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1
Introduction



1“Teacher, can I play with the robot now?” This is only one of the questions a child might
ask in the future. When I imagine my ideal classroom of the future, each teacher has at least
one robot that can be used as a teaching aid in order to support children. When a teacher
notices that a child faces difficulties, for example with learning new words from a second
language, the teacher may suggest the child to interact with the robot for a while and partic-
ipate in a one-on-one personalized session and practice the material to be learnt. After this
one-on-one session, the child returns to the class and joins the other children for classroom
instruction. However, we are only on the doorstep of this future because, before a robot can
be used in classrooms, many substantial obstacles need to be overcome in the design of these
robot interactions in order to have successful child-robot interactions (importantly, student
teachers indicate that they would like to use robots for support, see the text box below. This
dissertation, written in the context of the European Horizon 2020 project L2TOR, investi-
gated several design choices and their effects on these child-robot interactions.

In recent years, the interest in social robots in the field of education has increased sub-
stantially (Belpaeme, Kennedy, et al., 2018; van den Berghe et al., 2019). Robots have been
used as tutors that support children with various tasks, such as learning to write by handwrit-
ing (Hood et al., 2015; Jacq et al., 2016), learning about biodiversity (Ferreira et al., 2017),
mathematics and science (Hindriks&Liebens, 2019; Kennedy et al., 2015; Konijn&Hoorn,
2020; Reidsma et al., 2016), or learning a second language (this dissertation, Kennedy et al.,
2016; Kory-Westlund & Breazeal, 2015). There are several potential advantages of using a
robot in education. First, it may reduce work pressure in the educational field; classes are
getting fuller and teachers are not able anymore to provide each child with individual atten-
tion (Blatchford & Russell, 2020). Imagine, for example, a child who is struggling with a
certain topic; a robot can support this child by practicing smaller tasks related to this topic
that can help the child understand it. The teacher can select children who need this extra
support and ask them to play one-on-one with the robot before getting back to the group
lesson. The robot can provide personalized lessons to support children who face difficul-
ties understanding the material, but also for children who need some extra challenges and
are ahead of the other children. Thus, using a robot enables a teacher to spend more time
on the other children. This will allow for more inclusiveness in the classroom and enabling
children with other difficulties, such as visually impaired children who now have a human
assistant providing support, to receive additional support by a robot (Neto et al., 2021). In
addition, personalizing the interaction may increase children’s learning gain compared to an
interaction without personalization (Leyzberg et al., 2014).
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1 Second, robots can provide support in children’s native language. This is especially rel-
evant for immigrant children who are learning a new language. While teachers might have
some proficiency in some languages, they are not able to provide support in every immigrant
child’s first language. Since in principle a robot will be able to speak any language, it can
provide native language translations to support children in learning a new language. Previ-
ous research has shown that Turkish immigrant children in the Netherlands preferred such
a bilingual robot to a monolingual one, probably because these children could relate to this
bilingual robot and, therefore, felt more connected to this robot (Leeuwestein et al., 2021).
This connection might have an effect on their learning because it is possible that children
who perceive the robotmore as a peer, and therefore benefit from the positive effects of social
learning, learn more than when they do not feel this relatedness (Kory-Westlund & Breazeal,
2019a).

Third, the physical presence of the robot can support children’s learning and engage-
ment, e.g., by accompanying speech with physical gestures. Moreover, its social nature may
stimulate engagement in a variety of ways, including motivating feedback and praising chil-
dren where appropriate. Gestures can depict meaning of the different concepts and support
creating connections between the first and second language. They can also provide extra en-
couragement and might keep children engaged with the task and with the robot. Keeping
children engaged throughout their learning task is important. Children who are more en-
gaged and more motivated to continue with tasks and are more driven to complete the task
or to solve a problem (Morgan et al., 1990). In addition, children who are more motivated
will learn more during the task because they can remain focused at the task longer than chil-
drenwho are notmotivated (Blumenfeld et al., 2006;Halliday et al., 2018). To keep children
engaged, using appropriate feedback is important. Feedback can correct a learner but also
motivate the learner. Using praise to show children they are performing well can be used to
keep up their engagement and can help with children’s learning (Cameron & Pierce, 1994).

A challenge in the area of human-robot interaction (HRI) is that robots are a novelty for
most people and especially children. This often results in children being highly motivated at
the start of a robot interaction andvery engagedwith the robot and task. However, after some
time, the novelty of interacting with the robot starts to wear off and children may become
less interested, especially if the robot repeats the same task (Kanda et al., 2004; Leite et al.,
2014). It is, therefore, important that moreHRI-research focuses on long-term studies, after
the novelty effect is gone. In this dissertation, therefore, we address this by looking at the
effect of the robot’s behavior on the children’s engagement during multiple sessions.
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1Before robots can be used in classrooms, the opinion of teachers is very valuable. It is impor-
tant to investigate whether teachers see an added value in using robots for teaching. To explore
the opinion of student teachers, we asked 27 student teachers to answers questions in a survey
about the use of robots at schools. We first introduced the student teachers to the Softbank
Robotics NAO robot (see Figure 1.1) and demonstrated some of the robot’s abilities, such as
several dances and some poses. Moreover, we explained that even though this particular robot
has some limitations, such as not being able to move its fingers separately from each other,
there are other robots that can and that research is rapidly moving forward. We then asked the
student teachers questions about the role of the robot and how theywould use the robot in the
classroom if they had a robot available. Their answers showed that student teachers aremainly
positive about the use of robots in education and they are eager to use a robot. They mostly
agree that a robot has a positive influence on children. However, they are not sure whether
they want to delegate lessons to a robot.

Moreover, we questioned the student teachers what subjects would be suitable for the robot
to teach and their answers were mainly focused on the sciences like physics and mathematics,
or languages, such as Dutch and English. The creative subjects such as Art and Physical edu-
cation were considered less favorable. It is interesting that physical education was less in favor
because robots have been used in the past in elderly care and rehabilitation clinics to practice
movements with patients (e.g., Assad-Uz-Zaman et al., 2019). However, this can presumably
be attributed to the characteristics of the NAO robot being small, slow, and not as capable in
executing sports or holding art supplies such as brushes, which is more important with chil-
dren than with the elderly.
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1 The largest obstacle student teachers reported was the robot’s lack of responsiveness when
dealing with children (85%), and they indicated that this should be solved for robots to be
used at schools. Finally, the participants answered that they do not expect that the robot will
be used in schools in the near future as the majority expected that it would take 5-10 years or
even longer before social robots are used in schools. Our survey is not the only time that the
opinion of teachers is asked (see, for example, Smakman et al., 2021), this survey was one of
studies in which teachers respond positively toward the use of social robots while also stating
some concerns that need to be addressed.

1.1 Social robots in education

The past decade has seen a rapid development of using social robots for educational purposes,
with studies often highlighting the potential of robots as educational tools over more tradi-
tional means (reviews by Belpaeme, Kennedy, et al., 2018; van den Berghe et al., 2019; Mu-
bin et al., 2013). One review on robots in education concluded that robots can be effec-
tive in teaching children certain skills, but mainly for specific tailor-made lessons (Belpaeme,
Kennedy, et al., 2018). When comparing robots to humans, robots seem to have a similar
effect as human teaching on children’s learning gains, but the effect on children’s affective
outcomes, such as perception of the robot and engagement, is often larger than on learning
gains (Belpaeme, Kennedy, et al., 2018). It is moreover important to note that these studies
were tailor-made, meaning that they were specifically designed to test different robot behav-
iors and do not yet qualify as lessons that can be deployed in actual education. Furthermore,
these studies often rely on small sample sizes andmeasure learning gains over one single robot
session,whichmaynot be enough to compensate for the initial engagement learners getwhen
seeing the robot for thefirst time (vandenBerghe et al., 2019;Leite,Martinho,&Paiva, 2013).
Before robots can be used in classrooms, there is a need to test robots over multiple sessions
and with larger sample sizes.

One of the advantages of a robot compared to a whiteboard or tablet is that children can
interact with robots socially in a physical modality, which is noted to be an important factor
in second language (L2) learning (Mubin et al., 2013). The physical presence of the robot
can be helpful for children in understanding physical topics, more than when they would be
interactingwith a virtual character. Davison et al. (2021) took advantage of this fact and used
a robot to explain different science-related tasks to children, such as explaining how gravity
works. The robot’s task was to provide the instructions and feedback and the children were
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1asked to answer science-related questions on a tablet placed in front of them. Their findings
showed that children successfully interactedwith the robot and that they had amore positive
mindset with the robot than without the robot, when only learning with a computer. This
form of embodiment provides extra support during learning in that the robot can use its
arms and body to point at andmove toward objects in the physical world and, thus, allowing
children to learn more. Another study by deWit et al. (2018) used iconic gestures, depicting
animal shapes, to teach 5-year-old children animal names in a second language. The results
showed that children interacting with a robot using iconic gestures rememberedmore words
over time than children interacting with a robot using no gestures. Comparable results were
found by Alemi et al. (2015), who investigated 12-year-old children with the robot acting
as an assistant teacher using iconic gestures during the explanation of the L2 concepts. The
students learned the concepts more effectively, and in addition, showed less anxiety toward
using L2. Thus, it seems that the robot’s embodiment has a positive effect on children’s
learning gains.

Moreover, in contrast withmore traditional educational tools, social robots can use their
humanoid appearance to act out behaviors similar to those of human teachers, while simulta-
neously helping to keepup the children’smotivation (Chang et al., 2010). Appropriate robot
behavior for educational purposes, however, may be difficult to design and implement; not
only due to technical limitations but also because the intuitive communication with a child
that comes naturally to teachers, such as using the appropriate type of feedback for different
types of users and situations, may be difficult to realize in a robot tutoring system. Therefore,
various studies have investigated different behaviors for robots and their effect on language
learning (Gordon et al., 2016; Saerbeck et al., 2010; Kory-Westlund&Breazeal, 2015). For in-
stance, Gordon et al. (2016) compared four-to-six-year-old children learning newwords with
a robot tutor that personalized affection toward the children with one that did not. The chil-
dren learned the new vocabulary faster and showed higher valence for the personalized robot.
In a similar vein, Kennedy et al. (2016) compared a robot that was verbally more expressive
with a non-social robot in a child-robot interaction. The children performed better on the
post-test than on the pre-test in both conditions. Therefore, learning was not affected by the
different social behaviors, which the authors attributed to the social robot being too expres-
sive andhencemore distracting for their child learners. It is therefore important to investigate
which robot behaviors can keep children engaged with the task and which can contribute to
children’s learning gain.

Furthermore, this humanoid appearance allows the robot to be perceived as a peer or
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1 friend rather than a machine. Children are more inclined to treat the robot as a buddy and
anthropomorphize the robot (Lemaignan, Fink,&Dillenbourg, 2014). Presenting the robot
as a peer can have an effect on how children treat the robot andwill likely create a social bond
between child and robot (van Straten, Peter,&Kühne, 2020)which can affect the interaction
and children’s learning. This social bond with a peer robot has been linked to contribute to
children’s learning outcomes (Kory-Westlund&Breazeal, 2019b) and is therefore important
to take into account while designing robot tutor interactions. The extra advantage of pre-
senting the robot as a peer is that breakdowns might be more acceptable (Vogt et al., 2017).

Taken together, these earlier studies suggest that the behavior of a robot should be care-
fully designed. Of course, the robot should not be distracting for children, but instead it
should be able to build a social bond with the children to create common ground, and to
foster engagement. In this dissertation, we study how to achieve this.

1.2 Engagement

Engagement is an important aspect of educational human-robot interactions and canprovide
information about the state of the learner. There aremany definitions of engagement (Oertel
et al., 2020) and the most commonly used definition in the HRI field is one by Sidner et al.
(2004)whodefines engagement as “the process bywhich two (ormore) participants establish,
maintain and end their perceived connection” (page 141). The concept thus describes the
interactionbetween two individuals and the interplay between them. If one of thembecomes
less interested, the process will be considered less successful. Therefore, engagement can be
seen as a social process, in the context of this thesis between a child and a robot. It is often
the case in HRI that researchers use the term engagement for social engagement between
robot and child (robot engagement1). However, a (child) learner can also be engaged with
the task itself. When a child-robot interaction involves a task, it can be expected that the
child’s attention will be shared between the robot and with the particular task. At this point,
a different type of engagement occurs, not a social engagementwith just the robot, but rather
an engagement in which the task is central: task engagement. Hence, in the case of robot
interactions in which an extraneous device such as a tablet is used, it is important to also
measure task engagement (Zaga et al., 2014). However, even in the casewhen the task involves

1Weprefer to use the term ‘robot engagement’ instead of ‘social engagement’ to clearly indicate that we refer
to engagement between robot and child because social engagement can also include interactions between the
child and other actors, such as the experimenter in the roomor other children in the case of a group interaction.
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1different objects, such as blocks or a book, children’s attentionmight be toward those objects
and is it important to measure separate robot engagement and task engagement.

Robot engagement and task engagement are likely to be related because the robot plays
a large role in the task by acting as the tutor. However, the two engagement types can in-
fluence children’s learning differently. Robot engagement might, for example, distract the
child from the task and therefore reduce their learning gain (Kennedy et al., 2016). In con-
trast, task engagement is important for learning because the more engaged children are with
a task, the more frequently they will perform the task and the more they may learn. It is,
therefore, important to look at the relation between both engagement types and children’s
second-language learning gains.

Engagement may influence not only short-term learning but also long-term learning. It
can have a positive effect on short-term learning because it can result in the child payingmore
active attention to the task and, therefore, the child may have better concentration during
the task (Morgan et al., 1990) which can result into better learning gain during the task. In
the long run, engagement can result in children coming back to the lesson more regularly
because they enjoyed it (Dörnyei, 1998), but it might also result in them recalling the lesson
better and processing the learningmaterials more thoroughly. This in turn can lead to better
retention of the task.

In earlier work, it was generally found that children were relatively highly engaged when
interacting with a robot, especially at the beginning of the interaction (Leite, Martinho, &
Paiva, 2013). This is often attributed to the aforementioned novelty effect (Kanda et al.,
2004), whereby children experience an early peak of engagement due to the novelty and the
attractiveness of the robot. After the children get accustomed to the robot, this initial peak
will disappear and consequently the robot becomes less interesting. Therefore, it is impor-
tant to create robot behaviors that not only stimulate children’s interest and prolong their
engagement but also to test these robot behaviors beyond the effect of the initial novelty
with studies involving multiple sessions, as we will do in this dissertation.

Engagement can be measured in multiple ways. Often researchers use methods such as
interviewing the participants after the experiment with questionnaires, using behavioral data
from videos or physiological measurements such as EEG (e.g., Perugia et al., 2020; Alimar-
dani &Hiraki, 2020). All these methods have advantages and disadvantages, especially when
studying children. Self-report measurements are not suitable for younger children, physio-
logical measurements can be too invasive for children. Therefore, studies including children
often make use of video analyses. These video data can be processed in multiple ways (either
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1 using manual annotations, or automatic ones, often relying on machine learning or deep
learning methods). Manual annotations are time consuming, but have the advantage that
they are transparent and can focus on those aspects of child behavior which is deemed to
be most important for engagement by, for example, teachers. Machine learning and deep
learning techniques require a lot of data, something that is most often not available. As a
result, researchers sometimes focus on one single aspect of engagement, such as eye gaze, that
showed to successfully detect adult participants’ disengagement during a robot interaction
(Ishii et al., 2013; Nakano & Ishii, 2010). When interviewing preschool teachers for engage-
ment indicators, gaze away was largely part of an indication for boredom and inattentiveness
(Schodde et al., 2017). This suggests that the role of eye gaze in engagement detection is large,
because it can show the learner’s focus point. However, the role of eye gaze as an indicator
for engagement is still poorly understood.

1.3 Feedback

Feedback is one way to stimulate engagement and to increase children’s learning gain. When
children learn something, they receive feedback from their teacher. This feedback helps the
learner to understand and to correct their mistakes, but also helps the learner to understand
that their progress is going in the right direction. It is evident that feedback helps regarding
children’s L2 acquisition (Mackey & Oliver, 2002). Mackey & Oliver (2002) conducted an
experiment in which children interacted three times with an adult who either gave feedback
or proceededwith the storywhen children gave incorrect answers. The childrenwho received
feedback progressed much faster than the children without feedback.

Both positive feedback and negative feedback can influence children’s learning. Gener-
ally, positive feedback can increase children’s motivation and, therefore, encourage their ea-
gerness to continue with a task which leads to increased learning gains (Blumenfeld et al.,
2006; Hattie & Timperley, 2007). Moreover, it goes without saying that negative feedback
can also impact children’s learning. For example, children who are corrected may try to im-
prove themselves the following instance. Negative feedback and positive feedback can also be
combined, for instance when the child will first answer incorrectly, will receive a correction,
will correct their first answer, and then receive positive feedback to show that the second an-
swer was correct. This can result in a better learning gain for the child, but possibly also a
higher engagement because the child might feel more confident during the task, which can
increase the attention to the task and the pleasure during the task, and therefore, results in
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1a higher engagement level. However, it is essential that feedback is perceived as sincere and
that it is not provided in every situation, which may cause it to seem less sincere.

It is not only the feedback type but also the person providing the feedback that can influ-
ence children’s engagement and learning gains. During day-to-day life, children are provided
with feedback from everyone around them: from their parents, from their peers, from teach-
ers, other family members, etc. These groups tend to provide feedback in different manners.
Teachers typically use generic positive feedback to engage children (Brophy, 1981). Their
feedback is usually more focused on the children themselves than in their behavior or perfor-
mancemainly because teachers know the children’s personalities, and thus, theywill respond
when the children do well. Peer feedback, by contrast, can be more direct than teachers’ feed-
back (Mackey &Oliver, 2002).

All children respond differently to feedback provided by different social groups. For ex-
ample, one study showed that, in the first grade, boys tend to perform better after peer feed-
back and girls tend to perform better after adult feedback (Henry et al., 1979). The opposite
pattern was seen in fifth-grade children (Dweck & Bush, 1976); fifth-grade girls tend to per-
form better after peer feedback and fifth-grade boys after adult feedback. Considering that
children respond differently to feedback provided by these two social groups, it is likely their
reaction will also change for feedback by other social groups, such as feedback provided by
the robot. Therefore, it is important to consider the feedback style and the way it is perceived
by the learner. In general, the way in which robots provide feedback can be based on how
human teachers provide feedback. In this dissertation, we will study which forms of human-
inspired robot feedback are most beneficial for children’s engagement and learning gains.

1.4 Research context and scope

The work presented in this dissertation was conducted as part of the L2TOR project (www
.l2tor.eu), which was funded by the European Union’s Horizon 2020 program. The
L2TOR consortium was made up of six scientific institutions (Tilburg University, Utrecht
University, Bielefeld University, Ghent University, Plymouth University and Koc Univer-
sity) and two industrial companies (Aldebaran Robotics (later Softbank Robotics) and Zora
robotics). Each partner took responsibility for one aspect in the development of the robot-
assisted tutoring interaction. Tilburg University was primarily tasked with the link between
the educational lessons and the technical implementation of the interactions and effect of
the robot’s behavior on these interactions. The research reported in this dissertation is, there-
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1

Figure 1.1: The NAO robot used in all studies reported in this disserta on

fore, related to this task and focused on how particular design choices of the robot affected
the children’s engagement.

The aim of the L2TOR project was to develop a long-term interaction for teaching a
second language to preschool childrenwith the help of a humanoid robot tutor. This project
focused onpreschool children, because learning a second language at an early age is important
for later academic success (Hoff, 2013;Leseman et al., 2019;Woumans et al., 2016). However,
it also providesmore challenges in terms of experimenting. Young children have, for example,
a shorter attention span than adults (Betts et al., 2006).

The robot used in the L2TOR project is the Softbank Robotics NAO robot (see Fig-
ure 1.1 for a picture of the robot). This robot was used in all studies reported in this disser-
tation. The main feature of this robot is its abstract human-like appearance. It has 25 de-
grees of freedom, which allowed us to design different types of gestures. The robot is often
used in these types of research (Belpaeme, Kennedy, et al., 2018) and there is much support
for it. However, during this project the robot’s speech recognition was technically deemed
not to be ready yet to support speech recognition for preschool children in order to have
autonomous interactions (Kennedy et al., 2017). Therefore, for some of the studies in this
dissertation, a tablet was used as a mediator between child and robot and most studies were
semi autonomous; meaning that there was an experimenter present who had to continue the
experiment after voice tasks via a computer interface.
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11.4.1 Open science

One of the hallmarks of the L2TOR project was its emphasis on Open Science (github
.com/l2tor). The majority of the experiments conducted in Tilburg are uploaded to this
repository including the engagement coding scheme used in this dissertation. Several studies
were also preregistered via AsPredicted, and datafiles can be found via Dataverse. Preregistra-
tion and open access of anonymized data and programming code has becomemore common
practice over the years. However, our studies were among the first in HRI that started to use
these practices. The project resulted in many publications over the year, that are all openly
accessible via the L2TOR website. These publications vary from speech recognition (or the
lack of speech recognition) for young children (Kennedy et al., 2017), the effect of adaptiv-
ity and gestures on children’s learning (deWit et al., 2018) to individual differences between
children (van den Berghe et al., 2021).

1.5 Structure of the dissertation

This dissertation bundles four studies that explore the effect of feedback and gestures on en-
gagement and on second-language tutoring by a robot over multiple sessions. We investi-
gated the effect of the interaction features on two types of engagement: engagement with the
learning task (task engagement) and engagement with the robot (robot engagement), and on
anthropomorphism. Each chapter reports on an individual study that has been published
or that is under review as a full paper in an international peer-reviewed journal. Although
the chapters are connected to one another, they all contain a separate abstract, introduction,
methodology, and discussion. As a result, some overlap between texts may occur.

1.5.1 Insights in measuring engagement

Although the concept engagement, both task and robot, is broadly studiedwithinHRI, there
is no consensus of the definition nor of the way of measuring it (Oertel et al., 2020). HRI re-
searchers agree, however, that it is a complex concept and includes many single components.
One of these components is eye gaze, especially because children’s gaze can show where chil-
dren’s attention is directed to and can easily be automaticallymeasuredwith video recordings.
Therefore, the first research question we will address is:

Research question 1: Can children’s eye gaze be used to monitor their task engage-
ment and robot engagement?
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1 In order to answer this question, wefirst explored the relationbetween children’s eye gaze and
task engagement and robot engagement. In Chapter 2, we investigated whether preschool
children’s eye-gaze direction can predict children’s task engagement and robot engagement.
Moreover, in Chapter 3, we continue to explore the difference between task engagement and
robot engagement and describe our coding scheme for both engagement types inmore detail.

1.5.2 Factors that influence engagement

There are several factors that can influence children’s task engagement and robot engagement.
In this dissertation, we focused on two important aspects: the use of feedback and the use of
iconic gestures. We chose these two aspects because of the substantial role of feedback and
gestures in learning a second language. Feedback provides the learner with the correct form
and motivation to continue, which can have an influence on engagement. Robotic gestures
are shown to support second-language learning in human studies, and might also increase
children’s engagement.

Research question 2: Do robotic feedback and iconic gestures influence children’s
task engagement and robot engagement?

In Chapter 2 and Chapter 3, we describe two experiments in which we used different
forms of robotic feedback to teach children some vocabulary in a second language. We mea-
sured children learning gain and their engagement and compared whether there were differ-
ences over time and between conditions. In Chapter 2, we specifically look at the difference
between feedback in different robotic roles: peer-like, adult-like, and no feedbackwith 3-year-
old children. In Chapter 3, we first asked student teachers to provide a preferred feedback
method and used their recommendations to test teacher-recommended feedback and com-
pared it to feedback they did not recommend and no feedback with 5-year-old children.

1.5.3 Novelty effect

Previous studies suggest that children’s engagement with robots decreases over time, the so-
called novelty effect (Ahmad et al., 2019; Kanda et al., 2007; Leite, Martinho, & Paiva, 2013;
Oertel et al., 2020). This novelty effect describes the effect that new technology first increases
children’s engagement while it drops again later because children become less interested. To
keep children engaged andmotivated over time, it is important to discoverwhat type of robot
behavior can keep children engaged over time.
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1Research question 3: How do children’s task engagement and robot engagement
develop over time?

In Chapter 3, we describe an experiment that measured children’s task engagement and
robot engagement over three sessions and investigated the influence of different kinds of
robotic feedback on children’s engagement over time. Chapter 4 describes the influence of
robot gestures on children’s task engagement and robot engagement over seven sessions.

1.5.4 Relation between children’s engagement andword learning

Fromhuman-human studies, we know that children’s engagement is related to their learning
gain. However, in the child-robot studies, this effect has not been extensively studied yet.
Therefore, our fourth research question is:

Research question 4: What is the relation between children’s task engagement and
robot engagement and their second-language learning gain?

In Chapters 2, 3 and 4, we investigated the relation between children’s word knowledge
and their task engagement and robot engagement. Chapter 2 describes an experiment with
toddlers, Chapter 3 an experiment where the robot providing different types of feedback to
preschoolers, andChapter 4 an experiment inwhich the robot useddifferent types of gestures
when teaching the second language to preschoolers.

1.5.5 Children’s perception of the robot

One aspect that can influence children’s engagement is the children’s social bond with the
robot. Research showed that this social bond is stronger when children anthropomorphize
the robot (Kory-Westlund & Breazeal, 2019a) which can result in children perceiving the
robot more as their peer. This peer relation can increase children’s learning gain because
peer learning has shown to be beneficial for learning gain (see for a review Topping, 2005),
either via direct support from the peer, or via increasing the motivation and confidence of
the learner and therefore result in higher learning gain.

Research question 5: How do children’s perceptions of the robot develop over time
when interacting with a robot tutor and is it related to their L2 learning gain?

