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Abstract

To facilitate semiparametric estimation of general discrete-choice, censored, sample se-

lection, and other complex panel data models, we study identification and estimation of

nonseparable multiple-index models in the context of panel data with correlated random

effects and a fixed number of time periods. The parameter vectors of interest are shown to

be identified up to multiplicative constants and the average marginal effects are identified

under the assumption that the distribution of individual effects depends on the explanatory

variables only through their averages across time. Under this assumption, we propose to

estimate the unknown parameters by the generalized method of moments based on the av-

erage and outer product of the difference of derivatives of the regression function. The rate

of convergence and asymptotic distribution are established both for the proposed parame-

ter estimates and the average marginal effects. We conduct Monte Carlo simulation study

to assess finite-sample performance of the proposed estimator and provide an application

demonstrating the use of the proposed methodology.
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1 Introduction

Many practically applied models such as linear, binary, or censored regression with heteroskedas-

ticity, regression models with sample selection, multinomial-choice models, partially linear

single-index models, and practically all multiple-equation models can be formulated as multiple-

index models, explaining the response variables by means of several linear combinations of ex-

planatory variables. We study their identification and estimation in the panel data context

with correlated random effects (CRE). Hence, we consider a general nonseparable multiple-

index panel data model for a random sample of n individuals observed for T time periods:

Yit = φt(X
⊤
it β1, . . . ,X

⊤
it βR, αi, Uit), i = 1, ..., n, t = 1, ..., T. (1)

In this model, Yit represents a vector of dy dependent variables, Xit is a vector of d explanatory

variables, φt is an unknown function specific to time period t, β1, . . . , βR denote the R linear

combinations of the d explanatory variables (R < d), αi is a vector of da individual effects

correlated with Xit (da can be any finite number), and Uit represents all other unobservables,

which are independent of αi and Xit. Interest centers on the identification and estimation of

parameter vectors β1, . . . , βR together with the average marginal effects of Xit on Yit using

panel data with a fixed finite number T of time periods.

More specifically, we identify the quantities of interest under a CRE assumption inspired by

and analogous to the approach of Mundlak (1978) and Chamberlain (1982), which has been used

in empirical research using various multiple-index panel models such as bivariate discrete-choice

models (Schulz et al., 2014), censored hurdle regression (Christelis and Sanz-de-Galdeano, 2011),

multinomial-choice problems (Boll et al., 2016), and sample selection models (Lechmann and

Wunder, 2017). Model (1) encompasses all these cases along with many other models, including

some not adapted to the panel data yet (e.g., generalized partial linear single-index models of

Carroll et al., 1997). There are of course alternatives to the CRE assumption. For example in

the specific case of univariate reponse (dy = 1) and a single index (R = 1), there are several

existing results for model (1) that require monotonicity of φt instead of the CRE assumption

(e.g., Abrevaya, 2000; Botosaru and Muris, 2017; Freyberger, 2018). To highlight the main

differences between the proposed model and existing results, we focus on two specific examples

of multiple-index models: the heteroskedastic censored regression and sample-selection model.
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Example: censored regression. Next to the parametric Tobit models, semiparametric

censored-regression estimators were proposed for panel data by many authors (e.g., Honore,

1992; Honore and Hu, 2004; Abbrevaya and Shen, 2014). They are based on the latent linear

response Y ∗
it = X⊤

it β1+α1i+Uit transformed by a known monotonic function such asmax{0, Y ∗
it}

and the latent errors Uit having a general distribution independent of the covariates. While

these assumptions allow estimation without restricting the relation of the individual effects

α1i and covariates Xit, they are violated once the error distribution changes over time, for

example, under heteroskedasticity with the error variance depending on Xit. On the other

hand, the proposed model (1) under CRE accommodates a general censored regression model

with Y ∗
it being an unknown nonlinear function of index X⊤

it β1 and individual effects α1i and

latent errors having conditional variance depending on another linear combination X⊤
it β2 and

some other individual effects α2i. For example, the censored model

Yit = max{0, φ1t(X
⊤
it β1, α1i) + φ2t(X

⊤
it β2, α2i)U1it} (2)

is a special case of (1) and can be estimated including the corresponding marginal effects,

whereas the existing semiparametric methods require linear φ1t and φ2t(X
⊤
it β2, α2i) ≡ φ2(α2i).

Example: sample selection. Apart from the parametrically specified models (e.g., Se-

mykina andWooldridge, 2013, 2018), semiparametric sample-selection estimators were proposed

for panel data by Kyriazidou (1997, 2001) and Gayle and Viauroux (2007) for the linear out-

come model, while Klein et al. (2015) focused on the binary outcomes. Most of these works do

not restrict, thanks to linearity of the outcome equation, the relation of the individual effects

αi and covariates Xit, but do not address the estimation of all marginal effects. The exception

exist only for much more restrictive pure random effects αi independent of Xit (e.g., Klein et

al., 2015). In comparison, the proposed model (1) under CRE accommodates a general sample

selection model with Yit = (Y1it, Y2it), the outcome variable Y2it, and the selection variable Y1it,

Y2it = φ2t(X
⊤
it β2,X

⊤
it β1, α2i, α1i, U2it) observed if Y1it = φ1t(X

⊤
it β1, α1i, U1it)>0, (3)

and facilitates identification of the coefficients and various types of average marginal effects (see

Sections 2 and 5 for details). The typical case of the linear outcome equation then corresponds
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to φt2(X
⊤
it β2,X

⊤
it β1, α2i, α1i, U2it) = X⊤

it β2 + α2i + gt(X
⊤
it β1, α1i) + U2it in model (3), where

gt(X
⊤
it β1, α1i) represents the sample-selection correction term (cf. Kyriazidou, 1997).

In the context of the above mentioned and other models, many existing semiparametric

approaches rely on the monotonicity of the response Yit as a function of an indexX⊤
it β to identify

its coefficients without additional assumptions on the relationship between the individual effects

and covariates and without modelling the error distribution and its relationship to covariates.

However, the latter relationship is often important for the identification of the coefficients or

marginal effects, for example in the limited dependent variable models with heteroskedasticity.

Hence, the proposed multi-index model (1) explicitly models both the relationships of interest

and auxiliary relationships, for example the error variance as a function of covariates, to be

able to identify all coefficients and average marginal effects. To achieve this though, we have

to impose an additional assumption – CRE – on the individual effects.

1.1 Overview of and links to existing literature

The identification and estimation of average marginal effects in short nonseparable panel mod-

els have been studied by several authors. Using time-homogeneity, Chernozhukov et al. (2013)

derived bounds for marginal effects in static and dynamic models. Additionally under mono-

tonicity, Ishihara (2020) identifies the regression function and Freyberger (2018) extends the

analysis to models with interactive effects. On the other hand, Bester and Hansen (2009) showed

that average marginal effects in a CRE model can be identified if the distribution of individual

effects depends on explanatory variables only through an index function. Hoderlein and White

(2012) established that the average marginal effects at Xit = Xit−1 can be identified by means of

a generalized version of differencing in a static nonseparable model. Furthermore, Čížek and Lei

(2018) studied nonseparable single-index panel data model and demonstrated that differencing

average derivatives of a specific regression function can identify the index parameters and aver-

age marginal effects even in dynamic models. Let us also note that the mentioned identification

assumptions such as time-homogeneity or CRE can be tested as discussed by Ghanem (2017)

and that identification of quantities beyond the average marginal effects have been explored as

well (e.g., Chernozhukov et al., 2013, 2015).

The mentioned nonparametric identification results have been studied and adapted to single-

index models, R = 1 in (1), by Chen and Wang (2018) and Čížek and Lei (2018). These results
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do not extend to multiple-index models, R > 1 in (1), as, for one dependent variable, the

generalized differences or first derivatives taken with respect to each variable provide only d

conditions to identify one vector of d parameters. For cross-sectional and longitudinal data,

several estimation approaches were introduced though, where multiple linear combinations are

typically identified by averaging functions of derivatives or variances of conditional expectations

of responses or regression residuals. The average derivative estimation (Härdle and Stoker, 1989)

was adapted to the multiple-index estimation by taking higher-order derivatives (Li, 1992), the

outer product of gradients (Samarov, 1993), or both (Donkers and Schafgans, 2008). Alternative

approaches include the minimum average variance estimation (Xia et al., 2002), the estimating

equation approach (Xu et al., 2016) and the sliced inverse regression (Zhu et al., 2016), for

instance. These techniques cannot be easily generalized to nonlinear panel data with a fixed

number of time periods due to the presence of the unobserved heterogeneity represented by

individual effects αi in (1). Consequently, general multiple-index panel models have been stud-

ied so far only for panel data with large numbers of time periods, which facilitate consistent

estimation of the individual specific effects (Xu et al., 2016).

Focusing on panel data with a limited number of time periods and one or more responses, our

approach to nonseparable multiple-index models is built on the assumption employed by Bester

and Hansen (2009) for marginal-effect identification and Čížek and Lei (2018) for single-index

models: the distribution of unobserved individual effects depends on the observed covariates

through their averages across time. This restricts the analysis to the CRE models, but allows

for flexible time-varying specification as in Botosaru and Muris (2017), Freyberger (2018), and

Ishihara (2020). To identify the multiple coefficient vectors β1, . . . , βR, average differences of

first derivatives in Čížek and Lei (2018) have to be replaced by the second-order derivatives or

outer product of gradients. Given the benefits of the latter (see Xia et al., 2002), we propose

to employ the outer product of differences of gradients (OPDG) and the generalized method

of moments (GMM) to identify and estimate the parameters of a model with multiple linear

indices, similarly to Donkers and Schafgans (2008) for cross-sectional data. The proposed

estimation method retains several appealing features: (i) it delivers consistent results even

with only two or three time periods, (ii) it applies directly to unbalanced data, and under some

regularity conditions, (iii) it allows lagged dependent and discrete explanatory variables to enter

the model. We also discuss how to estimate in the presence of functionally related regressors,
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which are typically not allowed by methods based on nonparametrically estimated gradients

(cf. Čížek and Lei, 2018; Donkers and Schafgans, 2008). Last but not least, the proposed

model (1) is rather flexible as it covers a wide array of nonlinear panel data models used

in applications mentioned earlier. Under the CRE assumption, the proposed approach offers

a generally applicable semiparametric method for estimation of (non)linear sample selection

models in panel data as well as for nonlinear panel models based on a latent partially-linear

single-index structure (cf. Carroll et al., 1997); see Sections 2, 4, and 5.

The paper is organized as follows. For the simplicity of exposition, the key identification and

asymptotic results are presented for two time periods, T = 2. The main identification result

along with its assumptions are presented in Section 2. Next, the proposed semiparametric

OPDG estimation procedure and the corresponding GMM estimator are introduced in Section

3. In that section, we also study the asymptotic properties of the proposed estimators and

derive their rates of convergence and asymptotic distribution. In Sections 4 and 5, we assess

the finite sample performance of the proposed method for nonlinear panel data models in a

simulation study and real-data application. Simulation results for T > 2, details on estimation

with discrete and functionally related regressors, and proofs are relegated to the Appendices.

2 Identification

To study the identification of the nonseparable panel data model with index structure given in

equation (1), we consider panel data with n observations of time series Yi = (Yi1, . . . , YiT )
⊤ and

Xi = (Xi1, . . . ,XiT )
⊤, which are independent and identically distributed across cross-sectional

units i ∈ {1, . . . , n}. The number T of time periods is assumed to be finite and fixed, and

for the simplicity of exposition, the identification and estimation results are presented for two

time periods. The two considered time periods are the current time period t and some past

time period t − ∆ with the typical choice being ∆ = 1, and they are labelled T = (t, t −∆).

Constructing the estimation procedure and its moment conditions for given two time periods will

extend directly to more time periods since the moment conditions constructed for each available

pair of time periods can be used jointly to estimate model (1). This approach with separate

moment conditions for any two time periods also facilitates a straightforward application in

unbalanced panel data. Alternative approaches to construction of the moment conditions using
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more than two time periods are discussed in Supplementary Appendix D.

Let us demonstrate the identification principle using two time periods t, t − ∆ and the

standard linear regression model, Yit = X⊤
it β + αi + εit, with strictly exogenous explana-

tory variables Xit, E(εit|Xit,Xi(t−∆)) = 0. Taking expectations E(Yit|Xit,Xi(t−∆)) = X⊤
it β +

E(αi|Xit,Xi(t−∆)), the standard approach to handle the individual effects αi in this model is to

eliminate them by taking differences: E(Yit − Yi(t−∆)|Xit,Xi(t−∆)) = (Xit −Xi(t−∆))β. Since

this approach is not applicable in nonseparable models (1), we instead impose the following

CRE assumption E(αi|Xit,Xi(t−∆)) = E(αi|Xit + Xi(t−∆)), where the individual effects de-

pend on the covariates only through their sum or average across the time periods t, t−∆ (cf.

Bester and Hansen, 2009; Čížek and Lei, 2018). This allow us to eliminate the individual effects

by taking the derivatives with respect to the current and past values Xit and Xi(t−∆) as

∂E(Yit|Xit,Xi(t−∆))

∂Xit
= β+

∂E(αi|Xit +Xi(t−∆))

∂Xit
and

∂E(Yit|Xit,Xi(t−∆))

∂Xi(t−∆)
=

∂E(αi|Xit +Xi(t−∆))

∂Xi(t−∆)

imply thatDE(Xit,Xi(t−∆)) = ∂E(Yit|Xit,Xi(t−∆))/∂Xit−∂E(Yit|Xit,Xi(t−∆))/∂Xi(t−∆) = β,

and subsequently, that E{DE(Xit,Xi(t−∆))DE(Xit,Xi(t−∆))
⊤} − ββ⊤ = 0. As we will show,

this moment equation, which eliminates the individual effects by taking the difference of the

derivatives and which identifies the parameters by taking the outer product of this difference,

applies also in the non-separable models with multiple linear combinations X⊤
it β1, . . . ,X

⊤
it βR.

More specifically, the proposed methodology applies to and is presented here for one or more

response variables forming a vector Yit ∈ R
dy . The model (1) can be concisely expressed as

Yit = φt(X
⊤
it β1, . . . ,X

⊤
it βR, αi, Uit) = φt(X

⊤
itB,αi, Uit), (4)

where B = (β1, . . . , βR) is d×R matrix containing the coefficients of the R linear combinations

of d explanatory variables Xit. The number R of indices is assumed to be implied by the model

and thus treated as known now. Finding the dimension R is discussed later in Section 3.3.

Examples. The multiple-index model (4) includes many panel-data models such as (i)

heteroscedastic binary-choice models, Yit = 1{X⊤
it β1 + α1i + σt(X

⊤
it β2, α2i)Uit > 0}, and (ii)

censored models (2), Yit = max{0,X⊤
it β1+α1i+σt(X

⊤
it β2, α2i)Uit > 0}, with an unknown stan-

dard deviation σt(·) and individual effects α1i and α2i, (iii) general transformation models with
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partially-linear single-index structure Yit = gt{X⊤
it β1+α1i+ht(X

⊤
it β2, α2i)+Uit} with unknown

functions gt(·) and ht(·), and (iv) multinomial choice models Yit = argmaxj=1,...,Jgjt(X
⊤
it βj +

αji + Ujit) with individual effects αji and unknown link functions gjt. It also covers (v)

(non)linear sample selection models (3): for example, the linear model Y2it = X⊤
it β2+α2i+ ε2it

observed when the selection variable Y1it = 1{ht(X⊤
it β1, α1i, U1it) > 0} equals 1 can be formu-

lated for the outcome variable as Y2it = X⊤
it β2+α2i+gt(X

⊤
it β1, α1i)+U2it, where gt(X⊤

it β1, α1i) =

EU E(ε2it|ht(X⊤
it β1, α1i, U1it) > 0) and α1i and α2i denote again individuals effects.

Since we focus on the identification of the parameters B ⊆ R
d×R along with the average

marginal effects of Xit on Yit given αi, we first introduce the required assumptions in Section

2.1. Later in Section 2.2, the key identification results are derived and linked to the average

marginal effects defined by Eα[∂ϕt(X
⊤
itB,αi)/∂Xit] with ϕt(X

⊤
itB,αi) = EU [φt(X

⊤
itB,αi, Uit)].

2.1 Identification assumptions

Here we state the assumptions for the identification of B, which mostly characterize the CRE

structure and are thus multivariate extensions of the assumptions in Čížek and Lei (2018).

Assumption 1. Let (Ω, F, P ) be a complete probability space on which are defined the random

vectors αi : Ω → A, Xi(t−∆) : Ω → X , and (Yit,Xit, Uit) : Ω → Y × X × U , A ⊆ R
da ,Y ⊆

R
dy ,X ⊆ R

d,U ⊆ R
du , for any i ∈ N, and finite integers dy, da, d, and du. For all i ∈ N, let

(i) E(‖Yit‖δy ) < ∞ for some δy > 2; (ii) Yit = φt(X
⊤
itB,αi, Uit), where B = (β1, . . . , βR) ∈

B ⊆ R
d×R is a full-rank d × R matrix of parameters and φt is an unknown and nonconstant

function on the support of X⊤
it βr for any (αi, Uit) ∈ A× U , r = 1, . . . , R; and (iii) realizations

of (Yit,Xit,Xi(t−∆)) be observable, whereas those of (αi, Uit) are unobservable.

Assumption 2. Unobservable Uit is independent of αi, Xit, and Xi(t−∆) and is identically

distributed for all i = 1, . . . , n.

While Assumption 1 just formalizes the data generating process (4) and confirms that

there can be any finite number da of individual effects, the exogeneity Assumption 2 states

that Uit should be uncorrelated with the covariates Xit and Xi(t−∆) of the same individual

unit i at two time periods t and t − ∆. Let us discuss its implications in the context of

an example. First, Assumption 2 in the sample-selection model (3) such as Y2it = X⊤
it β2 +

α2i + gt(X
⊤
it β1, α1i) + U2it above does not preclude correlation of the elements of Uit, and if
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Xit contains only strictly exogenous variables, also of Uit across time. On the other hand, it

permits lagged dependent variables to enter the model as explanatory variables provided that

the unobserved Uit does not exhibit serial correlation (see Appendix I for further discussion).

Next, Assumption 2 also allows the dependence between the traditional error term and the

covariates. For example, the binary selection outcome in the sample-selection model (3) can

have the form Y1it = 1{ht(X⊤
it β1, α1i, Uit) > 0} = 1{X⊤

it β1 + α1i + σt(X
⊤
it β1, α3i)Uit > 0} and

can explicitly model heteroskedasticity as a function σt(X
⊤
it β1, α3i) of a linear index and an

individual effect, εit = σt(X
⊤
it β1, α3i)Uit, while it still satisfies Assumptions 1 and 2.

Assumption 3. (i) Xit does not contain any time-invariant covariates: P (Xk,it 6= Xk,i(t−∆)) >

0 for all k = 1, . . . , d. (ii) The joint distribution FXt,Xt−∆
of (Xit,Xi(t−∆)) is continuous and

identical for all i ∈ N. (iii) The conditional distribution Fα|Xt,Xt−∆
of the individual effects

αi satisfies Fα|Xt,Xt−∆
(αi|Xit,Xi(t−∆)) = Fα|Xt+Xt−∆

(αi|Xit + Xi(t−∆)). (iv) FXt,Xt−∆
and

Fα|Xt,Xt−∆
are twice continuously differentiable with respect to Xt and Xt−∆ with uniformly

bounded derivatives on X .

Assumption 3 contains the main assumptions for the identification of B and imposes the

CRE structure as in Assumption 3 of Čížek and Lei (2018), restricting a general relation-

ship between αi and Xit or Xi(t−∆) to an identical form for all individuals i (see Bester and

Hansen, 2009, for an analysis of various CRE assumptions and Ghanem, 2017, for the test of

the CRE assumptions). In particular, Assumption 3(iii) states that the conditional distribution

Fα|Xt,Xt−∆
(αi|Xit,Xi(t−∆)) of αi is assumed to be independent of i and its dependence on the

explanatory variables Xit and Xi(t−∆) occurs only through their sum Xit+Xi(t−∆).1 Although

such an assumption is often employed in models with exogenous variables in the spirit of the

Mundlak (1978) approach, it poses a constraint if Xit contains lagged dependent variables. In

particular, it requires at least the stationary initial condition. We demonstrate this in Ap-

pendix I on the example of the dynamic sample selection model used also in the application

in Section 5. Furthermore, analogously to other estimation methods based on differencing over

time, Assumption 3(i) rules out the presence of time-invariant covariates in the model (4). Fi-

nally, the remaining Assumption 3(ii) imposes that the explanatory variables are continuously

1For two time periods, such a functional form assumption is required as Bester and Hansen (2009) showed that
it is not possible to achieve identification of marginal effects in the CRE model if Fα|Xt,Xt−∆

(αi|Xit, Xi(t−∆)) =
Fα|Xt,Xt−∆

(αi|h(Xit, Xi(t−∆))) with a general unknown function h.
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distributed; identification and estimation in the presence of discrete explanatory variables is

discussed in Appendix G.

Next, we impose sufficient regularity on the function ϕt and relevant distribution func-

tions and expectations. We adopt shorthand notations as F (α|xt, xt−∆) ≡ Fα|Xt,Xt−∆
(α|Xit =

xt,Xi(t−∆) = xt−∆) and f(α|xt, xt−∆) ≡ fα|Xt,Xt−∆
(α|Xit = xt,Xi(t−∆) = xt−∆).

Assumption 4. Function ϕt(v, α) = EU [φt(v, α, U)] is an unknown twice continuously differ-

entiable function with respect to v ∈ R
R for each α ∈ A. Moreover, E[ϕ′

tr(X
⊤
itB,αi)] < ∞,

where ϕ′
tr(x

⊤B,α) = ∂ϕt(x
⊤B,α)/∂(x⊤βr) for r = 1, . . . R.

Assumption 5. For each (xt, xt−∆) ∈ R
d × R

d, there exists a σ-finite measure µ(.|xt, xt−∆)

that is absolutely continuous with respect to F (·|xt, xt−∆) so that there exists a Radon-Nikodym

density f such that F (dα|xt, xt−∆) = f(α|xt, xt−∆)µ(dα|xt, xt−∆) for each α ∈ A.

Assumption 6. (i) Conditional expectation E[Yit|Xit,Xi(t−∆)] exists, is continuous in Xit and

Xi(t−∆), and its first derivatives exist almost surely;

(ii) For each (xt, xt−∆) ∈ R
d×R

d, there exists an integrable dominating function D(αi|xt, xt−∆)

such that, for some ǫ > 0 and any element x of xt or xt−∆,

sup
v∈{x⊤

s β:β∈B,s=t,t−∆}
max

{

∣

∣ϕ′
tr(v, αi)f(αi|xt, xt−∆)

∣

∣ ,

∣

∣

∣

∣

ϕt(v, αi)
∂f(αi|xt, xt−∆)

∂x

∣

∣

∣

∣

}

≤ D(αi|xt, xt−∆).

Assumption 7. Matrices Γ1t and Γ2t are finite dy×R and R×R full-rank matrices, respectively,

where Γ1t =
{

E
[

ϕ
′

tr(X
⊤
itB,αi)

]}R

r=1
and Γ2t =

{

E
[

ϕ
′

tr(X
⊤
itB,αi)

⊤ϕ
′

ts(X
⊤
itB,αi)

]}R

r,s=1
.

Assumption 4 simply imposes a sufficient degreee of smoothness on ϕt(v, α) together with

integrability of its derivatives. Next, Assumptions 5 and 6 are essential for well-defined expec-

tations E[Yit|Xit,Xi(t−∆)], ∂ E[Yit|Xit,Xi(t−∆)]/∂Xit, and ∂ E[Yit|Xit,Xi(t−∆)]/∂Xi(t−∆). Ad-

ditionally, Assumption 7 guarantees that all R linear indices are required in the model since

the multicollinearity of the indices is ruled out. Finally, to identify B, Γ1t, and Γ2t, Assump-

tion 7 has to be accompanied by some identification assumptions; examples from Donkers and

Schafgans (2008) are given below.

