)− ω2
h1s<t

)2

≤ 5T

(
∞∑

m=−∞

|γh(m)|
)

∞∑

m=1

min(m,T )|γh(m)|

Integrating by parts twice in (4.A.4) we obtain

γh(m) =
1

2π(im)2

∫ 2π

0

f ′′
h (λ)e

−imλdλ ≤ 1

|im|2 sup
λ

|f ′′
h (λ)| sup

λ
|e−imλ| = 1

m2
sup
λ

|f ′′
h (λ)|.

(4.A.14)

Thus, combining yields

1

T
sup
h

∥∥A′(ΣT (fh)− ω2
hI)

∥∥
F
≤ sup

λ,h
|f ′′

h (λ)|
(

∞∑

m=−∞

1

m2

)1/2 (
1

T

∞∑

m=1

min(m,T )
1

m2

)1/2

,

which converges to zero. �

Lemma 4.A.3 Let H be a collection of time series with spectral density functions fi and

autocorrelation functions (γi(m))∞m=0, i ∈ H. If the fi are twice continuously differentiable

with supλ,i |f ′′
i (λ)| < ∞, and infi,λ fi(λ) > 0, then supi∈H

∥∥ΣT (fi)−1 − ΣT (1/fi)
∥∥
spec

= o(1).

Proof We proceed analogous to Gray (2005), see Chapters 4 and 5 for additional details

on some of the inequalities used, who shows this result for a single time series. The proof

proceeds by first approximating the inverse by an inverse circulant matrix CT (fi) and then

approximating the inverse circulant by a Toeplitz matrix, i.e., we split
∥∥ΣT (fi)−1 − ΣT (1/fi)

∥∥
spec

≤
∥∥ΣT (fi)−1 − CT (fi)−1

∥∥
spec

+
∥∥CT (fi)−1 − ΣT (1/fi)

∥∥
spec

=: I + II.

For I, it is sufficient to show that
∥∥ΣT (fi)− CT (fi)

∥∥
spec

= o(1), as the norm of both inverses

is bounded by the inverse of the minimum of the spectral density. We have
∥∥ΣT (fi)− CT (fi)

∥∥
spec

≤
∥∥∥ΣT (fi)− CT (f̂i)

∥∥∥
spec

+
∥∥∥CT (f̂i)− CT (fi)

∥∥∥
spec

=2

T−1∑

m=1

m

T
γi(m)2 +

1

T

T−1∑

m=0

(fi(2πm/T )− f̂i(2πm/T ))2.

Note that the second summand is bounded by 2
∑∞

m=T+1 γi(m), see p. 39 of Gray (2005).

Therefore, the bound in (4.A.14) implies the desired result. �
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