Chapter 5 describes the degree to which children attributed human-like properties to the
robot and whether those were related to the effectiveness of the word learning training.
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1 1.5.6 Discussion

Finally, this dissertation provides an answer to the research questions and a general discussion
on the key findings of all the studies described and will discuss limitations of our studies and
recommendations for future work.
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Abstract In this chapter, we examine towhat degree children of 3-4 years old engagewith
a task andwith a social robot during a second-language tutoring session. We specifically inves-
tigated whether children’s task engagement and robot engagement were influenced by three
different feedback types by the robot: adult-like feedback, peer-like feedback andno feedback.
Additionally, we investigated the relation between children’s eye-gaze fixations and their task
engagement and robot engagement. Fifty-eight Dutch children participated in an English
counting task with a social robot and physical blocks. We found that, overall, children in the
three conditions showed similar task engagement and robot engagement; however, within
each condition, they showed large individual differences. Additionally, regression analyses
revealed that there is a relation between children’s eye-gaze direction and engagement. Our
findings showed that although eye gaze plays a significant role in measuring engagement and
can be used to model children’s task engagement and robot engagement, it does not account
for the full concept and engagement still comprises more than just eye gaze.
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2.1 Introduction

In recent years, the interest in using robots for educational purposes has increased substan-
tially (Belpaeme, Vogt, et al., 2018; van den Berghe et al., 2019) due to the growing numbers
of students in classrooms, shrinking school budgets and the fact that robots can possibly ex-
hibit social behaviors that can benefit children’s learning (Belpaeme, Vogt, et al., 2018). One
application in the educational domain that utilizes robots is second-language (L2) learning
(van den Berghe et al., 2019; Kanero et al., 2018) in which robots are often used as tutors
to support children’s L2 acquisition. In order to be successful as a robot tutor, the robot
should be able to engage the children in order to motivate them during the task. The aim of
this chapter is to investigate children’s engagement during a second-language tutoring session
with a social robot.

Engagement plays an important role in learning. Engaged children are more motivated
and aremore likely to continue longerwith their learning tasks thandisengaged children. The
more time children are actively interacting with a certain task, the more children can learn
from that task. The engagement of primary and middle school children has frequently been
studied, being linked numerous times to children’s academic performances (e.g., Roorda et
al., 2011; Fredricks et al., 2004).

In human-robot interaction (HRI), it is common that people to initially be highly en-
gaged but quickly start to become less engaged as the task continues due to its repetitive and
the novelty of the task wearing off. This novelty effect is observed in both the engagement
with the robot as a social partner (robot engagement) and in the engagement with the task
within the robot interaction (task engagement) (Oertel et al., 2020). This distinctionbetween
task engagement and robot engagement is important because children can be engaged with
the learning task in front of them, but not with the tutor, or vice versa. Both engagement
types can have an influence on children’s learning (Oertel et al., 2020), although the results
are inconsistent (e.g., Kennedy et al., 2015). Previous studies on HRI typically only mea-
sured the engagement with the robot and not with the task given to the participant (Ahmad
et al., 2019; deWit et al., 2018; Oertel et al., 2020). The reason for this is that researchers are
specifically interested in the effect of theirmanipulation, which is often a result of the robot’s
behavior. However, it is also worth examining task engagement (Zaga et al., 2015), because
this may reveal whether the learner’s engagement decreased in response to the experimental
task or the robot’s behavior.

There are several methods that are able to stimulate and maintain children’s task engage-
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ment and robot engagement, and one of them is feedback. Providing children with the cor-
rect form of feedback is essential, as different children seem to respond better to different
feedback types (Byrne, 1987). On the one hand, positive feedback can motivate children,
keep them engaged during a task and can activate their learning behavior (Masgoret & Gard-
ner, 2003). On the other hand, for other children, it might decrease their performance, when
the children receive this feedback too often, it becomes too repetitive and, as a result, the chil-
dren become less engaged (Flink et al., 1992). Children can also respond differently to nega-
tive feedback, especially young children. As young children (preschoolers) quickly absorb all
the information around them and rely on their environment for (correct) input, they tend
to benefit more when they receive corrective feedback than adults would (Mackey & Oliver,
2002). In contrast, younger children might be more sensitive to explicit negative feedback
than older children, particularly when it guides them to notice errors (Lyster & Saito, 2010;
Mackey et al., 2003;Oliver, 2000). Moreover, negative feedback can lead to frustrationwhich
can decrease children’s motivation to fully participate in the task and therefore decrease chil-
dren’s task engagement (D’Mello & Graesser, 2012).

This chapter aims to investigate children’s task engagement and robot engagement dur-
ing a second-language (L2) learning task with a robot by specifically focusing on the role of
the robot’s feedback on the children’s engagement. Moreover, we investigate the role of chil-
dren’s eye gaze on their task engagement and robot engagement. In the following sections,
we provide an overview of earlier work on engagement in child-robot interaction and feed-
back in education. We then explain the design of the experimental study and, finally, we will
present the results and discuss our findings.

2.2 Background

2.2.1 Engagement

Numerous studies across the HRI field focus on engagement. After all, the key to contin-
uing to use robots in different fields is when people remain interested in robots, especially
over time. Formany people, robots are something new and hence interesting. However, over
time, this interest may change. Consequently, engagement is widely studied and frequently,
when researchers refer to the concept of engagement, a variety of definitions are used. The
most commonly used definition in HRI is by Sidner et al. (2005), who defined engagement
as “the process by which individuals in an interaction start, maintain and end their perceived
connection to one another” (page 141), but there are others who argue that it is more than
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a cognitive process and explain engagement as a multidimensional concept of a cognitive di-
mension (such as attention), an affective dimension (such as emotions) and a behavioral di-
mension (such as the execution of tasks) (Trowler, 2010; Zaga et al., 2014). Although there
has been a large variation in the definition of engagement and in how it has been studied,
there is an agreement that engagement is a multidimensional concept.

Children are normally very engaged with the robot, but this quickly decreases over time
which has been shown in numerous experiments (e.g., Tanaka &Matsuzoe, 2012; Kanda et
al., 2004; Leite et al., 2014). It is, therefore, important to understand which robot behavior
can lead to a positive effect on children’s engagement. Many studies have investigated the
effect of robot behavior on children’s engagement, looking at different robot behaviors such
as the robot’s gestures (deWit et al., 2018), expressiveness of the voice (Kory-Westlund, Dick-
ens, et al., 2017), or the role of the robot (Zaga et al., 2015; Chen et al., 2020). de Wit et al.
(2018) found a positive effect of robot gestures on 5-year-old children’s engagement. Kory-
Westlund, Dickens, et al. (2017) found that 5-year-old children were more engaged with a
robot exhibiting expressive behaviors. A recent study showed that 5- to-7-year old children
who interacted with a robot acting as a peer showed more affect during the interaction than
when interacting with a robot acting like a tutor (Chen et al., 2020).

A disadvantage of these studies is that they focus on engagement with the robot instead
of the task. However, it is possible that task engagement is more important for learning.
A follow up study by de Wit et al. (2020) found a positive effect of robot gestures on chil-
dren’s robot engagement but not on task engagement nor learning gain. Moreover, Zaga et
al. (2015) investigated task engagement during a robot tutoring session. In their experiment,
they compared a robot behaving as a peer and a tutor and found that children were more
engaged in the task and solved the task faster with the peer-like robot than with the tutor-like
robot.

Similarly to how there are different definitions of engagement, there are also different
methods for measuring engagement (Oertel et al., 2020). For adults, questionnaires can be
used as self-reported measures. This can be useful to determine participants’ own reflection
of the interaction. Unfortunately, questionnaires only provide a total rating after the interac-
tion and not during the interaction, and are difficult to usewith children. Othermethods are
based on video or audio data andmeasure participants’ output behaviors, such eye gaze, head
movements (nodding), verbal utterances and facial expressions or a combination of these be-
haviors (Inoue et al., 2018;Rich et al., 2010; Ishii et al., 2013). Eye gaze is especially important,
because it can indicate where the participant’s attention is directed and can relatively easily
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be measured automatically, making it ideal for real-time engagement tutoring interactions.
Some studies have examined the role of eye gaze within engagement (Ishii et al., 2013;

Nakano & Ishii, 2010; Rich et al., 2010). Nakano & Ishii (2010) and Ishii et al. (2013) used
automatic gaze direction to initiate probing questions by the robot whenever the participant
looked away from the robot, indicating disengagement. This showed to have a positive ef-
fect on the participants’ non-verbal and verbal behaviors. However, they concentrated their
studyon the social interactionbetween the robot andparticipant anddidnot investigatewhat
happens when a task is in front of the participant. This can result in different eye-gaze behav-
iors such as looking away from the robot more often. Rich et al. (2010) combined mutual
gaze and joint attention to determine the participant’s engagement and this combination in-
creased the participant’s attention to the robot. However, these studies do not differentiate
between robot engagement and task engagement and it is possible that they actually mea-
sured participants’ engagement with the robot. Moreover, these studies did not investigate
whether it is feasible tomonitor eye gazewith children andwhether children’s eye gaze relates
to engagement. Although eye gaze only focuses on one aspect of engagement, it undoubtedly
plays a role because it can show the direction of the participant’s attentionwhich is one of the
three dimensions of engagement according to (Trowler, 2010). It does not, however, explain
the whole concept. Therefore, it would be interesting to examine how large the role of this
single element is and whether this role is large enough to successfully predict children’s task
engagement and robot engagement during a L2 learning tutoring session.

2.2.2 Feedback

Research on L2 learning has demonstrated the importance of feedback and engagement on
children’s language learning performance onhuman-human studies (Mackey&Silver, 2005).
While the role of feedback has extensively been studied on human-human interaction, in the
field of child-robot interaction it is largely understudied (see Ahmad et al., 2019; Hindriks &
Liebens, 2019). In order to design social robots as effectiveL2 tutors, it is therefore important
to investigate how a social robot should provide feedback to optimize children’s engagement.

In general, educational robots are designed based on how human teachers interact with
their pupils; however, in classroom settings, children not only receive feedback from their
teachers but also from their peers. Teachers normally provide a combination of positive and
negative feedback. They use explicit positive feedback to encourage the children and they
recast the children’s answers to provide corrections as a type of implicit negative feedback
(Lyster & Ranta, 1997). Their positive feedback can result in children becoming more en-
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gaged with the task and when they are fully engaged, they learn faster and continue longer
with the task (Oxford& Shearin, 1994;Dörnyei, 1998; Kanda et al., 2004). The use of recasts
during L2 learning provides a subtle way to correct the children’s mistakes. In the case of a
recast, the adult will repeat the utterance, but rephrase the incorrect part into a correct one
(e.g., when a child had said: “The cat is jumping”, he/she may be corrected by the adult’s ut-
terance: “Ah right, the dog is jumping”). The use of recasts is additionally intended to avoid
providing demotivating comments found in explicitly negative feedback.

Childrendonot only receive feedback from their teachers, they also receive feedback from
peers in their classroom (Mashburn et al., 2009). In contrast to the implicit feedback that
adults provide, children tend to use more explicit language (“No, you are wrong!”) (Mackey
&Oliver, 2002). It has been argued that explicit feedback can have amore substantial impact
on learning than implicit feedback (Okita & Schwartz, 2013). However, the potential side
effect of providing explicit feedback is that children’s engagement decreases. As shown, all
of these different forms of feedback provide children with the correct information but in a
different manner, and consequently, these different forms may have a different influence on
the children’s engagement. In addition, children might have feedback preferences, where
one child might remain more engaged with explicit feedback, while implicit feedback might
stimulate engagement more for another child.

Given that learners do not exclusively receive feedback from adults, the design of robot
feedback on the basis of the teacher’s feedback might not always be the most optimal for
children’s development. For example, researchhas shown that thepresenceof apeer improves
learning potential (Mashburn et al., 2009), and as a result, some researchers have argued that
educational robots might work better when presented as peers, especially since children may
treat the robot as a peer rather than a teacher in long-term interactions (Kanda et al., 2004).
Therefore, it might be better to design feedback provided by a robot based on children’s peer
interactions.

The use of feedback in child-robot interaction studies has not been extensively studied.
Adult-robot interaction studies showed that participants listened more to negative feedback
provided by a robot than negative feedback provided by computers (Midden &Ham, 2014),
that participants learnedmore words during an L2 learning task from a robot providing only
negative feedback than a robot providing only positive or no feedback (de Haas & Conijn,
2020), and positive feedback positively influenced adults’ acceptance of the robot as instruc-
tor (E. Park et al., 2011), and increased adults’motivation (Midden&Ham, 2014). However,
it is difficult to relate these results to children because children learn differently to adults.
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In child-robot interactions, most studies report the use of praise or various types of neg-
ative feedback, such as introducing a doubt (“Are you sure?”) instead of negative feedback
(Mazzoni & Benvenuti, 2015), providing hints (“I think it was the other one”) (Gordon et
al., 2016) or providing children with an extra attempt after an incorrect answer (de Haas
et al., 2016), but these studies did not investigate the effect of these feedback utterances on
children’s learning gain or engagement. Hindriks & Liebens (2019) investigated a robot pro-
viding feedback to 7-9-year-old children solving mathematical problems. The feedback was
based on the most likely error children made solving the problem (e.g., forgetting to add
one number). Their results showed that these extra explanations were appreciated by chil-
dren who found these mathematical problems difficult, but children who solved problems
quickly became impatient by the robot’s feedback. These findings indicate that feedback
technique preferences might different for certain groups. Only one study has investigated
the use of robot feedback in L2 learning (Ahmad et al., 2019). In this study, children of eight
to ten years old played a game with a robot on a tablet. The robot provided either positive
emotional feedback, negative emotional feedback or neutral feedback. Ahmad and colleagues
found that the robot providing positive emotional feedback positively influenced children’s
learning gain and their social engagement with the robot. These studies did not investigate,
however, children’s engagement with the task and the question arises as to whether the same
effects can be foundwith younger children, who are shown to rely more on the experimenter
than the robot (Baxter et al., 2017). Moreover, the study ofAhmad used a tablet as an interac-
tion medium between the robot and child. However, a disadvantage of using a tablet is that
it can play a large role in the interaction (Vogt et al., 2019; Konijn et al., 2021) and reduce
the children’s attention to the robot tutor, which can lead to a decrease in children’s robot
engagement and their learning gain. It is, therefore, interesting to investigate the influence of
robot feedback on children’s task engagement and robot engagement during a robot tutoring
session without a tablet present.

2.2.3 This study

In this study, children received a tutoring session from a social robot and learned how to
count in English using physical blocks. We investigated whether children were more task-
engaged and more robot-engaged with a robot providing adult-like feedback (implicit nega-
tive feedback and explicit positive feedback), peer-like feedback (explicit negative feedback)
or no feedback, and whether eye-gaze direction can predict task engagement or robot engage-
ment. Finally, we investigated the relation between children’s task engagement and robot
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engagement with children’s learning gain. We addressed the following hypotheses:

H1 a) Children are more task-engaged with a robot that provides feedback than with a
robot that does not provide feedback.
We expect that children’s task engagement will be higher when children receive feed-
back because the feedback will make them aware of their mistakes. This awareness can
lead to a more successful completion of the task and children’s success will result in a
higher task engagement.

b) Children aremore robot-engagedwhen the robot provides adult-like feedback than
in the other two conditions. We expect this result because the adult-like feedback is the
only condition that provides positive feedback, which is shown to increase children’s
motivation and can increase children’s robot engagement (Kluger & deNisi, 1996;
Hattie & Gan, 2011). We expect that this effect will mainly contribute to children’s
robot engagement because the robot is providing the positive feedback and children
might like the robot more due to these positive expressions.

H2 a) Eye gaze toward the blocks and the robot has a positive relationwith children’s task
engagement and children’s eye gaze elsewhere has a negative relation with children’s
task engagement.
We expect that this is because the task involves both the robot as an instructor and the
blocks because the children have to manipulate these blocks during the task.

b) Children’s eye gaze toward the robot will have a positive relation with robot engage-
ment and the other eye-gaze directions will have a negative relation with robot engage-
ment.
We expect that only eye gaze toward the robot will have a positive relation with robot
engagement, because when you communicate and, therefore, engage with a robot as
a social partner, this is often accompanied by mutual eye gaze with this social partner
(Mwangi et al., 2018) and other studies that detected disengagement with the robot
(Nakano & Ishii, 2010; Ishii et al., 2013; Rich et al., 2010) when participants looked
away.

2.3 Method

A between subject design with three conditions was employed for this study. Children re-
ceived either adult-like feedback, peer-like feedback or no feedback. The robot behavior re-
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mained the same through the conditions except for the robot’s feedback.

2.3.1 Participants

A total of 58 native Dutch children (Mage = 3 years and 6 months, SD = 4 months) partici-
pated in this study. All children attended a preschool or childcare in the Netherlands. For
all children, the parents signed an informed consent form to give permission. The partici-
pants were randomly distributed over the three conditions. Four children indicated that they
wanted to stop participating during the experiment and therefore stopped the experiment
prematurely and were removed from the data. This resulted into the following distribution:

1. Adult-like feedback (N = 21,Mage = 3 years and 6 months, 12 boys and 9 girls);

2. Peer-like feedback (N = 18,Mage = 3 years and 6 months, 10 boys and 8 girls);

3. No feedback (N = 19,Mage = 3 years and 7 months, 13 boys and 6 girls)

Exact age data for four children are missing and are not included in the age calculation. The
study was conducted in accordance with the Declaration of Helsinki, and received ethical
approval from the Research Ethics committee of Tilburg School of Humanities and Digital
Sciences.

2.3.2 Robot tutoring session

The interaction was completely in Dutch, except for the target words, which were in English
(the targetwords are italicized in this section to indicatewhichwordswere spoken in English).
The aim of the session was to teach children to count from one to four in English. Before
the tutoring session, children participated in a group introduction and received a pre-test.
The tutoring session started with the robot teaching the children the four counting words
using different training tasks. These training tasks varied from repeating the target words,
counting various body parts of the robot to building a tower with blocks and counting the
height of the tower. For instance, the robot would ask the child to build a tower and to
count together how tall the tower is: “Shall we count together in English how tall this tower
is? Repeat after me: one, two, three, four.” (in Dutch: “Zullen we samen tellen hoe hoog de
toren is in het Engels? Zegmijmaar na: one, two, three, four.”). All targetwordswere repeated
three times during these training tasks. After this concept binding of the target words, the
robot and child went of the different target words with the use of the four blocks. For each
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target word, the robot asked the child to collect a certain number of blocks using an English
counting word: “I’m going to say in English how many blocks you should grab: three” (in
Dutch:“Ik ga in het Engels zeggen hoeveel blokken jij mag pakken: three”). The order of the
targetwordswas fixed andwas, therefore, the same for each child. Each targetwordwas asked
only once during these practice rounds to reduce the duration of the experiment. Once the
child collected the blocks, the robot provided feedback (only in the adult-like and peer-like
feedback conditions) and continuedwith the next instruction. After all wordswere practiced,
the robot and child concluded the session with a Dutch children’s dance.

2.3.3 Experimental conditions

The children received either adult-like feedback, peer-like feedback, or no feedback, see for an
example Table 2.1:

1. In the adult-like feedback condition, the robot used explicit positive feedback for cor-
rect answers and implicit negative feedback for incorrect answers. A correct answer
would invoke a facial expression using colored eye-LEDs and positive verbal feedback
(“That is right, threemeans three in English”). For an incorrect answer, corrective feed-
back was provided (“three means three”). After receiving negative feedback, children
could try again (“You should take three blocks”), after which the robot would again
provide feedback. This negative feedback was, at most, provided twice for every target
word, whichmeans that during the experiment, every childwas able to receive negative
feedback eight times and positive feedback four times. In case the child gavemore than
two incorrect answers, the robot still provided positive feedback and continued to the
next instruction. For both positive feedback and negative feedback, the robot repeated
the English target word, which increased children’s exposure to the target words.

2. In the peer-like feedback condition, the robot did not provide positive feedback but
only provided explicit negative feedback. This explicit negative feedback was based on
children’s feedbackduringpeer interaction (Long, 2006). Similar to the adult-like feed-
back condition, children could try again twice after receiving negative feedback. After
a correct answer, the robot would continue to the next step without any feedback.

3. In the no feedback condition, the robot did not provide any feedback and just contin-
ued the game with the blocks after children collected the correct or incorrect number
of blocks.
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Table 2.1: An example of the robot’s feedback in the different feedback condi ons.

Condition Correct answer

Dutch English

Adult-like Dat is goed! Three betekent drie in
het Engels.

That is right! Threemeans three
in English

Peer-like - -
No feedback - -

Incorrect answer

Dutch English

Adult-like Three betekent drie, je moet drie
blokken pakken. Probeer opnieuw

Three means three, you should
take three blocks. Try again

Peer-like Dat is fout! Je moet drie blokken
pakken. Probeer opnieuw.

That is wrong! You should take
three blocks. Try again.

No feedback - -

2.3.4 Materials

Experimental setting

The experiment took place in multiple preschools and childcare centers in the Netherlands.
At each location, the experiment room was a classroom that the children were familiar with,
but not in use by the school. The Softbank Robotics NAO robot was used, which is com-
monly deployed in experiments with children. Moreover, four blue blocks were used. We
chose to use blocks in our experiment because preschool children are used to playing with

Figure 2.1: The setup of the experiment.
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blocks, and children learn how to manipulate and handle blocks to enhance their visual-
spatial skills (Casey et al., 2008). The children sat on the ground with the crouched robot,
approximately 40 cm from each other, with the blocks in between. (see Figure 2.1 for the
experimental setting). The children were positioned so they could not see the corridor and,
therefore, could not see other children passing by the room. The children were filmed from
two viewpoints: one camera was positioned in front of the child to record his or her face
and one camera was sideways to record the social interaction between robot and child. Two
experimenters were present during the interaction to operate the robot and to provide reas-
surance for the children if necessary. While the experimenters sometimes instructed the child
to perform a task if required, they were careful not to provide feedback.

Pre-test

Before the child started the tutoring sessions, his or her Dutch and English knowledge of the
four target words was tested. The experiment leader asked the child to collect a number of
blocks and repeated this for every target word (e.g., “Can you give me four blocks?”). This
process was first completed in Dutch to test their L1 knowledge of the target words, and
then in English to test their L2 knowledge. The same blocks were used as during the tutoring
session; however in this case six blocks were used instead of four to reduce the chance of
guessing. For both Dutch and English, the experimenter noted how many target words the
child already knew in both languages. The experimenter did not provide feedback between
the words, and only continued with the next target word.

Post-test

The post-test was the same as the pre-test, however it was only conducted for the English
target words. The experimenter used six blocks and asked the children to collect the number
of blocks that was equal to each of the four target words.

2.3.5 Procedure

Group introduction

The study consisted of two group introductions and one tutoring session. One week before
and in the morning of the experimental day, group introductions were given to familiarize
the children with the robot and build up trust and rapport with the robot (Vogt et al., 2017).
All children in the classroom participated during the first group introduction, but only the
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children that participated in our experiment joined the second introduction. Both introduc-
tions were the same, and during these we highlighted some of the similarities of the robot
with people to establish common ground, since this can have a positive effect on the learning
outcome (Kanda et al., 2004). For example, we explained that the robot has arms and legs
just like people have and can express emotions through its eye-LEDs. The robot and chil-
dren would then dance a familiar Dutch children’s song. We never forced the children to
participate; if they declined they could sit in a quiet corner and watch from a distance.

Experiment

After the childwas brought to the experiment room, the experimenter tested the child’s prior
knowledge of the target words in bothDutch and English, as described in Section 2.3.4. The
pre-test was carried out in the same room as the tutoring session, but at some distance from
the robot. After the pre-test, the child was asked to sit in front to the robot. During the
experiment, the two experimenters remained in the room at a distance to discourage children
from looking at them. When children looked at the experimenters or asked them for help, the
experimenters redirected the children’s attention back to the robot. When a child displayed
signs of discomfort, the experimenters comforted the child and tried tomake himor hermore
relaxed. For some children, the experimenters remained close to the children andhelped them
during the beginning of the interaction. In the case of four children, the experiment was
stopped and these children were brought back to their classrooms.

After the robot tutoring session was completed, the experiment finished with an English
post-test. When this post-test was completed, a short debriefing was conducted. During this
debriefing, the experimenters repeated all of the target words and their translation to ensure
that children had learned the correct translation. Finally, the child was brought back to their
classroom. The duration of the experiment was approximately 10 to 15 minutes.

2.3.6 Engagement and gaze coding

We manually coded three different aspects of the interaction: task engagement, robot en-
gagement and children’s eye-gaze direction. Not the whole interaction was coded; instead
we chose two video fragments: one two-minute fragment at the beginning of the interac-
tion, and a two-minute fragment at the end of the interaction. The gaze coding was only
completed for the two-minute fragment at the end of the interaction due to time constraints.
The two video fragments of the interaction were chosen to code different aspects in the inter-
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action,with the first fragment being themomentwhen the robot started to teach the children
English, and the other fragment being amoment in the end of the interactionwhen the robot
and child started to play with the blocks. These fragments resulted in 116 video fragments
for 58 children.

Engagement coding

Both task engagement as well as robot engagement were rated on a Likert scale from one
to five, including half points, with one as a low level of engagement and five being highly en-
gaged. Webasedour engagement coding schemeonan existing coding schemenamedZIKO 1

(Laevers, 2005). This coding scheme is used in children’s day cares to measure, among other
things, children’s engagement to improve the day care activities. We adapted the scheme
to include specific cues for our own experiment, such as attention toward the experiment
leader instead of the robot and blocks. Children were fully task-engaged, when they were
completely “absorbed” in the robot-block activity, when they showed to be open for new
information, were very motivated and listened to the tasks. Robot engagement described
children’s engagement with the robot as a social partner and focusedmore on the interaction
itself than on the task. Each engagement level had specific cues for the rater.

Ahigh task engagement hadcues to look for such as: looking at the task and robot, actively
answering and grabbing blocks, listening for new instructions and being fully committed to
the task. In contrast, a low task engagement was indicated by fiddling, not performing, and
playing with objects not related to the task (e.g., their shoes). A neutral task engagement was
determined as the child executing the tasks but not being fully immersed in them.

A high robot engagement had cues such as: looking at the robot, having an open body
posture toward the robot, having spontaneous conversations with the robot. A low robot
engagement had cues such as: turning away from the robot. A neutral robot engagement had
cues such as touching the robot without meaning. For all specific cues and information, see
the coding scheme on Github 2.

Ten percent of the data were coded by two raters and their inter-rater agreement was
considered moderate using the intraclass correlation coefficient (ICCtask = .75, 95% CI [.05,
93], ICCrobot = .64, 95% CI [.16, .88]) (Koo & Li, 2016).

1ZIKO is an abbreviation for Zelfevaluatie-Instrument voor de Kinderopvang (English: Self-evaluation In-
strument for Care Settings).