Assumption 8. One of the following conditions is satisfied: (i) each index x⊤itβr, r = 1, . . . , R,

contains some explanatory variable that does not enter the other R − 1 indices and has a co-

efficient normalized to 1, that is, for each r = 1, . . . , R there is some k ∈ {1, . . . , d} such that
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βrk = 1 and βsk = 0, s 6= r, and BΓ2tB
⊤ has R distinct nonzero eigenvalues; or (ii) B⊤B = IR

and Γ2t is a diagonal matrix with unique nonzero elements sorted in the descending order.

Assumption 8 represents two classical identification assumptions that either rely on exclu-

sion restrictions to uniquely identify B or order and normalize the parameters in a unique way.

Although such assumptions suit for example the multinomial choice models, there are also other

alternative forms of identification assumptions. For example, consider the linear sample selec-

tion model (3) with the selection variable Y1it = 1{ht(X⊤
it β1, α1i, U1it) > 0} and the outcome

variable Y2it = X⊤
it β2+α2i+gt(X

⊤
it β1, α1i)+U2it. One can assume that all coefficients in β1 and

β2 are nonzero and impose Assumption 8(ii), assuming the identification by the nonlinearity of

the model (e.g., see Escanciano et al., 2016). On the other hand, one can impose a traditional

exclusion restriction that one variable Xj,it influences the selection variable Y1it, β1j 6= 0, but

does not directly affect outcome Y2it, β2j = 0. Given the triangular and partially linear struc-

ture, no additional exclusion restriction is then needed because ϕ
′

t2(X
⊤
itB,αi) = (0, 1)⊤ and the

complete Assumption 8 is thus not necessary.

2.2 Identification result

Now we state our main identification results under Assumptions 1–7 and 8. Note that the

following theorem can be applied jointly for all responses Yit or for each response separately.

Theorem 1. Under Assumptions 1–7, B, Γ1t, and Γ2t satisfy the following moment equations:

δT = E

{

∂

∂X⊤
it

E[Yit|Xit,Xi(t−∆)]−
∂

∂X⊤
i(t−∆)

E[Yit|Xit,Xi(t−∆)]

}

= Γ1tB
⊤

δTT =E





{

∂

∂X⊤
it

E[Yit|Xit,Xi(t−∆)]−
∂

∂X⊤
i(t−∆)

E[Yit|Xit,Xi(t−∆)]

}⊤

×
{

∂

∂X⊤
it

E[Yit|Xit,Xi(t−∆)]−
∂

∂X⊤
i(t−∆)

E[Yit|Xit,Xi(t−∆)]

}]

= BΓ2tB
⊤.

Additionally, if Assumption 8 holds, θ denotes the corresponding unconstrained parameters of

(B,Γ1t,Γ2t) or (B,Γ2t), and gTT(θ) =
(

g1
T
(θ)⊤, g2

TT
(θ)⊤

)⊤ with g1
T
(θ) = vec(δT − Γ1tB

⊤) and

g2
TT

(θ) = vec(δTT−BΓ2tB
⊤), the true parameter values θ0 are identified by argminθgTT(θ)⊤gTT(θ)

or argminθg2TT(θ)
⊤g2

TT
(θ), respectively.
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According to Theorem 1, the parameters of interest can be identified by evaluating the av-

erage difference of gradients (ADG) δT and the average outer product of differences of gradients

(OPDG) δTT, where gradients refer in both cases to derivatives ∂ E[Yit|Xit,Xi(t−∆)]/∂Xit and

∂ E[Yit|Xit,Xi(t−∆)]/∂Xi(t−∆). Although we include ADG, which is essentially the multivariate

form of Čížek and Lei (2018), the second part of Theorem 1 indicates that the moment conditions

based on ADG are not necessary for identification and are obviously not sufficient if dy < R.

Hence, the identification result relies only on OPDG. As the coefficients B characterize the ef-

fects of Xit on responses Yit in (4) for given αi, Theorem 1 identifies them using the differences

of gradients based on the following observation. Since Xit affects Yit directly through indices

X⊤
itB and also indirectly through individual effects αi, the derivative of E[Yit|Xit,Xi(t−∆)] with

respect to Xit captures two effects of a change in Xit – via X⊤
itB and via αi. To eliminate the

latter effect, we subtract the derivative of E[Yit|Xit,Xi(t−∆)] with respect to Xi(t−∆) as Xi(t−∆)

influences Yit only through the individual effects αi, but given Xit, it does not affect X⊤
itB.

By estimating ADG δT and OPDG δTT, the columns of B will be estimated up to scale under

the exclusion restrictions imposed in Assumption 8(i) and up to an orthogonal transformation

under Assumption 8(ii). In practice, other equivalent or additional identification assumptions

and moment conditions can be constructed. For example in the sample-selection model (3),

the outcome variable Y2,it depends on two linear combinations X⊤
itB = X⊤

it (β1, β2), whereas

the selection variable Y1,it depends on one linear combination X⊤
it β1. In such a case, although

the moment conditions suggested in Theorem 1 apply directly, it can be preferable to apply

Theorem 1 and to construct the moment conditions separately for each response variable Y1,it

and Y2,it rather than the whole vector Yit = (Y1,it, Y2,it)
⊤. One can then easily impose that the

moment conditions for Y1,it do not depend on the second index X⊤
it β2, for instance.

Apart from the coefficients B, Theorem 1 and its proof also facilitate identification of various

marginal effects. It is known that the individual marginal effects ∂ E[Yit|Xit, αi]/∂Xit with

the individual heterogeneity αi kept constant cannot be estimated for only two time periods.

Bester and Hansen (2009) and Wooldridge (2010, Section 2.2.5) therefore suggest to average

this marginal effect ∂ E[Yit|Xit, αi]/∂Xit over the distribution of the individual-specific effects

αi. From definition ϕt(X
⊤
itB,αi) = EU [φt(X

⊤
itB,αi, Uit)], it follows that ∂ E[Yit|Xit, αi]/∂Xit =

∂ϕt(X
⊤
itB,αi)/∂Xit and the suggested marginal effect (ME) can be written as

12



ˆ

∂ϕt(X
⊤
itB,αi)

∂Xit
f(α|Xit,Xi(t−∆))dα =

∂ E[Yit|Xit,Xi(t−∆)]

∂X⊤
it

−
∂ E[Yit|Xit,Xi(t−∆)]

∂X⊤
i(t−∆)

, (5)

where the equality is verified in equations (A.2) and (A.5) in the proof of Theorem 1. The

ME are thus equal to the difference of the two derivatives of the conditional expectations on

the right-hand side of (5). Averaging them with respect to covariates results in the average

marginal effect (AME) equal to δT by Theorem 1. As described later in Section 3, estimation of

the derivatives in (5) is the first step required to estimate δT in Theorem 1 and estimates of (5)

and AME are thus a result of the estimation procedure. We refer to δT as the total AME since

it characterizes the effect of covariates via all linear combinations X⊤
itB. As the identification

of these total ME and AME relies only on the first part of Theorem 1, it does not require the

identification Assumption 8, which is used only to decompose the total AME δT to the scaling

matrices Γ1t and Γ2t and the coefficient matrix B in a unique way.

We are also interested in the marginal effects characterizing the effects of covariates on

Yit via a particular linear combination. For example in the sample-selection model (3), vari-

ables Xit influence the outcome variable Y2it directly through the linear combination X⊤
it β2

and we can refer to this particular marginal effect as the direct AME or the AME specific

to X⊤
it β2. However, Xit also influences the average outcome Y2it indirectly by means of the

sample-selection correction, which is characterized by the linear combination X⊤
it β1, and we

can be also interested in this indirect AME specific to X⊤
it β1. A similar situation arises

in the multinomial-choice model Yit = argmaxj=1,...,Jgjt(X
⊤
it βj + αji + Ujit), where we are

interested in the probability of a particular choice Yit = j. The covariates influence this

probability either directly via the linear combination X⊤
it βj affecting the corresponding util-

ity gjt(X
⊤
it βj + αji + Ujit) of option j or indirectly via the linear combinations X⊤

it βl, l 6= j,

affecting the utilities of the alternative options l 6= j. These marginal effects specific to par-

ticular linear combinations can be obtained on average by decomposing the total AME δT:

since ∂ E[Yit|Xit, αi]/∂Xit = ∂ϕt(X
⊤
itB,αi)/∂Xit =

∑R
r=1 ϕ

′

tr(X
⊤
itB,αi)β

⊤
r , taking expectation

results in δT = E[∂ϕt(X
⊤
itB,αi)/∂X

⊤
it ] =

∑R
r=1 E

[

ϕ
′

tr(X
⊤
itB,αi)

]

β⊤
r = Γ1tB

⊤ by (5) and

Theorem 1. Once the matrices B and Γ1t are estimated, it is thus possible to obtain the

R index-specific contributions
{

E
[

ϕ
′

tr(X
⊤
itB,αi)

]

β⊤
r

}R

r=1
= {Γ1t,·rB⊤}Rr=1 to the total AME
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δT = E[∂ϕt(X
⊤
itB,αi)/∂X

⊤
it ], which are again independent of the normalization Assumption 8.

3 Estimation approach

Based on Theorem 1, the estimation method is described in two steps: first, estimating the

ADG and OPDG expectations is discussed in Section 3.1, and then the GMM estimator of the

model parameters Γ1t, Γ2t, and B is introduced in Section 3.2.

3.1 Average and outer product of differences of gradients

Under Assumptions 1–7, δT and δTT in Theorem 1 are both based on the differences of the

derivatives of the conditional expectation E[Yit|Xit,Xi(t−∆)] and can be estimated for given time

periods T = (t, t−∆) in the following way. First, the conditional expectationmT(Xit,Xi(t−∆)) =

E[Yit|Xit,Xi(t−∆)] and its derivatives ∂ E[Y ⊤
it |Xit,Xi(t−∆)]/∂Xit and ∂ E[Y ⊤

it |Xit,Xi(t−∆)]/∂Xi(t−∆)

are estimated using the local polynomial regression, and then their differences, products, and

outer expectations are averaged. Subsequently, the asymptotic distributions of the proposed

estimators δ̂T and δ̂TT of δT and δTT are established as well as the corresponding asymptotic

results for the generalized method of moments estimator suggested in Theorem 1.

As we perform the local polynomial regression with respect to Xit and its lag Xi(t−∆), let

us denote the conditioning variables by ZiT = (X⊤
it ,X

⊤
i(t−∆))

⊤ and the non-negative kernel

weights by Kh(u) = K(u/hn)/h
2d
n , u ∈ R

2d. For simplicity, the same bandwidth hn is used

for each dimension of ZiT (its choice is discussed in Section 4). Let us first consider a single

component Yc,it, c ∈ {1, . . . , dy}, of the response vector Yit = (Y1,it, . . . , Ydy ,it)
⊤ and estimate

the expectation mc,T(z) = E[Yc,it|ZiT = z] together with its derivatives δc,T,1(z) = m′
c,T,1(z) =

∂ E[Yc,it|ZiT = z]/∂Xit and δc,T,2(z) = m′
c,T,2(z) = ∂ E[Yc,it|ZiT = z]/∂Xi(t−∆) by the local

polynomial regression. If |k| = k1+ . . .+k2d denotes the length of a vector k = (k1, . . . , k2d)
⊤ ∈

N
2d
0 and zk = zk11 × . . .× zk2d2d , the local polynomial regression of order p minimizes

n
∑

i=1



Yc,it −
p
∑

|k|=0

(ZiT − z)kbc,k,T(z)





2

Kh (ZiT − z) . (6)

The estimated parameters b̂c,T(z) = (b̂c,k,T(z))
p
|k|=0 contain the estimates of the first-order

derivatives of mT(z) represented by the 2d elements of b̂c,1,T(z) = {b̂c,k,T(z)}|k|=1. The vector
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b̂c,1,T(z) thus estimates m′
c,T(z) = (δ⊤c,T,1(z), δ

⊤
c,T,2(z))

⊤.

Note that we can write the minimizer b̂c,T(z) of (6) in a convenient matrix form since it

minimizes the weighted least-squares criterion (6). More specifically,

b̂c,T(z) = (b̂⊤c,0,T(z), b̂
⊤
c,1,T(z), . . . , b̂

⊤
c,p,T(z))

⊤ = [Z⊤
T (z)WT(z)ZT(z)]

−1Z⊤
T (z)WT(z)Yc, (7)

where Yc = (Y ⊤
c,1t, . . . , Y

⊤
c,nt)

⊤, ZT(z) = {Z⊤
iT(z)}ni=1 with ZiT(z) = {(ZiT − z)k}p|k|=0, and the

weight matrix WT(z) = diag{Kh(ZiT − z)}ni=1.

Furthermore, the difference of derivatives δc,T(z) = δc,T,1(z) − δc,T,2(z) can be expressed

as δc,T(z) = δc,T,1(z) − δc,T,2(z) = m
′

c,T,1(z) −m
′

c,T,2(z) = L1m
′

c,T(z), where L1 is a submatrix

formed by columns 2, . . . , d+1 of matrix L = (e2−ed+2, . . . , ed+1−e2d+1)
⊤ with ej representing

the unit vector such that its jth element is 1, all other elements are 0, and its length equals the

length of b̂c,T(z) for j = 2, ..., 2d+1. Then the local derivative estimator of δc,T(z) is written as

δ̂c,T(z) = Lb̂c,T(z) = L · [Z⊤
T (z)WT(z)ZT(z)]

−1Z⊤
T (z)WT(z)Yc. (8)

Finally, to combine the differences of derivatives for different components of the response

vector Yit, we denote the matrix of response observations Y = (Y1, . . . , Ydy)
⊤, the conditional

expectation mT(z) = E[Yit|ZiT = z] = (m1,T(z), . . . ,mdy ,T(z))
⊤, and the difference of deriva-

tives δT(z) = (δ1,T(z), . . . , δdy ,T(z))
⊤ = (m

′

1,T,1(z) − m
′

c,T,2(z), . . . ,m
′

dy ,T,1
(z) − m

′

dy ,T,2
(z))⊤.

Given (8), this difference of derivatives can be estimated at z by

δ̂T(z) =
(

δ̂1,T(z), . . . , δ̂dy ,T(z)
)⊤

=
(

L · [Z⊤
T (z)WT(z)ZT(z)]

−1Z⊤
T (z)WT(z)Y

)⊤
. (9)

By Theorem 1, B can be identified using δT = E[δT(ZiT)] and δTT = E[δT(ZiT)
⊤δT(ZiT)], which

can be estimated by the corresponding sample averages of (9):

δ̂T =
1

n

n
∑

i=1

δ̂T(ZiT), (10)

δ̂TT =
1

n

n
∑

i=1

δ̂⊤T (ZiT)δ̂T(ZiT). (11)

The first estimator δ̂T is the multivariate version of the average difference of derivatives
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estimator, proposed in the univariate case by Čížek and Lei (2018) and labelled here ADG, and

the second estimator δ̂TT evaluates the average outer product of differenced gradients (OPDG).

Before proceeding to the GMM estimation based on δ̂T and δ̂TT in Section 3.2, we establish the

consistency and derive the asymptotic distribution of the ADG and OPDG estimators δ̂T and

δ̂TT based on the local polynomial regression (6) under the following assumptions.

Assumption 9. 1. The bandwidth hn satisfies nh2p+2
n → 0, nh4d+2

n → 0, nh2d+3
n / ln n → ∞,

and n1−2/δyh2dn /[ln n{lnn(ln lnn)1+δy}2/δy ] → ∞ for n → +∞.

2. The kernel function K is a symmetric density function with a compact support, functions

ukK(u) are Lipschitz for any k ∈ N
2d, 0 ≤ |k| ≤ 2p + 1, and

´

‖u‖4pK(u)du < ∞.

3. ZiT = (X⊤
it ,X

⊤
i(t−∆))

⊤has a compact support D ⊂ R
2d. Additionally, the density function

fT of ZiT exists, satisfies infz∈D fT (z) ≥ ǫ1 and supz∈D fT (z) ≤ ǫ2 for some ǫ1, ǫ2 > 0,

and is twice continuously differentiable with uniformly bounded derivatives. Let f
′

T
and

f
′

T;j denote the first and jth partial derivative of fT, respectively, j = 1, . . . , 2d.

4. For T = (t, t −∆), mT(z) = E[Yit|ZiT = z] is (p + 1)-times differentiable with uniformly

bounded and Lipschitz partial derivatives on D ⊂ R
2d. Additionally, mT(ZiT) and its

(p + 1) derivatives as functions of ZiT have finite second moments.

5. Errors ViT = Yit − E(Yit|ZiT) = Yit −mT(ZiT) have finite fourth moments. For pairs of

time periods T = (t, t − ∆) and S = (s, s − ∆′), let ΣTT(z) = E(ViTV
⊤
iT |ZiT = z) and

ΣTS(z1, z2) = E(ViTV
⊤
iS|ZiT = z1, ZiS = z2) be continuous in z and (z1, z2), respectively.

6. The conditional distributions of Yit|ZiT and of ZiT|Yit are continuous and have bounded

densities.

Assumption 9 introduces typical assumptions on the bandwidth hn, the kernel function K,

and data generating process for the average derivative estimators (cf., Li et al., 2003). This

includes the existence of p + 1 derivatives in Assumption 9.4 (p ≥ d + 1), which is usually

imposed for average derivative estimation (e.g., Cattaneo et al., 2013, Čížek and Lei, 2018,

and Härdle and Stoker, 1989). It can be relaxed via the iterative procedure of Hristache et

al. (2001b) developed for multiple-index models. Specifically, they show that their iterative

procedure achieves
√
n-consistency under the mild assumption that the second derivatives exist

and are bounded regardless of the dimension d if the number R of the indices is less than 4.

16



Next, we establish the asymptotic distribution of the average derivative δ̂T and outer product

δ̂TT under the stated assumptions.

Theorem 2. Define the vector MMT(ZiT) = vec(L1m
′
T
(ZiT), L1m

′
T
(ZiT)m

′
T
(ZiT)

⊤L⊤
1 ). Under

Assumptions 1–7 and 9, the average derivative δ̂T and outer product δ̂TT estimators defined in

equations (10)–(11) for one given T are consistent and jointly asymptotically normal:

√
n
(

vec(δ̂T, δ̂TT)− hpnvec(LA
1
T, L[A

2
TT +A2⊤

TT]L
⊤)− EMMT(ZiT)

)

→ N (0,ΩT +ΦT)

in distribution as n → +∞, where A1
T
and A2

TT
are defined in (A.16) and ΩT + ΦT is positive

semidefinite and defined by ΩT = Var [MMT(ZiT)] and ΦT = E
[

GMT(ZiT)ΣTT(ZiT)GMT(ZiT)
⊤] .

Further, GMT(z) = (−[Idy⊗{LGT;·1(z)}]⊤, ιdyvec[−2L1m
′′

T
(ZiT)L

⊤
1 −LGT;·1(ZiT)m

′

T
(ZiT)

⊤L⊤
1 −

L1m
′

T
(ZiT) GT;·1(ZiT)

⊤L⊤]⊤)⊤, where GT;·1(z) = GT(z)e1 is the first column of matrix GT(z) =

[MfT(z)]
−1 [

∑2d
j=1 f

′

T;j(z)Qs], Idy represents the dy ×dy identity matrix, ιdy is the dy ×1 vector

of ones, and the matrices of kernel weights M , B, and Qs are defined in Appendix B.

Theorem 2 establishes that the ADG δ̂T and OPDG δ̂TT estimators are consistent and jointly

asymptotically normal for any given T. In the univariate setting, the result for ADG entails

Theorem 2 of Čížek and Lei (2018), but we see that the asymptotic distribution of OPDG clearly

differs from ADG, for example, by its dependence on the second derivative of mT. Similar to

other average derivative estimators, their
√
n-consistency is a consequence of taking the sample

average of n nonparametric estimates at each ZiT, see (10)–(11), as long as the asymptotic bias

terms hpnLA1
T
and hpnL[A2

TT
+A2⊤

TT
]L⊤ are negligible relative to n−1/2. As seen in Theorem 2, the

bias terms hpnLA1
T
and hpnL[A2

TT
+ A2⊤

TT
]L⊤ can be eliminated if

√
nhpn → 0 by employing local

polynomial estimation with higher order polynomials, by using an undersmoothing bandwidth,

or by the generalized jackknife procedure described in Supplementary Appendix F.

If data have T > 2 periods, there are multiple pairs T = (t, t − ∆) of time periods as

∆ ∈ {1, . . . , T − 1} and t ∈ {∆+1, . . . , T}. Although Theorem 2 can be applied to any pair of

time periods T, the moment conditions suggested in Theorem 1 can be constructed for multiple

pairs T ∈ S of time periods, where S denotes the set of employed pairs (t, t − ∆). They

can be all jointly incorporated in a GMM criterion (see Section 3.2) with the aim of improving

accuracy of estimation by adding extra moment conditions. To facilitate such estimation, we

provide here their joint distribution for a given number |S | and set S of time-period pairs.
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Theorem 3. Let Assumptions 1–7 and 9 hold for every T ∈ S and let us define the vec-

tors MMT(ZiT) = vec(L1m
′
T
(ZiT), L1m

′
T
(ZiT)m

′
T
(ZiT)

⊤L⊤
1 ) and MM(Zi·) = {MMT(ZiT)}T∈S ,

where Zi· = {ZiT}T∈S . Denoting δ̂ = {vec(δ̂T, δ̂TT)}T∈S and Bias = {vec(LA1
T
, L[A2

TT
+

A2⊤
TT

]L⊤)}T∈S , where A1
T
and A2

TT
are defined in (A.16), δ̂ is asymptotically normal:

√
n
(

δ̂ − hpnBias− EMM(Zit,·)
)

→ N (0,Ω + Φ)

in distribution as n → +∞, where Ω+Φ is positive semidefinite and Ω and Φ matrices consist

of |S |×|S | blocks of dimensions (d+d2)×(d+d2); the blocks with coordinates (T,S) ∈ S ×S

within matrices Ω and Φ have the forms

Ω(T,S) = Cov [MMT(ZiT),MMT(ZiS)] ,

Φ(T,S) = E
[

GMT(ZiT)ΣTS(ZiT, ZiS)GMS(ZiS)
⊤
]

.

Further GMT(z) = (−[Idy⊗{LGT;·1(z)}]⊤, ιdyvec[−2L1m
′′

T
(ZiT)L

⊤
1 −LGT;·1(ZiT)m

′

T
(ZiT)

⊤L⊤
1 −

L1m
′

T
(ZiT)GT;·1(ZiT)

⊤L⊤]⊤)⊤, where GT;·1(z) = GT(z)e1 is the first column of matrix GT(z) =

[MfT(z)]
−1[
∑2d

j=1 f
′

T;j(z)Qs], Idy is the dy × dy identity matrix, ιdy is the dy × 1 vector of ones,

and the matrices of kernel weights M and Qs are defined in Appendix B.

Finally, note that the asymptotic variance matrices in Theorems 2 and 3 depend on the

first and second derivatives of the regression function mT(ZiT) similarly to Samarov (1993),

which are obtained during estimation as a product of the local polynomial estimation. After

estimating δ̂, the only quantity that needs to be estimated to compute the asymptotic variance

is thus the density function fT(z) and its derivatives since all other quantities L,M,Qs are

known and fully determined by the kernel used in estimation (see Appendix B).