2https://www.github.com/l2tor/codingscheme.
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Eye-gaze coding

We coded children’s eye gaze toward different directions in order tomeasure their visual atten-
tion using ELAN (Wittenburg et al., 2006). We analyzed the same fragments as engagement,
but only the second fragment when children also used the blocks for the interaction. In
particular, we coded children’s eye gaze in five different directions: the robot, blocks, exper-
imenter, elsewhere and unknown. The latter direction unknown (0.71%) was not included
in the analysis. Eye gazes that were shorter than one second were excluded and added to the
nearest annotation, as a short glance would not change the children’s focus point. For the
analyses, we calculated the duration for each category. To assess inter-rater reliability for this
categorical data, 10% of the videos were coded by a second annotator, yielding a Fleiss’ Kappa
of .83 which is considered a very good agreement.

2.3.7 Analyses

We investigated children’s task engagement and robot engagement over the session and the
conditions. We measured the two engagement types in the beginning of the session and the
end of the session.

To inspect thenormality of the engagementdata,Q-Qplotswere plotted and the Shapiro-
Wilk test was conducted. Both the plots and Shapiro-Wilk tests showed a non-normal distri-
bution of the task engagement and robot engagement. Consequently (Field et al., 2012), we
conducted two robust two-way mixed design ANOVAs with 20% trimmed means and the
feedback condition as a between-subject variable and the test moment (beginning and end
of session) as a within-subject variable on both engagement types. We used the “WRS2” R
package to conduct this analysis (Mair &Wilcox, 2020).

To investigate the relation between children’s eye-gaze direction and their engagement,
multiple regression analyses of task engagement and robot engagementwere performedusing
four predictors: duration of eye-gaze toward the blocks, the robot, the experimenter and
elsewhere. The assumptions of non-multicollinearity were checked using variance inflation
factor (VIF) statistics (Hutcheson & Sofroniou, 1999). Several models were analyzed, from
which the best model was chosen.

We investigated the effect of the different feedback types on children’s learning gain. A
Q-Q plot and a Shapiro-Wilk tests showed a non-normal distribution of the learning gain.
Therefore, we conducted a robust mixed design ANOVA with 20% trimmed means to test
the effect of the tutoring session and feedback on children’s word knowledge.
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Finally, we investigated the relation between engagement and learning using a Pearson
correlation analysis.

2.4 Results

First, we will report on the effects of the experimental conditions on children’s task engage-
ment and robot engagement. Next, we will discuss the relation between children’s eye-gaze
direction and their engagement. Finally, we will report the effect of the three feedback con-
ditions on children’s learning gain and the relation of learning gain and engagement.

2.4.1 Engagement

To begin, we investigatedwhether task engagement and robot engagementwere related. Task
engagement and robot engagementwere correlated (r(218) = .70, p < .001), indicating that
children who scored higher on task engagement also scored higher on robot engagement.

Task engagement

We investigated whether the three experimental feedback conditions had an effect on chil-
dren’s task engagement. We expected that children would be more task-engaged when the
robot was providing feedback. Figure 2.2a shows that there were large individual differences
in children’s task engagement over time, conditions and between the individual children.
Some children became more task-engaged over time (48%), other children became less task-
engaged over time (38%) and other children were equally engaged in the beginning of the
session as in the end (14%). When looking at the graph, on average children scored higher
than a neutral task engagement (3.0), except at the beginning of the session for the peer-like
feedback condition.

We carried out a robust two-way mixed design ANOVA using trimmed means on chil-
dren’s task engagement with condition as between factor and test moment (beginning of the
session and end of the session) as within factor. In contrast to our expectations, there was no
significant difference between children in the different conditions (F(2, 22.67) = 0.58, p =
.57), norwas there a significant difference over time (F(1, 33.37) = 0.12, p = .73). However,
there was a significant interaction effect between condition and test moment (F(2, 23.17) =
6.89, p = .004). This interaction effect is illustrated in Figure 2.2a, children’s task engage-
ment in the peer-like and in the adult-like feedback conditions increased during the session
and in the no feedback condition their task engagement decreased over time.
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a: Task engagement b: Robot engagement

Figure 2.2: The individual children’s (a) task engagement scores and (b) robot engagement scores
over the three condi ons in the beginning and end of the tutoring session. The dark lines show the
averages of the children’s engagement scores.

Robot engagement

Similar to children’s task engagement, children’s robot engagement varied for each condi-
tion in the beginning and end of the session (see Figure 2.2b). It decreased for 45% of the
children, increased for 43% of the children and remained the same for 12% of the children.
To investigate whether their robot engagement was different for the three feedback condi-
tions, we conducted a robust two-way mixed design ANOVA using trimmed means on chil-
dren’s robot engagement with condition as between factor and test moment (beginning of
the session and end of the session) as within factor. We expected that children would be
more robot-engaged when interacting with a robot providing adult-like feedback than the
other two conditions. Contrary to these expectations, there was no significant difference be-
tween children in the different conditions (F(2, 22.57) = 0.16, p = .85), nor a difference
over time (F(1, 31.57) = 0.01, p = .93). Similar to task engagement, there was a significant
interaction effect between condition and test moment (F(2, 22.36) = 3.88, p = .04). This
means that children’s robot engagementwas influenced by the three feedback conditions and
themoment in the session. Figure 2.2 shows that children’s robot engagement increased dur-
ing the two feedback conditions and decreased in the no feedback condition. This increase
in robot engagement appeared to be less strong than with task engagement.

2.4.2 Duration of eye-gaze directions as engagement predictor

Next, we investigated whether the duration of children’s different eye-gaze directions had a
relation with children’s engagement. Table 2.2 shows the duration in seconds toward the
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robot, human experimenter, the blocks and elsewhere in the different conditions. Overall,
children spent the most time looking at the blocks, followed by the robot, the experimenter
and they spent the least time looking elsewhere. To investigate the relation between the dura-
tion of each eye-gaze direction and engagement, we carried out a linear regression to predict
the role of eye gaze on children’s task engagement and robot engagement.

Table 2.2: The mean dura on in seconds for the children’s eye-gaze direc on divided into each feed-
back condi on (SD between brackets).

Condition Robot Blocks Experimenter Elsewhere

Adult-like 45.1 (21.0) 57.1 (15.3) 13.5 (12.0) 2.7 (3.4)
Peer-like 38.1 (24.2) 57.2 (30.1) 15.4 (15.2) 2.4 (3.3)
No feedback 31.6 (19.3) 56.0 (18.5) 18.6 (17.5) 5.6 (7.9)
Overall 38.1 (21.9) 56.8 (21.6) 15.9 (15.0) 3.6 (5.5)

Task engagement

Table 2.3 shows the different regression analyses we performed. Model 1 included all eye-
gaze directions and when combined, these explained a significant proportion of the variance
of task engagement (F(4, 50) = 16.13, p < .001,R2

adj = .53). However, when checking
for multicollinearity, we found that the duration that children looked toward the blocks
and toward the robot were highly related (VIF scores: blocks = 6.45, robot = 6.48) and
strongly correlated (r = −0.69, p < .001). Following (Hutcheson & Sofroniou, 1999), we
combined these two directions by taking the sum of the two directions and using their total
duration (blocks and robot) in a new model. Model 2 also explained a large proportion of
variation (F(3, 51) = 21.54, p < .001,R2

adj = .53) with acceptable VIF values (VIF scores:
blocks and robot = 3.86, experimenter = 3.22, elsewhere = 1.54). As an alternative to using
the total duration in both eye-gaze directions,Model 3, we removed the predictor with the
highest VIF value (Hutcheson & Sofroniou, 1999), which was the duration children looked
at the robot. In this alternative model, the duration that children looked at the blocks did
not contribute significantly to the prediction. Hence, we removed this variable from the
model. The resultingModel 4 significantly explained 48% of the task engagement’s variance
and did not perform better than the other models. Therefore, the best model was Model 2
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(R2
adj = .53) and the resulting regression equation was:

Engtask = 8.89−0.04×Gazeblocks and robot−0.09×Gazeexperimenter−0.10×Gazeelsewhere (2.1)

where Engtask is task engagement, Gazeblocks and robot the duration in seconds of eye-gaze to-
ward the blocks and the robot, Gazeexperimenter is the duration toward the experimenter and
Gazeelsewhere is the duration that children looked elsewhere.

Robot engagement

For robot engagement we used a similar approach as for task engagement. We performed dif-
ferent multiple regressionmodels to predict children’s robot engagement using the duration
of children’s eye gaze toward the blocks, the robot, the experimenter and elsewhere. Similarly
to task engagement, the model containing all variables explained a significant proportion of
the variance of children’s robot engagement (see Table 2.4 for the models). Model 1 showed
that 58% of the variance in children’s robot engagement can be explained by the duration in
which children looked at the four different eye-gaze directions. However, both the duration
that children looked in the direction of the robot and in the direction of the blocks did not
significantly contribute to the model and could therefore be removed. We ran three further
models: Model 2 without children’s eye-gaze direction toward the robot,Model 3 without
children’s eye gaze toward the blocks and Model 4 without both the eye gaze toward the
robot and blocks. Model 4 contained the fewest predictors, but also explained the lowest
variance of the four models (R2 = .45). Despite that the other two models (3 and 4) were
the same regarding the variance (R2 = .58), we prefer the model containing gaze toward to
the robot instead of blocks because thismodel (Model 3) shows the positive relation between
eye-gaze direction to the robot and robot engagement.

40



2
Table 2.3: Regression analyses summary for the dura on (s) that children looked in different direc-
ons predic ng children’s task engagement.

Eye-gaze direction Coefficient SE VIF t P

Model 1
constant 8.93 1.66 5.39 < .001
robot -0.04 0.02 6.48 -2.55 .01
blocks -0.04 0.02 6.45 -2.86 .01
experimenter -0.09 0.02 3.23 -5.75 < .001
elsewhere -0.10 0.02 1.55 -4.84 < .001

Model 2
constant 8.89 1.65 5.40 < .001
blocks and robot -0.04 0.01 3.86 -2.78 .01
experimenter -0.09 0.02 3.22 -5.80 < .001
elsewhere -0.10 0.02 1.54 -4.83 < .001

Model 3
constant 4.87 0.48 10.20 < .001
blocks -0.01 0.01 1.14 -1.23 .22
experimenter -0.06 0.01 1.07 -6.03 < .001
elsewhere -0.07 0.02 1.06 -3.92 < .001

Model 4
constant 4.34 0.21 20.80 < .001
experimenter -0.06 0.01 1.00 -5.88 < .001
elsewhere -0.07 0.02 1.00 -3.71 < .001

Model 1: Engtask = α+ β×robot+β× blocks+β×experimenter+β×elsewhere
F(4, 50) = 16.13, p < .001,R2

adj = .53,RSE = .29
Model 2: Engtask = α+ β×blocks and robot+β×experimenter+β×elsewhere

F(3, 50) = 21.54, p < .001,R2
adj = .53,RSE = .29

Model 3: Engtask = α++β×blocks+β×experimenter+β×elsewhere
F(3, 51) = 17.45, p < .001,R2

adj = .48,RSE = .30
Model 4: Engtask = α+ β×experimenter+β×elsewhere

F(2, 52) = 25.18, p < .001,R2
adj = .47,RSE = .30
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Table 2.4: Regression analyses summary for the dura on (s) that children looked in different direc-
ons predic ng children’s robot engagement.

Eye-gaze direction Coefficient SE VIF t P

Model 1
constant 4.87 1.31 3.71 < .001
robot 0.01 0.01 6.48 0.61 .55
blocks -0.01 0.01 6.45 -1.18 .24
experimenter -0.05 0.01 3.23 -4.13 < .001
elsewhere -0.04 0.02 1.55 -2.61 .01

Model 2
constant 5.63 0.36 15.69 < .001
blocks -0.02 0.00 1.14 -4.15 < .001
experimenter -0.06 0.01 1.07 -8.10 < .001
elsewhere -0.05 0.01 1.06 -3.59 < .001

Model 3
constant 3.35 0.28 11.81 < .001
robot 0.02 0.01 1.14 3.98 < .001
experimenter -0.04 0.01 1.14 -5.33 < .001
elsewhere -0.03 0.01 1.01 -2.36 < .001

Model 4
constant 4.29 0.18 24.09 < .001
experimenter -0.05 0.01 1.00 -6.32 < .001
elsewhere -0.04 0.02 1.00 -2.34 .02

Model 1: Engrobot = α+ β×robot+β×blocks+β×experimenter+β×elsewhere
F(4, 50) = 19.48, p < .001,R2

adj = .58,RSE = .22
Model 2: Engrobot = α+ β×blocks+β×experimenter+β×elsewhere

F(3, 51) = 26.17, p < .001,R2
adj = .58,RSE = .22

Model 3: Engrobot = α+ β×robot+β×experimenter+β×elsewhere
F(3, 51) = 25.31, p < .001,R2

adj = .58,RSE = .22
Model 4: Engrobot = α+ β×experimenter+β×elsewhere

F(2, 52) = 23.35, p < .001,R2
adj = .45,RSE = .25
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The resulting regression equation for robot engagement was:

Engrobot = 3.35+ 0.02× Gazerobot − 0.04× Gazeexperimenter − 0.03× Gazeelsewhere (2.2)

where Engrobot is robot engagement,Gazerobot the duration in seconds that children looked at
the robot,Gazeexperimenter is theduration that children looked at the experimenter andGazeelsewhere
is the duration of children’s eye gaze elsewhere.

2.4.3 Learning gain

Next, we examined whether different forms of feedback influenced children’s word knowl-
edge. Table 2.5 reveals that children on average knew between one and two words after
the session, but standard deviations are high. Children performed above chance level in
the pre-test (chance level = .16, W = 4879, p < .001) and post-test (chance level = .16,
W = 4945, p < .001). A robust mixed-design ANOVAwith 20% trimmedmeans and with
children’s word knowledge as dependent variable and with condition as between factor and
the two test moments (pre- and post-test) as within variable showed that children did not
know significantly more words (M = 1.43, SD = 0.95) after the session than before the
session (M = 0.98, SD = 0.65; F(1, 17.71) = 3.76, p = .07). There were no significant
differences between the three conditions (F(2, 14.94) = 1.81, p = .20) nor a significant in-
teraction effect between conditions and test moment (F(2, 14.94) = 0.05, p = .95). This
showed that children did not know significantly more target words after the session than
before the session, independent of the condition.

Table 2.5: The children’s average word knowledge scores on the pre-test and post-test for the three
condi ons (SD between brackets).

Condition Pre Post

Peer-like 1.18 (0.7) 1.61 (0.9)
Adult-like 0.90 (0.4) 1.38 (1.0)
No feedback 0.91 (0.8) 1.33 (0.9)

Total 0.98 (0.7) 1.43 (0.9)
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2.4.4 Relation learning gain, task engagement and robot engagement

Finally, to investigate whether there is a relation between L2 word knowledge and children’s
task engagement and robot engagement, we performed a Pearson correlation analysis. We
did not find any significant correlation between children’s learning gain and task engagement
(r(109) = 0.12, p = .21). Likewise, we did not find a significant correlation between robot
engagement and learning gain (r(109) = 0.16, p = .10), meaning that children’s engage-
ment levels did not have a relation with howmany words children learn.

2.5 Discussion

In this chapter, we presented a study in which we investigated the role of robot feedback
on toddlers’ task engagement and robot engagement, their learning gain and the relation be-
tween toddlers’ eye-gaze direction and engagement. The children were assigned to one of
three feedback conditions: a robot providing feedback like an adult would (adult-like feed-
back), a robot providing feedback like a peer would (peer-like feedback) and a condition
where the robot provided no feedback (no feedback). While task engagement and robot
engagement are different concepts, they are moderately correlated and show similar trends.
Both engagement types decreased when children did not receive any feedback and increased
during the session for peer-like feedback and adult-like feedback. Moreover, for both en-
gagement types there were large individual differences between children. Given these simi-
lar trends for the two engagement types, we will first discuss the results combined and then
discuss the differences in our findings between these two engagement types.

2.5.1 Engagement

We investigated children’s task engagement and robot engagement in the beginning and the
end of the tutoring session with the robot. Overall, children were engaged with the task and
robot, and their engagement remained approximately the same over time. Contrary to our ex-
pectations, there was nomain effect of feedback on children’s task engagement (H1a) nor on
children’s robot engagement (H1b). This unexpected result may be explained by the fact that
the robot’s behavior did not differ sufficiently in the three conditions. The current study
only provided a limited number of exposures to the target words. Hence, there might not
have been enough feedback moments in order to observe a significant effect across the differ-
ent conditions. Although this is a limitation of our design, we did not want to increase the
duration of the session because children’s attention span at this young age is very short (Betts
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et al., 2006). In future investigations, it might be recommended to usemultiple sessions with
these young children, to measure an effect on children’s task engagement and robot engage-
ment. There are, however, other possible explanations. The result might also be explained
by the fact that the children in our current study were very young. Children undergo a ma-
jor developmental progress at this age and learn how to think more logically when they get
older (Piaget, 1976). It is possible that younger children need more, or other types of feed-
back than older children. Another possible explanation for our findings is that the individ-
ual differences between children are larger than the differences between the conditions. As
Figure 2.2 shows, there were many individual differences between children, which is in line
with other studies (e.g., Leite et al., 2017). It is possible that some children would have been
more engaged with a robot providing peer-like feedback and other children with adult-like
feedback. Our study did not include enough participants to investigate these individual dif-
ferences, and future studies with more participants will need to be undertaken.

Furthermore, there was no main effect of time on task engagement and robot engage-
ment, which is, again, surprising because in previous experiments children’s task engagement
dropped over time within one session (de Wit et al., 2018; van Minkelen et al., 2020). It is
possible that this is due to the duration of the session: our session was shorter than those of
de Wit et al. (2018) and van Minkelen et al. (2020) due to the shorter attention span of the
children, which might explain the difference between the previous studies and the current
one. It is also possible that there was too much variation between children and conditions,
that nullified the effects over time. Finally, a specific explanation for the lack of results for
task engagement, is that the beginning of our task itself (counting together with the robot)
was very different than the end (playing with the blocks) and that this variation kept chil-
dren task-engaged. In the two experiments by de Wit et al.(de Wit et al., 2018, 2020), the
task remained the same during the full session and it is likely that children’s task engagement
dropped due to the lack of variation (Ahmad et al., 2017). Our expectation is that this game
variation will mostly influence task engagement; however since we did not investigate this, it
is possible that it will also influence robot engagement, e.g., because the robot’s instructions
are more important during one aspect of the task and as a result children look more at the
robot which will increase their robot engagement.

While we did not find a main effect of conditions or time on engagement, we did find an
interaction effect of condition and time. When inspecting Figure 2.2, we can observe that
children’s task engagement increased for both feedback conditions and it decreased in the no
feedback condition over time. We saw a similar pattern for robot engagement. It is likely that
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children in the no feedback condition became less task-engaged and robot-engaged during
the session because this condition did not include any feedback whether they completed the
tasks successfully or unsuccessfully. The absence of positive confirmation when children ac-
complished the task may have played a role in their task engagement and robot engagement
and therefore may have reduced it (Kluger & deNisi, 1996; Hattie &Gan, 2011). In a similar
way to how the absence of corrective feedback to help the children in the rest of the session
might have reduced their attention for the learning task, it also possibly increased frustration
(Deci & Ryan, 1985) which consequently could have led to task disengagement. Thus, feed-
back seems to have a positive effect on children’s engagement over time.

2.5.2 Duration of eye-gaze directions as engagement predictor

We explored the relation between eye gaze and children’s task engagement and robot engage-
ment in order to understand whether this important but single aspect of engagement, can
successfully predict task engagement and robot engagement.

Our findings showed that children’s eye-gaze direction can explain a large proportion of
the variance of both children’s task engagement and robot engagement. In particular, chil-
dren’s task engagement had a negative relationwith the duration children looked at the robot
and blocks combined, and with the duration children looked at the experimenter and else-
where. There were multiple models possible for robot engagement: (1) a negative relation
with the duration children looked at the blocks, the experimenter and elsewhere and (2) a posi-
tive relation with the duration children looked at the robot, a negative relation with the dura-
tion children looked at the experimenter and elsewhere. These results might seem surprising;
however, when looking at the regression equations they can be explained. For children’s task
engagement, all gaze directions were taken into account in the equation. Our expectation
(H2a)was that theduration that the children looked at theblocks and at the robotwouldhave
a positive relation with children’s task engagement and the duration that children looked at
the experimenter or elsewhere a negative relation. Our regression equation showed that the
duration that children looked at the experimenter and elsewhere would lower the rate of task
engagementmore (with factors of 0.09 and 0.10 respectively) than the duration that children
looked at the blocks and robot combined (0.04). The larger role of looking elsewhere (and
perhaps looking at the experimenter) supports previous studies that used eye gaze to detect
disengagement and as a cue to initiate different robot behaviors that can re-grab the partic-
ipant’s attention (Ishii et al., 2013). It is possible that children’s disengagement (attention
away from the task and directed at the experimenter + elsewhere) is easier to detect using
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eye gaze and can be used in future studies to initiate engagement-increasing behaviors in the
robot.

Moreover, for children’s robot engagement, there were two models performing equally
well: a model including the duration that children looked at the blocks, experiment and else-
where and amodel including the duration that children looked at the robot, experiment and
elsewhere. The model including robot gaze had a positive relation with robot engagement
(H2b), and the model including eye gaze toward to blocks had a negative relation with robot
engagement. These can both be explained by examining the regression coefficients. When
gaze toward the robot is not included, all other eye-gaze directions have a negative effect on
robot engagement. However, when robot gaze is included, this eye-gaze direction has a pos-
itive relationship with robot engagement. Therefore, even though both models will explain
robot engagement equally well, we prefer to use the model containing eye gaze toward the
robot because it follows intuitively that eye gaze at the robot predicts robot engagement.

Our results provide further support for the hypothesis that eye gaze is a good predic-
tor for task engagement and robot engagement and that future studies can use eye gaze for
automatic systems to detect engagement. These studies might additionally incorporate the
robot’s on-board camera to measure children’s gazes in order to reduce the extra hardware
needed. However, this can be complicated because the robot’s head often moves. Eye gaze
explained a larger proportion of the variance for robot engagement than task engagement, a
possible explanation is that robot engagement is a social engagement, and social interaction
is often based on eye gaze toward each other (Mwangi et al., 2018). A note of caution is due
here since not all of the variance can be explained by eye gaze (task engagement (53%) and
for robot engagement (58%)) which indicates that eye gaze does not predict every aspect of
children’s engagement (both task and robot). For task engagement elements such as speech,
emotional expressions, children’s fiddling or children’s interactionwith the blocks should be
included and for robot engagement elements such as speech toward the robot, smiles during
the conversation and body posture can be considered as predictors for engagement.

2.5.3 Learning gain

Contrary to our expectations, we found that children did not learn during the interaction
nor was this dependent on the condition. Children knew, irrespective of condition, nomore
target words after the experiment than before the experiment. It is likely that the exposure
to each target word was not enough, which reduced the training of target words and there-
fore children’s learning gain. Three- and four-year-old children have a limited attention span
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of 3 to 4 minutes (Gaertner et al., 2008) and although our experiment lasted already much
longer, we did not want to exhaust the children by introducing more repetitions. To create
a more successful tutoring session, the exposure to target words should be higher. Moreover,
it should be noted that the children’s general word knowledge after the sessions was low for
all three conditions, which is a result more commonly found after robotic tutoring sessions
(van den Berghe et al., 2019). Future studies should look at repeating target words over ses-
sions, and perhaps focus on thewords children did not knowyet in the earlier sessions instead
of repeating all words (creating a more personalized interaction).

There were large individual differences between children: some children learned all the
target words and some did not learn any words. These individual differences is in line with
previous research (van den Berghe et al., 2021), where we specifically investigated the individ-
ual differences between preschoolers learning with a robot and found that the robot gestures
benefited children’s word knowledge in different ways across children. In our current study,
it is possible that some children benefited from the adult-like feedback, and others from peer-
like feedback.

2.5.4 Individual differences

As alreadymentioned, therewere large individual differences between children. Interestingly,
when looking at children’s responses in an exploratory manner, there is an overlapping pat-
tern for each condition. For example in the peer-like feedback condition, although the robot
instructed the children to collect a certain number of blocks, a third of the children misun-
derstood the robot and simply repeated the target word (seven children) or repeated theword
while also collecting the blocks (five children). This observationmay be explained by the fact
that the child had to repeat the word to the robot during the word concept binding phase of
the interaction and they got used to repeating the L2wordwhen the robot used this L2word.
A similar variationwas observed in the adult-like feedback condition, instead of collecting the
blocks after the robot’s instructions, three children built a tower, six repeated the robot and
the experimenter had to intervene five times.

Moreover, children frequently requested additional support from the experimenter after
the robot’s instruction. Some children hardly looked at the robot and always looked at the
experimenter while grabbing the blocks or needed additional persuasion to show the blocks
to the robot. The experimenter intervened approximately four times during the whole tutor-
ing session after the robot’s instructions, this varied from repeating the robot’s instruction,
asking the children to grab the blocks instead of repeating the words, and instructing the
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children to pay attention to the robot.
Finally, some children started playing with the blocks and completely ignored the robot.

For instance, they started to throw theblocks, to playwith their shoes, and even started toplay
with the microphone close to the robot. The experimenters intervened when this happened
and tried to redirect the child’s attention to the robot, but some children lost their engage-
ment completely. Occasionally, these children regained focus after the next instruction. This
is probably due to the low attention span of this age group. This behavior is unfortunately
inevitable, as there will always be children who have little attention for the task. Whether
this is due to external factors, such as being fatigued or to the task itself is something that
researchers should take into account when designing child-robot interactions.

Taken together, the children’s responses after the robot instructions varied considerably.
Other studies should, therefore, focus on personalizing the interactions for every child, even
with preschool children like in our experiment (Gordon et al., 2016; Leyzberg et al., 2014).
In our experiment, we did not personalize the interaction in order tomaximize the systematic
effect of different feedback types on the children’s task and robot engagement, although we
did not find any differences.