3.2 GMM

In Theorem 1, we showed that the true parameter values θ0 of the unconstrained parameters

θ of matrices (B,Γ1t,Γ2t) can be identified by minimizing gTT(θ)
⊤gTT(θ), where gTT(θ) =

(

g1
T
(θ)⊤, g2

TT
(θ)⊤

)⊤, g1
T
(θ) = vec(δT − Γ1tB

⊤), and g2
TT

(θ) = vec(δTT − BΓ2tB
⊤). Given the

estimators δ̂T and δ̂TT introduced in (10)–(11), the moment conditions gTT(θ) = 0 have natural

sample analogs ĝTT(θ) =
(

ĝ1
T
(θ)⊤, ĝ2

TT
(θ)⊤

)⊤
= 0, where ĝ1

T
(θ) = vec(δ̂T−Γ1tB

⊤) and ĝ2
TT

(θ) =
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vec(δ̂TT −BΓ2tB
⊤). An initial GMM estimate of θ can thus be obtained by

θ̂0n = argminθ ĝTT(θ)
⊤ĝTT(θ), (12)

or, if multiple pairs T = (t, t−∆) from the set S of time-period pairs are used, by

θ̂0n = argminθ ĝ(θ)
⊤ĝ(θ), (13)

where ĝ(θ) = {ĝTT(θ)}T∈S and g(θ) = {gTT(θ)}T∈S . This initial estimator can be further

improved by applying weights to the moment conditions depending on their precision or desir-

ability in the estimation. Given a square matrix Wn of dimension |S |(d + d2), the weighted

GMM estimator can be defined by

θ̂n = argminθ ĝ(θ)
⊤Wnĝ(θ), (14)

where the initial choice corresponds to Wn = I|S |(d+d2) and the second step weighting matrix

Wn would typically be based on the inverse of the variance matrix of the moment conditions

ĝ(θ), which equals the variance matrix Ω+ Φ of δ̂ = {vec(δ̂T, δ̂TT)}T∈S derived in Theorem 3.

Note that this variance matrix does not have the full rank and it is thus necessary to replace

the standard inverse by a consistent estimator as discussed in Donkers and Schafgans (2008).

The proposed GMM estimators (12)–(14) will be shortly labelled as GMM-ADG-OPDG,

where ADG and OPDG refer to the moment conditions based on g1
T
(θ) and g2

TT
(θ), respectively.

To derive their asymptotic distributions, additional assumptions have to be introduced regarding

the properties of the parameters and the weighting matrix.

Assumption 10. The weighting matrix Wn is such that Wn → W in probability for n → ∞,

where W is positive semidefinite.

Assumption 11. The true value parameter θ0 minimizing g(θ)⊤Wg(θ) is in the interior of the

compact parameter space Θ. Moreover, the matrix Π⊤WΠ has full rank, where Π = ∂g(θ0)/∂θ
⊤.

Since we cannot impose the positive definiteness of the weighting matrix W as usual, the

full rank Assumption 11 has to be explicitly imposed to prevent an invalid weighting matrix

(e.g., W = 0 or W selecting a single moment condition). For the weighting matrix equal to the
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identity matrix, it boils down to a full-rank assumption onΠ, which had been already established

in Lemma 3 in Donkers and Schafgans (2008). For the choice of the efficient weighting matrix

Weff , it can be shown that Π⊤WeffΠ has full rank analogously to Lemma 4 in Donkers and

Schafgans (2008).

Theorem 4. Using the notation of Theorem 3, it holds under Assumptions 1–11 that

√
n(θ̂n−θ0−hpn

(

Π⊤WΠ
)−1

Π⊤WBias) → N

(

0,
(

Π⊤WΠ
)−1

Π⊤W (Ω + Φ)WΠ
(

Π⊤WΠ
)−1

)

in distribution as n → ∞.

3.3 Dimension selection

The proposed estimation procedure assumes that the number of indices required to model the

responses is known, at least to some extent. This assumption is valid in many applications,

which rely on a more specific model than (4). For example, the heteroscedastic binary-choice

model Yit = 1{X⊤
it β1 + α1i + σ(X⊤

it β2 + α2i)Uit > 0} could be assumed to require two indices

X⊤
it β1 and X⊤

it β2. Although such an assumption is not necessarily correct, it provides a baseline

model and one can then test whether the heteroskedasticity is present (i.e., whether a single

index X⊤
it β1 is sufficient) or whether the heteroskedasticity has a more general structure (i.e.,

more than two indices are needed to describe the data generating process) by the standard

likelihood ratio and Lagrange multiplier tests for GMM.

On the other hand, if there is no prior knowledge about the number of indices required, a

sequential test for determining the dimension of the parameter space B is required. It follows

from Theorem 1 that the correct dimension of B can be determined by finding the rank of the

matrix δTT, which is defined and can be estimated independently of B, Γ1t, and Γ2t. Hence, the

rank of δTT and thus the rank R of B can be determined prior to the GMM estimation based

on the estimator δ̂TT proposed in Section 3.1 and the matrix rank estimator proposed by Chen

and Fang (2019, Appendix C). For the consistent estimate R̂, the GMM estimation procedure

in Section 3.2 can be then applied, and given that the considered number of indices is finite

(R < d), the asymptotic distribution in Theorem 4 applies.
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4 Simulation study

In this section, we document the finite sample performance of the GMM estimators based on the

moment conditions proposed in Theorem 1 for various panel models with correlated random ef-

fects. Therefore, we consider the data generating processes which are characterized by individual

effects and explanatory variables having the same joint distribution across cross-sectional units

with nonzero correlation between individual effects and explanatory variables. We compare the

GMM-ADG-OPDG estimates with the existing estimators for each panel data model. General

simulation and implementation details are introduced in Section 4.1, and specific models and

the corresponding results are presented later in Sections 4.2–4.4.

4.1 Implementation

In the following sections, we present the results for the baseline GMM estimator (12), that is,

the GMM estimator based on the ADG and OPDG moment conditions defined in Theorem 1 for

T = 2 time periods, the first-order differences ∆ = 1, and the identity weighting matrix. The

results for more time periods T > 2 and higher-order differences ∆ > 1 are in Supplementary

Appendix D. To obtain the GMM estimates (12), the following procedure is used:

• The ADG and OPDG estimates δ̂T and δ̂TT defined in (10)–(11) are obtained by the local

quadratic regression estimation with the Gaussian product kernel and the bandwidth is

chosen by the leave-one-out cross-validation (a common bandwidth is used for all vari-

ables). The second-order polynomial regression is chosen to facilitate and demonstrate the

easy applicability of the method. Although this can lead to a non-negligible asymptotic

bias, we eliminate it by a generalized jackknife with the bandwidth multiples 1.3, 1.6, 1.9,

which can be used as a bias-correction procedure as described in Supplementary Appendix

F. Additionally, we show in finite-sample simulations that the bias is practically negligible

in various nonlinear models and there is often no need for the bias-correction procedure.

• Given the ADG and OPDG estimates δ̂T and δ̂TT and the normalization and dimension

of B, we obtain an initial value of parameter matrix B from δ̂TT by imposing the nor-

malization and exclusion constraints of a given model. For this initial values of B, the

initial values of matrices Γ1t and Γ2t are chosen so that δ̂T = Γ1tB and δ̂TT = B⊤Γ2tB
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hold and all these initial values are used as a starting point for the standard Newton-type

algorithm sequentially minimizing the GMM criterion (12).

To assess the performance of the described estimator in finite-samples, we generate S = 1000

panel data samples with the number of individuals n = 1000 and the number of time periods T =

2. The models contain three regressorsX1it, X2it, andX3it, which are drawn independently from

the normal distribution N(0, 1) trimmed at −3 and 3. The individual effects αi = (α1i, α2i)
⊤ are

then created as a weighted average of randomly distributed errors independent of covariatesX1it,

X2it, and X3it and time averages X̄1i = T−1
∑T

t=1X1it and X̄2i = T−1
∑T

t=1 X2it in the cases of

α1i and α2i, respectively. Given these individual effects and covariates Xit = (X1it,X2it,X3it)
⊤,

the response variables depend on two linear combinations α1i+X⊤
it β1 and α2i+X⊤

it β2; specific

functional dependence is going to be specified for particular regression models in the respective

sections. For each model, the parameter estimates β̂1 and β̂2 obtained by the proposed as

well as existing methods are always normalized in the same way defined by the identification

assumptions of each model: for example, the first coefficient β̂11 of β̂1 is normalized to 1. After

normalization, the bias and root mean squared errors (RMSE) are computed for each parameter

and reported for every considered estimation method. Further, we report the average asymptotic

standard errors (ASE) based on Theorem 4 (the estimation approach of Härdle and Stoker, 1989,

is used) and the empirical coverage rates (COV) for the 95% confidence intervals based on the

asymptotic distribution of each estimator. For all experiments, we also estimate the total AME

(TME) δT of Xit on the response and the AME Γ1t,1β1 and Γ1t,2β2 of Xit specific to linear

combinations X⊤
it β1 and X⊤

it β2, respectively, which are labelled SME1 and SME2; see Section

2 for details. In all cases, we report the marginal effects averaged across the simulated samples

and their RMSE; the biases of the marginal effects are always very small and thus not reported.

In the following sections, we will analyze the estimation of the coefficients and AME in the

context of the binary partially linear single-index model (Section 4.2), in the heteroskedastic

censored regression model (Section 4.3), and in the sample selection model (Section 4.4).

4.2 Binary-choice model

Let us first explore the performance of the proposed method in the binary partially-linear single-

index model in the case of a logistic panel data regression; such a model in the cross-sectional
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Table 1: The bias, RMSE, asymptotic standard errors (ASE), coverage rates (COV) in the
upper half, and marginal effect averages (total TME and SME1 and SME2 specific to indices
x⊤itβ1 and x⊤itβ2) and RMSE for P (Yit = 1|Xit, α1i, α2i) in the lower half of all estimators in the
binary partially linear single-index model for the sample size n = 1000 and T = 2.

β13 β23
Bias RMSE ASE COV Bias RMSE ASE COV

FE Logit 0.060 0.135 0.113 0.876
GMM-OPDG -0.004 0.172 0.174 0.951 0.012 0.210 0.204 0.949

Jackknife -0.009 0.194 0.186 0.932 0.019 0.208 0.183 0.930
GMM-ADG-OPDG -0.006 0.174 0.168 0.937 0.012 0.210 0.202 0.947

Jackknife -0.014 0.205 0.185 0.930 0.019 0.209 0.181 0.930
SMS -0.079 0.268 0.153 0.826
P (Yit = 1|Xit, αi) TME: RMSE CFN: RMSE SME1: RMSE SME2: RMSE
X1it 0.168 0.017 0.168 0.016 0.168 0.017 — —
X2it 0.020 0.017 0.020 0.018 — — 0.020 0.002
X3it -0.158 0.011 -0.158 0.018 -0.168 0.020 0.010 0.001

setting was studied by Carroll et al. (1997), for instance. More specifically, the simulated

binary-choice model is defined by Yit = 1{X⊤
it β1 + α1i + g(X⊤

it β2, α2i) + Uit > 0}, where

g(t1, t2) = (1 − 0.75t21 − 0.25t22)
2/2. The coefficients are β1 = (1, 0,−1)⊤ and β2 = (0, 1, 0.5)⊤,

the individual effects are defined by α1i = X̄1i + ǫ1i, ǫ1i ∼ U(−1, 1), and α2i = X̄2i + ǫ2i, ǫ2i ∼

U(−1, 1), respectively, and the error term follows the logistic distribution, Uit ∼ Λ(0,
√
3/π).

In this model, there is no exclusion restriction imposed during the estimation. Hence, the

parameters are normalized so that β11 = 1, β12 = 0, β21 = 0, and β22 = 1.

Given the lack of existing methods, the proposed estimator is compared to the fixed-effect

estimators of the standard binary-choice models: the FE logit and smoothed maximum score

(SMS) estimator of Charlier et al. (1995) are used to provide a benchmark for the magnitude

of RMSE. Although there are no other estimators of SME1 and SME2, TME in this specific

model can be also estimated by the method of Chernozhukov et al. (2019) labelled CFN here.

All results for T = 2 are summarized in Table 1 (see Table A.5 for T > 2). The results in Table

1 confirm that both the FE logit and SMS exhibit a bias and cannot estimate the coefficient

β23, whereas the proposed GMM(-ADG)-OPDG estimators provide relatively precise estimates

with negligible finite-sample biases. There is thus no need for bias correction and the reported

GMM(-ADG)-OPDG estimates and their jackknife bias corrections lead to rather similar results.

Furthermore, the ASEs are relatively close to the finite-sample RMSEs, and consequently,
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Table 2: The bias, RMSE, asymptotic standard errors (ASE), coverage rates (COV) in the
upper half, and marginal effect averages (total TME and SME1 and SME2 specific to indices
x⊤itβ1 and x⊤itβ2) and RMSE for E(Yit|Xit, α1i, α2i) in the lower half of all estimators in the
heteroskedastic censored regression model for the sample size n = 1000 and T = 2.

β13 β23
Bias RMSE ASE COV Bias RMSE ASE COV

Pooled Tobit 1.125 1.137 1.664 0.852
TLS 0.746 13.535 0.838 0.092
GMM-OPDG -0.023 0.256 0.330 0.986 0.053 0.287 0.407 0.989

Jackknife -0.027 0.289 0.322 0.968 0.053 0.292 0.392 0.975
GMM-ADG-OPDG -0.023 0.255 0.309 0.979 0.053 0.287 0.407 0.989

Jackknife -0.027 0.282 0.308 0.963 0.053 0.291 0.392 0.972
SMS -0.090 0.368 0.213 0.802
E(Yit|Xit, α1i, α2i) TME: RMSE TLSME: RMSE SME1: RMSE SME2: RMSE
X1it 0.657 0.106 -0.002 0.122 0.658 0.106 — —
X2it 0.029 0.157 0.676 0.101 — — 0.029 0.157
X3it -0.640 0.123 0.022 0.113 -0.656 0.121 0.017 0.093

the empirical coverage rates for all coefficients are smaller, but generally close to the 95% nom-

inal level. Although all empirical results are similar for GMM-OPDG and GMM-ADG-OPDG

and the ADG moment conditions are not particularly useful for the precision of estimation,

they will be always included as they directly provide estimates of TME, for example, those in

the lower half of Table 1. Comparing TME with those by CFN, we see these total AME and

their RMSEs are practically equal. The GMM-ADG-OPDG however also allows identification

of the AME specific to each index X⊤
it β1 and X⊤

it β2: see SME1 and SME2 in Table 1, which

are all precisely estimated as documented by the corresponding RMSEs.

4.3 Censored regression model

We now study the performance of the proposed method in the heteroskedastic censored regres-

sion model. More specifically, the simulated censored model is defined by Yit = max{0,X⊤
it β1+

α1i + g(X⊤
it β2, α2i)Uit}, where g(t1, t2) = 1.5t21. The coefficients are β1 = (1, 0,−1)⊤ and

β2 = (0, 1, 0.5)⊤ , the individual effects are defined by α1i = X̄1i + ǫ1i, ǫ1i ∼ U(−1, 1), and

α2i = X̄2i + ǫ2i, ǫ2i ∼ U(−1, 1), respectively, and the error term follows the standard nor-

mal distribution, Uit ∼ N(0, 1). As there are no exclusion restrictions imposed during the

estimation, the parameter normalization β11 = 1, β12 = 0, β21 = 0, and β22 = 1 is used.
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Given that the heteroskedasticity is a function of X⊤
it β2 and thus varies over time, the

standard censored regression estimators such as the pooled Tobit or trimmed least squares

(TLS) and trimmed least absolute deviation (TLAD) of Honore (1992) are inconsistent. As the

TLAD estimates cannot be reliably computed in every sample, but are rather close to TLS, we

report the pooled Tobit and the TLS estimates with their marginal effects (TLSME). To provide

a consistent benchmark estimator, we report also the binary-choice SMS (Charlier et al., 1995)

for responses 1(Yit > 0), which is applicable under a general form of heteroskedasticity.

The results for T = 2 are summarized in Table 2 (see Table A.6 for T > 2); the slope

coefficient β13 is reported for all methods, whereas the coefficient β23 determining the conditional

variance can be estimated and is thus reported only for the proposed GMM(-ADG)-OPDG

estimators. The results in Table 2 confirm that the pooled Tobit and TLS exhibit a large

bias, and in the latter case, also a large RMSE. The reported SMS estimator is characterized

by only a small bias and reasonable RMSE, but it is outperformed by GMM(-ADG)-OPDG,

which are characterized by smaller biases, smaller RMSE, and the ability to estimate both the

indices X⊤
it β1 and X⊤

it β2. This is important to obtain the marginal effects, which cannot be

consistently by the existing methods: both SME1 and SME2 corresponding to the marginal

effects due to X⊤
it β1 and X⊤

it β2, respectively, and TME are estimated with negligible biases,

which are therefore not reported, and small standard errors. In contrast, TLSME provides

incorrect MEs as the only significant ME corresponds to variable X2it with zero coefficient β13.

Finally, let us note that the asymptotic standard errors and coverages are higher than expected

since we use for simplicity the same bandwidth for the estimation of the regression parameters

and the standard errors. Given the shape of the conditional variance, the estimated asymptotic

standard errors would be closer to the simulated ones if a (smaller) bandwidth chosen specifically

for the variance estimation was used.

4.4 Sample selection model

Finally, we consider a linear sample-selection model, noting that the performance of the ADG

estimator in the standard linear regression model is close to the first-difference least squares

(Čížek and Lei, 2018). Although the proposed GMM estimator can handle also more compli-

cated models, for example, including interactions between the individual effects and the linear

indices, the simple linear structure allows us to compare the results with the existing sam-
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Table 3: The bias, RMSE, asymptotic standard errors (ASE), coverage rates (COV) in the
upper half, and marginal effect averages (total TME and SME1 and SME2 specific to indices
x⊤itβ1 and x⊤itβ2) and RMSE for P (Yit = 1|Xit, α1i) and E(Y2it|Xit, α1i, α2i) in the lower half of
all estimators in the sample-selection model for the sample size n = 1000 and T = 2.

β12 β13 β23
RMSE ASE COV RMSE ASE COV RMSE ASE COV

GMM-ADG-OPDG 0.109 0.119 0.973 0.157 0.154 0.957 0.102 0.105 0.959
Jackknife 0.111 0.120 0.973 0.165 0.153 0.957 0.110 0.105 0.959

FE-Logit+KYR 0.123 0.132 0.966 0.121 0.132 0.966 0.115 0.110 0.941
P (Y1it = 1|Xit, α1i) TME: RMSE CFN: RMSE SME1: RMSE SME2: RMSE
X1it 0.180 0.014 0.179 0.014 0.179 0.015 — —
X2it 0.180 0.013 0.179 0.015 0.179 0.015 — —
X3it 0.179 0.014 0.179 0.014 0.180 0.018 — —
E(Y2it|Xit, α1i, α2i) TME: RMSE SME1: RMSE KYR: RMSE SME2: RMSE
X1it -0.122 0.083 -0.123 0.083 — — — —
X2it 0.872 0.085 -0.123 0.084 0.999 0.121 0.994 0.122
X3it 0.375 0.083 -0.124 0.087 0.499 0.124 0.500 0.118

ple selection estimators: Y2it = X⊤
it β2 + α2i + U2it is observed when the selection variable

Y1it = 1{X⊤
it β1+α1i+U1it > 0} equals 1. The coefficients β1 = (1, 1, 1)⊤ and β2 = (0, 1, 0.5)⊤.

The individual effects α1i = 0.5+0.5X̄1i + ǫ1i, ǫ1i ∼ U(0, 1), and α2i = X̄2i + ǫ2i, ǫ2i ∼ N(0, 1),

respectively, and errors follow the logistic and Gaussian distributions U1it ∼ Λ(0,
√
3/(2π)) and

U2it ∼ N(0, 0.8) with their mutual correlation equal to 0.75, which leads to approximately 68%

selected observations. The coefficient identification is obtained by the normalization of β11 = 1

and β22 = 1 and the exclusion restriction that X1it does not enter the mean equation for Y2it.

The proposed GMM-ADG-OPDG estimator is compared to the sample-selection estimator

of Kyriazidou (1997) based on the fixed-effect logit (FE-Logit) modelling of the selection equa-

tion; note that the logit is correctly specified as U1it follows the logistic distribution and that

the auxiliary parameters of this sample-selection estimator are chosen as in Kyriazidou (1997,

Section 4). The results are summarized in Table 3 (the finite-sample bias of all estimators is

negligible, see Table A.7) and there is thus no need for bias correction (the GMM-ADG-OPDG

estimates and their jackknife bias corrections are practically equivalent). This could possibly

be caused by relatively smooth link functions in the standard models. The RMSEs reported in

Table 3 show that the FE logit estimates of the selection equation parameters β12 and β13 are

overall more precise than GMM-ADG-OPDG, but this does not have a substantial effect on the
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precision of estimates of the mean equation parameter β23. The RMSE of GMM-ADG-OPDG

estimates of β23 is slightly smaller than that of Kyriazidou (1997). In all cases, ASEs are close

to RMSE and the coverage rates are close to the nominal level of 95%.

The marginal effects in Table 3 are compared to existing methods where possible. In the

selection equation, TME equals SME1 as there is just one linear combination involved and it is

compared to the AME obtained by the Chernozhukov et al. (2019) approach labelled CFN. In

the linear outcome equation, SME2 can be compared to the regression coefficients obtained by

Kyriazidou (1997), but SME1 provides additionally the AME due to sample selection driven by

linear combination X⊤
it β1 and TME equals the sum of SME1 and SME2. All marginal effects

are estimated without a substantial bias and with a good precision.

5 Empirical application

We now illustrate the use of the proposed estimator by applying it to the estimation of dynamic

earnings of females. We use the data studied by Semykina and Wooldridge (2013) that originate

from the Panel Study of Income Dynamics (PSID) in years 1980–1992. The sample contains 486

women below 60 years of age and observed for 12 years, both in and out of the labor force. We

compare the results by the proposed GMM-ADG-OPDG estimator with the results of Semykina

and Wooldridge (2013), labelled SW, and Kyriazidou (2001), labelled KYR.

In this application, the sample selection model discussed in Sections 2 and 4.4 is used.

Contrary to the specific data-generating process used in simulated examples, the estimation

procedure does not however impose the linearity of the outcome equation in any way. Recall

that the sample selection model (3) thus obeys the following outcome and selection equations:

Y2it = φ2t(X
⊤
it β2,X

⊤
it β1, α2i, α1i, U2it) observed if Y1it = φ1t(X

⊤
it β1, α1i, U1it)>0.

Here the dependent outcome variable Y2it equals the natural logarithm of the average annual

hourly earnings, which are observed or not depending on whether the person was employed in

a given year or not. This response variable is complemented by the binary dependent variable

Y1it corresponding to the selection equation and indicating the employment status (i.e., the

earnings are observed or not). Given that the sample contains only women with completed

education, many individual characteristics such as race or education are parts of time-invariant
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individual-specific effects α1i and α2i. Therefore, the explanatory variables Xit only include

the lag of the log-earnings Y2i(t−1), the labor market experience Expit (in years, constructed

from the employment status data Y1it) and its square Exp2it, and as a control for the selection

into employment, the number of children Kidsit. Because of the lagged dependent variable, we

verify the validity of Assumption 3(iii) in this model in Appendix I.

For the identification of the coefficients, it is assumed that the number of children does not

directly affect the earnings, and as in Semykina and Wooldridge (2013), that the past earnings

do not affect the current labor force participation. Additionally, we normalize the coefficients

of the lagged dependent variable in the outcome equation and of the number of children in the

selection equation to 1 and -1, respectively. Finally, note that, given that the cross-validated

bandwidth for the normalized explanatory variables is much larger than a unit increase in

Kidsit, we treat the number of children as a continuous variable in this application.