2.6 Conclusion

Given the potential of social robots for tutors with preschool children, it is important to un-
derstand how children can be effectively tutored, while still being engaged with the task and
robot. In this study, we investigated the effect of the robot’s feedback on young children’s
task engagement and robot engagement in a second-language tutoring session. The robot
either provided feedback as an adult, as a peer or no feedback during the tutoring session.
Moreover, we explored the relation between eye-gaze direction and robot engagement and
task engagement. Ourfindings showed that therewas an interaction effect between children’s
engagement and the three feedback conditions. Providing feedback (as a peer and adult) in-
creased children’s task engagement and robot engagement during the session, while provid-
ing no feedback did not increase the task engagement and robot engagement. Finally, our
study shows that children’s eye-gaze direction is informative for children’s task and robot en-
gagement, which can contribute to automatic engagementmeasuring systems in child-robot
tutoring interactions.
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Abstract To investigate how a robot’s use of feedback can influence children’s engage-
ment and support second-language learning, we conducted an experiment in which 72 chil-
dren of five years old learned 18 English animal names from a humanoid robot tutor in three
different sessions. During each session, children played 24 rounds in an “I spy with my little
eye” gamewith the robot, and in each session the robot provided themwith a different type of
feedback. These feedback types were based on a questionnaire study that we conducted with
student teachers and the outcome of this questionnaire was translated to three within-design
conditions: (teacher) preferred feedback, (teacher) dispreferred feedback, and no feedback.
During the preferred feedback session, among others, the robot varied his feedback and gave
children the opportunity to try again (e.g., “Well done! You clicked on the horse”, “Too bad,
you pressed the bird. Try again. Please click on the horse”); during the dispreferred feedback
the robot did not vary the feedback (“Well done!”, “Too bad”) and children did not receive
an extra attempt to try again; and during no feedback the robot did not comment on the chil-
dren’s performances at all. We measured the children’s engagement with the task and with
the robot as well as their learning gain, as a function of condition. Results show that children
tended to be more engaged with the robot and task when the robot used preferred feedback
than in the two other conditions. However, preferred or dispreferred feedback did not have
an influence on learning gain. Children learned on average the same number of words in all
conditions. These findings are especially interesting for long-term interactions where engage-
ment of children often drops. Moreover, feedback can become more important for learning
when children need to relymore on feedback, for example, whenwords or language construc-
tions are more complex than in our experiment. The experiment’s method, measurements
and main hypotheses were preregistered.
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3.1 Introduction

A recent trend in education is to have social robots take on the role of educational tutors
to support, for example, second-language (L2) learning (Belpaeme, Kennedy, et al., 2018;
Vogt et al., 2019; Kory-Westlund & Breazeal, 2015). In educational settings, learning a (sec-
ond) language typically involves social interactions between the child and the teacher. Dur-
ing these interactions, children constantly receive feedback about their performance. It has
been shown that human feedback can have a clear impact on children’s learning process and
outcomes (Hattie & Timperley, 2007; Wojitas, 1998). Feedback is, therefore, an important
part of the social interactions that facilitate language learning, which begs the question what
the impact of various feedback types is when feedback is provided by a robot rather than a
human.

Throughout many years researchers have investigated how (human) feedback can have
an influence on L2 learning. Focusing on children learning a second language, research has
shown that receiving feedback benefits children’s language developmentmore than receiving
no feedback (Mackey&Silver, 2005). Moreover, different types of feedback canhelp children
in several ways. You can, for example, use positive feedback to reward and motivate children
when they are correct, or use negative feedback to correct children’s language and thereby
improve children’s learning gain (Hattie & Timperley, 2007).

While there have been many studies about robots for educating children, only few of
these have investigated the effects that different types of feedback can have on children’s en-
gagement and learning performance (Ahmad et al., 2019; Hindriks & Liebens, 2019). Usu-
ally, studies design feedback strategies for robot tutors based on results from educational stud-
ies involving only humans without investigating the effect that these strategies have on chil-
dren’s engagement and/or performance (e.g., Gordon et al., 2016; Kennedy et al., 2016;Maz-
zoni & Benvenuti, 2015; Kory-Westlund & Breazeal, 2015). However, it is not evident that
the effect of human strategies will be the same when a robot uses them, because a robot has
substantial cognitive and physical limitations compared to a human. For example, robots can-
not produce the same facial expressions as humans or humans’ subtle cues, thus are limited
in providing facial cues that humans use to provide non-verbal feedback (Vogt et al., 2017).

One recent study manipulated non-verbal and verbal feedback based on the child’s emo-
tional state (Ahmad et al., 2019). Results showed that children’s engagement over time re-
mained relatively high and children’s word knowledge increased over time with positive or
neutral feedback. While their results suggest that robot feedback can have a positive effect on
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children’s engagement and learning gain, they did not compare different variations of posi-
tive and negative feedback or compared it against no feedback. The results of Ahmad et al.
(2019) are consistent with findings from human studies and demonstrate that feedback does
not only enhance children’s language performance, but also engages children. Positive feed-
back engages because it validates children’s answers and thus boosts their confidence (Hen-
derlong & Lepper, 2002; Zentall & Morris, 2010). Similarly, negative (corrective) feedback
corrects and teaches the child the correct wordwhich could result in amotivated child. How-
ever, bothpositive andnegative feedback can also decrease engagement. On the onehand, too
many repetitions of positive feedback canbecomemeaningless for a child and can result in less
intrinsic motivation (Boyer et al., 2008; Henderlong & Lepper, 2002). On the other hand,
negative feedback can decrease the child’s confidence and thereby decrease the engagement
between the teacher and child (Wojitas, 1998).

Consequently, if used correctly, feedback can result in increased learning gains. Children
become more intrinsically motivated by positive feedback, which increases the children’s in-
terest and their task engagement and therefore their skills. These increased skills willmotivate
the children further and engage the children to a greater extent (Blumenfeld et al., 2006).

This chapter describes a study that investigated how preschool children respond to dif-
ferent types of feedback provided by a robot tutor. In the experiment, children interacted
with a humanoid robot tutor in three different L2 sessions, and in each session the children
received a different type of feedback. These types of feedbackwere designed based on a survey
among student teachers, resulting in a strategy preferred by these student teachers, a strategy
dispreferred by them and a strategy using no feedback at all. We analyzed the effect of these
different types of feedback on the children’s task engagement and learning gain over time.

3.2 Background

3.2.1 Feedback

Numerous studies have shown that feedback facilitates L2 learning (Hattie & Timperley,
2007; Henderlong & Lepper, 2002; Long, 2006; Lyster & Ranta, 1997). It can help to im-
prove pronunciation, word choice and grammar, and makes it easier for children to under-
standwhat is correct or incorrect in the foreign language. Feedback is not only used to correct
children, but for example also by teachers to contribute positively to children’s own feeling
of competence and success and therefore encourage children to continue with a task (Blu-
menfeld et al., 2006; Hattie & Timperley, 2007). The type of feedback provided, however,
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matters (Shute, 2008). You can, for example, provide explicit negative feedback by indicating
that something is wrong with children’s answers, but without specifying what was wrong
(e.g., ‘That’s wrong.’). It is also possible to provide corrective feedback by correcting chil-
dren’s answers or hinting toward it (e.g., “You said runned, but it should have been ran” or
“it should not have been runned, but...?”). Prompting children with an extra attempt (“Try
again.”) is an implicit way of saying something was wrong. Hattie & Timperley (2007) pro-
pose a combination of these three types as good way of providing feedback. The combina-
tion provides children with explicit notions where the mistake was made, what went wrong
and makes them to try again. Nevertheless, sometimes separate feedback is also sufficient.
For example, using explicit negative feedback (i.e. stating explicitly that something is wrong)
seems to bemost beneficial for children who are struggling with a task, such as novel learners
(Kluger & deNisi, 1996; Shute, 2008).

Teachers, however, mostly provide negative feedback implicitly by using recasts (i.e. a
type of feedback in which the teacher repeats the incorrect phrases in a correct form), but
they still try to make sure that children reach their goal (Long, 2006; Lyster & Ranta, 1997).
Although these recasts have been found to be usedmore often than the other feedback types,
they seem to be less effective in helping the learner to reach their learning goal. Lyster &
Ranta (1997) investigated the role of negative feedback and found that when teachers explic-
itly mentioned the fact that an error was made in their negative feedback, it led to a higher
learning gain than when they did not, which suggests that explicit negative (or corrective)
feedback can be more effective than implicit feedback by using recasts.

Feedback is not always negative or corrective, it can also be positive. In general, teachers
mostly use positive feedback explicitly (praise) andnot implicitly (Hattie&Timperley, 2007).
The advantage of praise is that it approves children’s answers andmakes the task encouraging
andmotivating (Henderlong&Lepper, 2002). When children receive positive feedback, they
become happy, and are therefore more committed and intrinsically motivated to complete
a task. However, there are also downsides to providing positive feedback. When children
receive too much positive feedback, they rely on the feedback and will not learn when they
do not receive the feedback anymore (Henderlong & Lepper, 2002). In addition, when the
use of praise is nonspecific or ambiguous, such as saying “good job’’ or “beautiful’’ makes
children not understand what part of their answer elicited the feedback and they will not
know how to respond (Hamilton &Gordon, 1978). Thus, positive feedback should refer to
the learning task and at the same time remain motivating enough in order to be effective.
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Feedback, engagement and learning

Engagement seems to have a positive effect on language learning (Christenson et al., 2012).
A considerable amount of studies have shown that robots are engaging interaction partners
for both adults and children(see for an overview Kanero et al., 2018). Engagement normally
starts high due to the novelty effect but then seems to decrease over time (Kanda et al., 2007;
Rintjema et al., 2018; Kory-Westlund & Breazeal, 2015). When talking about engagement,
it can be helpful to distinguish two kinds of engagement: robot engagement, referring to
how engaged a child is with the robot, and task engagement, which focuses on how engaged
a child is with the learning task. Clearly, these are not necessarily the same: a child can be very
engaged with their social partner, the robot, but not with the task, or vice versa. Moreover,
the effect of these different engagement types on learning gain can differ. For example, one
study by Kennedy et al. (2015) used a highly engaging robot partner and, as a result, children
were so distracted by the robot that they focused less on the task and therefore learned less.
In their study, children whowere highly engaged with the robot, learned less instead of more
while it is possible that children who are highly engaged with the task, will still learn more.
Consequently, it is useful to measure both types of engagement: task engagement and robot
engagement.

Research in HRI has looked at many ways of keeping general engagement high, but did
not investigate the role that different types of feedback could play here. For example, Ahmad
et al. (2019) looked at the role of adaptive feedback on the children’s emotion on engagement,
but they did not investigate the effect of different types of feedback.

Feedback, however, canhave an influenceonchildren’smotivation and their self-evaluation
(Zentall & Morris, 2010), which –in turn– can influence engagement. Blumenfeld et al.
(2006) suggested a feedback loop: in order to increase children’s engagement, children first
have to bemotivated, which will then increase their interest in the task, which in turn will en-
gage children followedby the children’s learning gain. When children improve their language
skills, this can lead to even higher motivation and further result in a higher engagement.

The influence of feedback on motivation depends on the type of feedback. For instance,
praise that is specifically linked with the children’s effort (e.g., “You are a good drawer” after
drawing a picture) motivates children more than other types of praise, even when only 75%
of the praise is linked with effort (Zentall & Morris, 2010). Moreover, Corpus & Lepper
(2007) showed that for preschool children all praise enhanced motivation when they com-
pared it with neutral feedback (“OK”). They compared motivation of preschool children
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with older children, and found that only for older children (fourth and fifth graders) the
type of praise had an influence on their motivation, while preschool children benefited from
all feedback equally. Another study found similar results: Morris & Zentall (2014)measured
ambiguous praise (“Well done!”, “Yeah”, “Awesome”) and found higher persistence, higher
self-evaluations and fewer fixations on later mistakes. Apparently, children interpret ambigu-
ous praise in the most beneficial manner for themselves. However, they also found that the
use of gestures (“Thumbs up” and “High five”) resulted in the highest self-evaluations.

The reasonwhy feedback has an influence onmotivation and, therefore, engagement can
be explained by the Self-DeterminationTheory (Deci &Ryan, 1985). This theory poses that
learners continue a task longer when their motivation is based on intrinsic aspects, such as
pleasure and satisfaction, compared towhenmotivation is based on external rewards (Deci&
Ryan, 1985). This intrinsicmotivation arises particularlywhena task contains autonomyand
competence and is strengthened by a sense of relatedness between learner and teacher (Ryan
&Deci, 2000). For example, autonomy increases when a learner can choose themselves what
kind of activity to do, or when he or she receives informative rewards and non-controlling
instructions. A higher degree of autonomy leads to increased intrinsic motivation and, in
turn, higher levels of engagement. Moreover, competence increases with praise (Blanck et al.,
1984), because it enhances the children’s feeling of being capable to successfully complete a
challenging task. Competence, especially in combination with autonomy, plays a consider-
able role in retaining intrinsicmotivation. There are also disadvantages of praise, for example,
when children first receive praise but are not able to successfully complete the task, their mo-
tivation can decrease (Zentall & Morris, 2012). Moreover, too much positive feedback can
decrease the children’s own curiosity (Henderlong & Lepper, 2002).

Negative feedback has been found to decrease intrinsic motivation, specifically the feel-
ing of competence (Deci et al., 1991). It can potentially decrease children’s self-efficacy or
their active participation and engagement in the learning task, because children become un-
motivated when receiving negative feedback (Wojitas, 1998). On the other hand, negative
feedback can also have a positive influence on motivation, as it can help children to under-
stand what they are trying to learn and to correct their mistakes (Hattie & Timperley, 2007).
Kluger & deNisi (1996) suggest that, similar as with praise, the effect of feedback is not only
dependent on a link between behavior and feedback, but also on how the feedback was pro-
vided and how the learner interprets the feedback.

The combination of praise and negative feedback can be challenging enough for chil-
dren, but at the same time can motivate children enough to want to continue with the task.
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For example, if children additionally receive negative feedback to correct their mistakes and
hear praise when they correctly answer a question, this can enhance the effect of both feed-
back types. Summarizing, feedback has the potential to both engage and disengage children
(Dempsey & Sales, 1993), depending on the type of feedback given. Feedback (especially
praise) can increase the intrinsic motivation of children, which increases their engagement.
Engaged children are more motivated, learn faster, will be more likely to complete the task
and to repeat the task, which leads to a better result (Dörnyei, 1998). However, it is not clear
yetwhether the rules that apply to human teacher-child interactions also apply to robot-child
interactions.

Feedback in child-robot interaction

Studies with educational robots for children that have explicitly looked at the role of feed-
back are sparse. While many studies have incorporated the use of feedback, specifically praise
(Kennedy et al., 2016; Gordon et al., 2016; Mazzoni & Benvenuti, 2015; Kory-Westlund &
Breazeal, 2015), they did not test the effect of feedback on the children’s engagement or learn-
ing gain nor the effects that different forms of feedback may have. These studies investigated
the role of praise either by incorporating it as part of a robot’s strategy (Kennedy et al., 2016;
Kory-Westlund&Breazeal, 2015), by looking at specific responses of children on occurrences
of praise (Serholt & Barendregt, 2016) or on the effect of timing of the praise (H. W. Park et
al., 2017). It seems that children notice the praise and react to it, however, these studies did
not investigate its direct effect on engagement and learning gain. For example, Kennedy et al.
(2016) compared a high verbal availability robot and a low verbal availability robot. The high
verbal availability robot used –among other social behaviors– more expressive praise than
the low verbal availability robot. Children of approximately 8 years old practiced different
French grammar rules with one of the robots. The authors found no significant difference
in learning gain for the robot that used more expressive positive feedback, but the children
reported to have noticed the praise and payed attention to it.

In another study, Serholt & Barendregt (2016) investigated children’s responses to the
robot’s praise. In their long-term study, the robot gave praise on the children’s performance
of the previous session. Positive feedback did not go unnoticed, 70% of the children acknowl-
edged the robot during feedback through verbal or gestural responses such as smiling. Simi-
larly,H.W.Park et al. (2017) exploredwhether the timing of a robot’s praiseswould influence
the engagement of children. Childrenhad to tell a robot a story and the robot reacted on their
emotional level as a form of feedback. For example, when children had a high energy level,
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the robot played a large excited motion. Park and colleagues compared two conditions, one
with a robot that reacted every 5 seconds on the child without changing its energy level, and
one with a robot that reacted when the child stopped talking and changed the energy level
of its responses appropriately. The children seemed to be more engaged with latter robot
that changed its feedback to their energy level. Likewise, Kory-Westlund & Breazeal (2015)
used a non-humanoid robot to teach children a second language and found that children
learned with a social robot more than with a non-social robot. Both robots used positive
phrases when children were correct, e.g., “Good job!” or “You’re working hard!” and only
provided hints with an incorrect answer, e.g., “I think it was that one”. However, the social
robot added expressive phrases based on the child’s emotional state (e.g., when children were
excited, the robot first reacted with “woo hoo” before the feedback).

Whilemany robots use praise, which is an explicit formof positive feedback, explicit nega-
tive feedback is not often used in child-robot studies. Typically, studies incorporated implicit
feedback by using hints (e.g., “I think it was the other one”, Gordon et al., 2016) or by intro-
ducing doubts (“Are you sure?”, Mazzoni & Benvenuti, 2015).

Three studies that specifically investigated the effect that feedback has on learning and/or
engagement are those by Resing et al. (2019), Hindriks & Liebens (2019) and Ahmad et al.
(2019).

Resing et al. (2019) reported a study where 6 till 9-year-old children had to solve a puzzle
together with an owl-like robot that either helped themby giving feedback or did not provide
any help. The help-providing robot used both verbal and non-verbal feedback. It shook its
head and had blinking eyes when their answer was incorrect as a way of providing non-verbal
(explicit) negative feedback, or nodded and said “Well done!”, with (different) blinking eyes
as a form of explicit positive feedback. Children trained by the robot with feedback became
better in solving new puzzles than children trained with the other robot. However, children
showed large individual differences in the number of corrections they needed.

Hindriks & Liebens (2019) conducted a between-subject study with 7-9-year-old chil-
dren who had to solve mathematical problems. They compared a robot providing feedback
designed to show the childrenwhich specific error theymade (e.g., forgetting to addonenum-
ber) with a robot asking the children to think aloud when solving the problem. This error-
specific feedback did not affect children’s learning gain. Instead, children, showed, again,
individual differences. Children who showed to have difficulties with the math problems,
appreciated the feedback more than children who did not have problems with math.

Ahmad et al. (2019) addressed individual differences between children and compared in
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a between-subjects design a robot that adapted its feedback with one that did not. They stud-
ied how children between 10 and 12 years old responded to the robot’s feedback during two
weeks. The robot adapted its feedback behavior to the children’s emotional state. For exam-
ple, when children were rated as happy the robot used that in its feedback (“You are looking
happy, and I’m happy that you are in front of me. Let’s learn another word”). During the
game, the robot kept referring to the game outcome, only in the post-test the robot provided
feedback on learning performance (“I am happy that you got it wrong in session one, but this
time your answer is correct” or “It’s sad that you didn’t remember this word, the correct an-
swer is ...”). Ahmad and colleagues found that the children’s engagement remained relatively
high (or stable) when interacting with the adaptive robot, while their engagement lowered
over time with the non-adaptive one. Moreover, children’s learning gain was higher with the
adaptive robot, compared to the non-adaptive one. While these results are promising, this
study did not investigate the effect of different feedback strategies.

Generally, developers of robot tutors base the educational strategies of the robot on the
already existing human studies and use those strategies in their child-robot interactions with-
out studying whether these strategies are similarly effective. Most child-robot studies use
praise as a motivator in their experiments and are hesitant to use explicit negative feedback.
It is not clear what type of negative feedback works best for robots, although in educational
studies it seems that mentioning the children’s mistake seems to be more effective for lan-
guage learning. In this chapter, we address this gap in knowledge by investigating the effect
of different forms of feedback on both task engagement, robot engagement and learning gain.

3.2.2 Teachers’ feedback

In preparation of this chapter, we carried out a survey among student teachers concerning
their views on how a robot should provide feedback. The aim of this survey was twofold:
1) To gain insights how student teachers would think the robot should provide feedback to
children giving correct and incorrect answers in a tutoring setting, and with varying levels of
the children’s engagement at the time feedback is given. 2) To create a data set with different
feedback phrases that student teachers would use. We interviewed student teachers instead of
practicing teachers, because students are more likely to work with technologies in the future,
such as social robots, than teachers who already worked for many years. Moreover, receiving
many responses was more feasible with student teachers than with teachers.

In our survey, we showed 27 student teachers 40 video fragments of both engaged and
disengaged children interacting with a robot in a L2 tutoring experiment reported in deWit
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et al. (2018). All fragments showed a robot teaching 5- to 6-year-old Dutch children animal
words in English as a second language. In each fragment, the robot expressed an English
word and asked the child to select –on a tablet– the animal he or she thought that the word
referred to. The fragment ended right after the child answered to this request. After watch-
ing each fragment, the student teachers were asked to provide a feedback suggestion. The
survey was carried out in a between-subject design with two conditions: in one condition
(closed questions), student teachers could choose between six feedback strategies (three posi-
tive and three negative), and in the other condition (open-ended questions) they could freely
write the feedback themselves. This closed questions survey would provide insights of what
strategy student teachers would choose, and the open questionnaire would create a data set
of different feedback phrases.

We did not find a difference between student teachers’ suggestions for engaged or disen-
gaged children. However, we found that the suggested forms of feedback differed substan-
tially between the closed and open-ended questionnaires: In the closed questions survey, the
majority of the student teachers chose to use an explicit positive phrasing together with an
explanation in the form of a translation (“Goed zo! Een ‘hippo’ is een nijlpaard” (Dutch)-
“Well done! A ‘hippo’ is a hippo” (English)), and they chose a correction of the child’s an-
swer through repetition and translation of the target words (“Een hippo is een nijlpaard, je
moet de nijlpaard aanraken” (Dutch) - “A ‘hippo’ is a hippo, you have to touch the hippo”
(English)) as a means of providing implicit negative feedback.

In the case of the open-ended survey, the student teachers chose for both positive and
negative feedback to only provide an explicit phrasing without repeating the target words
for both positive feedback (“Goedzo” (Dutch) - “Well done” (English)) and negative feed-
back (“Helaas dat was niet goed” (Dutch) - “Unfortunately, that was not correct” (English)).
Moreover, we found that in the open-endedquestionnaire student teachers varied their phras-
ing of the feedback considerably.

After the surveys were analyzed, we discussed the findings with a subset of the student
teachers. They suggested two main reasons why these results differed. Firstly, correction
and explanation (e.g., through repetition of target words) is essential for negative feedback.
This was themain reasonwhy they chose to repeat the target words in the closed-ended ques-
tionnaire. Secondly, they indicated that variation in the form by which feedback is provided
is also crucial. The robot should not repeat the same phrase throughout the whole session.
Student teachers participating in the open-ended questionnaire focused more on creating
varying feedback phrases and less on the repetition of the target word.
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Based on these findings, we concluded that the preferred feedback strategy would com-
bine the results from the closed questions surveywith the open-ended survey: take an explicit
feedback phrase (e.g., “Well done” or “That’s wrong”), add a repetition of the target word,
and provide children an extra attemptwhen their answers are incorrect. Since variation is key,
the feedback phrases should vary, based on the data set created by the open-ended survey.

3.2.3 This study

This study investigated whether 5- and 6-year-old children are more engaged with the task
and with the robot, and learn more words when participating in an L2 training with a robot
that provides feedback as recommended by the student teachers (preferred feedback), com-
pared to a robot that provides feedback contrary to what was recommended by the student
teachers (dispreferred feedback), and compared to a robot that provides no feedback at all
(no feedback). As our survey with student teachers revealed, providing adequate feedback is
a complexmatter that consists ofmultiple strategies, which are hard to separate, thusmaking
it difficult to investigate such individual factors experimentally. We, therefore, decided to
combine multiple factors in our preferred and dispreferred feedback strategies, and explored
to what extent these strategies, as performed by a robot, influence children’s engagement and
learning gain in an L2 tutoring scenario.

Every child received three sessions with different robots, each providing a different form
of feedback, thus allowing us to investigate how children react to the different forms of feed-
back using a within-subjects design. We based the training sessions on previous studies in
which children played an “I spy withmy little eye” gamewith aNAO robot to learn different
L2 words (Schodde et al., 2019; de Wit et al., 2018).

Based on previous findings in literature regarding the role of feedback in L2 learning, and
previous studies that addressed feedback in child-robot interactions (Ahmad et al., 2019), we
hypothesized that children would be more task-engaged and robot-engaged when receiving
(either preferred or dispreferred) feedback than when they did not receive feedback (H1a).
Especially positive feedback was expected to increase the children’s intrinsic motivation for
the task and thus their engagement. We also hypothesized that children would remember
more words when receiving feedback than when receiving no feedback (H1b). Feedback can
help to understand whether an answer is correct or not and may indicate what the correct
form should be, thus providing insight into the learning process and helps to improve the
learning performance.

Moreover,wehypothesized that childrenwouldbemore task-engaged and robot-engaged
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with (H2a) and would remember more words from (H2b) a robot that provides feedback
as preferred by a student teacher compared to a robot that provides dispreferred feedback.
When feedback is varied (as in the preferred feedback strategy), children were expected to pay
more attention to it, boosting their confidence andwith that their task engagement. The var-
ied feedback of the robot could additionally increase the children’s interest in the robot and
with that their robot engagement. In contrast, when a robot repeatedly used the same phrase
as feedback (dispreferred feedback), childrenmight have gotten tired of this repetition and as
a result would pay less attention to the robot. Additionally, children could practice with the
preferred feedback once more in the case of a mistake and thus improved their knowledge,
which they could not with the dispreferred feedback strategy and which might have lead to
an increase in their task engagement. Finally, the preferred feedback also provided children
with an explicit notion where the mistake was been made, what went wrong and how they
could fix it by trying again (the three rules of good feedback according toHattie&Timperley,
2007).

3.3 Method

The research questions, hypotheses and analyses in this study have been preregistered at As-
Predicted1 and the source code has been made publicly available2.