Including the experience and its square in the estimation is typically not accommodated

by the methods relying on locally estimated derivatives. For the proposed method, estimation

with an explanatory variable and its square can be performed as described in Supplementary

Appendix H. Since Exp2it was however not significant for any of the considered estimators, the

results presented here contain only Expit and are obtained by the GMM-ADG-OPDG method

implemented in the same way as in Section 4.1 with the following exception. Since the lagged

dependent variable is included in the estimation, the expectations in Theorem 1 require the

dependent variable Y2it and its two lags Y2i(t−1) and Y2i(t−∆). For the first-order differencing,

∆ = 1, every woman used in estimation has to work for the three consecutive periods, and thus

the change in their labor market experiences between times t and t − ∆ = t − 1 is always 1.

A similar argument applies also to ∆ = 2 if we want to identify both the effect of the labor

market experience and its square. Hence, we use only lags ∆ ≥ 3. We thus proceed as discussed

in detail in Supplementary Appendix D and use the orders of differencing ∆ = 3, . . . , 6 (higher

orders of differencing are not used as they result in less than 500 observed wages for ∆ > 6).

All estimation results are summarized in Table 4, which contains both the identification

constraints and the corresponding coefficient and ME estimates. While SW and KYR provide

coefficient estimates of the linear outcome equation, we can estimate using GMM-ADG-OPDG

the coefficients and the marginal effects similarly to Section 4.1: the total AME (TME) Xit on

the response and the AME Γ1t,1β1 and Γ1t,2β2 of Xit specific to linear combinations X⊤
it β1 and
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Table 4: Estimation results for the dynamic model of the logarithm of the hourly earnings.
Superscripts a,b,c represent the significance at the 10%, 5%, and 1% levels, respectively, based
on the bootstrapped standard errors, and = indicates the identification constraint.

Dependent Explanatory KYR SW GMM-ADG-OPDG
variable variable β1 β2 SME1 SME2 TME

Y2it

Y2it−1 0.043 0.579c 0.000= 1.000= 0.000= 0.434c 0.434c

Expit 0.033b 0.000 3.993c 0.385 -0.156a 0.167 0.010
Kidsit 0.000= 0.000= -1.000= 0.000= 0.039a 0.000= 0.039a

Y1it
Expit — — 3.993c — 0.193c — 0.193c

Kidsit — — -1.000= — -0.046c — -0.048c

X⊤
it β2, respectively, which are labelled SME1 and SME2; see Section 2 and 4.1 for details. For

example, we can identify separately the direct effect of a higher experience on the wages and

the sample-selection effect of a higher experience on wages due to an increased employment

probability. More specifically, while the selection variable Y1it is determined by just one linear

combination X⊤
it β1 and SME1 and TME are thus identical, the outcome Y2it depends on two

linear combinations X⊤
it β1 and X⊤

it β2. In the outcome equation, the total marginal effect of Xit

on Y2it is thus decomposed into two parts: (i) Γ1t,1β1, which represents the “indirect” effect of

Xit on Y2it through the index X⊤
it β1 determining the selection into employment and entering

the outcome equation due to the sample-selection correction, and (ii) Γ1t,2β2, which quantifies

the “direct” effect of Xit on Y2it via the index X⊤
it β2 entering only the outcome equation.

The estimation results in Table 4 indicate that both the labor market experience and the

number of children have significant and expected impacts – positive and negative, respectively

– on the labor force participation. In the outcome equation conditionally on working in the

previous period, the labor market experience does not have a significant direct or total impact

on the female log-earnings for all estimators except of KYR discussed later (see columns SW,

SME2, and TME in Table 4). Interestingly, there is a weakly significant indirect effect SME1

that indicates a small effect of the number of children on the outcome due to selection into

employment, which can be estimated only by the GMM-ADG-OPDG method. This confirms

the presence of sample selection, which was also significant in the case of SW at 1% level. Fur-

thermore, the coefficient of the lagged dependent variable in the outcome equation is normalized

to 1, but we can judge its significance by the corresponding direct marginal effect SME2, which
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is significant at the 1% level and provides evidence for the dependence in the earnings. Its

value is a bit smaller than that obtained by SW, which could be related to possible nonlinearity

of the outcome equation or specification of the selection equation. Finally, let us note that

– as argued by Semykina and Wooldridge (2013) – the KYR estimate of the autoregressive

coefficient is imprecise and insignificant, which likely leads to the significant KYR coefficient of

Expit, capturing the missing effect of the lagged dependent variable. This result is robust to

the number of lags used as instruments and to the employed sets of moment conditions.

6 Conclusion

In this paper, we show that the parameters of nonseparable multiple-index models with corre-

lated random effects are identified by the average difference of gradients and the outer product

of the difference of gradients. We propose a GMM estimator based on the local polynomial

regression and establish its consistency and asymptotically normality. For a number of nonlin-

ear panel data models, the GMM estimator seems to perform adequately well in a simulation

study and application. Future research should focus on improving the selection of the number

of indices, and in large models, on the variable selection.

A Proof of Theorem 1

Proof. [Proof of Theorem 1] The first part of the proof is similar to the proof of Theorem 1 in

Čížek and Lei (2018). We write the expectation E[Yit|Xit,Xi(t−∆)] at (xt, xt−∆) as

E[Yit|Xit = xt,Xi(t−∆) = xt−∆] = E[φt(X
⊤
itB,αi, Uit)|Xit = xt,Xi(t−∆) = xt−∆]

=

ˆ

φt(x
⊤
t B,α, ut)FUt,α|Xt,Xt−∆

(dut, dα|Xit = xt,Xi(t−∆) = xt−∆).
(A.1)

For notational convenience, we use F (ut, α|xt, xt−∆)) and f(α|xt, xt−∆) as a shorthand for

FUt,α|Xt,Xt−∆
(ut, α|Xit = xt,Xi(t−∆) = xt−∆) and fα|Xt,Xt−∆

(α|Xit = xt,Xi(t−∆) = xt−∆),

respectively. Recall that ϕt(X
⊤
itB,αi) = EU (φt(X

⊤
itB,αi, Uit)) and Uit is independent of αi,
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Xit, and Xi(t−∆) by Assumption 2. We use successive conditioning to write (A.1) as

E[Yit|Xit = xt,Xi(t−∆) = xt−∆]

=

ˆ

[
ˆ

φt(x
⊤
t B,α, ut)FUt|α,Xt,Xt−∆

(dut|α, xt, xt−∆)

]

f(α|xt, xt−∆)dα

=

ˆ

[
ˆ

φt(x
⊤
t B,α, ut)FUt(dut)

]

f(α|xt, xt−∆)dα

=

ˆ

ϕt(x
⊤
t B,α)f(α|xt, xt−∆)dα,

where FUt represents the distribution function of Uit. By Assumptions 4, 5, and 6, the deriva-

tives of the above expectation exist and interchanging the order of integration and derivative

can be thus justified. Hence, the derivative of the above expectation equals

∂

∂x⊤t
E[Yit|Xit = xt,Xi(t−∆) = xt−∆] =

ˆ

[

∂

∂x⊤t
ϕt(x

⊤
t B,α)

]

f(α|xt, xt−∆)dα

+

ˆ

ϕt(x
⊤
t B,α)

∂

∂x⊤t
f(α|xt, xt−∆)dα.

(A.2)

We can rewrite the first part of the right handside of (A.2) as

R
∑

r=1

ˆ

ϕ
′

tr(x
⊤
t B,α)f(α|xt, xt−∆)dα ·β⊤

r =

R
∑

r=1

E
[

ϕ
′

tr(X
⊤
itB,αi)|Xit = xt,Xi(t−∆) = xt−∆

]

β⊤
r .

(A.3)

since ∂
∂x⊤

t

ϕt(x
⊤
t β, α) =

∑R
r=1 ϕ

′

tr(x
⊤
t B,α)β⊤

r . As Assumption 3 implies f(α|xt, xt−∆) = f(α|xt+

xt−∆), the second part of (A.2) can be rewritten as

ˆ

ϕt(x
⊤
t B,α)

∂

∂(xt + xt−∆)⊤
f(α|xt + xt−∆)dα. (A.4)

As argued in Čížek and Lei (2018), there are two components in the marginal effects (A.2):

(A.3) exhibits the direct effect of a change in Xit averaged over αi while (A.4) characterizes

the indirect effect of a change in Xit on Yit induced by the change of the individual effects

αi. On the other hand, the marginal effects of Xi(t−∆) on Yit contains only the indirect effect:
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conditionally on Xit and αi, Yit is independent of Xi(t−∆). Therefore, we obtain

∂

∂x⊤t−∆

E[Yit|Xit = xt,Xi(t−∆) = xt−∆]

=

ˆ

[
ˆ

φt(x
⊤
t B,α, ut)FUt(dut)

]

∂

∂x⊤t−∆

f(α|xt, xt−∆)dα

=

ˆ

ϕt(x
⊤
t B,α)

∂

∂(xt + xt−∆)⊤
f(α|xt + xt−∆)dα.

(A.5)

Note that the last expressions in (A.5) and (A.4) are identical, so we can rewrite (A.2) as

∂

∂x⊤t
E[Yit|Xit = xt,Xi(t−∆) = xt−∆]

=

R
∑

r=1

E
[

ϕ
′

tr(X
⊤
itB,αi)|Xit = xt,Xi(t−∆) = xt−∆

]

β⊤
r +

∂

∂x⊤t−∆

E[Yit|Xit = xt,Xi(t−∆) = xt−∆].

After taking the expectation with respect to Xit and Xi(t−∆) and rearranging the equation,

δT = E

{

∂

∂x⊤t
E[Yit|Xit,Xi(t−∆)]−

∂

∂x⊤t−∆

E[Yit|Xit,Xi(t−∆)]

}

=

R
∑

r=1

E
[

ϕ
′

tr(X
⊤
itB,αi)

]

β⊤
r .

Next, denoting the p×R matrix Γ1t =
{

E
[

ϕ
′

tr(X
⊤
itB,αi)

]}R

r=1
, it follows that

E

{

∂

∂x⊤t
E[Yit|Xit,Xi(t−∆)]−

∂

∂x⊤t−∆

E[Yit|Xit,Xi(t−∆)]

}

= Γ1tB
⊤. (A.6)

Similarly for the R × R matrix Γ2t =
{

E
[

ϕ
′

tr(X
⊤
itB,αi)

⊤ϕ
′

ts(X
⊤
itB,αi)

]}R

r,s=1
, we obtain by

the law of iterated expectations

δTT =E





{

∂

∂x⊤t
E[Yit|Xit,Xi(t−∆)]−

∂

∂x⊤t−∆

E[Yit|Xit,Xi(t−∆)]

}⊤

×
{

∂

∂x⊤t
E[Yit|Xit,Xi(t−∆)]−

∂

∂x⊤t−∆

E[Yit|Xit,Xi(t−∆)]

}]

=E





{

R
∑

r=1

E
[

ϕ
′

tr(X
⊤
itB,αi)|Xit = xt,Xi(t−∆) = xt−∆

]

β⊤
r

}⊤

×
{

R
∑

s=1

E
[

ϕ
′

ts(X
⊤
itB,αi)|Xit = xt,Xi(t−∆) = xt−∆

]

β⊤
s

}]

=

R
∑

r=1

R
∑

s=1

βr E
[

ϕ
′

tr(X
⊤
itB,αi)ϕ

′

ts(X
⊤
itB,αi)

]

β⊤
s = BΓ2tB

⊤. (A.7)

32



Finally, given that δT and δTT are identified, let Assumption 8 hold and let θ1, θ2, and θ

denote all unconstrained parameters of (B,Γ1t), (B,Γ2t), and (B,Γ1t,Γ2t), respectively, and

gTT(θ) =
(

g1
T
(θ), g2

TT
(θ)
)

with

g1T(θ) = vec(δT − Γ1tB
⊤)

and

g2TT(θ) = vec(δTT −BΓ2tB
⊤).

As we have derived in equations (A.6) and (A.7), these moment conditions gTT(θ) = 0 are

satisfied at the true parameter value θ0 of θ. Additionally, Lemma 3 in Donkers and Schafgans

(2008) together with Assumption 8 imply that gTT(θ)⊤gTT(θ) and g2
TT

(θ)⊤g2
TT

(θ) have a local

minimum equal to 0 at the true parameter value of θ0. To show that the minimum at θ0 is

unique and thus global, we focus on the subset g2
TT

(θ) = 0 of the moment conditions gTT(θ) = 0,

which is sufficient for the identification. Given that matrix B under Assumption 8(i) and B

under Assumption 8(ii) are equivalent up to the multiplication by a fixed full-rank matrix, we

verify the uniqueness only under Assumption 8(ii).

Let us first note that the moment equation g2
TT

(θ0) = 0 being satisfied at θ0 and Assumption

8(ii) imply that matrix δTT has rank R. Further under Assumption 8(ii), any solution of the

moment conditions g2
TT

(θ) = 0 has to consist of an orthonormal matrix B and a full-rank

diagonal matrix Γ2t. Hence for a solution of g2
TT

(θ) = 0, it has to hold δTT − BΓ2tB
⊤ = 0,

or equivalently after multiplication by B from the right, δTTB − BΓ2t = 0. For any solution

B = (β1, . . . , βR) and Γ2t = (γ1, . . . , γR) of the moment equations, it thus holds by Assumption

8(ii) and δTT being positive semidefinite that δTTβr − γrβr = 0, r = 1, . . . , R, B⊤B = I,

and γ1 > γ2 > . . . > γR > 0. Scalars γr and columns βr are thus non-zero eigenvalues

and the corresponding eigenvectors of δTT. Given that δTT has rank R, no eigenvalues γr are

degenerate, and vectors β1, . . . , βR are orthonormal, the eigen decomposition of δTT is unique,

and consequently, there is only one solution of moment conditions g2
TT

(θ) = 0 with Γ2t having

its diagonal elements sorted in the descending order. As g2
TT

(θ0) = 0, this solution thus has to

coincide with θ0. �
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B Notation and auxiliary lemmas

In this appendix, we introduce the notation used in the main theorems and auxiliary lemmas.

We also state important auxiliary results, which are either found in the existing works of in Čížek

and Lei (2018), Li et al. (2003), and Masry (1996) or are formally proved in Supplementary

Appendix E. These auxiliary results are then used in the proofs of Theorems 2–4 in Appendix C.

The auxiliary results of this section concern the properties of the local polynomial estimator

(9) and the corresponding averages (10) and (11). As this estimation is performed for each re-

sponse variable separately, we assume for simplicity of notation in this section that Yit represents

one particular (scalar) response variable, denoted in the main text as Yc,it for c ∈ {1, . . . , dy}.

The same notation, omitting the subscript indicating the response component considered, is then

applied also to the conditional expectations mT(z), their derivative differences δT(z), residuals

ViT, and their (co)variances σTS(z) replacing matrices ΣTS(z). Given one particular response,

we now introduce notation and some theorems of Čížek and Lei (2018), Masry (1996), and Li

et al. (2003); the assumptions of those theorems are included in Assumptions 1–9.

SincemT(·) is (p+1)-times differentiable with uniformly bounded derivatives by Assumption

9, mT(z) can be locally approximated at some z0 by a polynomial of order p:

mT(z) ≈
∑

0≤|k|≤p

1

k!
DkmT(v)|v=z0(z − z0)

k,

where k = (k1, . . . , k2d) ∈ N
2d, k! = k1!× · · · × k2d!, |k| =

∑2d
i=1 ki, z

k = zk11 × · · · × zk2d2d ,

∑

0≤|k|≤p

=

p
∑

j=0

j
∑

k1=0

· · ·
∑

k2d=0;k1+···+k2d=j

, and (DkmT)(z) =
∂kmT(z)

∂zk11 . . . ∂zk2d2d

.

Further, define for j = (j1, . . . , j2d) ∈ N
2d and z ∈ R

2d

τ̄ eT,j(z) =
1

n

n
∑

i=1

(Yit −mT(ZiT))

(

ZiT − z

hn

)j

Kh (ZiT − z)

=
1

n

n
∑

i=1

ViT

(

ZiT − z

hn

)j

Kh (ZiT − z) ,

(A.8)
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and

s̄eT,j(z) =
1

n

n
∑

i=1

(

ZiT − z

hn

)j

Kh (ZiT − z) , (A.9)

where ViT = Yit − mT(ZiT) and Kh(u) = h−2d
n K (u/hn). We indicate the dependence of

τ̄ e
T,j ,s̄

e
T,j(z), and other averages on the sample size n by the bar above the letters for nota-

tional convenience. As we take the “short” T approach, the asymptotic expressions should be

understood for n → +∞ with T > 1 being fixed in what follows.

As the moment conditions of the proposed GMM estimator are based on the local polynomial

estimator, we have to first characterize its Bahadur-type representation following Masry (1996)

and Li et al. (2003). Adapting their conventional notation to our setting, we first express τ̄ e
T,j

in a matrix form in a lexicographical order. Let Nl = (l+ 2d− 1)!/(l!(2d − 1)!) be the number

of distinct 2d-tuples with |j| ≡ j1 + · · · + j2d = l. In local polynomial estimation, Nl denotes

the number of the distinct lth order partial derivatives of mT(z). We arrange these 2d-tuples as

a sequence in a lexicographical order. The highest priority is given to the last position so that

(0, . . . , 0, l) is the first element in the sequence and (l, 0, . . . , 1) is the last element. Let g−1
l ≡ g−1

|j|

denote this one-to-one mapping. We arrange the Nl = N|j| values of τ̄ eT,j(z) in a column vector

τ̄T,l(z) = (τ̄ e
T,gl(k)

(z))Nl

k=1 in the lexicographical order. We further define the column vector

τ̄T(z) = (τ̄⊤
T,0(z), τ̄

⊤
T,1(z), . . . , τ̄

⊤
T,p(z))

⊤, where τ̄T,l(z) is an Nl × 1 vector with elements τ̄ e
T,j(z),

|j| = l, arranged according to the lexicographical order; τ̄T(z) has thus dimension N × 1 with

N =
∑p

l=0 Nl.

Furthermore, by arranging s̄e
T,j+k(z) in a matrix S̄T,|j|,|k|(z) in the lexicographical order with

the (l1, l2)th element given by [S̄T,|j|,|k|(z)]l1l2 = s̄e
T,g|j|(l1)+g|k|(l2)

(z), we define the N×N matrix

S̄T(z) and N ×Np+1 matrix B̄T(z) by

S̄T(z) =



















S̄T,0,0(z) S̄T,0,1(z) . . . S̄T,0,p(z)

S̄T,1,0(z) S̄T,1,1(z) . . . S̄T,1,p(z)

...
...

. . .
...

S̄T,p,0(z) S̄T,p,1(z) . . . S̄T,p,p(z)



















and B̄T(z) =



















S̄T,0,p+1(z)

S̄T,1,p+1(z)

...

S̄T,p,p+1(z)



















.

Let µj =
´

R2d u
jK(u)du and vs,j =

´

R2d usu
jK(u)du, where us is the sth element of vector u.

Then we define Ni × Nj dimensional matrices Mi,j and Qs,i,j to have their (l1, l2)th elements
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given by µgi(l1)+gj(l2) and vs,gi(l1)+gj(l2), respectively, for s = 1, . . . , 2d, and we further define

M=



















M0,0 M0,1 . . . M0,p

M1,0 M1,1 . . . M1,p

...
...

. . .
...

Mp,0 Mp,1 . . . Mp,p



















, B=



















M0,p+1

M1,p+1

...

Mp,p+1



















, Qs=



















Qs,0,0 Qs,0,1 . . . Qs,0,p

Qs,1,0 Qs,1,1 . . . Qs,1,p

...
...

. . .
...

Qs,p,0 Qs,p,1 . . . Qs,p,p



















.

Let f
′

T,s(z) denote the sth element of the first derivative f
′

T
(z) of the density function fT(z)

of ZiT, s = 1, . . . , 2d, and define MfT(z) = MfT(z), QfT(z) =
∑2d

s=1 f
′

T,s(z)Qs, and GfT(z) =

[MfT(z)]−1QfT(z)[MfT(z)]−1.

By Masry (1996, equation (2.13)) and Li et al. (2003, equation (A.9)), as n → +∞

β̂T(z)− βT(z) = S̄−1
T

(z)τ̄T(z) + hp+1
n S̄−1

T
B̄T(z)m

(p+1)
T

(z) +Op(h
p+2
n ), 0 ≤ |k| ≤ p, (A.10)

where β̂T(z) = (h0nb̂
⊤
0,T(z), . . . , h

p
nb̂⊤p,T(z))

⊤ and b̂k,T(z) are the estimates of parameter vec-

tors (bj,T(z))|j|=k in objective function (6) and m
(p+1)
T

(z) is the Np+1 elements of derivatives

(DjmT)(z)/j ! for |j| = p+ 1 arranged in the lexicographical order.

Recall that local derivative estimator δ̂T(z) = Lb̂T(z) = h−1
n Lβ̂T(z) in equation (8) is defined

as the difference of the first d and last d elements of b̂1,T(z). The average derivative estimator

and average outer product of gradients are thus defined as in equations (10) and (11) by

δ̂T =
1

n

n
∑

i=1

δ̂T(ZiT) =
1

nhn

n
∑

i=1

Lβ̂T(ZiT).

δ̂TT =
1

n

n
∑

i=1

δ̂T(ZiT)δ̂
⊤
T (ZiT) =

1

nh2n

n
∑

i=1

Lβ̂T(ZiT)β̂
⊤
T (ZiT)L

⊤.

These averages will be now decomposed and analyzed using the representation (A.10). In par-

ticular, the decompositions used in Supplementary Appendix E rely on the following averages:

Ā11
T =

1

n

n
∑

i=1

S̄−1
T

(ZiT)τ̄T(ZiT),

Ā12
T =

1

n

n
∑

i=1

S̄−1
T

(ZiT)B̄T(ZiT)m
(p+1)
T

(ZiT),

J̄11
T =

1

n

n
∑

i=1

(MfT(ZiT))
−1τ̄T(ZiT),
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J̄12
T =

1

n

n
∑

i=1

GfT(ZiT)τ̄T(ZiT),

J̄21
TT =

1

n

n
∑

i=1

(MfT(ZiT))
−1τ̄T(ZiT)m

′

T(ZiT)
⊤,

J̄22
TT =

1

n

n
∑

i=1

GfT(ZiT)τ̄T(ZiT)m
′

T(ZiT)
⊤,

and finally, J̄1
T
= J̄11

T
/hn − J̄12

T
and J̄2

TT
= J̄21

TT
/hn − J̄22

TT
.

Using this notation, the following results are derived in Supplementary Appendix E.

Lemma 1. Under Assumptions 1–9, Ā12
T

= A1
T
+O(hn) and Ā22

TT
= A2

TT
+O(hn) almost surely

as n → ∞, where A1
T
= M−1B E[m

(p+1)
T

(ZiT)] and A2
TT

= M−1B E[m
(p+1)
T

(ZiT)m
′

T
(ZiT)

⊤].

Lemma 2. Under Assumptions 1–9, J̄11
T,r = Op

(

(nhdn)
−1
)

and
√
nJ̄21

TT,r/hn → N(0,Φ21
T,r) as

n → ∞ for r = 2, . . . , 2d + 1, where

Φ21
TT,r = E

[

σTT(ZiT)m
′′

T(ZiT)e
⊤
r−1er−1m

′′

T(ZiT)
⊤
]

,

and m
′′

T
(z) = ∂m

′

T
(z)/∂z⊤.

Lemma 3. Under Assumptions 1–9,
√
nJ̄12

T,r → N(0,Φ12
T,r) and

√
nJ̄22

T,r → N(0,Φ22
T,r) in distri-

bution as n → ∞ for r = 2, . . . , 2d+ 1, where

Φ12
T,r = E [σTT(ZiT)GT;r,1(ZiT)GT;r,1(ZiT)] ,

Φ22
T,r = E

[

σTT(ZiT)GT;r,1(ZiT)GT;r,1(ZiT)m
′

T(ZiT)m
′

T(ZiT)
⊤
]

,

and the matrix GT(z) = GfT(z)MfT(z) = [MfT(z)]−1QfT(z).