3.3.1 Design

The study was a within-subjects design, where all participants were assigned to all feedback
strategies/conditions (each session a different strategy). The strategies for providing feed-
back were based on the survey asking student teachers how they would make the robot pro-
vide feedback in situations comparable to the ones in this experiment, translating to a pre-
ferred strategy and dispreferred strategy. The order of the feedback strategies and word sets
were counterbalanced using a 3x3 latin-square to reduce an order effect. The three strate-
gies/conditions were

1. Preferred feedback

2. Dispreferred feedback

3. No feedback
1https://aspredicted.org/qg6dx.pdf
2https://github.com/l2tor/feedback-study/
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Each child received three sessions with the robot, and could learn 18 words in total and 6 in
each session. In all conditions, all sessions were the same, except for the words learned, the
feedback strategy that the robot used, the name and the shirt the robot was wearing (to give
the impression that children were playing with three different robots, see Figure 3.1).

3.3.2 Participants

In total, 72 native Dutch-speaking children aged five and six years participated in the current
study. The participants were recruited from three elementary schools located in the Nether-
lands. Bilingual children were excluded from the study. A pre-test showed that 12 children
were familiar with more than half of the target words and these children were excluded from
the study in accordance with the exclusion criteria of our preregistration. Furthermore, four
children dropped out of the study for various reasons like unwillingness to continue (3) or
sickness (1). This resulted in 56 children (Mage = 5 years and 6 months, SD = 5 months, 28
boys and 28 girls) participating in the final experiment. All parents gave informed consent
for the participation of their child. The study was conducted in accordance with the Dec-
laration of Helsinki, and received ethical approval from the Research Ethics committee of
Tilburg School of Humanities and Digital Sciences.

3.3.3 Materials

The SoftbankRoboticsNAOrobot and aMicrosoft Surface tablet computerwere used. The
sessions involved one-on-one interactions between robot and child. We did not rely on auto-
matic speech recognition because speech recognition has been shown to not work well with
this age group (Kennedy et al., 2017). Instead the experimenter used a Wizard of Oz tech-
nique when the child had to say something to the robot in the beginning of the experiment.
The robotwas placed in a crouching position in an angle of 90 degrees next to the sitting child
to give the robot the same perspective of the child, while still being able to face the child. The
tablet was placed on top of a small box in front of the robot and child. A video camera placed
on a tripod facing the child to record the child’s responses and facial expressions. A second
camera was placed from the side to get a more complete overview of the interactions. Each
session was distinguished by a different color shirt and robot name (see Figure 3.1). We used
the different shirts and names to make it known to children that they would play with three
different robots, with different robot behaviors (namely the robot feedback strategies). The
shirts and robot names were not linked to feedback conditions or different word sets, but
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rather to the session number. In other words, all children started with the robot wearing the
red shirt called Luka during the first session and ended with the robot wearing the yellow
shirt called Charlie.

a: Robot first session b: Robot second session c: Robot third session

Figure 3.1: (a,b,c) show the different shirts for each sessions. All children saw the robot wearing the
red shirt during the first session and all children saw the robot wearing the yellow shirt during the
last session.

Target words

In total 18 target words were selected and during each session, children learned six target
words. Target words were selected such that children can be expected to have acquired those
in their first language but arguably not in their second language. Moreover, we selectedwords
that would not be too similar in their L1 and in their L2 (e.g. not “Olifant” (Dutch) and
“Elephant” (English)). All 18 words were divided in three word sets based on their frequency
in the children’s first language. We used the dataset of (Schrooten & Vermeer, 1994) and
placed each word in a frequency bin. Words in the same bin were randomly assigned to the
different word sets. For example, the word “dog” was from the same frequency bin as the
words “bird” and “horse” and were thus added to different word sets. Table 3.1 contains an
overview of all target words with their frequency. We used cartoon-like images of the target
animals during the experiment (see Figure 3.2 for examples).

Pre-test

Before the children started the three sessions, we tested their L2 knowledge of the 18 target
words with a comprehension test which was a picture-selection task. In this test, children
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Table 3.1: Target words with their frequency scores in Dutch taken from Schrooten & Vermeer
(1994). Words that have a higher score are more familiar to children in Dutch.

Word set 1 Word set 2 Word set 3
Dutch English Freq Dutch English Freq Dutch English Freq
Hond Dog 98 Vogel Bird 72 Paard Horse 64
Kikker Frog 27 Kip Chicken 30 Konijn Rabbit 48
Vlinder Butterfly 22 Nijlpaard Hippo 16 Varken Pig 36
Papagaai Parrot 9 Slang Snake 14 Eekhoorn Squirrel 13
Haai Shark 9 Slak Snail 14 Zeehond Seal 10
Neushoorn Rhino 9 Walvis Whale 9 Hert Deer 9

were presented with a pre-recorded target word spoken by a bilingual speaker of Dutch and
English and asked to choose which one out of four pictures matched this word (“Waar zie je
een dog?” (Dutch) “Where do you see a: dog?” (English)). The presentation of the target
words in the pre-test was randomized for each child. We presented each target word one time
during the pre-test.

Post-test

The children’s long-term knowledge was tested between two and three weeks after the last
session with the comprehension test. The test was the same as the pre-test only this time,
each target word was presented three times in a random order to reduce chance level perfor-
mance due to guessing. The reason for not doing so in the pretest was to reduce the chance
of children learning from this task (Smith & Yu, 2008). A word was registered as correct if
it was selected correctly at least twice out of the three trials. Additionally, we tested three
different pictures of the animals in order to generalize the children’s knowledge. To be more
specific, we used a cartoon-like picture, a drawn picture (the same as in the experiment) and
a photograph of the target animal.

In addition to themeasurements described in this chapterwe also carriedout aperception
questionnaire of the robot at the end of all sessions. We will not discuss those results because
this questionnaire is beyond the scope of this chapter.

3.3.4 Tutoring sessions

The sessions were based on the children’s game “I spy with my little eye” and on the inter-
action described in Schodde et al. (2019). The whole interaction was in the children’s L1,
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except for the target words. Before the three tutoring sessions, children had a group intro-
duction to the robot and took a pre-test. The tutoring session had four parts which were all
repeated during all three tutoring sessions:

1. Start phase. The robot explained that he was a friend of the group introductory robot,
he asked for the child’s name, age and some questions about their favorite animals and
games. The robot finished with saying that “I spy with my little eye” is his favorite
game and that he wants to play that with the children. He then explained the rules of
the game.

2. Concept binding of the target words. To teach children the target words, the tablet
showed an animal on the screen, the robot said the L2 word with the L1 translation
and asked the child to repeat the word (e.g. “Een vogel is een bird in het engels, zegmij
maar na bird” (Dutch). “A bird is a bird in English, repeat after me bird” (English)).
Only after the child had repeated the animal, they continued to the next animal. When
a child did not repeat the robot, the experimenter asked the child to listen to the robot
and repeat after the robot. If a child was very hesitant to repeat the word, the experi-
menter would say it together with the child.

3. Training rounds. After the concept binding the robot explained to the child that he
would ask for an animal and that the child had to search for it on the tablet screen.
They first practiced with an L1 word that was no target (“Ik zie, ik zie wat jij niet ziet
en het is een eenhoorn, zoek maar naar de eenhoorn”, “I spy with my little eye a uni-
corn, please search for the unicorn”). For each target word the tablet showed the target
animal with three distractors (see Figure 3.2a). After the L1 practice round, the robot
and child also practised once in L2. After these two practice rounds they started the
training of the target words. The robot constantly asked the child to search for a tar-
get word (“Ik zie, ik zie wat jij niet ziet en het is een <target word> zoek maar naar
de <target word>”, “I spy with my little eye a <target word>, please search for the
<target word >”). Depending on the condition the robot provided feedback or not
and the child continued to the next animal. There were 24 rounds in total, each an-
imal was trained four times, which made the L2 exposure to all animals ten times in
total for all conditions (twice in the concept binding, eight times during the practice
rounds).

4. In-game test. After each session there was an in-game test that tested the short-term
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memory of the target words. The tablet screen showed all animals of that tutoring
sessions and a bucket of grapes (see Figure 3.2b). Each round, the robot named an
animal and the child had to feed this animal with one of the grapes. The robot asked
the animals in random order and after each round the order of presenting the animals
on the screen was shuffled.

All conditions had the exact samedesign,meaning that the session structurewas the same,
the tablet output was the same and the behavior of the robot was the same, except for the
feedback. In all conditions, the robot used the standard following-gaze feature of NAO.

a: Training round b: In-game test c: Second attempt

Figure 3.2: (a) Training rounds. Each round the robot asked for one animal (b) In-game test. Children
had to drag a grape to the animal that the robot named (c) Second a empt a er wrong answer. Chil-
dren were allowed to correct themselves in the preferred feedback condi on. In this example, the
child wrongly chose a bu erfly instead of a parrot and could correct his/her mistake by selec ng the
correct one.

3.3.5 Feedback conditions

All feedback was provided in the children’s L1 to keep the L2 exposure consistent between
conditions. A comparison of the different types of feedback can be found in Table 3.2. The
feedback conditions were based on the student teachers’ preferred response for the robot
(preferred feedback), the opposite (dispreferred feedback) and a control condition was added
where the robot did not use any feedback. Preferred and dispreferred feedback different on
multiple aspects:

1. Variation. The robot used a variety of positive and negative feedback in the preferred
feedback condition and no variation in the dispreferred feedback condition. We based
the phrases on the student teachers’ open-ended survey and can be found in Table 3.3.
The robot randomly chose between six verbal phrases for positive feedback and neg-
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ative feedback and the same phrase was never used twice in a row. We only added
variation to the preferred strategy because the student teachers considered this crucial.

2. Extra attempt. The robot let children to try again after an incorrect answer in the
preferred feedback condition and not in the other conditions. This was based on the
student teachers’ closed-ended answers where they relied heavily on the answer with
the extra attempt. During the extra attempt, the tablet would only display the correct
target word and the children’s incorrect answer to help the children distinguish the
two answers (see Figure 3.2c). After children correctly answered their second attempt,
they received positive feedback.

3. Repetition. In the preferred condition, the robot would repeat the target word, either
in addition to positive feedback or in addition to noting the mistake including the
child’s wrong answer. However, this was only done in 50% of all feedback to reduce
the amount of repetition and because the student teachers did not always use a rep-
etition (only in the closed-ended questionnaire and not in the open-ended question-
naire). The robot would only repeat the target word in the children’s L1 (i.e. Dutch)
to keep the amount of L2 exposure consistent over all children and to only focus on
the effect of feedback.

4. Non-verbal feedback behavior. The robot used some non-verbal behavior when the
child was correct in the preferred feedback condition, but not in the dispreferred feed-
back condition. This non-verbal behavior consisted of the robot nodding and display-
ing a rainbow coloured pattern in the LED-eyes to indicate happiness.

After the feedback was provided (or after the child’s answer in the no feedback condition),
the game continued to the next target word.

3.3.6 Procedure

Robot introduction and pre-test. One week before the experiment, the children partici-
pated in a group introduction to familiarize themselves with the robot. During this intro-
duction, based on Vogt et al. (2017), children learned how the robot moves and how to talk
to it, and they played a game where they had to imitate the robot and they danced together.
Unlike the robots during the experiment, this robot was not wearing a shirt. After this group
introduction the children carried out a pre-test on their prior English knowledge in one-on-
one sessions, as explained in Section 3.3.3.
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Table 3.2: An example of the robot’s feedback in the different feedback condi ons.

Condition Correct answer

Dutch English

Preferred Goed gedaan, het was een vogel. Well done, it was a bird.
Dispreferred Goed gedaan. Well done.
No feedback - -

Incorrect answer

Dutch English

Preferred Helaas, je hebt een vogel aangeraakt.
Laten we het nog eens proberen!

Unfortunately, you selected a
bird. Let’s try again!

Dispreferred Helaas, dat is niet goed. Unfortunately, that was not cor-
rect.

No feedback - -

Experiment. At least one week after this group introduction and the pre-test, we started
the first tutoring sessionswith the children. Children participated in a quiet room away from
their classrooms. After the child was collected from her or his classroom for the first session,
heor shewas told that heor shewouldplay a gameona tabletwith a friendof the introduction
robot. This was repeated every new session so each child saw four “different” robots in total
(one introduction robot and three robots in the tutoring sessions). When the child entered
the roomwith the robot, the experimenter told the child to sit in front of the tablet next to the
robot and started the experiment. After the child finished the 24 rounds of “I spy with my
little eye” and the subsequent in-game post-test, the experimenter filled in a questionnaire
with the child about the robot. When this questionnaire was completed the experimenter
brought the child back to the classroom. This was repeated for three times with at least one
day in between the different sessions.

The interactionwas semi autonomous, except for thedetectionof children’s speechwhen
they repeated the target words as instructed. For detecting the child’s speech, the experi-
menter would press a button on a control panel once the child had repeated the robot’s ut-
terance. The interaction was a one-on-one interaction, but the experimenter stayed in the
same room to intervene when necessary. For example, when a child did not repeat after the
robot, the experimenter would try to encourage the child to repeat after the robot. Moreover,
when the child had a question, the experimenter would say that she did not know the answer
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Table 3.3: The preferred feedback u erances. The robot’s feedback varied between six different
op ons.

Positive

Dutch English

Goed gedaan! Well done!
Knap hoor. Impressive.
Ja goed gedaan! Yes, well done!
Ga zo door! Keep going!
Super! Great!
Heel knap gedaan. Really impressive.

Negative

Dutch English

Helaas dat was niet goed. Unfortunately, that was not correct.
Sorry deze is niet goed. Sorry but this is not correct.
Helaas, probeer het nog een keer. Unfortunately, try again.
Jammer, we proberen het nog eens. What a pity, let’s try again.
Ah jammer, denk nog even goed na. Ah pity, think again.
Super goed geluisterd, maar dat was niet
goed, probeer het nog eens.

You listened very well, but this was not
correct, try again.

and directed the child’s attention back to the robot. In other cases, when a child had to go
to the bathroom, the experimenter paused the experiment and walked with the child to the
bathroom and back. The duration of each session was around 11 minutes (Preferred: M =
14minutes, SD = 2minutes, Dispreferred: M= 11minutes, SD = 1.5minutes, No feedback:
M = 10 minutes, SD = 1 minute).

Post-test. Twoweeks after the last session, the childrenwere collected fromthe classroom
once more for the post-test.

3.3.7 Engagement coding and analyses

Engagement coding

Engagement was determined by manual coding of half of the data. Before coding, the two
raters followed a coding training and practicedwith different videos. Each videowas rated on
a Likert scale from 1 to 5, with 1 being a low level of engagement and 5 being highly engaged.
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We measured task engagement that includes the attention that the child payed to the robot
as instructor, but also to the task displayed on the tablet screen. Children were fully engaged,
when they were completely ‘absorbed’ in the activity, were open for new information, were
very motivated, enjoyed the task and wanted to play with the robot (Laevers, 2005). Addi-
tionally, we rated robot engagement that measures the children’s attention and interest at the
robot as a social interaction partner. Children were fully engaged with the robot, when they
were interacting with the robot as a social conversation partner.

The coding scheme was based on the ZIKO coding scheme (Laevers, 2005). The ZIKO
scheme describes ameasurement for, among others, children’s engagement. It is designed for
child-task engagement in open classroom settings. We adapted the scheme to include specific
cues for this experiment by including cues such as, attention toward the experiment leader
instead of the robot or tablet and child is randomly clicking on the tablet in order to continue.

Each engagement level had specific cues for the rater to look for. For example, children
scored high on task engagement when they were not only looking at the task and robot, but
also actively searching for the different animals on the tablet and were fully committed to the
task. In contrast, when children turned away from the robot and task, did not perform any-
thing related to the task and were fiddling, this resulted in a low engagement. Children who
played the game but did not pay all their attention to it received an average task engagement
rating. In the case of robot engagement we added social engagement cues, such as looking
at the robot, having spontaneous conversations with the robot, but it also included the chil-
dren’s posture toward the robot (a closed posture indicating a low robot engagement and an
open posture indicating a high robot engagement). For all specific cues and information see
the coding scheme in Chapter 4 and on Github3.

For the engagement coding, we pseudo-randomly selected half of the children, excluding
childrenwho took a break during the interaction (e.g., when they had to go to the bathroom),
which happened in 11 cases. Twenty percent of the selected data was coded by two raters and
their inter-rater agreement was considered moderate to good using the intraclass correlation
coefficient (ICCtask = .70, 95% CI[.37, .76], ICCrobot = .80, 95% CI[.62, .90]) (Koo & Li,
2016). For analyses, we only used the data of the first rater. We extracted two two-minute
video fragments of the interaction: one at the beginning of the training rounds during the
interaction and one at the end of the interaction.

The engagement rating of both fragments were combined to get a more reliable measure
of the child’s overall engagement during the session. This resulted in 210 engagement ratings

3https://www.github.com/l2tor/codingscheme
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in total.

Analyses

To investigate the effect of the different feedback strategies on children’s engagement, we con-
ducted a repeated measures ANOVAwith the feedback strategy as the independent variable
(three levels) and engagement as a dependent variable.

In addition, to investigate the effect of the feedback strategies on learning gain, we carried
out a two-way repeated measures ANOVAwith the children’s scores as a dependent variable
and two strategies: (1) feedback strategy (three levels) and (2) test moment (the pre-test and
the delayed post-test).

Using planned contrasts, we compared the effect of preferred and dispreferred feedback
with no feedback on engagement and learning gain for H1 and preferred feedback and dis-
preferred feedback for H2. Moreover, to investigate the effect of the feedback strategies on
short-term learning gain, a one-way repeated measures ANOVA with feedback strategy as
the independent variable and the results of the in-game test as the dependent variable was
performed.

3.4 Results

Wehavemade the data set for this experiment publicly available4. In this sectionwe report the
children’s engagement and their learning gain during the sessions. In addition, we report on
the possible relation between learning gain and the children’s engagement. Children received
positive feedback during all 24 rounds in the preferred feedback condition and on average
14.30 times during the dispreferred feedback condition.

3.4.1 Engagement

Table 3.4 shows the overall results of both engagement types for the different sessions and
different conditions. Overall, task engagement (M = 3.28, SD = 0.81) was slightly higher
than robot engagement (M = 3.06, SD= 0.92). The two engagement types weremoderately
correlated (r(105) = .50, p < .01), indicating that they both measure a different type of
engagement.

4https://doi.org/10.34894/ZEIKLY
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Table 3.4: Average task engagement and robot engagement ra ng over me (SD).

Feedback
strategy

All sessions Lesson 1 Lesson 2 Lesson 3

Task Robot Task Robot Task Robot Task Robot

Preferred 3.59 (0.71) 3.57 (0.87) 3.88 (0.63) 3.92 (0.85) 3.58 (0.86) 3.65 (0.80) 3.27 (0.58) 3.12 (0.81)
Dispreferred 3.13 (0.74) 2.74 (0.90) 3.03 (0.49) 2.50 (0.63) 3.09 (0.79) 3.09 (1.03) 3.23 (0.84) 2.50 (0.83)
No feedback 3.14 (0.91) 2.87 (0.79) 3.50 (0.91) 3.11 (0.88) 3.20 (0.69) 2.70 (0.60) 2.55 (0.90) 2.72 (0.84)

Overall 3.28 (0.81) 3.06 (0.92) 3.54 (0.78) 3.27 (0.97) 3.26 (0.79) 3.13 (0.90) 3.05 (0.82) 2.78 (0.84)

a: Task engagement b: Robot engagement

Figure 3.3: Average engagement ra ngs per condi on. Error bars show 95% confidence interval.
*p<.05, **p< .01, ***[< .001

Task engagement

Contrary to our expectations, planned contrast analyses for comparing both preferred feed-
back and dispreferred feedback combined (M = 3.36, SD = 0.76) with no feedback (M =

3.14, SD = 0.91) showed no significant difference in task engagement (F(1, 34) = 3.96, p =
.06, η2p = .10). However, as Figure 3.3 shows, children aremore engagedwith preferred feed-
back (M = 3.59, SD = 0.71) than with dispreferred feedback (M = 3.13, SD = 0.74;
F(1, 34) = 13.49, p = .001, η2p = .28). Further analysis using post-hoc comparisons
with Bonferroni correction revealed that children were significantly more engaged in the
preferred feedback condition than the no feedback condition (t(34) = 3.26, p = .003,
Mdiff = .45). There was no significant difference between dispreferred and no feedback
(t(34) = −0.06, p = .96,Mdiff = −0.01 ).
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Task engagement dropped significantly over time (see Figure 3.4). A repeated measures
ANOVA with a Huynh-Feldt correction was performed, because our data violated the as-
sumption of sphericity. The analyses showed that task engagement differed significantly be-
tween the sessions (F(1.64, 55.90) = 7.16, p = .003, η2p = .17). Post hoc tests using the
Bonferroni correction revealed that task engagement dropped significantly between session
1 (M = 3.54, SD = 0.78) and 2 (M = 3.26, SD = 0.79; t(34) = 2.82, p = .008,Mdiff =

.28), and session 3 (M = 3.05, SD = 0.82; t(34) = 3.13, p = .004,Mdiff = .41) but not
between session 2 and 3 (t(34) = 1.68, p = .102,Mdiff = 0.21).

a: Task engagement b: Robot engagement

Figure 3.4: Average task engagement and robot engagement ra ngs over me and per condi on.
Error bars show 95% confidence interval. Note that a child who, for example, received preferred
feedback in session 1 received different feedback in session 2 and in session 3.

We further tested whether there was an interaction effect between the feedback strategy
and the session in which it was used. To this end, we used a mixed ANOVA with order as
between factor and feedback strategy as within factor, because this accounts for the order
in which participants received the different feedback strategies (for example, it might have
had an influence on their task engagement when they received no feedback first and the pre-
ferred feedback during the third session). There was a significant interaction effect between
order and feedback strategy (F(10, 58) = 4.43, p < .001, η2p = .433) indicating that the
effect of feedback on task engagement varied as a function of when this feedback in the exper-
iment it was administered taking into account that overall task engagement decreased over
time. As Table 3.5 illustrates, children’s task engagement dropped over time, but not for
all orders of the feedback strategies. The task engagement dropped in most situations after
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children received preferred feedback, task engagement never increased after dispreferred feed-
back and it either dropped or remained the same for no feedback. An exploratory repeated
measures ANOVA on each order indicated that task engagement differed significantly when
preferred feedback (M = 4.0, SD = 0.68) was provided first, then dispreferred feedback
(M = 2.69, SD = 0.92) and lastly no feedback (M = 3.28, SD = 0.81; F(2, 14) =

18.11, p < .001, η2p = .72) and furthermore, when preferred feedback was provided first
(M = 3.70, SD = 0.54), then no feedback (M = 2.45, SD = 0.89) and lastly dispreferred
feedback (M = 3.35, SD = 0.91; F(2, 8) = 8.11, p = .012, η2p = .67). All other orders did
not differ significantly (all p values> .1).

Table 3.5: The task engagement order effects visualised, a decreasing arrow shows decreasing task
engagement and vice versa. P stands for preferred feedback, D for dispreferred feedback and N
for no feedback. Task engagement differed significantly for the first two orders with *indica ng a p
value< .05 and **p value< .001.

Lesson 1 Lesson 2 Lesson 3

P ↘ D ↘ N **
P ↘ N ↘ D *
D −→ P ↘ N
D −→ N −→ P
N −→ P −→ D
N −→ D ↗ P

Robot engagement

Similarly as for task engagement, we compared the average children’s robot engagement score
during both the feedback conditions (M = 3.15, SD = 0.98) with the no feedback condi-
tion (M = 2.87, SD = 0.79) using planned contrast analyses. Unlike for task engagement,
we found a significant difference in robot engagement between feedback and no feedback
(F1, 34) = 4.39, p = .04, η2p = .11), albeit with a relatively small effect size. Moreover,
children scored higher for robot engagement in the preferred feedback condition (M =

3.57, SD = 0.87) than in thedispreferred feedback condition (M = 2.74, SD = 0.90; F(1, 34) =
43.19, p < .001, η2p = .56). Furthermore, post-hoc comparisonswith Bonferroni correction
revealed that children were significantly more engagement in the preferred feedback condi-
tion than in the no feedback condition (t(34) = 6.57, p < .001,Mdiff = 0.70). There was
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no significant difference between robot engagement in the dispreferred feedback condition
and the no feedback condition (t(34) = 4.61, p = 1.0,Mdiff = −.13).

As Figure 3.4b showed, robot engagement also dropped over time. A repeated mea-
sures ANOVA showed a significant difference between the sessions (F(2, 68) = 4.56, p =

.014, η2p = .12). Again, note that the effect size is relatively small. Pairwise comparisons
with a Bonferroni correction showed that robot engagement dropped significantly between
session 1 and 3 (t(34) = 2.67, p = .04,Mdiff = .49). There was no significant difference
between session 1 and session 2 (t(34) = .87, p = 1,Mdiff = .14) nor between session 2 and
3 (t(34) = 2.27, p = .09,Mdiff = .35).

Similarly aswith task engagement, we investigatedwhether therewas an interaction effect
between the feedback strategy and the session in which the feedback strategy was used. To
test this, we used a mixed ANOVA with order as between factor and feedback strategy as
within factor. For robot engagement, there was no order effect (F(10, 58) = 1.58, p = .14)
which indicates that the children’s robot engagement was not influenced by different orders
of feedback.

3.4.2 Learning gain

Children made on average 9.75 mistakes during the 24 rounds (Preferred: M = 9.95, SD =

5.56; Dispreferred: M = 9.30, SD = 5.22; No feedback: M = 9.75, SD = 5.41). Ta-
ble 3.6 shows the descriptive statistics for the target word knowledge scores for all condi-
tions. Children performed above chance level in the pre-test (chance level = 4.5, t(55) =

4.27, p < .001,Mdiff = 1.14) and post-test (chance level = 2.61, t(55) = 9.58, p <

.001,Mdiff = 5.25). As expected, children performed better on the post-test than on the
pre-test (t(55) = −3.88, p < .001, d = .52), so children clearly learned some vocabulary.

Table 3.6: Average score per condi on (SD).

Feedback strategy Pre-test Post-test In-game

Preferred 1.88 (1.38) 2.71 (1.77) 2.80 (1.42)
Dispreferred 1.77 (1.28) 2.59 (1.65) 2.82 (1.62)
No feedback 2.00 (1.31) 2.55 (1.76) 2.75 (1.43)

Total 5.64 (2.00) 7.86 (4.10) 8.38 (3.20)

The two-way repeatedmeasures ANOVAwith planned contrasts for both preferred feed-
back anddispreferred feedback (pre-test:M = 1.82, SD = 1.33, post-test:M = 2.65, SD =
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1.70) showednodifference in learning gain compared tono feedback (pre-test:M = 2.00, SD =

1.31, post-test: M = 2.55, SD = 1.76); F(1, 55) = .47, p = .83). Furthermore, while
children score numerically higher on word knowledge in the preferred feedback condition
(pre-test: M = 1.88, SD = 1.38, post-test: M = 2.71, SD = 1.77) than in the dispreferred
(pre-test: M = 1.77, SD = 1.28, post-test: M = 2.59, SD = 1.65), this difference was not
significant (F(1, 55) = .45, p = .51).

Table 3.6 also shows the results of the children’s in-game tests. Children scored higher
than chance in all conditions (chance level = 3, t(55) = 12.57, p < .001,Mdiff = 5.38).
Again, feedback strategy did not influence their learning gain, there were no significant dif-
ferences (F(2, 110) = .122, p = .89).

3.4.3 Relation between learning gain and engagement

To investigatewhether therewas a relation between both engagement types and learning gain,
we performed a Pearson correlation analysis and in contrast withwhatwe expected, we found
no significant correlation between task engagement and learning gain (preferred: r(35) =

.05, p = .78, dispreferred: r(35) = .09, p = .62, no feedback: r(35) = .12, p = .50).
Likewise, we did not find a significant correlation between robot engagement and learning
gain (preferred: r(35) = .15, p = .40, dispreferred: r(35) = .09, p = .62, no feedback:
r(35) = .02, p = .90).

3.5 Discussion

The aim of this chapter was to understand the effects that different types of robot feedback
have on children’s engagement both with the task, the robot and their learning gain. We de-
rived different types of feedback from a survey with student teachers and implemented them
in three different robots, each robot teaching children words from a second language in a
single session. One robot provided (teacher) preferred feedback, one provided (teacher) dis-
preferred feedback, and one provided no feedback at all. All children attended three sessions,
each with a different feedback strategy. We studied how this choice of feedback influenced
children’s task engagement and robot engagement and their learning gains.

3.5.1 Engagement

The analyses of both engagement types suggest that children seem to be generally engaged
with the task and the robot during the three sessions. This accords with human studies
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indicating that feedback can make tasks encouraging and engaging (Henderlong & Lepper,
2002).

Contrary to our expectations, when the robot provided feedback (either preferred or
dispreferred), this did not lead to increased task engagement compared to when the robot
provided no feedback (H1a). Children who received no feedback were, on average, rated
as equally engaged as children who did receive feedback. However, the type of feedback did
seem to have an influence on task engagement of the children: children becamemore engaged
with a robot that provided preferred feedback than with one that used dispreferred feedback
or indeed no feedback (H2a). Moreover, the robot’s feedback did result into a higher robot
engagement compared to no feedback (H1a). Children who received feedback (either pre-
ferred or dispreferred), were rated more engaged with the robot than children who did not
receive any feedback. However, it is worth pointing out that the numeric effects for task en-
gagement and robot engagement were rather comparable, even though the former but not
the latter was found to be statistically significant. Similar to task engagement, children were
most engaged with a robot that provided preferred feedback (H2a) in comparison to dispre-
ferred and no feedback. Interestingly, the difference between robot engagement for preferred
feedback and dispreferred feedback was larger than the difference for task engagement.

Preferred and dispreferred feedback differed onmultiple aspects (variation, extra attempt,
repetition of answer, non-verbal behavior) and when combined, these factors seem to have
an influence on engagement. While it is hard to identify exactly to what extent each of these
factors contribute to children’s task engagement and robot engagement, we believe that some
aspects might have had a larger effect on both engagement types than others.

For example, variation in feedback, as is realized in the preferred feedback condition,
could have had relatively strong effect on children’s task engagement and robot engagement.
A robot that provides more variation in the way feedback is offered could spark children’s
interest and keep them interested and motivated in continuing the task over a longer period
of time and at the same time also make them more interested in the robot. In contrast, a
robot who continually uses the same feedback phrase or no feedback at all might have a neg-
ative impact on children’s interest in the robot and their robot engagement and moreover
reduce their motivation to continue with a task and, thus, be less successful in keeping them
task-engaged.

It is furthermore possible that the extra attempt after an incorrect answer in the children’s
L1 may have task-engaged the children more in the preferred feedback condition than in the
other two conditions. The fact that children heard the correct L1 word, could try again and
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received praise afterwards, may have had a positive effect on their task engagement. This is
in line with how teachers tend to provide feedback, praising demotivated children to try to
engage them again (Hattie & Timperley, 2007). Some children also mentioned the extra
attempt as the robot helping them getting the correct answer, this might increase their sense
of relatedness to the robot which could have increased their robot engagement.

Finally, the non-verbal communication of the robot in the preferred condition may have
increased children’s robot engagement as well. The robot displayed rotating colored eyes and
nodded each time when children were correct. This is in agreement with the results of Mor-
ris & Zentall (2014), who found that children showed more intrinsic motivation when the
robot usednon-verbal behaviors such as thumbsup, and the findings of Serholt&Barendregt
(2016), who found that children paidmost attention to the robot when it provided feedback
accompanied by an arm gesture. Future studies that take variation of feedback in combina-
tion with different types of non-verbal behavior into account will be needed to develop a full
picture of this finding (deWit et al., 2020). Besides gesturing, also gaze is a knownnon-verbal
factor that can influence engagement (Mwangi et al., 2018). However, in the current experi-
ment gaze was not factor of interest, since the robot’s gaze behavior was identical in all three
conditions.

As mentioned, it is not possible with the current experiment to determine which factor
had the largest effect on task engagement or robot engagement. For this more research is
needed. In the current experiment, we explored to what extent by student teachers preferred
feedback strategy would differ from a dispreferred feedback strategy or no feedback strategy.
We found that preferred feedback has a beneficial effect on both engagement types. How-
ever, to identify the effect of different factors that define the preferred feedback strategy has
on engagement and which factor contribute to which engagement type, future experiments
could be set up in which each factor is varied between conditions.

Also consistent with other studies is that both task engagement and robot engagement
seemed to drop over time (de Wit et al., 2018; Kanda et al., 2007; Coninx et al., 2015), and
this drop appeared to be similar for all three conditions, although the differences between
the conditions stayed over time. Adding more variation to the robot’s feedback, as well as
varying other parts of its behavior, might help to reduce a drop in engagement. Ahmad et al.
(2017) suggested that children seemed to stay engaged with a robot that is adaptive, which
lends some support to the importance of individualized variation.

Interestingly, we found an interaction effect between task engagement and the order of
feedback strategies but not between robot engagement and order. In particular, we observed
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that children’s task engagement dropped after receiving preferred feedback and that their task
engagement was similar or lower before receiving preferred feedback. Receiving no feedback
or dispreferred feedback might have demotivated children, and, conversely, receiving vari-
ous feedback information on their performance, might have increased their motivation again
and, therefore, their task engagement. Vice versa, after children received preferred feedback
and continued in the dispreferred or no feedback condition, their task engagement decreased
again. However, some caution to this explanationmust be applied, as the findingsmight have
been influenced by individual differences as well.

3.5.2 Learning gain

As expected, children learned from all three sessions with the robot. They did not learnmany
words per session though, which is in line with previous research with this young age group
(Kory-Westlund&Breazeal, 2015;Vogt et al., 2019). Our results also show that these learning
effects were retained in the longer run, because we conducted a post-test two weeks after the
last session, suggesting that the target words remained in children’s memory (Axelsson et al.,
2016).

Contrary to our expectations, children did not learn more in the feedback conditions
than when receiving no feedback (H1b), nor did it matter for the learning gain whether feed-
back was of the preferred or dispreferred variety (H2b). This was not only the case for the
post-test, but also applied to the in-game test that was taken immediately after each training
round.

What these results suggest is that children could learn from the teaching sessions with-
out the need for feedback, and that the contribution of feedback to learningmight have been
smaller than we anticipated. This can be explained by the fact that children could rely on
cross-situational learning (Smith & Yu, 2008), because children saw four depictions of pos-
sible meanings each time they heard a target word, with the distractors changing while the
target stayed the same across situations. Hence, children could infer the meaning of a target,
even without receiving feedback, based on the co-variation in meanings offered with the dif-
ferent occurrences of the target word, which seems to largely drive the learning, and feedback
does not appear to contribute to this learning process.

It is conceivable that the learning task itself might have been too easy for the children to
really benefit from the feedback. Moreover, since the children could press any animal they
wanted to go forward in the game, they did not have to pay attention to the feedback of the
robot. For future research, it would be interesting to conduct a study in such a way that
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feedback becomes more central to the interaction or more content-related, and where the
learning task is more complex (e.g., learning about difficult sentence structures or unfamiliar
grammar). This might shed further light on the influence of feedback on learning in child-
robot interaction.

It is interesting to note thatwe did not observe learning differences betweenpreferred and
dispreferred feedback, which might be due to the feedback being completely offered in the
children’s L1. As a result, children did not receive a explicit translation between L1 and L2 as
part of their (corrective) negative feedback. Thismight explainwhy children did not learn the
L2 translation of a concept better during negative preferred feedback. It seems plausible that
the addition ofL2 to the negative (corrective) feedbackwould have resulted in higher learning
gains (Hall, 2002; Scott & de la Fuente, 2008). However, we did not add this L2-L1 trans-
lation to our negative feedback for methodological reasons to keep the different conditions
comparable. In particular, we made sure that there was an identical number of L2 exposures
in every condition, since the number of L2 exposures could also affect learning (Ellis, 2002).

3.5.3 Relation between engagement and learning

Various studies have found that increased engagement leads to better learning performance
(Christenson et al., 2012). However, in our data we did not observe a relation between task
engagement or robot engagement and learning. Children who were more engaged with the
task or with the robot did not learn more words than children who were less engaged. This
might be due to the relatively small learning gain of children in the different conditions. They
learned on average close to two out of six words during each session and this might not have
been enough to observe a correlation with both engagement types. Moreover, it is conceiv-
able that individual differences between children might have played a role as well. Effects of
engagement on learning seemed to differ substantially from one child to the next, which is
consistent with earlier research with this age group interacting with a robot (van den Berghe
et al., 2021). Finally, we conjecture that in future research withmore varied andmore promi-
nent feedback (along the lines sketched above), we might indeed observe that more engage-
ment leads to better learning results.

3.5.4 Strengths and limitations

This study has at least four strengths: First, we systematically compared different feedback
strategies, derived from actual strategies suggested by young student teachers. Second, we
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tested a large group of young children to measure the effects of feedback. Third, the study
was a carefully constructed experiment, of which all hypotheses and analyses have been pre-
registered (Simmons et al., 2011). Fourth, we measured two types of engagement to account
for the children’s engagement with the task and with their engagement with the robot as
social partner.

Our study has also at least four limitations. First, we only measured comprehension and
not active production of words. However, as speech recognition of the robot is not reliable
yet, amore interactive task would have to rely fully on the experimenter in aWizard ofOz set-
ting (Kennedy et al., 2016). Since we aimed for an autonomously operating system, our task
was designed to teach only passive understanding of L2 by using a tablet to record children’s
responses.

Second, our task was very repetitive. The only variation we introduced was the feedback
that the robot would provide in the preferred feedback condition. Children did not have
control over when to play with the robot and they were not able to change the task. It is a
challenge to design a task that is adaptive to children’s preferences, while still being education-
ally responsible and technical feasible. Providing such autonomy to children could increase
their intrinsic motivation, which would increase their engagement and their learning perfor-
mance (Deci & Ryan, 2000; vanMinkelen et al., 2020).

Third, the robot could not react to the children’s perceived engagement level during the
experiment. While a human teacher would constantly monitor children’s engagement and
adapt the task accordingly to make it more personalized, the robot in our experiment simply
continued to the next word and kept the interaction the same throughout all sessions, disre-
garding the child’s engagement. Being able to automatically recognize a child’s engagement
would allow the robot to personalize feedback and other behaviors based on this engagement
(Gordon et al., 2016; Ahmad et al., 2019).

Finally, we investigated themain effect of feedback on engagement and learning gain and
showed that the preferred feedback had an influence on engagement with the task and with
the robot. However, preferred and dispreferred feedback varied on multiple factors (varia-
tion, extra attempt, repetition of answer, non-verbal behavior), and consequently we cannot
attribute the effect on engagement to only one of these factors, only the combination. Fu-
ture research should look at individual aspects of feedback if technically feasible to measure
the effectiveness for engagement.
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3.6 Conclusion

The study presented in this chapter explored whether robot feedback affects children’s task-
and robot engagement and learning gain in second language learning. We compared three
robotbehaviors: onebased its feedbackon student teachers’ preferred feedback strategies, one
that did the opposite and one that did not use any feedback. The preferred strategy varied its
feedback, gave children an additional attempt when they answered incorrectly, repeated the
target word and gave non-verbal feedback. In contrast, the dispreferred feedback strategy did
not vary its feedback, did not provide children with an additional attempt, did not repeat the
target word and did not give non-verbal feedback. We found that children in the preferred
feedback condition were more engaged than children in the dispreferred feedback and no
feedback conditions, both with the task as with the robot. However, the feedback strategy
did not influence children’s learning gain; they did not retain more word knowledge with
one of the different conditions. Moreover, we did not observe a relation between learning
and engagement.

Our results are especially interesting for long-term interactionswhere engagement of chil-
dren often drops. Providing feedback in an even more varied and motivating manner might
help children to remain engaged in long-term scenarios. We expect that in the long-term
such varied and motivating feedback can also improve children’s learning gains, especially
when the learning tasks become more difficult and children cannot just learn from inferring
associations through cross-situational learning.
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Abstract This chapter investigated a seven sessions interaction between a tutor robot
and Dutch preschoolers (5 years old) during which children learned English. We examined
whether children’s engagement differed when interacting with a tablet and a robot using
iconic gestures, with a tablet and a robot using no iconic gestures andwith only a tablet. Two
engagement types were annotated (task engagement and robot engagement) using a novel
coding scheme based on an existing coding scheme used in kindergartens. The findings re-
vealed that children’s task engagement dropped over time, consistent with the novelty effect.
In addition, we found that children were less task-engaged with a robot using iconic gestures
than with a robot using no iconic gestures when aggregating task engagement over the first
sessions (sessions 1-3) compared to the next sessions (sessions 4-6). Interestingly, robot en-
gagement showed the opposite pattern. Children were more robot-engaged when interact-
ing with a robot using iconic gestures thanwithout iconic gestures. Finally, when comparing
children’s word knowledge with their engagement, we found that both task engagement and
robot engagement were positively correlated with children’s word retention.
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4.1 Introduction

Engagement is important for learning (Zaga et al., 2015; Christenson et al., 2012). Themore
time children are actively interacting with a certain task the more children can learn. It can
also increase children’s motivation. When children stay engaged, they are motivated to learn,
actively use their newly gained knowledge and will continue the learning session or even try
more challenging tasks, which can lead to higher learning gains (Jang, 2008).

The large role of engagement in learning is one of the reasons why engagement is a well
known concept in the field of educational human-robot interaction (HRI) (Kanero et al.,
2018; van den Berghe et al., 2019). Children are generally highly engaged with robots, how-
ever most studies only include short-term interventions with a robot (van den Berghe et al.,
2019). Therefore, high engagement of children might also be a result of a novelty effect (i.e.
the -often exciting- effect that interacting with a novel technology can have on engagement)
(Kanda et al., 2004; Leite, Martinho, & Paiva, 2013). The few studies that investigated chil-
dren’s engagement during a longer period noticed that children’s engagement started to de-
cline fairly quickly after a few sessions (Ahmad et al., 2017; Kanda et al., 2007; Komatsubara
et al., 2014; Leite, Martinho, & Paiva, 2013).

It is important tobear inmind thatmost long-termHRI studies that studied engagement,
only investigated engagement in general. Often this means that these studies investigated the
engagement between robot and user, as interactions are a social process. However, children
can also engage with a task in front of them, insteadwith only their social partner. Therefore,
it has become increasingly more apparent that there should be a distinction between the en-
gagementwith the task (task engagement) and engagement between the learner and the robot
(robot engagement) (Zaga et al., 2014)

It is still unclear whether both task engagement and robot engagement have a positive
or a negative effect on learning gain. Although one might expect that a robot behaving in
a way that stimulates engagement (a higher robot engagement) leads to better learning out-
comes, it is also possible that a more engaging robot will distract the child, therefore, pays
less attention to the learning task in front of them (Kennedy et al., 2015). Instead, children
interacting with a less distracting robot might pay more attention to the task and become
more task-engaged instead of robot-engaged. Thus, task and robot engagement might also
be related. Therefore, it can be important to look closely at the difference between children’s
engagement with a robot and the task and whether a decline in engagement is something
specifically related to the robot’s behavior or a more general effect of sessions with technolog-
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ical devices. After all, children’s (task) engagementmight also dropwhen they are interacting
with only a tablet. It is also possible that, the non-verbal behavior of a robot, such as the use of
gestures or headmovements, might lead to a higher level of engagement than other electronic
devices, including tablets or computers.

This chapter, therefore aims to add to the evidence regarding the effectiveness of robot-
assisted second language learning of pre-school childrenwhile specifically focusing on the role
of engagement with a social robot, and engagement with the task and the possible positive
effect on children’s second language (L2) word knowledge.

4.2 Background

4.2.1 Robots in education

Social robots have been used in education for quite some time now (for a review, see Bel-
paeme, Kennedy, et al., 2018). Most of the times, these social robots are used as a peer tutor,
that teaches the child a new skill and can also provide feedback. They have been used with
children inmany fields, such as, teaching childrenmathematics or helping childrenwithwrit-
ing (Hindriks & Liebens, 2019; Konijn&Hoorn, 2020; Kennedy et al., 2015; Alves-Oliveira
et al., 2019).

Most interactionsbetween robots andchildren rely onother devices to get an autonomous
interaction since speech recognition has shown to still be unreliable (Kennedy et al., 2017;
Mubin et al., 2012). Some child-robot interactions rely on the improvement of speech recog-
nition in the coming years and therefore use aWizard of Oz approach for their studies (Kory-
Westlund, Jeong, et al., 2017). One studyused speech recognition and speech-repair-mechanisms
such as pressing thebuttons on the robot’s feet toprovide the robotwith an answerbut found
that technical communication breakdowns negatively impacted the interaction (Ligthart et
al., 2019). Other researchers used an extra device, such as a tablet as input instead of relying
on speech commands. The added advantage of using a tablet is that the display can create
a virtual environment for the interaction and the robot can manipulate things on the tablet
more easily than in the physical world. For example, the project Cowriter (Jacq et al., 2016)
used a screen for the robot to write on in their child-robot interaction, to teach children how
to write with a learning by teaching paradigm. Moreover, Alves-Oliveira et al. (2019) used a
screen to display an interactive city map. The robot could interact with the environment, as
could the participating children. Ahmad et al. (2017) (2019) used a tablet screen to display
a game that children played with the robot. This tablet game was based on an existing board
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game (Snakes andLadders), whichwas implemented in the tablet to increase the autonomous
behavior by the robot.

However, these studies did not investigate the difference between an interaction with
only a tablet, and an interactionwith a tablet and a robot. It is interesting to examinewhether
the presence of the robot is not distracting from the task, and whether engagement with the
robot assists in learning. The advantage of the robot’s presence rather than only a tablet or
computer is to enable children to interact more naturally with a robot than with a computer
screen or tablet since a robot makes use of non-verbal behavior, such as using its arms for ges-
turing or nodding its head for confirmation (Kory-Westlund et al., 2015; van den Berghe et
al., 2019). These gestures can be used for scaffolding, and can support grounding of the un-
known L2 concept in the familiar language. The use of iconic gestures, gestures that depict
the meaning of a certain concept, can support L2 learning in human-human studies (Mace-
donia et al., 2011), and in short-term child-robot interactions (deWit et al., 2018). However,
these studies did not compare a robot with a tablet, nor examined long-term effects. This
chapter hopes to provide further insights into the effect of a robot’s presence and the robot’s
use of gestures, using the tablet as a learning device, on the child’s engagement.

4.2.2 Engagement

Despite its common usage, there are multiple definitions of engagement used for HRI. The
definition by Sidner et al. (2005) is the most commonly-used definition in HRI (Oertel et
al., 2020). Sidner and colleagues defined engagement as “the process by which individuals in
an interaction start, maintain and end their perceived connection to one another” (p. 141).
This definition mostly focuses on the cognitive aspect of the individuals who are interacting.
Fredricks et al. (2004) argued that engagement is more than only this cognitive aspect. They
describe that engagement is built up from three different dimensions: the cognitive, affective
and behavioral dimension. This definition shows how complex engagement is and that it
measures multiple aspects.

As a consequence of the complexity, it is challenging to measure engagement and pre-
vious published work in HRI is not consistent in the way of measuring engagement. Many
studies focus on a single aspect of engagement, such as eye gaze and speechwhich are elements
of the cognitive aspect of engagement (Xu et al., 2016; Chaspari et al., 2015; Chung, 2019),
often in combination with behavioral aspects such as smiles and nods (Serholt & Barendregt,
2016), gestures (Ahmad et al., 2019; Tapus et al., 2012) and initiations by the child (Javed
et al., 2018; Tapus et al., 2020). There are a few disadvantages of using only these measure-
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ments. Using eye gaze, for example, overlooks the fact that when children do not look at the
robot, this does not necessarily imply that children are not engaged with the interaction (as
discussed in Chapter 2). Sometimes children need to look at the task in front of them, while
being engaged, only spend less time looking at the robot. Likewise, for children’s speech,
when the child-robot task requires them to use speech, it is still possible that children are an-
swering the question in order to continue with the task without being actively task-engaged.
Other studies measure the body posture of the child and the distance to the robot (Heath
et al., 2017; Sanghvi et al., 2011), sometimes in combination with speech (Jeong et al., 2018;
Javed et al., 2020) or in combination with touch behavior on a tablet (Vázquez et al., 2014).
However, these studies do not take into account that the taskmight require children tomove
around and children are in general more active and move around more than adults.

Moreover, other studies use measurements that are not suitable for younger children,
such as a questionnaire (Zaga et al., 2015; Díaz et al., 2011), sometimes combined with other
techniques such as the use of distractors (Ligthart et al., 2020) or physiologicalmeasurements
such as thermal infrared imaging (Filippini et al., 2020), or electrodermal activity (Leite,Hen-
riques, et al., 2013) and EEG (Szafir &Mutlu, 2012; Alimardani & Hiraki, 2020; Perugia et
al., 2020). These measurements are not only invasive for children, but can also introduce
more overhead during the experiment which makes it more difficult to use outside the lab.

There have been few studies in which engagement was detected automatically (Rich et
al., 2010; Ishii & Nakano, 2010; Rudovic et al., 2018), however it is difficult to be certain
these automatic measurements are actually measuring engagement. Often they are based on
only one dimension like verbal utterances, or emotional features. Or they are based on deep
learning, which needs a lot of data to be reliable (Rudovic et al., 2018) whichmakes it less fea-
sible to use for every study. Automatic engagement measurements are additionally sensitive
for errors because of the focus on one dimension and they are also more susceptible to error
because they are automated.

The main limitation of all these different measurements is that they do not provide a
complete overview of children’s engagement but rather a one-sided aspect of engagement.
Additionally, these studies did not take into account that there are differences between the
engagement between child and robot, and engagement between child and task. A child can
be very engaged with the task and only focusing on the task, while not being engaged with
the robot or vice versa. It is therefore important to make a distinction between engagement
with the task, and engagement with the robot (Zaga et al., 2015; Oertel et al., 2020).

Zaga et al. (2015) specifically investigated task engagement. They compared the puzzle
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solving ability of children between 6 and 9 years oldwith a robot that behaved either in a peer-
like or a tutor-likemanner. Theymeasured children’s gaze as part of the cognitive component
of engagement, the children’s puzzle completion for their behavioral component and they
used a questionnaire to measure children’s affect for the task. They found that children were
more task-engaged with the peer-like robot than with a tutor-like robot, and could solve the
puzzles faster when interacting with the peer-like robot. However, this interaction was only
one session and this makes it difficult to generalise the results to multiple sessions.

With respect to the level of engagement, it may seem that higher engagement is always
preferable but robot engagement can also have negative outcomes on children’s learning per-
formance. For example, Kennedy et al. (2015) reported that children more focused on the
robot (whichmight indicate high robot engagement) scored lower than children less focused
on the robot. This particular study investigated children’s mathematical skills and did not
focus on children’s language skills so whether this can be generalized to L2 learning has yet
to be confirmed. It is possible that language learning depends more on interaction between
partner and participant and that a high robot engagement will have a positive influence on
children’s L2 learning outcome. Kennedy and colleagues’ outcomes provide the indication
that robot engagement is not always the single feature for an interaction to be successful in-
volving learning.

We propose tomeasure both task engagement and robot engagement based on children’s
video observations, with the use of a grounded coding scheme called ZIKO (Laevers, 2005),
which combines different aspects of engagement.

ZIKO

The ZIKO observation instrument is a method that has been used to observe children in
kindergarten during their daily activities. The scheme is based on developmental schemes
(Laevers, 2005) to create a 5-point Likert scale that rates multiple aspects of children’s be-
havior, such as the well being of the child, but also engagement of the child. The scheme has
been used to improve activities at kindergartens (e.g., Storli & Sandseter, 2019; Laevers, 2015;
Arnott et al., 2016) and to get an evaluation of a particular child or the activities played by
the children (Storli & Sandseter, 2019) and has been shown to be relatively stable (Laevers,
2015). The scheme has additionally been used in researchmore related to child-robot interac-
tion: to compare children’s engagement with an iPad versus children’s creative play (Arnott
et al., 2016).

The engagement component of the instrument is a detailed scheme that includes the
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three components of engagement proposed (Trowler, 2010): children’s levels of concentra-
tion, motivation (cognitive dimension), energy (affective), their exploratory drive and persis-
tence (behavioral) andwhen all these components are present in children’s behavior, children
arehighly engaged. Themain advantages ofusing this scheme is that it provides a score,which
allows for quantitative analyses over time and it has been designed for preschool children.