Lemma 4. Let GT;·1(z) = GT(z)e1 be the first column of GT(z) = [MfT(z)]−1QfT(z) and

GMT(z) = vec(−LGT;·1(z),−2L1m
′′

T
(ZiT)L

⊤
1 −LGT;·1(ZiT)m

′

T
(ZiT)

⊤L⊤
1 −L1m

′

T
(ZiT)GT;·1(ZiT)

⊤L⊤).

Under Assumptions 1–9,

√
nvec(LJ̄1

T, L[J̄
2
TT + J̄2⊤

TT ]L
⊤) =

1√
n

n
∑

i=1

[ViTGMT(ZiT)] → N(0,ΦT) (A.11)

in distribution as n → +∞, where ΦT = E
[

σTT(ZiT, ZiT)GMT(ZiT)GMT(ZiT)
⊤] .
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The final result derived in Supplementary Appendix E using Lemmas 1–4 can be stated for

n → ∞ as (see equations (S.30)–(S.31))

1

n

n
∑

i=1

[β̂T(ZiT)− βT(ZiT)] = hnJ̄
1
T + op(h

3/2
n n−1/2) + hp+1

n A1
T +Op(h

p+2
n ) (A.12)

and

1

n
L

n
∑

i=1

[β̂T(ZiT)β̂
⊤
T (ZiT)− βT(ZiT)β

⊤
T (ZiT)]L

⊤ (A.13)

= h2n

{

J̄2
TT + J̄2⊤

TT

}

{1 + op(1)} + op(h
5/2
n n−1/2) + hp+2

n

{

A2
TT +A2⊤

TT

}

+Op(h
p+3
n ).

C Proofs of Theorems 2–4

In Appendix B, (A.12)–(A.13) were derived for one particular response Yc,it rather than for

the vector of responses. Since ∂
∂x⊤

t

E[Yit|Xit,Xi(t−∆)] =
(

∂
∂x⊤

t

E[Yc,it|Xit,Xi(t−∆)]
)R

c=1
and

∂
∂xt

E[Y ⊤
it |Xit,Xi(t−∆)]

∂
∂x⊤

t

E[Yit|Xit,Xi(t−∆)] =
∑R

c=1
∂

∂xt
E[Yc,it|Xit,Xi(t−∆)]

∂
∂x⊤

t

E[Yc,it|Xit,Xi(t−∆)],

denoting β̂c,T(z) = (h0nb̂
⊤
c,0,T(z), . . . , h

p
nb̂⊤c,p,T(z))

⊤ and β̂T(z) = (β̂⊤
1,T(z), . . . , β̂dy ,T(z)) allows us

to rewrite (A.12)–(A.13) for all responses Yit and n → ∞ as

1

n

n
∑

i=1

[β̂T(ZiT)− βT(ZiT)] = hnJ̄
1
T + op(h

3/2
n n−1/2) + hp+1

n A1
T +Op(h

p+2
n ) (A.14)

and

1

n
L

n
∑

i=1

[β̂T(ZiT)β̂
⊤
T (ZiT)− βT(ZiT)β

⊤
T (ZiT)]L

⊤

= h2n

{

J̄2
TT + J̄2⊤

TT

}

{1 + op(1)} + op(h
5/2
n n−1/2) (A.15)

+ hp+2
n

{

A2
TT +A2⊤

TT

}

+Op(h
p+3
n ),

where

A1
T = (A1

c,T)
dy
c=1, J̄

1
T = (J̄1

c,T)
dy
c=1 and A2

TT = (A2
c,TT)

dy
c=1, J̄

2
c,TT = (J̄2

c,TT)
dy
c=1 (A.16)
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and the symbols with subscript c refer to the analogously labelled objects defined in Appendix

B: A1
c,T = M−1B E[m

(p+1)
c,T (ZiT)] and A2

c,TT = M−1B E[m
(p+1)
c,T (ZiT)m

′

c,T(ZiT)
⊤] in Lemma 1,

J̄1
c,T = 1

n

∑n
i=1{(MfT(ZiT))

−1τ̄c,T(ZiT)/hn −GfT(ZiT)τ̄c,T(ZiT)} and

J̄2
c,TT = 1

n

∑n
i=1{(MfT(ZiT))

−1τ̄c,T(ZiT)m
′

c,T(ZiT)
⊤/hn −GfT(ZiT)τ̄c,T(ZiT)m

′

c,T(ZiT)
⊤}.

Proof. [Proof of Theorem 2] Let δ̃T = 1
n

∑n
i=1 L1m

′
T
(ZiT) and δ̃TT = 1

n

∑n
i=1 L1m

′
T
(ZiT)m

′
T
(ZiT)

⊤L⊤
1 .

Let us also define the vector MMT(ZiT) = vec(L1m
′
T
(ZiT), L1m

′
T
(ZiT)m

′
T
(ZiT)

⊤L⊤
1 ). We will

study the asymptotic distribution of

√
n
(

vec(δ̂T, δ̂TT)− hpnvec(LA
1
T, L[A

2
TT +A2⊤

TT]L
⊤)− EMMT(ZiT)

)

=
√
n
{

vec(δ̂T, δ̂TT)− vec(δ̃T, δ̃TT)− hpnvec(LA
1
T, L[A

2
TT +A2⊤

TT]L
⊤)
}

+
√
n
{

vec(δ̃T, δ̃TT)− EMMT(ZiT)
}

.

(A.17)

Next, it holds almost surely that

√
n
{

vec(δ̂T, δ̂TT)− vec(δ̃T, δ̃TT)− hpnvec(LA
1
T, L[A

2
TT +A2⊤

TT]L
⊤)
}

=
√
nvec

(

1

nhn

n
∑

i=1

[Lβ̂T(ZiT)− LβT(ZiT)− hp+1
n LA1

T],

1

nh2n

n
∑

i=1

[L{β̂T(ZiT)− βT(ZiT)}{β̂⊤
T (ZiT)− Lβ⊤

T (ZiT)}L⊤ − hp+2
n L(A2

TT +A2⊤
TT)L

⊤]

)

=
√
nvec

(

LJ̄1
T + op(h

1/2
n n−1/2) +Op(h

p+1
n ),

L
{

J̄2
TT + J̄2⊤

TT

}

L⊤{1 + op(1)}+ op(h
1/2
n n−1/2) +Op(h

p+1
n )

)

=
√
nvec

(

LJ̄1
T, L

{

J̄2
TT + J̄2⊤

TT

}

L⊤
)

+ op(1) +Op(n
1/2hp+1

n )

=
√
nvec

(

LJ̄12
T , L

{

J̄22
TT + J̄22⊤

TT

}

L⊤
)

+ op(1),

(A.18)

where the first equality follows from the definitions of δ̂T(z) = h−1
n Lβ̂T(z), δ̂TT(z) = h−2

n Lβ̂T(z)β̂T(z)
⊤L⊤

and the latter equalities are due to (A.14), (A.15), and the conditions imposed on the band-

width hn by Assumption 9.1. Now define the vector “analog” GMT(z) = (−[Idy⊗{LGT;·1(z)}]⊤,

ιdyvec[−2L1m
′′

T
(ZiT)L

⊤
1 −LGT;·1(ZiT)m

′

T
(ZiT)

⊤L⊤
1 −L1m

′

T
(ZiT)GT;·1(ZiT)

⊤L⊤]⊤)⊤ of the sum-

mands in (A.11) in Lemma 4 along with GT;·1(z) = GT(z)e1 being the first column of GT(z) =

[MfT(z)]−1QfT(z), Idy the identity matrix, and ιdy the vector of ones. Also recall thatMMT(ZiT) =
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vec(L1m
′
T
(ZiT), L1m

′
T
(ZiT)m

′
T
(ZiT)

⊤L⊤
1 ). For n → ∞, we obtain

√
n
(

vec(δ̂T, δ̂TT)− hpnvec(LA
1
T, L[A

2
TT +A2⊤

TT]L
⊤)− EMMT(ZiT)

)

=−
√
nvec

(

LJ̄1
T, L

{

J̄2
TT + J̄2⊤

TT

}

L⊤
)

+ op(1)

+
√
n
{

vec(δ̃T, δ̃TT)− E vec[L1m
′
T(ZiT), L1m

′
T(ZiT)m

′
T(ZiT)

⊤L⊤
1 ]
}

=
1√
n

n
∑

i=1

[GMT(ZiT)ViT + {MMT(ZiT)− EMMT(ZiT)}] + op(1)

(A.19)

by substituting (A.18) into equation (A.17) and using (A.11). Now we apply the multivariate

central limit theorem to (A.19) consisting of identically distributed random variables with zero

means and variance matrix

Var [GMT(ZiT)ViT + {MMT(ZiT)− EMMT(ZiT)}]

=ΦT +ΩT + 2Cov [GMT(ZiT)ViT; {MMT(ZiT)− EMMT(ZiT)}]

=ΦT +ΩT + 2E [GMT(ZiT)ViT × {MMT(ZiT)− EMMT(ZiT)}]

=ΦT +ΩT + 2E [GMT(ZiT) E(ViT|Zi1, . . . , ZiT ) ×{MMT(ZiT)− EMMT(ZiT)}] = ΦT +ΩT

because Cov[GMT(ZiT)ViT, GMT(ZiT)ViT] = E[GMT(ZiT) E(ViTV
⊤
iT |ZiT, ZiT)

GMT(ZiT)
⊤] = E[GMT(ZiT)ΣTT(ZiT)GMT(ZiT)

⊤]. Therefore,

√
n
(

δ̂T − hpnvec(LA
1
T, L[A

2
TT +A2⊤

TT]L
⊤)− EMMT(ZiT)

)

→ N(0,ΦT +ΩT)

in distribution as n → +∞. �

Proof. [Proof of Theorem 3] Let δ̃T = 1
n

∑n
i=1 L1m

′
T
(ZiT) and δ̃TT = 1

n

∑n
i=1 L1m

′
T
(ZiT)m

′
T
(ZiT)

⊤L⊤
1 .

For Zi· = {ZiT}T∈S , let us also define the vectorMMT(ZiT) = vec(L1m
′
T
(ZiT), L1m

′
T
(ZiT)m

′
T
(ZiT)

⊤L⊤
1 )

andMM(Zi·) = {MMT(ZiT)}T∈S . AlsoGMT(z) = (−[Idy⊗{LGT;·1(z)}]⊤, ιdyvec[−2L1m
′′

T
(ZiT)L

⊤
1 −

LGT;·1(ZiT)m
′

T
(ZiT)

⊤L⊤
1 −L1m

′

T
(ZiT)GT;·1(ZiT)

⊤L⊤]⊤)⊤ (vectorGT;·1(z) = [MfT(z)]−1QfT(z)e1

was defined in Lemma 4, Idy is the identity matrix, and ιdy is the vector of ones), GM(Zi·) =

{GM⊤
1 (ZiT)}T∈S , and

V GM(Vi·, Zi·) = {V ⊤
iTGM⊤

T (ZiT)}T∈S .
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Finally, let δ̂ = {vec(δ̂T, δ̂TT)}T∈S and Bias = {MMT(ZiT)+hpnvec(LA1
T
, L[A2

TT
+A2⊤

TT
]L⊤)}T∈S .

Since equation (A.19) holds for any fixed T ∈ S , we have

√
n(δ̂ −Bias) =

1√
n

n
∑

i=1

[V GM(Vi·, Zi·) + {MM(Zi·)− EMM(Zi·)}] + op(1). (A.20)

Note that V GM(ViT, ZiT), {MMT(ZiT) − EMMT(ZiT)}, and their sums are identically dis-

tributed random variables with zero means and finite second moments by Assumption 9.

Hence, we can use the multivariate central theorem to obtain the asymptotic distribution of

n−1/2
∑n

i=1[V GM(Vi·, Zi·) + {MM(Zi·) − EMM(Zi·)}] in (A.20). Since the covariance of the

elements of V GM(Vi·, Zi·) corresponding to the Sth and Tth pairs of time periods is

Cov[ViTGMT(ZiT), ViSGMS(ZiS)] = E[E(ViTViS|ZiT, ZiS)GMT(ZiT)GMS(ZiS)
⊤]

= E[E[ΣTS(ZiT, ZiS)GMT(ZiT)GMS(ZiS)
⊤] = Φ(T,S),

Var(V GMi) = Φ. Furthermore, we have Cov{MMT(ZiT)−EMMT(ZiT),MMS(Zit,S)−EMMS(Zit,S)} =

Ω(T,S) and thus Var{MM(Zit,·)− EMM(Zit,·)} = Ω. Since for any S,T ∈ S

Cov(V GM(ViT, ZiT),MMS(ZiS)− EMMS(ZiS))

=E[V GM(ViT, ZiT){MMS(ZiS)− EMMS(ZiS)}⊤]

=E[GMT(ZiT)ViT{MMS(ZiS)− EMMS(ZiS)}⊤]

=E[GMT(ZiT) E(ViT|Zi·){MMS(ZiS)− EMMS(ZiS)]}⊤]

=0,

we obtain Var[V GM(Vi·, Zi·)+{MM(Zi·)−EMM(Zi·)}] = Φ+Ω. Therefore,
√
n(δ̂−Bias) →

N (0,Φ+ Ω) in distribution as n → +∞. �

Proof. [Proof of Theorem 4] Assuming thatWn → W in probability for n → ∞ is such that θ0 =

argminθg(θ)⊤Wg(θ) and θ0 is in the interior of Θ, where g(θ) = {gTT(θ)}T∈S , the consistency

of θ̂n follows from Theorem 3 and Newey and McFadden (Theorem 2.1). Then the first order

conditions are

∂ĝ⊤n (θ̂n)
∂θ

Wnĝn(θ̂n) = 0,
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The Taylor expansion of ĝn(θ̂n) further leads to

∂ĝ⊤n (θ̂n)
∂θ⊤

Wn

[

ĝn(θ0) +
∂ĝn(θ̃n)

∂θ⊤
(θ̂n − θ0)

]

= 0,

where θ̃n ∈
[

θ0, θ̂n

]

lies in a multidimensional interval. Since θ̃n → θ0 in probability, ∂ĝn(θ̃n)/∂θ⊤ →

∂g(θ0)/∂θ
⊤ = Π since this derivative is differentiable and does not depend on the data.

Since Π⊤WΠ is a full rank matrix, it follows that

Π⊤W
[

ĝn(θ0) + Π(θ̂n − θ0)
]

= op(ĝn(θ0)) + op(θ̂n − θ0)

and

√
n(θ̂n − θ0) =

(

Π⊤WΠ
)−1

Π⊤W
√
nĝn(θ0)(1 + op(1)). (A.21)

Since
√
nĝn(θ0) = {vec(δ̂T, δ̂TT)⊤ − vec(Γ1t(T)B,BΓ2t(T)B

⊤)⊤}T∈S for t(T) representing the

later time period in T, Theorem 3 implies that

√
n(ĝn(θ0)− hpnBias) → N(0,Ω + Φ)

in distribution, where Ω + Φ represents the asymptotic variance of δ̂ = {vec(δ̂T, δ̂TT)}T∈S .

Hence,

√
n(θ̂n−θ0−hpn

(

Π⊤WΠ
)−1

Π⊤WBias) → N

(

0,
(

Π⊤WΠ
)−1

Π⊤W (Ω + Φ)WΠ
(

Π⊤WΠ
)−1

)

in distribution as n → ∞. �
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Supplemental material for

Nonseparable panel models with index

structure and correlated random effects

Pavel Čížek Serhan Sadikoğlu

This supplement contains several sections. Estimation with more than two time periods is

discussed in Appendix D along with the corresponding simulation results, the proofs of auxiliary

lemmas can be found in Appendix E, the generalized jackknife procedure for the bias reduction

is described in Appendix F, the estimation with discrete variables is in Appendix G, and the

moment conditions used in the application of Section 5 for estimation with functionally related

regressors such as quadratic and interaction terms are introduced in Appendix H. Finally, the

identification assumption for the dynamic sample selection model is verified in Appendix I.
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D Estimation with T > 2 time periods

Let us consider panel data with a fixed number T > 2 of time periods. The GMM estimation

procedure was introduced in Section 3 using two time periods t and t − ∆. Since these two

time periods are arbitrary, it is possible to construct the proposed moment conditions for any

pair of time periods T = (t, t −∆), where t = ∆+ 1, . . . , T and ∆ = 1, . . . , T , and use jointly

all moment conditions constructed for these pairs of time periods. This is facilitated by the

asymptotic distribution in Theorem 3 obtained for any set of time-period pairs T = (t, t−∆).

Such a procedure is suitable especially if the cross-sectional sample size n is relatively large and

sufficient to obtain nonparametric estimates of ADG and OPDG in Theorem 1.

On the other hand, if the cross-sectional sample size n is relatively small, while the panel

has a large number T of time periods, it might be preferable to pool the estimation across

all available time periods and estimate E(Yit|Xit,Xi(t−∆)) and its derivatives for a given ∆

using observations (Yit,Xit,Xi(t−∆)) for all i = 1, . . . , n and t = ∆ + 1, . . . , T . For a given

∆, this pooling of data from all time periods results in one set of moment conditions irrespec-

tive of the number of time periods. Without further assumptions, this pooling does not lead

to valid moment conditions in general model (4) since the regression function is allowed to

change with the time period t. The pooling is however possible if certain stationarity prop-

erties are imposed to guarantee that matrices in Theorem 1 are time-invariant – Γ1t = Γ1

and Γ2t = Γ2 (B does not change over time). Since Γ1,t =
{

E
[

ϕ
′

tr(X
⊤
itB,αi)

]}R

r=1
and

Γ2,t =
{

E
[

ϕ
′

tr(X
⊤
itB,αi)

⊤ϕ
′

ts(X
⊤
itB,αi)

]}R

r,s=1
, Γ1t = Γ1 and Γ2t = Γ2 means that

(a) the regression function φt = φ should not change over time and model (4) becomes

Yit = φ(X⊤
it β1, . . . ,X

⊤
it βR, αi, Uit) = φ(X⊤

itB,αi, Uit);

(b) the joint distributions Fα,Xt,Xt−∆
of (αi,Xit,Xi(t−∆)) are identical for all i ∈ N and ∆ <

t ≤ T .

These specific types of stationarity conditions can be tested as discussed in Čížek and Lei (2018)

and Ghanem (2017), and if (a) and (b) are acceptable, it is possible to pool and use data from

all time periods for the same moment conditions.

Using the described pooling, the additional simulation results for data sets with more than

two time periods are reported for the binary partially-linear single-index model (Table A.5), the

2



heteroskedastic censored-regression model (Table A.6), and the sample selection model (Table

A.7). All considered sample sizes (n, T ) = (1000, 2), (250, 5), (100, 11) result after differencing

in the same effective sample size of 1000 first-order differences (∆ = 1). The proposed GMM

estimator for T > 2 is also reported for various higher orders of differencing ∆: for T = 2, only

∆ = 1 is possible; for T = 5, ∆ = 1, 2, 3 is used; and for T = 11; ∆ = 1, 2, 3, 4, 5 is used.
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Table A.5: The bias and RMSE of all estimators in the binary partially linear single-index
model for the different sample sizes.

β13 β23
Bias RMSE Bias RMSE

n = 1000, T = 2
FE Logit 0.060 0.135
GMM-OPDG
∆ = 1 -0.004 0.172 0.012 0.210
GMM-ADG-OPDG
∆ = 1 -0.006 0.174 0.012 0.210
SMS -0.079 0.268

n = 250, T = 5
FE Logit 0.054 0.104
GMM-OPDG
∆ = 1 -0.015 0.155 0.021 0.232
∆ ≤ 2 -0.011 0.134 0.016 0.204
∆ ≤ 3 -0.011 0.132 0.015 0.199
GMM-ADG-OPDG
∆ = 1 -0.016 0.153 0.020 0.235
∆ ≤ 2 -0.012 0.135 0.018 0.207
∆ ≤ 3 -0.013 0.138 0.018 0.205
SMS -0.013 0.140

n = 100, T = 11
FE Logit 0.054 0.103
GMM-OPDG
∆ = 1 -0.014 0.148 0.026 0.224
∆ ≤ 2 -0.012 0.127 0.029 0.194
∆ ≤ 3 -0.011 0.119 0.032 0.187
∆ ≤ 4 -0.011 0.115 0.031 0.179
∆ ≤ 5 -0.012 0.115 0.032 0.177
GMM-ADG-OPDG
∆ = 1 -0.016 0.147 0.027 0.224
∆ ≤ 2 -0.014 0.128 0.029 0.195
∆ ≤ 3 -0.013 0.119 0.032 0.187
∆ ≤ 4 -0.013 0.115 0.031 0.180
∆ ≤ 5 -0.015 0.117 0.032 0.178
SMS -0.001 0.123
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Table A.6: The bias and RMSE of all estimators in the heteroskedastic censored regression
model for the different sample sizes.

β13 β23
Bias RMSE Bias RMSE

n = 1000, T = 2
Pooled Tobit 1.125 1.137
TLS 0.746 13.535
GMM-OPDG
∆ = 1 -0.023 0.256 0.053 0.287
GMM-ADG-OPDG
∆ = 1 -0.023 0.255 0.053 0.291
SMS -0.090 0.368

n = 250, T = 5
Pooled Tobit 1.129 1.147
TLS -0.072 28.249
GMM-OPDG
∆ = 1 -0.008 0.244 0.041 0.288
∆ ≤ 2 -0.007 0.215 0.031 0.255
∆ ≤ 3 -0.008 0.202 0.031 0.248
GMM-ADG-OPDG
∆ = 1 -0.011 0.241 0.040 0.287
∆ ≤ 2 -0.006 0.215 0.030 0.258
∆ ≤ 3 -0.009 0.206 0.032 0.253
SMS -0.024 0.210

n = 100, T = 11
Pooled Tobit 1.132 1.153
TLS 0.887 42.477
GMM-OPDG
∆ = 1 -0.032 0.247 0.036 0.277
∆ ≤ 2 -0.020 0.210 0.036 0.237
∆ ≤ 3 -0.018 0.197 0.037 0.222
∆ ≤ 4 -0.016 0.192 0.037 0.222
∆ ≤ 5 -0.015 0.190 0.039 0.220
GMM-ADG-OPDG
∆ = 1 -0.035 0.248 0.035 0.278
∆ ≤ 2 -0.021 0.207 0.035 0.237
∆ ≤ 3 -0.019 0.196 0.037 0.223
∆ ≤ 4 -0.018 0.192 0.037 0.223
∆ ≤ 5 -0.016 0.191 0.039 0.222
SMS 0.006 0.153
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Table A.7: The bias and RMSE of all estimators in the sample selection model for the different
sample sizes.