4.2.3 Long-term interactions

Long-term interactions are important to investigate because they look beyond the novelty
effect (Leite, Martinho, & Paiva, 2013; Kanda et al., 2007; Ahmad et al., 2019; Oertel et al.,
2020). Salter et al. (2004) suggested that you can speak of long-term interaction after the nov-
elty effect is gone and the experimenters are left with an interaction between robot and child
without any interference of the novelty effect. In their study, children did not show any inter-
est in the robot anymore after three sessions when it used repeated behavior. This can also be
confirmed by Serholt & Barendregt (2016) who found that children’s social responses to the
robot were drastically reduced by the third session. Two other studies investigated primary
school children (8-9 years) over time (Leite, Martinho, & Paiva, 2013; Ahmad et al., 2019)
and found that their engagement remained the same over time when playing chess five times
during five weeks (Leite, Martinho, & Paiva, 2013) or over three sessions when the robot was
adapting itself to the child’s emotional state during a second-language learning task (Ahmad
et al., 2019). These studies focused on older children at primary schools and children at that
age undergo major developmental changes, which results into large learning differences be-
tween older children and younger children (Piaget, 1976). Considering the fact that children
aremore likely to learn a language at a young age, it would therefore beworthwhile to include
younger children.

Three long-term studies that investigated younger children were Tanaka et al. (2007),
Kanda et al. (2007) and the study inChapter 3. Kanda et al. placed a robot in a preschool dur-
ing two months and found that children’s initial social bond with the robot seems to relate
with their robot engagement. Children who established a social bond with the robot, con-
tinued the interaction for a longer period than children who did not have this social bond.
Moreover, Tanaka et al. showed that children’s engagement quickly decreased and that only
after introducing new robot behaviors, children returned to the robot. These two interac-
tions were free play interactions, meaning that the robot was more a playmate than a tutor
and the question remains whether children’s engagement and learning gain are related. In
Chapter three, we found that a robot providing teacher-like feedback had a positive influ-
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ence on children’s task and robot engagement. However, this study only contained three
sessions and the question remains what will happen to children’s task engagement and robot
engagement after more sessions when the novelty plays a smaller role.

4.2.4 This study

The current study was part of a large-scale study in which we investigated the effectiveness of
a peer-tutor robot in a long-term L2 tutoring interaction, teaching pre-school children some
English vocabulary as second language (Vogt et al., 2019). This study’s experimental design,
hypotheses and statistical analyses were preregistered onAsPredicted1 and included four con-
ditions: (1) an L2 tutoring training with a tablet and a robot using iconic gestures (gestures
that act out the meaning of a word) and deictic gestures (pointing gestures), (2) an L2 tu-
toring training with a tablet and a robot using deictic gestures, (3) an L2 tutoring training
with a tablet, and (4) a control condition in which children danced with the robot but were
not taught any English words. Word knowledge was tested on three occasions: a pre-test, an
immediate post-test and a delayed post-test (administered between two and four weeks after
the last session). The results of the preregistered study were presented in Vogt et al. (2019)
and showed that children scored higher after the tutoring sessions than before. Moreover,
children in the experimental conditions (robot with iconic gestures, robot without iconic
gestures, tablet-only condition) scored significantly higher than children in the control con-
dition on the immediate and delayed post-test. Therewere no significant differences between
the experimental conditions in children’s English word knowledge, meaning that children in
the robot conditions did not learn more than in the tablet-only condition.

In this current chapter, we present the first longitudinal comparison of robot and task
engagement, and its link to second-language word knowledge. We measured children’s task
engagement, their robot engagement and children’s L2 word knowledge to investigate the
relation between engagement and L2word knowledge. In this chapter, we only included the
three experimental conditions because the control condition interaction was very different
from the other three conditions. We expected that children weremore task-engaged when in-
teractingwith a robot and a tablet compared to a tablet only (H1). Children to bemoremore
robot-engaged with a robot using iconic gestures than one without iconic gestures (H2). Fi-
nally, we expected that children’s task engagement positively relates with children’s L2 word
knowledge (H3a) and children’s robot engagement is negatively related with children’s L2

1https://aspredicted.org/6k93k.pdf
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word knowledge (H3b) based on the results by Kennedy et al. (2015).

4.3 Method

4.3.1 Participants

We recruited 208 nativeDutch speaking children from nine differentDutch primary schools.
The children’s mean age was 5 years and 8 months (SD = 5 months). All parents gave in-
formed consent. Three children were excluded due to a high prior-knowledge of English as
measured in the pre-test. During the experiment nine children dropped out due to various
reasons, such as sickness or experiment anxiety and two children were excluded due to tech-
nical errors. This resulted in a total of 194 children. The children were pseudo-randomly
(taking their pre-test score and gender into account) assigned to one of the four conditions:

1. Robot with iconic gestures: N = 54,Mage = 5 years and 8 months, SD = 5 months,
31 boys and 23 girls

2. Robot without iconic gestures: N = 54, Mage = 5 years and 8 months, SD = 5
months, 28 boys and 26 girls

3. Tablet-only: N = 54,Mage = 5 years and 9 months, SD = 5 months, 24 boys and 30
girls

4. Control: N = 32, Mage = 5 years and 7 months, SD = 5 months, 14 boys and 18
girls

The project in which the studywas embedded, the L2TORproject, received ethical approval
from Utrecht University’s Ethics Committee under protocol number FETC16-039.

4.3.2 Design

The experiment consisted of a pre-test, seven tutoring sessions (with the final one being a
recap session), an immediate post-test and a delayed post-test (a schematic overview can be
found in Figure 4.1). It was a between subject design where children received the tutoring
sessions with a robot (using iconic gestures or no iconic gestures) and a tablet or only with
a tablet. These tutoring sessions were completely the same except for the physical presence
of the robot or the use of iconic gestures. In the robot with iconic gestures condition, the
robot used an iconic gesture every time it said an L2 target word and it used deictic gestures
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Figure 4.1: Schema c overview of the experiment.

Figure 4.2: Experimental se ng

such as pointing when children had to perform a task on the tablet. In the robot without
iconic gestures, the robot only used deictic gestures, and no iconic gestures. In the tablet-only
condition, children heard the voice of the robot through the tablet’s speakers, but did not
see the robot’s physical presence during the experiment. Children in the control condition
received three one-on-one sessions with a robot without any English tutoring, participating
in dancing activities instead.

We only measured task engagement for the experimental conditions (robot with iconic
gestures, robot without iconic gestures and tablet-only) because these groups were partici-
pating in the tutoring sessions. Robot engagement was only measured for the experimental
conditions with a robot present (robot with iconic gestures and robot without iconic ges-
tures). The control condition was not included in this chapter, because this interaction was
very different than the other interactions and the specific interest of this chapter is children’s
engagement and the relation with learning and the children in the control condition did not
receive the learning activities.

4.3.3 L2 tutoring sessions

The aim of the L2 tutoring sessions was to teach each child 34 English words. Each child re-
ceived seven sessions with the robot and a tablet or only the tablet (see for an example Figure
4.2). Childrenwere taught approximately six target words during each session, except the sev-
enth sessionwhichwas a recap session. Children heard the new targetwords ten times during
the session, and these new target words were repeated once during the following session and
twice during the recap session. The target words can be found in Table 4.1, which were di-
vided in two domains: number domain and spatial domain. The number domain consisted
of counting words (e.g., one, two), verbs for mathematical operations (e.g., adding and take
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away) and comparisons (e.g., more, most). The spatial domain contained prepositions (e.g.,
in front of, on) and action verbs (e.g., running, climbing). Each session was presented in a
different virtual environment that was designed to teach the target words specific for that
session, for example in session one (see Figure 4.3a), each of the cages contained different
amounts of animals and after the animals escaped their cages, children had to return (add)
the animals to their cages. Similarly, in session six (see Figure 4.3b), the tablet displayed a
child sliding and climbing a slide.

Table 4.1: Target words for each domain and session

Session Tablet environment Target words

Number domain

1 Zoo One, two, three, add, more, most
2 Bakery Four, five, takeaway, fewer, fewest
3 Zoo Big, small, heavy, light, high, low
Spatial domain

4 Fruit shop On, above, below, next to, falling
5 Forest In front of, behind, walking, running, jump-

ing, flying
6 Playground Left, right, catching, throwing, sliding, climb-

ing
Recap

7 Photo book Repetition of all learned words

Each of the tutoring sessions followed a similar script, and contained a few personalised
interactions such as the use of the child’s name in the beginning of the interaction or with
feedback. They all started with an introductory phase, in which the robot explained that
they would visit a location on the tablet (e.g., the zoo), after which the robot first repeated
the target words learned in the previous session (starting from session two) and continued
with introducing the new target words. During this word binding phase, the tablet displayed
a drawing or animation of the new target word and asked the child to select the object or
animation in Dutch (e.g., “click on the cage with one monkey”), and after the child selected
this target, the tablet translated the word to English (in the example the word “one”). The
robot would repeat the word and ask the child to repeat the word too. When all new target
words were repeated, the child had to perform different tasks on the tablet (touching and
dragging objects on the tablet screen) or had to act out target words. At the end of the session,
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a: Session 1 b: Session 6

Figure 4.3: Tablet environment for session 1 and session 6.

there was a short in-game test where the child’s knowledge of the target words was tested.
The recap session had a different setup because there were no new target words presented

during this session. The robot first explained that it would be the last time that they were
together and that theywould go through all previously visited placeswith a photobook. Each
page of the photo book contained one of the sessions with all target words. Children had to
add pictures of the different target words in the photo book while repeating the words with
the robot. During this session there was no in-game test in the end.

During all sessions, except during the in-game tests, the robot acted as amore knowledge-
able peer that was also learning English, but provided feedback on the child’s actions when
needed. For example, when a child was reluctant to drag an object on the tablet, the robot
would first ask the child to execute the task, but after two unsuccessful attempts, the robot
would perform this task for the child using a deictic gesture. The interaction was semi au-
tonomous, the experimenter would press a button on a control panel as soon as a child had
repeated the robot’s speech because children’s speech detection remains unreliable (Kennedy
et al., 2017). The interaction was a one-on-one interaction, but the experimenter stayed in
the same room to intervene when necessary.

Figure 4.4 shows the number of prompts that children had during each session, children
had the least fixed prompts in session 4 and the most in session 7, the recap session. Prompts
with the tablet contain actions like dragging and touching objects on the screen, prompts
with the robot contain repetition and re-enactment of the target words. The duration of
each session was between 15 to 25 minutes. The tablet and robot both instructed the child
to execute tasks. After successfully completing a task that was prompted by either the tablet
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Figure 4.4: Number of prompts per session. The red line shows the total amount of prompts per
session. Tablet prompts contain ac ons like dragging and touching objects on the screen, robot
prompts contain repe on and re-enactment of the target words.

or the robot, the robot always provided the child with feedback. This feedback could be
negative feedback after an incorrect response, afterwhich the child could try again, or positive
feedback after a correct response. In otherwords, after each prompt, the child always received
feedback from the robot.

4.3.4 Materials

Measurements

Pre-test Before the children started the seven tutoring sessions we tested their L2 knowl-
edge of the 34 target words with an English to Dutch translation task, children’s Dutch vo-
cabulary knowledge, selective attention and non-word repetition skills. Children were asked
to translate each target word (34) from English to Dutch during the translation task. The
target words were prerecorded by a native speaker and played through a laptop. There were
two versions of the translation task, different in their word order, randomly assigned to chil-
dren. Children could score 34 points on this test by providing the correct translation of the
targetwords inDutch. Cronbach’s alpha showed that the reliability for this test was excellent,
α = .96. Themain purpose of this test was to exclude children who already knewmore than
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Figure 4.5: In this example, in order to test the children’s understanding of the word “two”, the tablet
asked the children to select the picture showing the two monkeys.

half of the target words before the experiment. In addition to the translation task, we mea-
sured children’s Dutch vocabulary knowledge ( Peabody Picture Vocabulary Test Dunn et
al., 2005). During this task children had to select a picture out of four different pictures cor-
responding to the word that the experimenter said in Dutch. After making nine errors, the
test stopped and the child’s corresponding Dutch vocabulary level was recorded. Moreover,
we measured their selective attention with a visual search task (Mulder et al., 2014) during
which children had to search certain animals on a screen as fast as possible. Children could
score a maximum score of eight. Finally, we measured children’s phonological memory with
a non-word repetition task (Chiat, 2015). Children had to repeat twelve not existing words
in order to test their phonological memory. For each word correctly pronounced, children
received one point. Cronbach’s alpha showed that the reliability of this task was satisfactory,
α = .76.

We also conducted a perception questionnaire during this pre-test. However, these mea-
surements are beyond the scope of this chapter. More information can be found about these
measurements in Chapter 5.

The total duration of the pre-test was 30-40 minutes. Children received a sticker for
each task completed. We did not include other word knowledge tests during the pre-test
to avoid the possibility that children would learn from the different tests in addition to the
experimental tutoring sessions.

In-game tests At the end of each tutoring session, children received an in-game test in
which we measured their short-term retention of the target words. This in-game test was a
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comprehension task duringwhich children saw three options (see Figure 4.3C) and the tablet
asked for a certain target word. Each target word learned during that sessionwas shown twice
during the in-game test.

Post-tests We administered two post-tests: an immediate post-test maximally two days
after the final session and a delayed post-test at least two weeks after the final session. Both
post-tests contained a translation task for all targetwords fromDutch toEnglish, a translation
task from English to Dutch and a comprehension task. The translation tasks were the same
as the pre-test, except that children also had to translate the words from Dutch to English.
Cronbach’s alpha was excellent for all tests (all α ≥ .94). The comprehension test was a
picture-selection task to test the children’s receptive knowledge. In this task, children were
presented with a target word prerecorded by a native speaker and asked to choose which one
out of three pictures or videos matched the target word (“Where do you see: heavy?”). Each
targetwordwas presented three times in a randomorder to compensate for children’s guesses.
Only half of the target words were included, as a test including all target words would take
too long for these young children. The words included were selected in such a way that there
were an equal number of words from every session. Cronbach’s alpha was good, α = .84 for
the immediate post-test, for the delayed post-test, α = .87.

4.3.5 Procedure

Oneweek before the first tutoring session, children received a group introduction to familiar-
ize themselveswith the robot. During this introduction the robot explained that the children
have to listen carefully and speak clearly to the robot, it also showed how it is able to move
by doing a familiar dance to Dutch children and the robot shook hands with all children to
reduce any anxiety that children might have towards being close to the robot.

After this introduction, each child completed the pre-test in a one-on-one setting with
one of the experimenters. During the next four weeks, children (except for the children in
the control condition) took part in the sevenL2 tutoring sessionswith the robot, each during
school hours and in a one-to-one setting.

During the experimental days, the child was brought by the experimenter to a separate
room with the robot and tablet to receive the session. The child was asked to sit in front of
the tablet close to the robot. Before the experiment leader started the first session, he or she
explained how the tablet worked and what the child was going to do with the robot. During
the session, the experimenter tried to not intervene, onlywhen the tablet gamebroke downor
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the child was reluctant to continue the session. Occasionally, the sessionwas interrupted due
to technical break downs, toilet visits or in some cases anxiety by the children. Usually the
sessionwas continuedwithin a fewminutes, butwhen this was not possible the experimenter
returned the child to their classroom and the full session was restarted to the last point, after
which the child was brought again to the robot or tablet and continued their session. Only
in 9 cases, where the child did not want to proceed, the experiment was stopped and the
data of these children were removed from the analyses. After the session the children were
returned to their classroom, and the setup for the next child was prepared. Children received
an immediate post-test within two days after the seventh session, and a delayed post-test two
to five weeks after the immediate post-test. Similarly to the pre-test, the test was a one-on-
one session with an experimenter. After the delayed post-test, children in the tablet-only
condition were brought once more to the robot to receive one interaction with the robot in
order to give them the experience of interacting with a robot.

4.3.6 Engagement coding

We annotated two types of engagement: task engagement and robot engagement.

Task engagement: with task engagement wemeasured how focused on the task the children
were while executing it, whether the children were distracted and how well they re-
sponded to the questions of the tablet and the robot. Although many tasks had to be
performed on the tablet (e.g., to drag animals into cages), it is important to stress that
task engagement is not equivalent to tablet engagement. Task engagement contains
both the engagement for the tablet as for tasks that the robot instructed. For example,
each session the robot asked children to repeat words, this interaction is also part of
the task. Moreover, in sessions 5 and 6, children were instructed to act out verbs such
as running and jumping, which is also part of the task.

Robot engagement: this type of engagement focuses on the social aspect of engagement.
For instance, howwell the children imitated the robot after its gestures, how often the
children looked at the robot or talked with the robot.

Coding scheme

Ourobservation schemewas adapted fromthe existing scheme for toddlers calledZIKO(Laev-
ers, 2005). This observation scheme is used in preschools to observe toddlers during their ac-
tivities and provides examples that raters can use to determine the child’s engagement score.
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In the original scheme, the authors recommend to observe aminimumof 7minutes per child
to get a reliable engagement measure (r = .83, Laevers, 2003)(r = .89, Colpin et al., 2002) for
a full day interaction. Because our interactions only took 15 minutes per session instead of
a full day, we averaged the ratings of two two-minute fragments per session: two minutes in
the beginning and twominutes in the end of the session. Therefore, the total average engage-
ment rating is based on four minutes per session (see Section 4.3.6 for more information).

Similar as theZIKO,our observation scheme consists of five levels, withfive specific labels
from low engagement to high engagement and four intermediate points (see Table 4.3.6).
It contains example behavior that belonged to a certain engagement level. The scheme is
organized in such a way that children who do not show any interest, or are continuously
talking to the experiment leader are rated with a low level of engagement and children who
were continuously working and were completely absorbed were rated with a high level of
engagement. Childrenwho executed everything but did not showany interest fell in between,
received a medium engagement score. See Table 4.3.6 for a few example behaviors for each
level. The full engagement schemecontainsmore examples and canbe found in theAppendix
and on Github2.

The same levels were used for both engagement types (task and robot). However, the
examples and explanations of the levels were adapted for the specific engagement type. For
task engagement, we used the same examples as the ZIKO scheme, however, we added a few
examples that were specific for our interaction (e.g. The child meaninglessly touches the
tablet (low engagement), looks the whole time at the task environment or robot (high en-
gagement)). Robot engagement used similar examples as task engagement, however they were
changed into social interaction moments (e.g. “No signs of interest” was changed into “No
signs of interest into the robot” (low engagement) and “enjoys being so driven” was changed
into “enjoys working with the robot” (high engagement)). Furthermore, we added specific
examples for robot engagement such as, “ignores the robot fully” (low robot engagement),
“purposelessly touching the robot” (average engagement), “talks to the robot”, “there is joint
attention” (high engagement).

2https://github.com/l2tor/codingscheme
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Figure 4.6: Annota on tool for engagement raters.

Annotation software

We developed our own annotation software program for the raters (see Figure 4.6). The pro-
gram showed a front view and a side view of the two-minute fragment and contained a short
table with the examples of the different engagement levels. Raters could check the example
behaviors in a table while watching the fragment. They were not allowed to stop the video
during the two minutes and had to wait until it was finished. However, they could already
write comments to help forming their rating about the video. The tool automatically saved
all ratings.

Engagement coding

The first author together with nine student assistants annotated the data. The nine student
assistants received a group training from the first author. This training took one full-day and
raters practiced with ten different videos. After the training all raters received a summary of
the training, the annotation scheme and the annotation program. During the annotation
period, there were biweekly sessions during which difficult video fragments were discussed
and the group decided on a final rating for these specific fragments. Part of the videos was
double rated by different pairs of raters and their inter-rater agreement was considered mod-
erate using the intraclass correlation coefficient (ICC = 0.72, 95% CI[0.70, 0.74])(Koo & Li,
2016)). While this score is lower than reported for the original scheme (ICC = .83), it is very
consistent with other studies in the field of child-robot interaction using this method, such
as de Wit et al. (2020), which reports a range of ICC scores from .45 to .83, and van Minke-
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len et al. (2020), with a range of .6 to .89. (Note that also in other chapters we have reported
similar range scores.). Therefore, we consider the score for this study sufficient for further
analysis. We used the raters’ weighted average during our analyses.

Videos fragments

The videos in this data set were cut into two two-minute fragments: one in the beginning
of the video and one in the end of the video. These fragments were chosen to include multi-
ple interactions between the robot and child. For example, the first fragment always started
at the beginning of the concept binding phase, and therefore included not only the first in-
troduction to words, but also the application of the target words in other settings such as
dragging animals into the cage. The second fragment was timed in such a way that it showed
the end of the interaction, before the in-game tests would start. The mean of these two frag-
ments resulted in an average engagement and was used for the analyses on engagement. We
excluded interactions during which children had a break, for instance when they had to go
to the toilet or a crash occurred (9%) because an interruption could have influenced their
engagement. Some videos were lost during the experiments (2%). Furthermore, there were
videos that were not suitable for analyses, for instance the lighting was too dark or the video
was corrupted or the session was already started at the beginning of the video, which made
it too difficult to find the same fragments for each child (16%). Finally, some videos had the
wrong naming or the video stopped halfway (2%). This resulted in a data set containing 817
unique videos with 1635 different fragments, which is 73% of all possible data. For these frag-
ments we annotated task engagement. Robot engagement was only annotated for the robot
conditions and resulted in 537 sessions and 1074 different fragments.

4.3.7 Analyses

Task engagement was rated for the three tutoring session conditions and not for the control
condition, and robot engagement was only rated for the tutoring sessions with the robot
present.

First, we investigatedwhether children’s task engagement and robot engagement changed
over time and conditions. We used a mixed design ANOVA to compare children’s task en-
gagement and robot engagement over the different sessions within the different conditions.
Because ofmissing values in the data file, itwas not possible to performpair-wise comparisons
between all sessions. Therefore, to explore whether children scored higher at the beginning
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or at the end of the long-term interaction, we combined the first three sessions (1-3) and the
following three sessions (4-6) for the post-hoc analysis. We did not include session 7 in this
analysis because this was not a word learning session like the other sessions, but designed as a
recap session.

We also explored effects of gender and age on both engagement types, using a t-test to
compare the different genders and a linear regression analysis for age. Second, we used Pear-
son’s correlations to investigate how task engagement, robot engagement were related with
children’s knowledge of L2 words. We correlated the average of children’s task engagement,
the average of children’s robot engagement and scores on immediate post-test, delayed post-
test. Finally, we did an exploratory analysis whether children’s selective attention, children’s
generalDutch knowledge and children’s non-word repetitionwere correlatedwith children’s
task and robot engagement.

4.4 Results

We investigated the relation between task engagement and robot engagement using Pearson’s
correlation. Task engagement and robot engagement were moderately correlated, r(525) =
0.52, p < .001. The relation was positive, suggesting that children who were more engaged
with the task were also more engaged with the robot. However, the correlation is not very
high, which confirms that there is a difference between the two engagement types and shows
that we measured two related, yet distinct aspects of engagement in the interaction.
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a: Task engagement b: Robot engagement

Figure 4.7: The individual children’s engagement ra ngs over me and per condi on. The black line
shows the average engagement during each session.

4.4.1 Engagement over time and conditions

Task engagement

Figure 4.7a shows children’s task engagement over time for the three conditions. Each line
represents the task engagement of an individual child (thus highlighting the individual dif-
ferences) and the black lines show the averages. The figure shows that task engagement tends
to drop over time.

We conducted a mixed design ANOVA with the children’s task engagement scores as
dependent variable and with sessions as within factor and condition as between factor to in-
vestigate the relation of task engagement and time in the different conditions. There was a
main effect of session on task engagement (F(6, 138) = 7.98, p < .001, η2 = .18). How-
ever, there was no significant difference in task engagement between conditions (F(2, 23) =
1.43, p = .26, η2 = .05). Children were similarly task-engaged in all conditions. Nor was
there a significant interaction effect between task engagement over sessions and the different
conditions (F(12, 138) = 0.80, p = .65, η2 = .04).

We carried out an exploratory analysis to compare children’s task engagement in the
beginning of the tutoring sessions with their task engagement in the final sessions. We de-
cided to compare the first three sessions (session 1, session 2, session 3) combined with the
following three sessions (session 4, session 5, session 6) combined because it has been re-
ported that children seem to lose their engagement from the third session onward (Salter
et al., 2004). We excluded session 7 because this recap session was structured differently
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from the other sessions which seems to increase children’s engagement (cf. Figure 4.7a).
A mixed design ANOVA with the averaged task engagement scores as dependent variable,
session as within factor (two levels: sessions 1-3 and sessions 4-6) and the condition as be-
tween factor showed that children were more task-engaged during the first sessions (1-3)
(M = 3.78, SD = 0.48) than during the following sessions (4-6) (M = 3.25, SD =

0.60; F(1, 129) = 122.17, p = .001, η2 = .20). Additionally, there was a significant effect
of condition on task engagement (F(2, 129) = 4.73, p = .01, η2 = 0.05). Pairwise com-
parisons with a Bonferroni correction showed that children were more task-engaged when
interacting with a robot without using iconic gestures (M = 3.66, SD = 0.55) than when
using iconic gestures (M = 3.39, SD = 0.66, p = .002) but not more than with only a
tablet (M = 3.57, SD = 0.56; p = .28). There were no differences between children inter-
acting with a robot using iconic gestures and children interacting only with a tablet (p = .11).
No significant interaction effect was found between the first and next sessions and condition
(F(2, 129) = 1.09, p = .34, η2 < .01).

Finally, we checked for demographic variables on the full data set. There was no signif-
icant effect for gender (t(807) = −1.44, p = .15). Boys (M = 3.50, SD = 0.71) and
girls (M = 3.57, SD = 0.69) did not differ in their task-engagement scores. Moreover, a
linear regression analysis showed a weak interaction effect of age on task engagement. Age
significantly predicted task engagement; (F(1, 807) = 4.70, p = .03,R2 = .006). Chil-
dren’s predicted task engagement is equal to 2.72 + 0.08 *(age inmonths). Figure 4.8a shows
that a younger age was associated with a lower task engagement, however the regression is
exceptionally weak.

Robot engagement

Figure 4.7b shows that there are substantial individual differences between children and that
the children’s overall robot engagement decreased over time for each condition, similarly as
for task engagement.