β12 β13 β23
Bias RMSE Bias RMSE Bias RMSE

n = 1000, T = 2
FE Logit+KYR 0.009 0.123 0.002 0.121 0.001 0.115
GMM-OPDG
∆ = 1 0.022 0.142 0.039 0.242 0.003 0.102
GMM-ADG-OPDG
∆ = 1 0.008 0.109 0.015 0.157 0.003 0.102

n = 250, T = 5
FE Logit+KYR 0.004 0.079 0.001 0.083 0.001 0.096
GMM-OPDG
∆ = 1 0.021 0.123 0.23 0.196 0.009 0.092
∆ ≤ 2 0.015 0.111 0.029 0.174 0.009 0.087
∆ ≤ 3 0.016 0.111 0.033 0.176 0.010 0.091
GMM-ADG-OPDG
∆ = 1 0.009 0.104 0.010 0.135 0.008 0.085
∆ ≤ 2 0.007 0.094 0.009 0.124 0.008 0.083
∆ ≤ 3 0.009 0.098 0.016 0.136 0.010 0.092

n = 100, T = 11
FE Logit+KYR 0.005 0.065 0.003 0.066 0.007 0.077
GMM-OPDG
∆ = 1 0.018 0.136 0.031 0.202 0.004 0.089
∆ ≤ 2 0.010 0.106 0.025 0.149 0.006 0.078
∆ ≤ 3 0.009 0.100 0.024 0.140 0.006 0.077
∆ ≤ 4 0.009 0.101 0.027 0.142 0.007 0.077
∆ ≤ 5 0.009 0.101 0.029 0.143 0.007 0.078
GMM-ADG-OPDG
∆ = 1 0.010 0.110 0.015 0.129 0.002 0.082
∆ ≤ 2 0.007 0.097 0.014 0.111 0.004 0.072
∆ ≤ 3 0.007 0.091 0.013 0.106 0.004 0.072
∆ ≤ 4 0.007 0.091 0.015 0.107 0.005 0.073
∆ ≤ 5 0.007 0.092 0.015 0.108 0.006 0.074
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E Proofs of auxiliary lemmas

In this appendix, we derive the properties of the local polynomial estimator (9) and the cor-

responding averages (10) and (11). As this estimation is performed for each response variable

separately, we assume for simplicity of notation in this section that Yit represents one particu-

lar (scalar) response variable, denoted in the main text as Yc,it for c ∈ {1, . . . , dy}. The same

notation, omitting the subscript indicating the response component considered, is then applied

also to the conditional expectations mT(z), their derivative differences δT(z), and residuals ViT.

Given one particular response, we need to introduce notation, which is analogous to Čížek and

Lei (2018), Masry (1996), and Li et al. (2003). We also introduce results of some theorems and

arguments in Čížek and Lei (2018), Li et al. (2003), and Masry (1996) as the assumptions of

those theorems are included in Assumptions 1–9. Thus, we first develop convenient notation,

and then we prove the auxiliary lemmas required for the proofs of Theorem 2–4, which follow

in Appendix C.

SincemT(·) is (p+1)-times differentiable with uniformly bounded derivatives by Assumption

9, mT(z) can be locally approximated at a point z0 by a polynomial of order p:

mT(z) ≈
∑

0≤|k|≤p

1

k!
DkmT(v)|v=z0(z − z0)

k,

where k = (k1, . . . , k2d) ∈ N
2d, k! = k1!× · · · × k2d!, |k| =

∑2d
i=1 ki, z

k = zk11 × · · · × zk2d2d ,

∑

0≤|k|≤p

=

p
∑

j=0

j
∑

k1=0

· · ·
∑

k2d=0;k1+···+k2d=j

, and (DkmT)(z) =
∂kmT(z)

∂zk11 . . . ∂zk2d2d

.

Further, define for j = (j1, . . . , j2d) ∈ N
2d and z ∈ R

2d

τ̄ eT,j(z) =
1

n

n
∑

i=1

(Yit −mT(ZiT))

(

ZiT − z

hn

)j

Kh (ZiT − z)

=
1

n

n
∑

i=1

ViT

(

ZiT − z

hn

)j

Kh (ZiT − z) ,

(S.1)

and

s̄eT,j(z) =
1

n

n
∑

i=1

(

ZiT − z

hn

)j

Kh (ZiT − z) , (S.2)
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where ViT = Yit − mT(ZiT) and Kh(u) = h−2d
n K (u/hn). We indicate the dependence of τ̄ e

T,j ,

s̄e
T,j(z), and other averages on the sample size n by the bar above the letters for notational

convenience. As we take a “short” T approach, the asymptotic expressions should be understood

for n → +∞ with T > 1 being fixed in what follows.

As the moment conditions of the proposed GMM estimator are based on local polynomial

estimation, we first explore the properties of local polynomial estimator by means of a Bahadur-

type representation following Masry (1996) and Li et al. (2003). For that purpose, we adapt

their conventional notation to our setting. We first express τ̄ e
T,j in a matrix form in a lexico-

graphical order. Let Nl = (l + 2d − 1)!/(l!(2d − 1)!) be the number of distinct 2d-tuples with

|j| ≡ j1 + · · · + j2d = l. In local polynomial estimation problem, Nl denotes the number of

the distinct lth order partial derivatives of mT(z). We arrange these 2d-tuples as a sequence

in a lexicographical order. The highest priority is given to the last position so that (0, . . . , 0, l)

is the first element in the sequence and (l, 0, . . . , 1) is the last element. Let g−1
l ≡ g−1

|j| de-

note this one-to-one mapping. We arrange the Nl = N|j| values of τ̄ eT,j(z) in a column vector

τ̄T,l(z) = (τ̄ e
T,gl(k)

(z))Nl

k=1 in the lexicographical order. We further define the column vector

τ̄T(z) = (τ̄⊤
T,0(z), τ̄

⊤
T,1(z), . . . , τ̄

⊤
T,p(z))

⊤, where τ̄T,l(z) is an Nl × 1 vector with elements τ̄ e
T,j(z),

|j| = l, arranged according to the lexicographical order; τ̄T(z) has thus dimension N × 1 with

N =
∑p

l=0 Nl.

Furthermore, by arranging s̄e
T,j+k(z) in a matrix S̄T,|j|,|k|(z) in the lexicographical order with

the (l1, l2)th element given by [S̄T,|j|,|k|(z)]l1l2 = s̄e
T,g|j|(l1)+g|k|(l2)

(z), we define the N×N matrix

S̄T(z) and N ×Np+1 matrix B̄T(z) by

S̄T(z) =



















S̄T,0,0(z) S̄T,0,1(z) . . . S̄T,0,p(z)

S̄T,1,0(z) S̄T,1,1(z) . . . S̄T,1,p(z)

...
...

. . .
...

S̄T,p,0(z) S̄T,p,1(z) . . . S̄T,p,p(z)



















and B̄T(z) =



















S̄T,0,p+1(z)

S̄T,1,p+1(z)

...

S̄T,p,p+1(z)



















.

Let µj =
´

R2d u
jK(u)du and vs,j =

´

R2d usu
jK(u)du, where us is the sth element of vector u.

Then we define Ni × Nj dimensional matrices Mi,j and Qs,i,j to have their (l1, l2)th elements

8



given by µgi(l1)+gj(l2) and vs,gi(l1)+gj(l2), respectively, for s = 1, . . . , 2d, and we further define

M=



















M0,0 M0,1 . . . M0,p

M1,0 M1,1 . . . M1,p

...
...

. . .
...

Mp,0 Mp,1 . . . Mp,p



















, B=



















M0,p+1

M1,p+1

...

Mp,p+1



















, Qs=



















Qs,0,0 Qs,0,1 . . . Qs,0,p

Qs,1,0 Qs,1,1 . . . Qs,1,p

...
...

. . .
...

Qs,p,0 Qs,p,1 . . . Qs,p,p



















.

Let f
′

T,s(z) denote the sth element of the first derivative f
′

T
(z) of the density function fT(z)

of ZiT, s = 1, . . . , 2d, and define MfT(z) = MfT(z), QfT(z) =
∑2d

s=1 f
′

T,s(z)Qs, and GfT(z) =

[MfT(z)]−1QfT(z)[MfT(z)]−1.

By Masry (1996, equation (2.13)) and Li et al. (2003, equation (A.9)), as n → +∞

β̂T(z)− βT(z) = S̄−1
T

(z)τ̄T(z) + hp+1
n S̄−1

T
B̄T(z)m

(p+1)
T

(z) +Op(h
p+2
n ), 0 ≤ |k| ≤ p, (S.3)

where β̂T(z) = (h0nb̂
⊤
0,T(z), . . . , h

p
nb̂⊤p,T(z))

⊤ and b̂k,T(z) are the estimates of parameter vec-

tors (bj,T(z))|j|=k in objective function (6) and m
(p+1)
T

(z) is the Np+1 elements of derivatives

(DjmT)(z)/j ! for |j| = p+1 arranged in the lexicographical order. Note that the term Op(h
p+2
n )

in (S.3) constitutes the terms that are bounded in probability by hp+2
n uniformly in z ∈ D by

Masry (1996, Theorem 2 and Corollary 3) since [lnn/nh2d+2
n ]1/2 → ∞ by Assumption 9.

Recall that local derivative estimator δ̂T(z) = Lb̂T(z) = h−1
n Lβ̂T(z) in equation (8) is defined

as the difference of the first d and last d elements of b̂1,T(z). Thus, the average derivative

estimator and average outer product of gradients are then defined as in equations (10) and (11)

by

δ̂T =
1

n

n
∑

i=1

δ̂T(ZiT) =
1

nhn

n
∑

i=1

Lβ̂T(ZiT).

δ̂TT =
1

n

n
∑

i=1

δ̂T(ZiT)δ̂
⊤
T (ZiT) =

1

nh2n

n
∑

i=1

Lβ̂T(ZiT)β̂
⊤
T (ZiT)L

⊤.
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Using (S.3), we will study now the sample average of β̂T(ZiT)− βT(ZiT):

1

n

n
∑

i=1

[β̂T(ZiT)− βT(ZiT)]

=
1

n

n
∑

i=1

S̄−1
T

(ZiT)τ̄T(ZiT) +
hp+1
n

n

n
∑

i=1

S̄−1
T

(ZiT)B̄T(ZiT)m
(p+1)
T

(ZiT) +Op(h
p+2
n )

= Ā11
T + hp+1

n Ā12
T +Op(h

p+2
n ),

(S.4)

where Ā11
T

= 1
n

∑n
i=1 S̄

−1
T

(ZiT)τ̄T(ZiT) and Ā12
T

= 1
n

∑n
i=1 S̄

−1
T

(ZiT)B̄T(ZiT)m
(p+1)
T

(ZiT). Simi-

larly, we will also analyze the asymptotic behavior of Lβ̂T(ZiT)β̂
⊤
T
(ZiT)L

⊤−LβT(ZiT)β
⊤
T
(ZiT)L

⊤.

This difference can be decomposed as

L
1

n

n
∑

i=1

[β̂T(ZiT)β̂
⊤
T (ZiT)− βT(ZiT)β

⊤
T (ZiT)]L

⊤

=L
1

n

n
∑

i=1

[βT(ZiT){β̂⊤
T (ZiT)− β⊤

T (ZiT)}]L⊤ (S.5)

+L
1

n

n
∑

i=1

[{β̂T(ZiT)− βT(ZiT)}β⊤
T (ZiT)]L

⊤ (S.6)

+L
1

n

n
∑

i=1

[{β̂T(ZiT)− βT(ZiT)}{β̂⊤
T (ZiT)− β⊤

T (ZiT)}]L⊤. (S.7)

Given the uniform consistency of β̂T(ZiT) by Čížek and Lei (2018, Theorem 1), the last term

(S.7) is asymptotically negligible with respect to (S.5) and (S.6). Since (S.5) is just the transpose

of (S.6), we will only discuss the analysis of the latter term in what follows, the results for

the first one can be derived analogously. Due to uniform boundedness of LβT(ZiT)/hn =

L1m
′

T
(ZiT), see Assumption 9, substituting (S.4) into (S.6) results up to a term Op(h

p+3
n ) in

L

{

hn
n

n
∑

i=1

S̄−1
T

(ZiT)τ̄T(ZiT)m
′

T(ZiT)
⊤ +

hp+2
n

n

n
∑

i=1

S̄−1
T

(ZiT)B̄T(ZiT)m
(p+1)
T

(ZiT)m
′

T(ZiT)
⊤
}

L⊤
1 .

Denoting the two sums in the curly brackets Ā21
TT

and hp+2
n Ā22

TT
, we first study the asymptotic

properties of Ā12
T

and Ā22
TT
; later, we discuss Ā11

T
and Ā21

TT
.

Lemma 1. Under Assumptions 1–9, Ā12
T

= A1
T
+O(hn) and Ā22

TT
= A2

TT
+O(hn) almost surely

as n → ∞, where A1
T
= M−1B E[m

(p+1)
T

(ZiT)] and A2
TT

= M−1B E[m
(p+1)
T

(ZiT)m
′

T
(ZiT)

⊤].

Proof. The first claim was established in Čížek and Lei (2018, Lemma 1). For the second claim,

10



note that sup z∈D|S̄T(z) −MfT(z) − hnQ
fT(z)| = o(h

3/2
n ), sup z∈D|(S̄T(z))

−1 − (MfT(z))−1| =

O(hn), and sup z∈D|B̄T(z) − BfT(z)| = O(hn) almost surely for n → ∞ as discussed in the

proof of Čížek and Lei (2018, Lemma 1). Using MfT(z) = MfT(z), it follows that Ā22
TT

=

M−1B 1
n

∑n
i=1m

(p+1)
T

(ZiT)m
′

T
(ZiT)

⊤ +O(hn) almost surely for n → +∞ by Assumption 9.4.

By Assumption 9.4, the function m
(p+1)
T

(z)m
′

T
(z)⊤ is bounded and uniformly continuous

in z. Furthermore, 9.4 ensures that expectations E |m(p+1)
T

(ZiT)m
′

T
(ZiT)

⊤| exist and are finite.

Hence, the average 1
n

∑n
i=1{m

(p+1)
T

(ZiT)m
′

T
(ZiT)

⊤} converges to E[m
(p+1)
T

(ZiT)m
′

T
(ZiT)

⊤] al-

most surely by Khintchine’s law of large numbers (due to the distribution of ZiT being the

same over time by Assumption 3). Therefore, we conclude that Ā22
TT

= M−1B E[m
(p+1)
T

(ZiT)

m
′

T
(ZiT)

⊤] +O(hn) = A2
T
+O(hn) almost surely as n → +∞. �

We now study the terms Ā11
T

and Ā21
TT
. Since it holds uniformly in z ∈ D that S̄−1

T
(z) =

(MfT(z))−1 − hnG
fT(z) + o(h

3/2
n ) almost surely as n → ∞ (see the proof of Lemma 1), we can

decompose Ā11
T

and Ā21
TT

into

Ā11
T =

1

n

n
∑

i=1

[

(MfT(ZiT))
−1τ̄T(ZiT)− hnG

fT(ZiT)τ̄T(ZiT) + o(h3/2n )τ̄T(ZiT)
]

= J̄11
T − hnJ̄

12
T + o(h3/2n ) = hnJ̄

1
T + o(h3/2n )

(S.8)

and

Ā21
TT =

hn
n

n
∑

i=1

[

(MfT(ZiT))
−1τ̄T(ZiT)m

′

T(ZiT)
⊤ − hnG

fT(ZiT)τ̄T(ZiT)m
′

T(ZiT)
⊤ + o(h3/2n )τ̄T(ZiT)m

′

T(ZiT)
⊤
]

= hnJ̄
21
TT − h2nJ̄

22
TT + o(h5/2n ) = h2nJ̄

2
TT + o(h5/2n )

(S.9)

almost surely, where J̄11
T

= 1
n

∑n
i=1(M

fT(ZiT))
−1τ̄T(ZiT), J̄12

T
= 1

n

∑n
i=1 G

fT(ZiT)τ̄T(ZiT) and

J̄21
TT

= 1
n

∑n
i=1(M

fT(ZiT))
−1τ̄T(ZiT)m

′

T
(ZiT)

⊤, J̄22
TT

= 1
n

∑n
i=1 G

fT(ZiT)τ̄T(ZiT)m
′

T
(ZiT)

⊤; J̄1
T
=

J̄11
T
/hn− J̄12

T
and J̄2

TT
= J̄21

TT
/hn− J̄22

TT
. Note that the second equalities in (S.8) and (S.9) follow

from Theorem 5 in Masry (1996) as it proves (elementwise) that supz∈D |τ̄T(z)| = o(1) almost

surely as n → +∞ under Assumption 9, and Khintchine’s law of large numbers that applies by

Assumption 9 again.

Let J̄11
T,r = e⊤r J̄

11
T

denote the rth element of J̄11
T

and J̄21
TT,r = e⊤r J̄

21
TT

denote the rth row of

11



J̄21
TT
. Their asymptotic behavior is derived in the following lemmas.

Lemma 2. Under Assumptions 1–9, J̄11
T,r = Op

(

(nhdn)
−1
)

and
√
nJ̄21

TT,r/hn → N(0,Φ21
T,r) as

n → ∞ for r = 2, . . . , 2d + 1, where

Φ21
TT,r = E

[

σTT(ZiT)m
′′

T(ZiT)e
⊤
r−1er−1m

′′

T(ZiT)
⊤
]

,

and m
′′

T
(z) = ∂m

′

T
(z)/∂z⊤.

Proof. As the first claim was proved by Čížek and Lei (2018, Lemma 2), we focus on the second

claim. Once we substitute τ̄T(ZiT) in (MfT(ZiT))
−1τ̄T(ZiT)m

′

T
(ZiT)

⊤ from (S.1), the rth row

J̄21
TT,r of matrix J̄21

TT
is an average

1

n

n
∑

i=1

p
∑

|k|=0

(MfT(ZiT))
−1
r,k

1

n

n
∑

j=1

VjT

(

ZjT − ZiT

hn

)k

Kh(ZjT − ZiT)m
′

T(ZiT)
⊤.

Considering this sum, it can be expressed for a given r and T as

1

n2

n
∑

i=1

∑

j 6=i

p
∑

|k|=0

(MfT(ZiT))
−1
r,kVjT

(

ZjT − ZiT

hn

)k

Kh(ZjT − ZiT)m
′

T(ZiT)
⊤

+
1

n2

p
∑

|k|=0

n
∑

i=1

(MfT(ZiT))
−1
r,kViT

(

ZiT − ZiT

hn

)k

Kh(ZiT − ZiT)m
′

T(ZiT)
⊤,

where the second term equals 0, whereas the first term forms the following vector of U -statistics:

1

n2

n
∑

i=1

∑

j 6=i

Hr(VjT, ZjT, ZjT;ViT, ZiT, ZiT)[1 +O(h2n)] (S.10)

with (MfT(ZiT) = MfT(ZiT) and m
′′

T
(z) = ∂m

′

T
(z)/∂z⊤)

Hr(VjT, ZjT, ZjT;ViT, ZiT, ZiT) =
1

2

p
∑

|k|=0

(M)−1
r,k

×
[

VjT

(

ZjT − ZiT

hn

)k Kh(ZjT − ZiT)

fT(ZiT)

{

m
′

T(ZjT)
⊤ − (ZjT − ZiT)

⊤m
′′

T(ZjT)
⊤
}

+ ViT

(

ZiT − ZjT

hn

)k Kh(ZiT − ZjT)

fT(ZjT)

{

m
′

T(ZiT)
⊤ − (ZiT − ZjT)

⊤m
′′

T(ZiT)
⊤
}

]

= H1
r (VjT, ZjT, ZjT;ViT, ZiT, ZiT)−H2

r (VjT, ZjT, ZjT;ViT, ZiT, ZiT);

12



the term O(h2n) represents the remainders of the Taylor expansions of m
′

T
(ZiT) at ZjT and

at ZiT and is uniform due to Assumption 9 for p ≥ 1, H1
r and H2

r represent terms with

the first and second derivatives of mT, respectively. Denoting the conditional expectation

Hr(ViT, ZiT, ZiT) = E[Hr(VjT, ZjT, ZjT;ViT, ZiT, ZiT)|ViT, ZiT, ZiT], Hoeffding’s decomposition

Rn =
1

n2

n
∑

i=1

∑

j 6=i

Hr(VjT, ZjT, ZjT;ViT, ZiT, ZiT)−
1

n

n
∑

i=1

Hr(ViT, ZiT, ZiT)

is asymptotically negligible: as in Kong and Xia (2014, proof of Theorem 1), Proposition 1 of Ar-

cones (1995) implies there is some c > 0 such that it holds P (
√
nRn ≥ hnǫ) ≤ 2 exp(−cǫhnn

1/2)

for any ǫ > 0 due to Assumption 9, and by the Borel-Cantelli lemma, |Rn| = o(n−1/2hn) and

|√nRn/hn| = o(1) almost surely as n → ∞.

Let us now focus on n−1
∑n

i=1 Hr(ViT, ZiT, ZiT). Defining the conditional expectation

H1
r(ViT, ZiT, ZiT) = E[H1

r (VjT, ZjT, ZjT;ViT, ZiT, ZiT)|ViT, ZiT, ZiT], it follows that

H1
r(ViT, ZiT, ZiT) =

1

2
ViT

p
∑

|k|=0

(M)−1
r,k E

[

(

ZiT − ZjT

hn

)k Kh(ZiT − ZjT)

fT(ZjT)
|ZiT

]

m
′

T(ZiT)
⊤

=
1

2
ViT ·

p
∑

|k|=0

(M)−1
r,k

ˆ

vkK(v)dv ·m′

T(ZiT)
⊤

=
1

2
ViT ·

p
∑

|k|=0

(M)−1
r,k(M)k,1 ·m

′

T(ZiT)
⊤

=
1

2
ViT · I(r = 1) ·m′

T(ZiT)
⊤ = 0.

By the cross-sectional independence, let

H2
r(ViT, ZiT, ZiT) = E[H2

r (VjT, ZjT, ZjT;ViT, ZiT, ZiT)|ViT, ZiT, ZiT]

=
hn
2
ViT

p
∑

|k|=0

(M)−1
r,k E

[

(

ZiT − ZjT

hn

)k Kh(ZiT − ZjT)

fT(ZjT)

(

ZiT − ZjT

hn

)⊤
|ZiT

]

m
′′

T(ZiT)
⊤.

13



Since Assumption 9.2 ensures the existence of kernel moments up to order 4p, we obtain

E

[

(

ZiT − ZjT

hn

)k Kh(ZiT − ZjT)

fT(ZjT)

(

ZiT − ZjT

hn

)⊤
|ZiT

]

=

ˆ

(

ZiT − zjt
hn

)k (ZiT − zjt
hn

)⊤
Kh(ZiT − zjt)dzjt

=

ˆ

uku⊤K(u)du = (Mk,2, . . . ,Mk,2d+1).

It follows for i ∈ IT that

Hr(ViT, ZiT, ZiT) = −1

2
hn[1 +O(hn)]ViT

p
∑

|k|=0

(M)−1
r,k(Mk,2, . . . ,Mk,2d+1)m

′′

T(ZiT)
⊤

= −1

2
hn[1 +O(hn)]ViT(I(r = 2), . . . , I(r = 2d+ 1))m

′′

T(ZiT)
⊤

= −1

2
hn[1 +O(hn)]ViTe

⊤
r−1m

′′

T(ZiT)
⊤.

Combining all the derived results, it follows for n → +∞ that

√
n

hn
J̄21
T,r =

2√
nhn

n
∑

i=1

Hr(ViT, ZiT, ZiT) + o(1) +Op(n
−1h−d−1

n ) (S.11)

=
1√
n

n
∑

i=1

[

−ViTe
⊤
r−1m

′′

T(ZiT)
⊤ + ViTO(hn)

]

(S.12)

+ o(1) +Op(n
−1h−d−1

n ) (S.13)

=
1√
n

n
∑

i=1

[

−ViTe
⊤
r−1m

′′

T(ZiT)
⊤
]

+O(hn)
1√
n

n
∑

i=1

ViT (S.14)

+ o(1) +Op((nh
d+1
n )−1). (S.15)

Note that Op((nh
d+1
n )−1) = op(1) by Assumption 9.1. Since Assumption 9.5 ensures that terms

ViT in (S.14) are independent and identically distributed with zero means and finite second

moments, the central limit theorem can be applied to the first and the second term in (S.14).

Hence, it implies that the second term is op (1) because of the term O(hn) in front of it. Thus,

the first term in (S.14) governs the asymptotic distribution of
√
nJ̄21

T,r/hn:

(√
n

hn
J̄21
T,r

)⊤
=

1√
n

n
∑

i=1

[

−ViTm
′′

T(ZiT)e
⊤
r−1

]

+ op(1). (S.16)
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Therefore, it follows that (
√
nJ̄21

T,r/hn)
⊤ → N(0,Φ21

TT,r) in distribution as n → ∞ for r =

2, . . . , 2d + 1, where

Φ21
TT,r = Var

[

ViTm
′′

T(ZiT)e
⊤
r−1

]

= E
[

σTT(ZiT)m
′′

T(ZiT)e
⊤
r−1er−1m

′′

T(ZiT)
⊤
]

.

�

Lemma 3. Under Assumptions 1–9,
√
nJ̄12

T,r → N(0,Φ12
T,r) and

√
nJ̄22

T,r → N(0,Φ22
T,r) in distri-

bution as n → ∞ for r = 2, . . . , 2d+ 1, where

Φ12
T,r = E [σTT(ZiT)GT;r,1(ZiT)GT;r,1(ZiT)]

and

Φ22
T,r = E

[

σTT(ZiT)GT;r,1(ZiT)GT;r,1(ZiT)m
′

T(ZiT)m
′

T(ZiT)
⊤
]

and the matrix GT(z) = GfT(z)MfT(z) = [MfT(z)]−1QfT(z).

Proof. The first claim was proved by Čížek and Lei (2018, Lemma 3). We focus on the second

claim. Recall that ViT = Yit − mT(ZiT) andlet GfT
i,j(z) denote the (i, j)-th element of GfT(z).

Substituting from (S.1), the rth row J̄22
TT,r of matrix J̄21

TT
is again an average

1

n

n
∑

i=1

e⊤r G
fT(ZiT)τ̄T(ZiT)m

′

T(ZiT)
⊤

=
1

n

n
∑

i=1

p
∑

|k|=0

GfT
r,k(ZiT)τ̄T,k(ZiT)m

′

T(ZiT)
⊤

=
1

n

n
∑

i=1

n
∑

j=1

p
∑

|k|=0

GfT
r,k(ZiT)VjT

(

ZjT − ZiT

hn

)k

Kh(ZjT − ZiT)m
′

T(ZiT)
⊤.
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Considering particular values of r, s, t and the sums inside of the curly brackets, we obtain

1

n2

n
∑

i=1

n
∑

j=1

p
∑

|k|=0

VjTG
fT
r,k(ZiT)

(

ZjT − ZiT

hn

)k

Kh(ZjT − ZiT)m
′

T(ZiT)
⊤

=
1

n2

n
∑

i=1

∑

j 6=i

p
∑

|k|=0

VjTG
fT
r,k(ZiT)

(

ZjT − ZiT

hn

)k

Kh(ZjT − ZiT)m
′

T(ZiT)
⊤

+
1

n2

p
∑

|k|=0

n
∑

i=1

ViTG
fT
r,k(ZiT)

(

ZiT − ZiT

hn

)k

Kh(ZiT − ZiT)m
′

T(ZiT)
⊤,

(S.17)

where the second term equals 0. Denoting the symmetrized elements

Hr(VjT, ZjT, ZjT;ViT, ZiT, ZiT) =
1

2

p
∑

|k|=0

×
[

VjTG
fT
r,k(ZiT)

(

ZjT − ZiT

hn

)k

Kh(ZjT − ZiT)m
′

T(ZiT)
⊤

+ViTG
fT
r,k(ZjT)

(

ZiT − ZjT

hn

)k

Kh(ZiT − ZjT)m
′

T(ZjT)
⊤
]

,

we can rewrite (S.17) as n−2
∑n

i=1

∑

j 6=i

∑p
|k|=0Hr(VjT, ZjT, ZjT;ViT, ZiT, ZiT). By the cross-

sectional independence, let

Hr(ViT, ZiT, ZiT) = E[Hr(VjT, ZjT, ZjT;ViT, ZiT, ZiT)|ViT, ZiT, ZiT]

=
1

2

p
∑

|k|=0

ViT E

[

GfT
r,k(ZjT)

(

ZiT − ZjT

hn

)k

Kh(ZiT − ZjT)m
′

T(ZjT)
⊤|ZiT

]

. (S.18)

To study the above expectation, recall that Assumption 9.2 ensures the existence of the kernel

moments up to order 4p. Hence, by Taylor expansion around zjt and using the standard change

of variables argument

E

[

GfT
r,k(ZjT)

(

ZiT − ZjT

hn

)k

Kh(ZiT − ZjT)m
′

T(ZjT)
⊤|ZiT

]

=

ˆ

fT(zjt)G
fT
r,k(zjt)

(

ZiT − zjt
hn

)k

Kh(ZiT − zjt)m
′

T(zjt)
⊤dzjt

=

ˆ

fT(ZiT − hnu)G
fT
r,k(ZiT − hnu)u

kK(u)m
′

T(ZiT − hnu)
⊤du

=fT(ZiT)G
fT
r,k(ZiT)µkm

′

T(ZiT)
⊤ +O(hn), (S.19)
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where the last equality follows from Assumption 9.3 that fT and m
′

T
, their derivatives, and

GfT
r,j(z) are uniformly bounded in z ∈ D. Hence, the term O(hn) is uniform on D. Substituting

(S.19) into (S.18) thus yields

Hr(ViT, ZiT, ZiT) =
1

2
ViT

p
∑

|k|=0

[fT(ZiT)G
fT
r,k(ZiT)µkm

′

T(ZiT)
⊤ +O(hn)]

=
1

2
ViT(G

fT(ZiT)M
fT(ZiT))r,1m

′

T(ZiT)
⊤ +

1

2
ViTO(hn)

=
1

2
ViTGT;r,1(ZiT)m

′

T(ZiT)
⊤ +

1

2
ViTO(hn)

for i ∈ IT. Therefore, again by the Hoeffding’s decomposition for U -statistics, it follows for

n → +∞ that

√
nJ̄22

T,r =
2√
n

n
∑

i=1

Hr(ViT, ZiT, ZiT) + op(1) +Op(n
−1h−d

n ) (S.20)

=
1√
n

n
∑

i=1

[

ViTGT;r,1(ZiT)m
′

T(ZiT)
⊤ + ViTO(hn)

]

(S.21)

+ op(1) +Op(n
−1h−d

n ) (S.22)

=
1√
n

n
∑

i=1

[

ViTGT;r,1(ZiT)m
′

T(ZiT)
⊤
]

+
O(hn)√

n

n
∑

i=1

ViT (S.23)

+ op(1) +Op((nh
d
n)

−1). (S.24)

The term
√
nJ̄22

T,r is analyzed similarly to
√
n/hnJ̄

21
T,r given in (S.11). Again by Assumption

9.1, Op((nh
d
n)

−1) = op(1), the central limit theorem is applicable to the terms in (S.23) by

Assumption 9.5 and the second term in (S.23) is negligible because of the term O(hn). Therefore,

(√
nJ̄22

T,r

)⊤
=

1√
n

n
∑

i=1

[

ViTGT;r,1(ZiT)m
′

T(ZiT)
]

+ op(1), (S.25)

and consequently, (
√
nJ̄22

T,r)
⊤ → N(0,ΦTT,r) in distribution as n → ∞ for r = 2, . . . , 2d + 1,

where

Φ2
T,r = Var

[

ViTGT;r,1(ZiT)m
′

T(ZiT)
]

= E
[

σTT(ZiT)GT;r,1(ZiT)GT;r,1(ZiT)m
′

T(ZiT)m
′

T(ZiT)
⊤
]

.
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Lemma 4. Let GT;·1(z) = GT(z)e1 be the first column of GT(z) = [MfT(z)]−1QfT(z) and

GMT(z) = vec(−LGT;·1(z),−2L1m
′′

T
(ZiT)L

⊤
1 −LGT;·1(ZiT)m

′

T
(ZiT)

⊤L⊤
1 −L1m

′

T
(ZiT)GT;·1(ZiT)

⊤L⊤).

Under Assumptions 1–9,

√
nvec(LJ̄1

T, L[J̄
2
TT + J̄2⊤

TT ]L
⊤) =

1√
n

n
∑

i=1

[ViTGMT(ZiT)] → N(0,ΦT) (S.26)

in distribution as n → +∞, where

ΦT = E
[

σTT(ZiT)GMT(ZiT)GMT(ZiT)
⊤
]

.

Proof. By equation Čížek and Lei (2018, (B.10)), Assumption 9.1, and equations (S.16) and

(S.25) in the proof of Lemmas 1 and 3, respectively, we know that

√
nLJ̄1

T = − 1√
n

n
∑

i=1

L [ViTGT;·1(ZiT)] + op(1) (S.27)

= − 1√
n

n
∑

i=1

[ViTLGT;·1(ZiT)] + op(1),

and again similarly up to a term negligible in probability,

√
nLJ̄2

TTL
⊤ =

1√
n

n
∑

i=1

[

ViT

{

−2L1m
′′

T(ZiT)
⊤L⊤

1 − LGT;·,1(ZiT)m
′

T(ZiT)
⊤L⊤

1

}]

. (S.28)

Consequently,

√
nvec(LJ̄1

T, L[J̄
2
TT + J̄2⊤

TT ]L
⊤) =

1√
n

n
∑

i=1

[ViTGMT(ZiT)] . (S.29)

Again by Assumption 9.5, we know that terms 1
T−T

∑T
t=T+1 ViTGMT(ZiT) are independent

and identically distributed with zero means. Furthermore, the same assumption ensures the
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existence of their variance matrix with its (r1, r2)th element given by

E [(ViT{GMT(ZiT)}r1) (ViT[GMT(ZiT)}r2)]

=E [σTT(ZiT, ZiT){GMT(ZiT)}r1{GMT(ZiT)}r2 ]

=(ΦT)r1,r2 .

for (r1, r2 = 1, . . . , d2 + d). Therefore, the multivariate central limit theorem can be used to

conclude that
√
nvec(LJ̄1

T
, L[J̄2

TT
+ J̄2⊤

TT
]L⊤) → N(0,ΦT) in distribution as n → +∞. �

Finally, applying Lemmas 1–4 to the original decompositions (S.4) and (S.5)–(S.7), we

obtain for n → ∞

1

n

n
∑

i=1

[β̂T(ZiT)− βT(ZiT)]

= hnJ̄
1
T +

o(h
3/2
n )

n

n
∑

i=1

τ̄T(ZiT) + hp+1
n A1

T +Op(h
p+2
n )

= hnJ̄
1
T + op(h

3/2
n n−1/2) + hp+1

n A1
T +Op(h

p+2
n )

(S.30)

and

1

n
L

n
∑

i=1

[β̂T(ZiT)β̂
⊤
T (ZiT)− βT(ZiT)β

⊤
T (ZiT)]L

⊤

=

{

h2n

{

J̄2
TT + J̄2⊤

TT

}

{1 + op(1)}+
o(h

5/2
n )

n

n
∑

i=1

[

τ̄T(ZiT)m
′

T(ZiT)
⊤ +m

′

T(ZiT)τ̄T(ZiT)
⊤
]

+ hp+2
n

{

A2
TT +A2⊤

TT

}

+Op(h
p+3
n )

}

{1 + op(1)}

= h2n

{

J̄2
TT + J̄2⊤

TT

}

{1 + op(1)} + op(h
5/2
n n−1/2) + hp+2

n

{

A2
TT +A2⊤

TT

}

+Op(h
p+3
n ),

(S.31)

where the last equalities follow by applying the arguments and proof of Lemma 4 on the terms

1√
n

∑n
i=1 τ̄T(ZiT) and 1√

n

∑n
i=1 τ̄T(ZiT)m

′

T
(ZiT)

⊤ and proving thus their asymptotic normality.
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F Jackknife

To propose the generalized jackknife bias-correction procedure, let us first recall some asymp-

totic results for the average derivative estimator. The results for the outer product of gradients

are analogous.

First, recall that we define the local derivative estimator δ̂T(z) = Lb̂T(z) = h−1
n Lβ̂T(z) in

equation (8) as the difference of the first d and last d elements of b̂1,T(z). Subsequently, we

define the average derivative estimator and average outer product of gradients as in equations

(10) and (11) by

δ̂T =
1

n

n
∑

i=1

δ̂T(ZiT) =
1

nhn

n
∑

i=1

Lβ̂T(ZiT).

δ̂TS =
1

n

n
∑

i=1

δ̂T(ZiT)δ̂
⊤
T (ZiT) =

1

nh2n

n
∑

i=1

Lβ̂T(ZiT)β̂
⊤
T (ZiT)L

⊤.

In these expressions, it holds almost surely by (A.10) for n → +∞ that

β̂T(z) − βT(z) = S̄−1
T

(z)τ̄T(z) + hp+1
n S̄−1

T
B̄T(z)m

(p+1)
T

(z) +Op(h
p+2
n ), (S.32)

where β̂T(z) = (h0nb̂
⊤
0,T(z), . . . , h

p
nb̂⊤p,T(z))

⊤ are the coefficients and p is the order of the local

polynomial regression. Assuming that mT(·) has p + p′ derivatives at point z0, mT(z) can be

locally approximated by a polynomial of order p+ p′ and

β̂T(z) − βT(z) = S̄−1
T

(z)τ̄T(z) (S.33)

+ hp+1
n S̄−1

T
B̄1

T(z)m
(p+1)
T

(z) + . . . + hp+p′
n S̄−1

T
B̄p′

T
(z)m

(p+p′)
T

(z) +Op(h
p+p′+1
n ),

(S.34)

where for o = 1, . . . , p′

B̄o
T(z) =



















S̄T,0,p+o(z)

S̄T,1,p+o(z)

...

S̄T,p,p+o(z)



















.
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Analogously to Lemma 1, we can show that S̄−1
T

B̄o
T
(z)m

(p+o)
T

(z) → Ao
T
= M−1Bo E[m

(p+o)
T

(ZiT)],

where for o = 1, . . . , p′

Bo=



















M0,p+o

M1,p+o

...

Mp,p+o



















.

Additionally, the central limit theorem will guarantee, using similar arguments as in Lemmas 3

and 4, that

1√
n

n
∑

i=1

[S̄−1
T

B̄o
T(ZiT)m

(p+o)
T

(ZiT)−Ao
T] = Op(1).

Hence, we can write

β̂T(z) − βT(z) = S̄−1
T

(z)τ̄T(z) (S.35)

+ hp+1
n A1

T + . . .+ hp+p′
n Ap′

T
+Op(n

−1/2hp+1
n ) +Op(h

p+p′+1
n ). (S.36)

Next, to define the bias-correction procedure, let us assume without loss of generality there

is only a single scalar parameter βT(z) to estimate and consider estimators based on bandwidths

h1n, . . . , hp′n that differ from hn. Then for q = 1, . . . , p′

β̂qT(z)− βT(z) = S̄−1
qT (z)τ̄qT(z) + hp+1

qn A1
T + . . .+ hp+p′

qn Ap′

T
+Op(n

−1/2hp+1
qn ) +Op(h

p+p′+1
qn ),

where the middle terms can be written as (hp+1
qn , . . . , hp+p′

qn )(A1
T
, . . . , Ap′

T
)⊤. Accumulating these

terms together for q = 1, . . . , p′ results in













hp+1
1n · · · hp+p′

1n

...
. . .

...

hp+1
p′n · · · hp+p′

p′n

























A1
T

...

Ap′

T













.

To eliminate these higher-order bias terms, we can compute a weighted average of estimates
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β̂qT(z),q = 1, . . . , p′, with weights w1, . . . , wp′ such that













hp+1
1n · · · hp+1

p′n

...
. . .

...

hp+p′

1n · · · hp+p′

p′n

























w1

...

wp′













=













hp+1
n

...

hp+p′
n













,

that is, after dividing each equation by hp+q
n and denoting ratios cq = hqn/hn for q = 1, . . . , p′,

such that

Cp′













w1

...

wp′













:=













cp+1
1 · · · cp+1

p′

...
. . .

...

cp+p′

1 · · · cp+p′

p′

























w1

...

wp′













=













1

...

1













=: ιp′ . (S.37)

If Cp′ is non-singular with finite elements, defining weights by w = (w0, w1, . . . , wp′) = (−1, (C−1
p′ ιp′)

⊤)⊤

guarantees that

w⊤



















hp+1
n · · · hp+p′

n

hp+1
1n · · · hp+p′

1n

...
. . .

...

hp+1
p′n · · · hp+p′

p′n































A1
T

...

Ap′

T













= 0,

and after labelling β̂0T(z) = β̂T(z) and w̃q = wq/
∑p′

q=0wq that

p′
∑

q=0

w̃q[β̂qT(z)− βT(z)] =

p′
∑

q=0

w̃qS̄
−1
qT (z)τ̄qT(z) +Op(n

−1/2hp+1
n ) +Op(h

p+p′+1
n ).

Hence, the higher order bias terms are eliminated and the final estimator is asymptotically

normal without asymptotic bias as long as
√
nhp+p′

n → 0.

The bias-correction procedure of an estimator β̂0T(z) = β̂T(z) with bandwidth hn is thus

based on choosing constants c1, . . . , cp′ (all different from 1 and each other), computing cor-

responding estimates β̂qT(z) with bandwidths cqhn, q = 1, . . . , p′, and finally, computing the

weighted average of β̂qT(z), q = 0, . . . , p′, using weights w = (w0, w1, . . . , wp′) = (−1, (C−1
p′ ιp′)

⊤)⊤

solving equation (S.37). Note that, due to the asymptotic linearity (A.21) derived in the proof

of Theorem 4, the same procedure can be also applied to the coefficient vectors B.
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Let us provide a practical example related to the examples used in Section 4, where we

used p′ = 3 and c1 = 1.3, c2 = 1.6, and c3 = 1.9. In applications, one might prefer local

quadratic regression with p = 2. Assuming three explanatory variables d = 3, the bandwidth

hn has to satisfy the condition nh2d+3
n / ln n → ∞, which implies hn = O(n−1/(9+ǫ)), ǫ > 0. On

the other hand, nh2(p+p′)
n → 0 if the bias is to be asymptotically negligible or nh2(p+p′+1)

n → 0

if the highest-order bias can be present as in Theorem 2. This implies that the number of

auxiliary estimates required for the bias correction is equal to p′ = 3 or p′ = 2. Similarly for

four explanatory variables, d = 4, hn = O(n−1/(11+ε)), ǫ > 0, and p′ = 4 or p′ = 3.
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G Discrete explanatory variables

The presented results were obtained for continuously distributed random variables Xit. There

are however several possibilities though to accommodate discrete variables. First, let us note

that traditionally used dummy variables capturing time-specific effects do not have to be ex-

plicitly included in the model as the regression function (1) is time-period specific. Next, the

conditional expectations E[Yit|Xit,Xi(t−∆)] can be estimated even in the presence of discrete ex-

planatory variables, for example, by sample splitting or the nonparametric regression of Racine

and Li (2004). More specifically, it is possible to partition the data by the values of the discrete

variables D̃ included in the regression model, construct the moment conditions in Theorem 1

for each partition, and use the constructed moment conditions jointly for the GMM estimation

discussed in Section 3.2. This procedure will identify and provide consistent estimates of the

corresponding index coefficients for the continuously distributed variables while accounting for

the effect of discrete control variables.

Suppose now that there are not only discrete control variables, but also discrete variables

of interest, for which we want to identify their coefficients. To distinguish between continuous

and discrete covariates, the data generating process is now assumed to be

Yit = φ(X⊤
it (β1, . . . , βR) + D̃⊤

it (η1, . . . , ηR), αi, Uit), (S.38)

where Xit denotes a d × 1 vector of continuous random variables, the R linear combinations

B = (β1, . . . , βR) can be identified and estimated as discussed in the previous paragraph, D̃it

denotes a l × 1 vector of discrete random variables, and the corresponding coefficients are

η1, . . . , ηR.

Given the values of the coefficients B identified using Theorem 1, it is possible to construct

additional moment conditions to identify the coefficients of discrete explanatory variables as

proposed by Horowitz and Härdle (1996) and adapted to nonseparable panel-data models by

Čížek and Lei (2018, Appendix D). The solution based on the identification Assumption 3 is

to compare pairs of observations that have the same sum of discrete variables in two different

time periods, but that have different values of discrete variables in the current time period.

For example, consider the simplest case with two time periods t and t − ∆ and a single dis-

crete variable being a dummy with values 0 and 1. In this case, all possible observations of
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(D̃it = d̃t, D̃i(t−∆) = d̃(t−∆)) are (0, 0), (0, 1), (1, 0), and (1, 1). The aim is to compare pairs of

observations such that d̃t + d̃(t−T) are equal, but d̃t are different, that is, to compare pairs of

observations with (D̃it = 0, D̃i(t−∆) = 1) and (D̃it = 1, D̃i(t−∆) = 0).

Let us first introduce the notation. As in Horowitz and Härdle (1996), define Sd̃ ≡ {d̃(s) : s =

1, . . . , Nd̃} to be the support of the discrete random vector D̃it and Sd̄ ≡ {d̄(s) : s = 1, . . . , Nd̄}

to be the support of D̃it + D̃i(t−∆). Let us also define the following index set Is = {(ι1, ι2) :

ι1 > ι2 and d̄(s) = d̃(ι1) + d̃(ι
′

1) = d̃(ι2) + d̃(ι
′

2) for some ι′1, ι
′
2 ∈ {1, . . . , Nd̃}} of pairs of values

that can be used for comparing and differencing out the individual effects. Finally, we in-

troduce the abbreviated notation for indices XDr
it(v) = v +X⊤

it (β1, . . . , βr−1, βr+1, . . . , βR) +

D̃⊤
it (η1, . . . , ηr−1, ηr+1, . . . , ηR),XDr

i(t−∆)(v) = v+X⊤
it (β1, . . . , βr−1, βr+1, . . . , βR)+D̃⊤

it (η1, . . . , ηr−1,

ηr+1, . . . , ηR), and XDr
iT(v, v̄) = (XDr

it(v),XDr
i(t−∆)(v̄−v)); in all cases, v and v̄ represent the

values of the rth index X⊤
it βr and X⊤

it βr +X⊤
i(t−∆)βr, respectively. The corresponding symbols

xdrit(v, v̄), xd
r
i(t−∆)(v, v̄), and xdriT(v, v̄) correspond to the realizations of the random variables

XDr
it(v, v̄), XDr

i(t−∆)(v, v̄), and XDr
T
(v, v̄), respectively.

To describe the principles, on which the identification is based, let for (ι1, ι2) ∈ Is, s ∈ Sd̄

and k = 1, 2

Gr
ιk ,s

(xdriT(v, v̄)) = Gr
ιk ,s

(xdrit(v), xd
r
i(t−∆)(v̄ − v))

≡ E[Yit|X⊤
it (β1, . . . , βR) + D̃⊤

it (η1, . . . , ηR) = xdit(v), D̃it = d̃(ι1),

X⊤
i(t−∆)(β1, . . . , βR) + D̃⊤

i(t−∆)(η1, . . . , ηR) = xdi(t−∆)(v̄ − v), D̃it + D̃i(t−∆) = d̄(s)].

To identify the coefficients of the rth linear combination, let us impose the following weak mono-

tonicity condition on the rth index given the values of the remaining indicesXDr
iT = XDr

iT(0, 0).

Assume that there are finite numbers vr0(XDr
iT), v

r
1(XDr

iT), c
r
0(XDr

iT), and cr1(XDr
iT) such that

we have vr0(XDr
iT) < vr1(XDr

iT), cr0(XDr
iT) < cr1(XDr

iT), and for any given d̃ ∈ Sd̃ and

d̄ ∈ Sd̄, G
r
ιk,s

(XDr
iT(v + d̃⊤ηr, v̄)) < cr0(XDr

iT) if v < vr0(XDr
iT), G

r
ιk ,s

(XDr
iT(v + d̃⊤ηr, v̄)) >

cr1(XDr
iT) if v > vr1(XDr

iT). Note that the estimates of Gr
ιk ,s

(XDr
iT(v + d̃⊤ηr, v̄)) for all val-

ues of d̃ are already known from the estimation steps neccessary to obtain (β1, . . . , βR) de-

scribed at the start of this section, and it is thus possible to check whether the chosen values

vr0(XDr
iT), v

r
1(XDr

iT), c
r
0(XDr

iT), c
r
1(XDr

iT) satisfy the stated conditions given the considered

parameter space. Additionally, we also assume that the densities of X⊤
it βr and of X⊤

i(t−∆)βr
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conditional on D̃it = d̃, D̃it + D̃i(t−T) = d̄, and XDr
iT(0) are bounded away from zero on an

open interval containing [v0, v1].

Using the introduced quantities vr0(XDr
iT), v

r
1(XDr

iT), c
r
0(XDr

iT), and cr1(XDr
iT), we can now

define the following integral

Jr
ιk ,s

(d̃, d̄) ≡
ˆ 2vr1(XDr

iT
)

2vr0(XDr
iT
)

ˆ vr1(XDr
iT
)

vr0(XDr
iT
)
{cr0(XDr

iT)I[G
r
ιk ,s

(XDr
iT(v + d̃⊤ηr, v̄)) < cr0(XDr

iT)]

+ cr1(XDr
iT)I[G

r
ιk ,s

(XDr
iT(v + d̃⊤η, v̄)) > cr1(XDr

iT)]

+Gr
ιk ,s

(XDr
iT(v + d̃⊤η, v̄))I[cr0(XDr

iT) ≤ Gr
ιk ,s

(XDr
iT(v + d̃⊤η, v̄)) ≤ cr1(XDr

iT)]}dvdv̄.

Considering now all possible indices for (ι1, ι2) ∈ Is, s ∈ Sd̄ and k = 1, 2, we also define the

differences of the integrals Jr
ι1,s(d̃, d̄) and Jr

ι2,s(d̃, d̄) for all possible index combinations that,

similarly to Theorem 1, eliminate the effect the individual-specific effects. In particular for any

s ∈ Sd̄, let ∆D̃s = (d̃(ι1)− d̃(ι2))(ι1,ι2)∈Is and ∆Jr
s = (Jr

ι1,s(d̃
(ι1), d̄(s))− Jr

ι2,s(d̃
(ι2), d̄(s)))(ι1,ι2)∈Is ,

and additionally, let matrices∆D̃ = (∆D̃⊤
1 , . . . ,∆D̃⊤

Nd̄
)⊤ and∆Jr = (∆Jr

1 , . . . ,∆Jr
Nd̄

)⊤. Under

the above mentioned assumptions, Čížek and Lei (2018, Lemma 1) showed that

2(vr1(XDr
iT)− vr0(XDr

iT))(c
r
1(XDr

iT)− cr0(XDr
iT))(∆D̃⊤∆D̃)ηr = ∆D̃⊤∆Jr, (S.39)

which can be constructed for any r = 1, . . . , R. If ∆D̃⊤∆D̃ is a nonsingular matrix, it is thus

possible to construct a system of equations

2(vr1(XDr
iT)− vr0(XDr

iT))(c
r
1(XDr

iT)− cr0(XDr
iT))ηr = (∆D̃⊤∆D̃)−1∆D̃⊤∆Jr,

r = 1, . . . , R to identify parameters η1, . . . , ηR since vr1(XDr
iT)−vr0(XDr

iT) > 0 and cr1(XDr
iT)−

cr0(XDr
iT) > 0.

Based on this result, we can obtain consistent estimates of η1, . . . , ηR by replacing Gr
ιk,s

(xdr
iT
(v, v̄))

by its nonparametric estimate. If B̂W is the average of the GMM-ADG-OPDG estimators of

B proposed in this paper, where the average is taken across all possible values of d̃ and d̄,

XDr
iT(v, v̄) can be evaluated at B̂W and any values of η1, . . . , ηR. Consequently, the estimates

of Gr
ιk ,s

(XDr
iT
(v, v̄)) can be estimated by nonparametric regression method discussed in Section
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3. Denoting the estimator of Gr
ιk ,s

(XDr
iT
(v, v̄)) by Ĝr

ιk ,s
(XDr

iT
(v, v̄)),

Ĵr
ιk ,s

(d̃, d̄) ≡
ˆ 2vr1(XDr

iT
)

2vr0(XDr
iT
)

ˆ vr1(XDr
iT
)

vr0(XDr
iT
)
{cr0(XDr

iT)I[Ĝ
r
ιk ,s

(XDr
iT(v + d̃⊤ηr, v̄)) < cr0(XDr

iT)]

+ cr1(XDr
iT)I[Ĝ

r
ιk ,s

(XDr
iT(v + d̃⊤η, v̄)) > cr1(XDr

iT)]

+ Ĝr
ιk ,s

(XDr
iT(v + d̃⊤η, v̄))I[cr0(XDr

iT) ≤ Ĝr
ιk ,s

(XDr
iT(v + d̃⊤η, v̄)) ≤ cr1(XDr

iT)]}dvdv̄,

∆Ĵr
s = (Ĵr

ι1,s(d̃
(ι1), d̄(s)) − Ĵr

ι2,s(d̃
(ι2), d̄(s)))(ι1,ι2)∈Is , and ∆Jr = (∆Jr

1 , . . . ,∆Jr
Nd̄

)⊤, the estima-

tion of η1, . . . , ηR based on (S.39) can be then performed by a GMM estimator based on the

moment equations

2(vr1(XDr
iT)− vr0(XDr

iT))(c
r
1(XDr

iT)− cr0(XDr
iT))ηr − (∆D̃⊤∆D̃)−1∆D̃⊤∆Ĵr = 0, (S.40)

r = 1, . . . , R.
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H Application: quadratic functions

Using the application in Section 5, where the dependent variable possibly depends on the linear

combination of explanatory variables and their squares or their interactions, let us demon-

strate how the proposed GMM estimator can be adjusted to estimation of coefficients in a

linear combination of non-linear transformations of explanatory variables such as quadratic

or interaction terms. We will show on the example of our application, that the additional

coefficients corresponding to the labor market experience and its square can be identified if

we compute ADG and OPDG not only for the conditional expectation E[Yit|Xit,Xi(t−∆)], but

also for E[Xit,3Yit|Xit,Xi(t−∆)] and E[X2
it,3Yit|Xit,Xi(t−∆)], where Xit = (Xit,1,Xit,2,Xit,3) and

Xit,3 represent the labor market experience.

Let us consider the model in Section 5 with a quadratic term:

Yit,2 = φt2(Xit,1β11 +Xit,2β12 +Xit,3β13 +X2
it,3β14,Xit,1β21 +Xit,2β22 +Xit,3β23 +X2

it,3β24, αi, Uit),

Yit,1 = φt1(Xit,1β11 +Xit,2β12 +Xit,3β13 +X2
it,3β14, αi, Uit), (S.41)

whereXit,1,Xit,2, andXit,3 represent the lagged dependent variable, the number of children, and

the labor market experience in Section 5. Recall that B = ((β21, β22, β23, β24)
⊤, (β11, β12, β13, β14)⊤)

and the coefficients are normalized to β11 = 0, β12 = 1, β21 = 1, and β22 = 0. As follows from

the proof of Theorem 1, we can write – for clarity of exposition separately for the selection

decision Yit,1 and for the outcome variable Yit,2 and their ADG (δ1
T
,δ1
TT
) and OPDG (δ2

T
,δ2
TT
) –

δ1T =
1
∑

r=1

E
{

ϕ
′

t1,1(X
⊤
itB,αi)(0, 1, (β13 + 2β14Xit,3))

⊤
}

(S.42)

δ2T =

2
∑

r=1

E
{

ϕ
′

t2,r(X
⊤
itB,αi)(βr1, βr2, βr3 + 2βr4Xit,3)

⊤
}

= E
{

ϕ
′

t2,1(X
⊤
itB,αi)(0, 1, (β13 + 2β14Xit,3)

⊤
}

+ E
{

ϕ
′

t2,2(X
⊤
itB,αi)(1, 0, β23 + 2β24Xit,3)

⊤
}

δ1TT =

1
∑

r,s=1

E
{

(0, 1, β13 + 2β14Xit,3) {ϕ
′

t1,r(X
⊤
itB,αi)ϕ

′

t1,s(X
⊤
itB,αi)}Rr,s=1 (0, 1, β13 + 2β14Xit,3)

⊤
}

δ2TT =

2
∑

r,s=1

E
{

(βr1, βr2, βr3 + 2βr4Xit,3)[ϕ
′

t2,r(X
⊤
itB,αi)ϕ

′

t2,s(X
⊤
itB,αi)](βr1, βr2, (βr3 + 2βr4Xit,3)

⊤
}

.

(S.43)
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Considering for simplicity on the ADG moment conditions, let us first explain why these equa-

tions do not provide enough conditions for the identification of all coefficients. Given that there

are 3 explanatory variables, it is clear that δ1
T
and δ2

T
provide only 6 moment conditions not

only for 4 β-parameters β13, β14, β23, β24 (some of them can be of course identified using δ1
TT

and δ2
TT
), but also 6 γ-parameters – γ11 = Eϕ

′

t1,1(X
⊤
itB,αi), γ21 = Eϕ

′

t2,1(X
⊤
itB,αi), γ22 =

Eϕ
′

t2,2(X
⊤
itB,αi) – and the corresponding interactions with Xit,3 – γX11 = EXit,3ϕ

′

t1,1(X
⊤
itB,αi),

γX21 = EXit,3ϕ
′

t2,1(X
⊤
itB,αi), γX22 = EXit,3ϕ

′

t2,2(X
⊤
itB,αi). Thus, the ADG moment conditions

cannot identify the β-coefficients unless there are some additional moment conditions identify-

ing some of the γ-coefficients such as γX11, γ
X
21, γ

X
22. We will show they can be identified using

ADG for E[Xit,3Yit|Xit,Xi(t−∆)] and E[X2
it,3Yit|Xit,Xi(t−∆)]; the analogous claim will be made

also for the OPDG moment conditions.

Rewriting the ADG moment conditions in (S.42)–(S.43) in a concise way analogously to

Theorem 1, we see that

δ1T = Γ1
1t(β11, β12, β13) + ΓX1

1t (β11, β12, 2β14) = Γ1
1t(0, 1, β13) + ΓX1

1t (0, 1, 2β14) (S.44)

δ2T = Γ2
1t







β11 β12 β13

β21 β22 β23






+ ΓX2

1t







β11 β12 2β14

β21 β22 2β24







= Γ2
1t







0 1 β13

1 0 β23






+ ΓX2

1t







0 1 2β14

1 0 2β24






, (S.45)

where Γ1
1t = Eϕ

′

t1,1(X
⊤
itB,αi), Γ2

1t = (Eϕ
′

t2,1(X
⊤
itB,αi),Eϕ

′

t2,2(X
⊤
itB,αi)) and

ΓX1
1t = E[Xit,3ϕ

′

t1,1(X
⊤
itB,αi)], ΓX2

1t = (EXit,3ϕ
′

t2,1(X
⊤
itB,αi),EXit,3ϕ

′

t2,2(X
⊤
itB,αi)).

Similarly, the OPDG moment conditions can be expressed as

δ1TT = (β11, β12, β13)
⊤Γ1

2t(β11, β12, β13) + (β11, β12, β13)
⊤ΓX1

2t (β11, β12, 2β14)

+ (β11, β12, 2β14)
⊤ΓX1

2t (β11, β12, β13) + (β11, β12, 2β14)
⊤ΓXX1

2t (β11, β12, 2β14)

= (0, 1, β13)
⊤Γ1

2t(0, 1, β13) + (0, 1, β13)
⊤ΓX1

2t (0, 1, 2β14) (S.46)

+ (0, 1, 2β14)
⊤ΓX1

2t (0, 1, β13) + (0, 1, 2β14)
⊤ΓXX1

2t (0, 1, 2β14),

where Γ1
2t = E[ϕ

′

t1,1(X
⊤
itB,αi)ϕ

′

t1,1(X
⊤
itB,αi)], ΓX1

2t = E[Xit,3ϕ
′

t1,1(X
⊤
itB,αi)ϕ

′

t1,1(X
⊤
itB,αi)],
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ΓXX1
2t = E[X2

it,3ϕ
′

t1,1(X
⊤
itB,αi)ϕ

′

t1,1(X
⊤
itB,αi)], and finally,

δ2TT =







0 1 β13

1 0 β23







⊤

Γ2
2t







0 1 β13

1 0 β23






+







0 0 β13

0 0 β23







⊤

ΓX2
2t







0 0 2β14

0 0 2β24







(S.47)

+







0 0 2β14

0 0 2β24






ΓX2
2t







0 0 β13

0 0 β23






+







0 0 2β14

0 0 2β24







⊤

ΓXX2
2t







0 0 2β14

0 0 2β24






,

where Γ2
2t = {E[ϕ′

t2,r(X
⊤
itB,αi)ϕ

′

t2,s(X
⊤
itB,αi)]}2r,s=1, Γ

X2
2t = {E[Xit,3ϕ

′

t2,r(X
⊤
itB,αi)ϕ

′

t2,s(X
⊤
itB,

αi)]}2r,s=1, and ΓXX2
2t = {E[X2

it,3ϕ
′

t2,r(X
⊤
itB,αi)ϕ

′

t2,s(X
⊤
itB,αi)]}2r,s=1. Similarly to the ADG

moment conditions containing ΓX1
1t , Γ

X2
1t , the OPDG moment conditions thus also contain –

next to the β-coefficients β13, β23, β14, and β24 – many additional coefficients of matrices ΓX1
2t ,

ΓXX1
2t , ΓX2

2t , and ΓXX2
2t . Given the normalization of the β-coefficients, all these quantities can be

identified analogously to Γ1
1t (which is equal to the second element of δ1

T
in (S.44)), Γ2

1t (which

equals to the first two elements of δ2
T
in (S.45)), Γ1

2t (which equals to the second element on the

diagonal of δ1
TT

in (S.46)), and Γ2
2t (which equals to the 2× 2 submatrix of δ2

TT
in (S.47)). Since

ΓX1
1t , Γ

X2
1t , Γ

X1
2t , Γ

XX1
2t , ΓX2

2t , and ΓXX2
2t characterize the expectations of the products of Xit,3

or X2
it,3 with the derivatives of the ϕ functions, they can directly obtained using the ADG and

OPDG corresponding to expectations E[Xit,3Yit|Xit,Xi(t−∆)] and E[X2
it,3Yit|Xit,Xi(t−∆)], that

is, using the following ADG moments (c = 1, 2)

δXc
T = E

{

∂

∂X⊤
it

E[Xit,3Yit,c|Xit,Xi(t−∆)]−
∂

∂X⊤
i(t−∆)

E[Xit,3Yit,c|Xit,Xi(t−∆)]

}

,

δXXc
T = E

{

∂

∂X⊤
it

E[X2
it,3Yit,c|Xit,Xi(t−∆)]−

∂

∂X⊤
i(t−∆)

E[X2
it,3Yit,c|Xit,Xi(t−∆)]

}

,

and the following OPG moments (c = 1, 2)

δXc
TT =E





{

∂

∂X⊤
it

E[Xit,3Yit,c|Xit,Xi(t−∆)]−
∂

∂X⊤
i(t−∆)

E[Xit,3Yit,c|Xit,Xi(t−∆)]

}⊤

×
{

∂

∂X⊤
it

E[Xit,3Yit,c|Xit,Xi(t−∆)]−
∂

∂X⊤
i(t−∆)

E[Xit,3Yit,c|Xit,Xi(t−∆)]

}]

,

30



δXXc
TT =E





{

∂

∂X⊤
it

E[X2
it,3Yit,c|Xit,Xi(t−∆)]−

∂

∂X⊤
i(t−∆)

E[X2
it,3Yit,c|Xit,Xi(t−∆)]

}⊤

×
{

∂

∂X⊤
it

E[X2
it,3Yit,c|Xit,Xi(t−∆)]−

∂

∂X⊤
i(t−∆)

E[X2
it,3Yit,c|Xit,Xi(t−∆)]

}]

;

in this particular application, the derivatives used for ΓX1
1t , Γ

X2
1t , Γ

X1
2t , Γ

XX1
2t , ΓX2

2t , and ΓXX2
2t

are the derivatives with respect to variables Xit,1 and Xit,2.

Once the all Γ’s are identified, there are two ADG (S.44)–(S.45) and at least two OPDG

conditions (S.46)–(S.47) corresponding to the derivatives with respect to Xit,3 available for

the identification of four β-coefficients. In the applications, where the moment conditions

(S.44)–(S.47) would not be sufficient to identify all β-coefficients, the moments based on δXc
T

and δXc
TT

can also provide further moment conditions for the identification of the β-coefficients if

the derivatives with respect to other variables that do not have normalized coefficient are used;

for example, with respect to Xit,3 in the present application.
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I Example: Dynamic sample selection model

In this appendix, we verify Assumption 3(iii) for the dynamic sample selection models with

the stationary initial condition for normally-distributed idiosyncratic shocks; the results can

be directly generalized to other elliptical distributions. For the sake of simplicity we consider

T = 2 and ∆ = 1 which could be extended to larger T in a straightforward manner as we

demonstrate for T = 3 and ∆ = 2.

Let us consider the selection variable Y1it = 1{Xitβ1+α1i+U1it > 0} with α1i = Xi1+Xi2+ξi

and the outcome variable Y2it = Y2it−1β2 +α2i +U2it, where the initial condition is assumed to

be Y2i0 = α2i/ (1− β2) + U2i0/
√

1− β2
2 to ensure the stationarity of the latent process of Y2it.

For simplicity, we assume that (U1i1, U1i2, U2i0, U2i1, U2i2,Xi1,Xi2, α2i, ξi)
T has a multivariate

normal distribution with zero mean, unit variance, and zero covariance except for U1it and U2it,

which can be correlated for t = 1, 2. Due to this assumption, α1i, α2i,Xi1,Xi2, Y2i0, Y2i1 are

jointly normally distributed and α1i, α2i |Xi1,Xi2, Y2i0, Y2i1 has a conditional normal distribu-

tion with a variance that does not depend on Xi1,Xi2, Y2i0 and Y2i1. Hence, we only need

to consider the mean of the conditional distribution of α1i, α2i |Xi1,Xi2, Y2i0, Y2i1 to verify As-

sumption 3(iii). Note that the estimation is based on three time periods, which means Y2i0, Y2i1,

and Y2i2 are observed and thus Y1i0 = Y1i1 = Y1i2 = 1 here.

First, let us define two matrices Σα1α2,XY and ΣXY as follows:

Σα1α2,XY =







cov(α1i,Xi1) cov (α1i,Xi2) cov (α1i, Y2i0) cov (α1i, Y2i1)

cov (α2i,Xi1) cov (α2i,Xi2) cov (α2i, Y2i0) cov (α2i, Y2i1)






,

ΣXY =



















var(Xi1) cov(Xi1,Xi2) cov (Xi1, Y2i0) cov(Xi1, Y2i1)

cov (Xi2,Xi1) var (Xi2) cov (Xi2, Y2i0) cov (X2i, Y2i1)

cov (Y2i0,Xi1) cov (Y2i0,Xi2) var (Y2i0) cov (Y2i0, Y2i1)

cov (Y2i1,Xi1) cov (Y2i1,Xi2) cov (Y2i1, Y2i0) var (Y2i1)



















.

To determine the elements of the above matrices, we start with Σα1α2,XY . First, cov (α1i,Xi1) =

cov (Xi1 +Xi2 + ξi,Xi1) = 1 and cov (α1i,Xi2) = cov (Xi1 +Xi2 + ξi,Xi2) = 1. Furthermore,

cov (α1i, Y2i0) = cov (α1i, Y2i1) = cov (α2i,Xi1) = cov (α2i,Xi2) = 0. Finally, cov (α2i, Y2i0) =

cov
(

α2i, α2i/ (1− β2) + U2i0/
√

1− β2
2

)

= 1/ (1− β2) and
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cov (α2i, Y2i1) = cov (α2i, Y2i0β2 + α2i + U2i1) = β2/ (1− β2) + 1 = 1/ (1− β2).

Now consider the elements of ΣXY . First note that var (Xi1,Xi1) = var (Xi2,Xi2) = 1,

cov (Xi1,Xi2) = 0 and cov (Xij , Y2i0) = cov (Xij , Y2i1) = 0 for j = 1, 2. Next,

var (Y2i0) =
1

(1− β2)
2var (α2i)+

1

1− β2
2

var (U2i0) =
1

(1− β2)
2 +

1

1− β2
2

=
2

(1− β2)
2 (1 + β2)

,

var (Y2i1) = β2
2var (Y2i0) + var (α2i) + var (U2i1)

+ 2cov (Y2i0β2, α2i) + 2cov (Y2i0β2, U2i1) + 2cov (U2i1, α2i)

=
2β2

2

(1− β2)
2 (1 + β2)

+ 2 +
2β2

1− β2
=

2

(1− β2)
2 (1 + β2)

,

and

cov (Y2i0, Y2i1) = cov (Y2i0, Y2i0β2 + α2i + U2i1)

= β2var (Yi0) + cov (Yi0, α2i)

=
2β2

(1− β2)
2 (1 + β2)

+
1

1− β2

=
−β2

2 + 2β2 + 1

(1− β2)
2 (1 + β2)

.

Given matrices Σα1α2,XY and ΣXY with their elements derived above, the mean of the
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conditional distribution of α1i, α2i |Xi1,Xi2, Y2i0, Y2i1 is given by

Σα1α2,XYΣ
−1
XY



















xi1

xi2

y2i0

y2i1



















=







1 1 0 0

0 0 1
1−β2

1
1−β2

























1 0 0 0

0 1 0 0

0 0 2
(1−β2)

2(1+β2)

−β2
2+2β2+1

(1−β2)
2(1+β2)

0 0
−β2

2+2β2+1

(1−β2)
2(1+β2)

2
(1−β2)

2(1+β2)



















−1 

















xi1

xi2

y2i0

y2i1



















=







1 1 0 0

0 0 1
1−β2

1
1−β2

























1 0 0 0

0 1 0 0

0 0 2
3−β2

β2
2−2β2−1
3−β2

0 0
β2
2−2β2−1
3−β2

2
3−β2





































xi1

xi2

y2i0

y2i1



















=







1 1 0 0

0 0
β2
2−2β2+1

(3−β2)(1−β2)
β2
2−2β2+1

(3−β2)(1−β2)

























xi1

xi2

y2i0

y2i1



















=







1 1 0 0

0 0 1−β2

3−β2

1−β2

3−β2

























xi1

xi2

y2i0

y2i1



















=







xi1 + xi2

1−β2

3−β2
(y2i0 + y2i1)






.

This verifies Assumption 3(iii) since the conditional distribution of the individual specific effects

depends on of the covariates from the two time periods only by means of their sums.

To verify Assumption 3(iii) for a higher number of time periods such as T = 3 and ∆ = 2,

one can follow the same derivations as in T = 2 and ∆ = 1 and easily obtain the the mean of

the conditional distribution of α1i, α2i |Xi1,Xi3, Y2i0, Y2i2 as







1 1 0 0

0 0
β3
2−β2

2−β2+1

(3+β2+β2
2−β3

2)(1−β2)

β3
2−β2

2−β2+1

(3+β2+β2
2−β3

2)(1−β2)

























xi1

xi3

yi0

yi2



















=







xi1 + xi3

β3
2−β2

2−β2+1

(3+β2+β2
2−β3

2)(1−β2)
(yi0 + yi2)






.

The result relies on the fact that the estimation for given T and ∆ requires observations of the

dependent variable Y2iT and its lags Y2i(T−1), Y2i(T−∆); hence, Y1iT = Y1i(T−1) = Y1i(T−∆) = 1.
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