We used a mixed design ANOVA with robot engagement as the dependent variable and
sessions as within factor and condition as between factor to investigate the relation of robot
engagement and time in the different conditions. Unlike task engagement, there was a signif-
icant effect of condition for robot engagement (F(1, 13) = 6.74, p = .02, η2 = .15). Chil-
dren’s robot engagement was higher when interacting with the robot with iconic gestures
(M = 3.39, SD = 0.76) than with the robot without iconic gestures (M = 3.11, SD =

0.67). We foundno significant effect over sessions on robot engagement (F(6, 78) = 1.50, p =
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a: Task engagement b: Robot engagement

Figure 4.8: Age plo ed against a) task engagement and b) robot engagement.

.19, η2 = .07), Moreover, there was no significant interaction effect of robot engagement
over sessions in the different conditions (F(6, 78) = 1.39, p = .23, η2 = .07).

Additional analysis combining the first three sessions (session 1-3) and comparing those
with the combined next three sessions (session 4-6) showed that, similarly as task engagement,
there was a significant difference over sessions on robot engagement (F(1, 92) = 39.30, p <
.001, η2 = 0.12). We found that children were more robot-engaged during the first sessions
(1-3) (M = 3.50, SD = .51) than the following sessions (4-6) (M = 3.08, SD = .68).

Again, there was a significant difference between the two conditions for robot engage-
ment when comparing the three first sessions with the last sessions (F(1, 92) = 6.58, p =

.001, η2 = .05). Children were more robot-engaged with a robot using iconic gestures
(M = 3.43, SD = 0.68) than with a robot without iconic gestures (M = 3.16, SD = 0.54).
However, there was no significant interaction between sessions and conditions on robot en-
gagement (F(1, 92) = 0.02, p = .90, η2 < .01).

Similarly as task engagement, there was no effect of gender on robot engagement. Boys
(M = 3.27, SD = 0.71) and girls (M = 3.22, SD = 0.75) did not differ in their robot
engagement scores (t(527) = 0.86, p = .39).

Moreover, similar as task engagement, aweak interaction effect of agewas foundon robot
engagement, a linear regression analysis showed that age significantly predicted robot engage-
ment; (F(1, 527) = 6.98, p = .009,R2 = .013). Children’s predicted robot engagement is
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equal to 1.99 + 0.11 *(age in months). Figure 4.8b shows that a younger age was associated
with a lower robot engagement, however the explained variance is very small.

Table 4.4: An overview of children’s word knowledge scores. Table adapted from Vogt et al. (2019).

Condition / Test Pre-test Immediate post-test Delayed post-test

Iconic gestures

Trans (En-Du) 3.31 (3.09) 7.41 (5.17) 8.10 (5.06)
Trans (Du-En) 6.00 (4.23) 6.45 (4.62)
Comprehension 29.47 (5.85) 30.43 (6.22)
No iconic gestures

Trans (En-Du) 3.47 (3.19) 7.69 (4.92) 7.88 (4.79)
Trans (Du-En) 6.43 (4.20) 6.43 (4.65)
Comprehension 29.39 (6.08) 29.75 (6.44)
Tablet-only

Trans (En-Du) 4.04 (2.76) 7.96 (4.63) 8.63 (4.62)
Trans (Du-En) 6.57 (4.01) 6.67 (4.20)
Comprehension 29.73 (6.27) 30.25 (6.58)
Note: All scores indicate the average number of words correctly translated or com-
prehended (standard deviation within brackets). Minimum scores are 0, maximum
scores are 34 for translation and 54 for comprehension. For comprehension, chance
level is 18.

4.4.2 Relation engagement andword knowledge

Table 4.4 displays children’s word knowledge scores on the pre-test, immediate post-test and
delayed post-test. To investigate whether there is a relation between the performance of the
children and their engagement, we calculated correlations between their word knowledge
scores and task engagement and robot engagement.

As Table 4.5 shows, there were many weak, yet significant, correlations between the chil-
dren’s learning performances and their engagement with both the task and the robot. Chil-
dren’s task engagement correlates significantlywith all pre-test and post-test word knowledge
scores. Task engagement also significantly correlates with children’s selective attention and
non word repetition. Robot engagement only correlates with the pre-test, the immediate
translation task from Dutch to English and all delayed post-tests, where the correlation is
slightly higher for the two translation tasks. In contrast to task engagement, selective atten-
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Table 4.5: Correla ons between children’s English word knowledge and their engagement.

Task Engagement Robot Engagement

Pre-test Translation (En-Du) .08* .09*
Immediate Post-test Translation (En-Du) .09* .08

Translation (Du-En) .14*** .10*
Comprehension .13*** .08

Delayed Post-test Translation (En-Du) .13*** .15***
Translation (Du-En) .12*** .15***
Comprehension .12*** .09*

Selective attention .17*** -.03
Non word repetition .10** -.10*
Dutch receptive vocab .04 -.03
Note: * p < .05, ** p < .01, *** p < .001.

tion is not correlated to children’s robot engagement. Their non-word repetition is negatively
correlated, suggesting children are less robot-engaged when children are better in pronuncia-
tion of non words and vice versa.

Table 4.6: Correla ons between ac ve interac on moment during the game and children’s engage-
ment.

Interactions with Task engagement Robot engagement

Tablet .21*** .18***
Robot -.11** -.04

Total .04 .07
Note: * p < .05, ** p < .01, ***p < .001.

4.4.3 Relation engagement and fixed interaction during sessions

We also explored the relation between the fixed game play and children’s engagement. We
calculated the correlation between children’s engagement and the number of times a session
required children to interact with the tablet (touch an object or move an object) or with the
robot (repeat the robot’s speech or repeat the robot’s gesture) according to Figure 4.4. As Ta-
ble 4.6 shows, children’s task and robot engagement both correlated positively with the fixed
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interaction moments with the tablet interactions and negatively with the fixed interaction
with the robot. Both children’s task and robot engagement significantly correlated when
children had to interact more often with the tablet (task: r(807) = .21, p < .001, robot:
r(527) = .18, p < .001). In contrast, when children had to interact more with the robot,
children’s task-engagement significantly decreased (r(807) = −.11, p = .002). Note that
the required game play only refers to the fixed interaction moments between the game and
child (manipulating objects on the tablet, required verbal and non-verbal behavior toward
the robot), and not to the unscheduled or passive interaction between the game and child
(e.g., the robot’s feedback, or the tablet displaying content).

4.5 Discussion

The aim of the present chapter was to examine how children’s task engagement and robot
engagement developed over time in a long-term child-robot interaction for second language
tutoring. More specifically, we compared children’s task engagement when interacting with
(a) a robot using iconic gestures, (b) a robotwithout iconic gestures, and (c) onlywith a tablet.
Furthermore, we compared children’s robot engagementwith a) a robot using iconic gestures
andb) a robotwithout iconic gestures. Lastly, we compared children’s second-languageword-
knowledge with their task engagement and robot engagement.

Although task engagement and robot engagement were moderately correlated, the two
are inherently connected and show the same trends (Oertel et al., 2020). There were large
individual differences between children over sessions but overall, both task engagement and
robot engagement decreased over time and increased again with the seventh session. The
decreasing pattern is weak due to the high variance in engagement, yet supported when com-
paring sessions 1-3 with sessions 4-6 that showed a significant decrease. Both engagements
seemed to fluctuate less after the third session, which might indicate that the novelty effect
plays a smaller role after the third session, which also has been reported by Salter et al. (2004).
These findings suggest that, overall, children were very excited to interact with the robot and
tablet in the first few sessions, but after some sessions, the robot, tablet and tasks were not as
new and exciting anymore and children returned to their normal, less engaged behavior.

4.5.1 Task engagement

We investigated children’s task engagement during all seven sessions with the robot. Over-
all, children’s task engagement decreased over sessions, in line with other long-term studies
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(Kanda et al., 2004; Serholt & Barendregt, 2016; Leite et al., 2014).
Contrary to our expectation (H1), children were not more task-engaged in the robot

conditions than in the tablet-only condition. We explored the effect of the conditions when
the novelty effect plays of less a role by comparing the first three sessions combined with the
next three sessions. When we compared the mean of the first sessions with the last sessions,
we did find an effect of condition on children’s task engagement. Children were more task-
engagedwhen interactingwith a robot usingno iconic gestures thanwith a robot using iconic
gestures, although the effect size was very small. It seems possible that this result is due to that
the robot using iconic gestures attracted attention away from the task and therefore reduced
children’s task engagement (in line with Kennedy et al., 2015). Strangely this effect is only be
seen when we compare the first sessions (1-3) with the following sessions (4-6) to reduce the
influence of the novelty effect.

It is not entirely clear why this effectwas not observedwhen taking all sessions apart. One
possible explanation is whenwe examined the data in further detail, it showed that children’s
task engagement decreased more rapidly during the first sessions when playing with a robot
using iconic gestures than without iconic gestures. This observed difference may be due to
the nature of the iconic gestures. The gestures occurred very frequently and this increased
the duration of each session considerably, whichmay have negatively affected the task engage-
ment when children were interacting with a robot using iconic gestures compared to a robot
without iconic gestures. Another possible explanation is that there were large individual dif-
ferences between children in task engagement over sessions, something that we also found
in the other chapters. These differences can explain why we did not find large statistical dif-
ferences between conditions, because the large individual differences would be a factor for
high variance in the data. The study by van den Berghe et al. (2021) discussed the individual
differences of this study in more detail.

Wedid not include the recap session in this analyses because this sessionwas very different
than the other sessions and children’s task engagement increased during this session. During
the recap session, children had to speak to the robot, click on the screen and move all the
different target words they had learned during the tutoring sessions. This created a highly
interactive session and suggests a link between children’s task engagement and interaction
with the tablet. The difference between the other sessions and recap may also have resulted
in a re-introduction of the novelty effect and thus increased children’s task engagement.

Likewise, it is also possible that because session 7 was a recap session and the children
recognized the words, their task engagement increased because they recognized the target
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words. Each session (except for the first) started with a small recap and in some cases, chil-
dren expressed that they recognized thewords butwere not sure about themeaning anymore.
During the recap session, children could chose the meaning of the word from a few options
(receptive knowledge instead of active knowledge), and the target words weremore easily rec-
ognized.

When comparing task engagement and the fixed interaction moments in the sessions,
children’s task engagement was, as expected, positively related to the tablet’s fixed interac-
tion moments (e.g., dragging an object on the screen, selecting an object on the screen). In-
terestingly, there was a negative relation between children’s fixed interaction with the robot
(speech and re-enactment of gestures) and children’s task engagement. This was unexpected
because these fixed interactions with the robot were also part of the task. This negative re-
lationship may possibly be explained by that these active moments with the robot may have
created anxiety for shy childrenbecause theyhad to talk to the robot in anunfamiliar language
and, as a result, their discomfort made them less engaged with the task. This would also ex-
plain why the correlation was weak, not all children felt uncomfortable speaking a second
language. This also accords with the positive correlation between children’s non-word rep-
etition and children’s task engagement. Children who repeated more words correctly (and
possibly more confidently) during the pre-test, also scored higher on task engagement and
children who scored lower on the non word repetition task, and therefore were less likely to
actively repeat the robot during the interaction, scored lower on task engagement.

To get an additional idea of other aspects that could affect children’s task engagement,
we performed exploratory analyses on age and gender. These analyses showed that age was
related to task engagement: younger childrenwere less task-engaged than older children. The
effect was small, which is likely due to the fact that the age variation in our experiment was
also relatively small because all childrenwere in the same year at school. There are at least two
possible explanations for the relation between age and task engagement. Younger children
tend tohave a shorter attention span thanolder children, andwere thereforemore likely to get
distracted during the task and become less task-engaged (Betts et al., 2006). This is confirmed
by the correlation between children’s selective attention and task engagement. It seems that
childrenwhohave a larger selective attention and can therefore focus longer on one particular
task, are more task-engaged during the experiment. Another possible explanation for this
is that it is harder to observe whether or not younger children are engaged and that older
children demonstrated the typical behaviors related to engagement more frequently in the
way we expected them to. We did not find differences between girls and boys, overall both
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genders showed similar levels of task engagement.

4.5.2 Robot engagement

Unlike task engagement, childrenweremore robot-engagedwith a robot that used iconic ges-
tures than with a robot without iconic gestures (confirmingH2). This is line with a study by
deWit et al. (2020)who found that 5-year-old childrenweremore robot-engagedwith a robot
using gestures than a robot using no gestures, although their experiment only contained one
session. The iconic gestures by the robot contributed to a higher robot engagement, which
can be explained by the fact that a robot that moves physically, attracts more attention and
appears more active, thereby stimulating the child to remain robot-engaged. In the condi-
tion without gestures, the robot was less active and therefore children were less attentive and
engaged toward the robot.

Unlike task engagement, children’s robot engagement did not decrease significantly over
the different sessions. Only when comparing the first three sessions (1-3) with the following
three sessions (4-6), their overall robot engagement dropped. When looking more closely at
these different sessions, some observations can be made. Robot engagement dropped most
during session four. This can be plausibly explained by the fixed interaction moments. Ses-
sion four had the fewest interactionmoments of all sessions and could therefore have resulted
in the lowest robot engagement.

Robot engagement increased in the recap session, however only in the iconic gestures
condition and not in the non-iconic gesture condition. This observed increase could be at-
tributed by the variety of iconic gestures during the recap session in contrast to the repeti-
tiveness of the robot gestures in the other sessions. In each session, there were at least five
target words that used the same iconic gesture. In the recap session, all 35 target words were
repeated twice, and therefore the robot showed a larger variety of gestures that might have
sparked children’s robot engagement. Future studies can investigate whether a variation of
gestures during the sessions itself will sustain children’s robot engagement over time more
than repeating the same gesture.

We found a positive correlation between robot engagement and the fixed tablet interac-
tionmoments but surprisingly, no significant correlation between robot engagement and the
robot’s fixed interactionmoments. It is difficult to explain these findings, but it is important
to note that these interaction moments only focused on the fixed interaction moments (i.e.
when the children had to respond in one way or another) as implemented in the game. This
positive correlationbetween robot engagement and the tablet fixed interactionmomentsmay
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actually bedue to the robot’s feedback. During the tablet interactionmoments, after children
touched or dragged an object on the screen, the robot would provide the child with positive
feedback. Thus, these positive feedback was not part of the fixed robot interactions, but al-
ways followed the fixed tablet interactions. Arguably, this positive feedback by the robot in-
creased children’s robot engagement. This also accords with observations in Chapter 3, who
showed that the type of robotic feedback has influence on children’s task engagement and
robot engagement.

In addition, we noticed that children spontaneously re-enacted the gestures orwere spon-
taneously talking with the robot about the game or other events. It is likely that these spon-
taneous moments with the robot increased children’s robot engagement more than by the
game required interaction moments. This is in line with Ahmad et al. (2017), who found
that not game adaptation, but emotion-based adaptations during child-robot interactions
sustained robot engagement over time.

4.5.3 Relation engagementwithword knowledge

Finally, we investigated the relation between children’s engagement and their word knowl-
edge to see to what extent engagement relates to learning outcomes. We found a weak but
significant correlation between task engagement and children’s word knowledge (confirm-
ing H3a). This confirms previous studies that describe that there is a link between children’s
word knowledge and their engagement (e.g., Blumenfeld et al., 2006; Linnenbrink & Pin-
trich, 2003). The effect seems to be stronger for children’s delayed word knowledge, which
might be due to the fact that children who are more task-engaged, remember the task more
vividly including the target words and therefore retain more word knowledge over time.

Unlikewe expected, children’s robot engagementdidnotnegatively influencewordknowl-
edge (H3b). In fact, children’s robot engagement was, similar as task engagement, positively
correlated with the pre-test, the immediate translation task from Dutch to English and all
delayed post-tests. It has been suggested that children who are more robot-engaged get dis-
tracted from the task and learn less (Kennedy et al., 2015). This does not appear to be the
case. Ourfindings show that there is a linkbetween children’s robot engagement and learning
gain. The effect seems to be stronger for children’s delayed word knowledge, children who
were more robot-engaged might recall the interaction more often and therefore remember
more words which results in a higher score on the delayed post-test.

However, these results must be interpreted with caution because the correlations were
weak, though statistically significant. Moreover, the results do not show a causal relation be-
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tween engagement andword knowledge. The design of the study did not allow to investigate
a causal relation between these two factors. It is therefore not possible to determine whether
task and robot engagement increased children’s L2 word knowledge, or whether children’s
L2 word knowledge increased robot engagement. A further study with more focus on the
direction of this effect is therefore suggested.

4.5.4 Limitations and strengths

Our study has multiple limitations. First, our interactions between robot and child were
rather fixed and did not include any adaptation when children became disengaged. A change
of the robot’s behavior could possibly have increased children’s robot engagement andmade
themmore engaged with the game again (Ahmad et al., 2019; Tanaka et al., 2007). However,
for experimental soundness, our design allowed us to compare children in the four different
conditions without any other interaction differences between them. Future studies can take
our findings into account and focus on possible ways of changing the robot’s behavior while
still keeping the children focused on the task. Second, we could only investigate correlations
between task engagement, robot engagement and word knowledge and no causal relations.
Therefore, we cannot determine whether children’s L2 word knowledge will become higher
with a higher task or robot engagement or vice versa. Future research is needed to testwhether
an engaging task will increase children’s L2 word knowledge or whether an increase in L2
word knowledge will also increase children’s engagement. Third, because we focused on a
specific age group, we cannot generalise our results to other ages. Our findings do suggest
that older five years old children are more task and robot-engaged than younger five years old
children, which leads us to believe that with other age groups, older children will be more
engaged than younger children.

Our study also has several strengths. It is one of the first studies to investigate task and
robot engagement over a long-term tutoring interaction and the relation to children’s word
knowledge. Moreover, we included a large sample of young children, preregistered the study
before the experiment and made the source code available. Lastly, we applied a new coding
scheme, based on a validated approach, which is made publicly available and can be used by
other researchers as a structured way of measuring task and robot engagement.
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4.6 Conclusion

In this chapter, we present one of the first large-scale studies that investigated children’s task
and robot engagement during multiple robot sessions and whether these two types of en-
gagement were related to children’s second-language word-knowledge. We were particularly
interested in whether children’s task engagement and robot engagement differed when chil-
dren interacted with a tablet and robot using iconic gestures, a tablet and a robot that did
not use iconic gestures, or only a tablet. Our findings show that the robot’s iconic gestures
do have an effect on children’s task and robot engagement over time. Task engagement was
higher with a robot that did not use iconic gestures, compared to one that did. Robot en-
gagement showed the opposite pattern: Children were more robot-engaged when a robot
used iconic gestures than without iconic gestures. Moreover, children’s task and robot en-
gagementwere both positively correlatedwith children’sword retention. Childrenwhowere
more task-engaged ormore robot-engaged knewmorewords twoweeks after the tutoring ses-
sions. Our findings have provided a deeper insight into the influence of the robot’s gestures
on children’s task and robot engagement and the importance of both engagement types on
children’s word-knowledge. As a next step, adding to the results in this study, further re-
search is needed in order to improve the understanding of the influence of various aspects of
the robot’s behavior, such as robotic feedback or variation of gestures, on children’s task and
robot engagement in long-term child-robot interactions.
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AbstractThis study investigates the degree towhich children anthropomorphize a robot
tutor and whether this anthropomorphism relates to their vocabulary learning in a second‐
language (L2) tutoring intervention. With this aim, an anthropomorphism questionnaire
was administered to5‐year‐old children (N=104) twice: prior to and following a seven‐session
L2 vocabulary training with a humanoid robot. On average, children tended to anthropo-
morphize the robot prior to and after the sessions to a similar degree, but many children
changed their attributed anthropomorphic features. Boys anthropomorphized the robot less
after the sessions than girls. Moreover, therewas aweakbut significant positive correlationbe-
tween anthropomorphism as measured before the sessions and scores on a word‐knowledge
post‐test administered the day after the last session. There was also a weak but significant
positive correlation between the change in anthropomorphism over time and scores on a
word‐knowledge post‐test administered approximately 2 weeks after the last session. Our re-
sults underscore theneed tomanage children’s expectations in robot‐assisted education. Also,
future research could explore adaptations to individual children’s expectations in child‐robot
interactions.

122



5

5.1 Introduction

5.1.1 Anthropomorphism

When interactingwith a social robot, people have a tendency to attribute human forms, char-
acteristics, and/or behaviors to the robot. This phenomenon is called anthropomorphism
(Bartneck et al., 2009). People do not only anthropomorphize robots, but also many other
non-human entities, such as animals, toys, and machines (Caporael, 1986), and presumably
this helps them to understand and gain control over their environment (Duffy, 2003; Waytz
et al., 2010). Anthropomorphism can be a useful mechanism in human-robot interaction
(Duffy, 2003; Fink, 2012), because people evaluate robots more positively, collaborate bet-
ter with them, and empathize more with robots that are more human-like or display more
human-like behavior than with robots that are less human-like (Breazeal et al., 2005; Eyssel
et al., 2012;Hegel et al., 2008;Moon et al., 2014; Riek et al., 2009). In this chapter we set out
to study the degree to which children anthropomorphize a humanoid robot, how children’s
anthropomorphic beliefs about the robot may change after multiple interactions with the
robot, andwhether children’s anthropomorphistic perception of the robot andword knowl-
edge after a second language (L2) vocabulary training are related.

The degree to which people anthropomorphize a robot is affected by the robot’s appear-
ance and behaviors (DiSalvo et al., 2002; Phillips et al., 2018; Tung, 2016). For example,
people are more likely to anthropomorphize robots that have a torso, a skin, or appear to
have gender (Phillips et al., 2018). Robot movement in general has also been found to in-
crease human-likeness ratings (Tung, 2016). More specifically, using co-speech gestures has
been found to increase anthropomorphism, and the use of social gaze to increase life-likeness
(Salem et al., 2013; Zaga et al., 2017). However, people do not all anthropomorphize robots
to the same degree. One of the reasons for these individual differences is that people use
their own experiences in rationalizing the actions of an object and in reasoning about its
mental states (Epley et al., 2008, 2007; Lemaignan, Fink, & Dillenbourg, 2014), and may
thus ascribe different mental states to objects depending on their own experiences. Thus, in
human-robot interaction, the degree to which people anthropomorphize robots likely does
not only dependon the type of robot used and the behavior the robot displays, but also on the
specific characteristics and experiences of the person interacting with the robot. While most
robot research on anthropomorphism has focused on adults (see Fink (2012) for a review),
children of all ages have been found to anthropomorphize robots as well (Beran et al., 2011;
Kahn Jr et al., 2013; Lemaignan et al., 2015; Monaco et al., 2018). Younger children (up to
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twelve years old) are more likely than older children to anthropomorphize robots (Beran et
al., 2011; Kahn Jr et al., 2012; van Straten, Peter, Kühne, & Barco, 2020). They experience
more enjoyment and are less sensitive to the robot’s style of interaction than older children
(van Straten, Peter, & Kühne, 2020), which may relate to a higher degree of anthropomor-
phism. In particular, younger children aremore likely to assign cognitive and affective beliefs
to robots thanolder children, such as the ability to remember people andunderstandpeople’s
feelings (Beran et al., 2011). However, even preschool children attribute few biological prop-
erties to robots (Jipson & Gelman, 2007) and already understand that robots are something
in between living beings and mechanical artifacts (Kory-Westlund & Breazeal, 2019a). In a
meta-analysis by van Straten, Peter, & Kühne (2020) a robot’s responsiveness and role were
the strongest predictor of children’s closeness to a robot but the predictors for trust were not
consistent. Also, this meta-analysis showed that boys feel more close to a robot with the same
gender but girls are not affected by the gender of the robot.

5.1.2 Changes in anthropomorphism

Previous research indicates that children’s perceptions or expectations of robots can change
over time. Children value a robot’s properties differently depending on their experience with
robots (Obaid et al., 2015; Sciutti et al., 2014). Before interacting with a robot, children at-
tribute more importance to a robot’s shape (e.g., having a head or arms) than its sensory and
motor properties (e.g., the ability to feel or move). After having interacted with a robot, they
value its sensory andmotor propertiesmore and its shape less than before (Sciutti et al., 2014).
While Sciutti et al. (2014) did not specifically investigate anthropomorphism, it does suggest
that sensory andmotor properties, which can be linked to anthropomorphism, may become
more important over time when children’s experience with robots increases. Bernstein &
Crowley (2008) asked children between four and seven to evaluate different entities (includ-
ing two robots) on livingness and intelligence. Children who had had little experience with
robots, judged the robot more often as living than children who had had more experience
with robots. Moreover, children who had had experience with robots were more likely to
distinguish robots from other entities that they already knew (e.g., things that are living) and
consider robots as intelligent, albeit in a unique “robot intelligence’’ manner. In contrast, a
study by Kory-Westlund et al. (2016) did not find changes in anthropomorphism. A robot
was framed either as a social agent or amachine by using either inclusive language and second-
person pronouns or third-person pronouns and the word “robot”. In this study, children be-
tween ages three and sevenplayed a sorting gamewith the robot. The degree towhich they an-
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thropomorphised the robot was assessed through a questionnaire administered both before
and after the game. The study did not show an effect of framing on children’s anthropomor-
phism, and there was no difference in the degree to which children anthropomorphised the
robot before or after the game. It is not clear from these studies whether children’s anthropo-
morphism is indeed unaffected by their interaction with the robot, or whether one interac-
tion sessionwas not enough to change their degree of anthropomorphism. On the one hand,
people might attribute cognitive and social abilities to robots that they cannot meet (Daut-
enhahn, 2004), which is particularly a problem for repeated interactions (Leite,Martinho, &
Paiva, 2013). On this idea, the longer people would interact with robots, the more likely it
should be that the robot falls short of these expectations, which would negatively affect peo-
ple’s tendency to anthropomorphize the robot. Evidence for this idea comes from a previous
study with children in which explicitly informing children on the robot’s lack of psycholog-
ical abilities (e.g., self-consciousness, social cognition) led to lower anthropomorphism and
trust (van Straten, Peter, Kühne, & Barco, 2020). It is also in line with a proposed model on
the dynamics of anthropomorphism (Lemaignan, Fink, & Dillenbourg, 2014; Lemaignan,
Fink, Dillenbourg, & Braboszcz, 2014). In this model, people are most likely to anthropo-
morphize a robot when first encountering it, because of their expectations about the robot
and because the robot’s behavior may seem unpredictable and complex. Upon getting ac-
quainted with a robot, people build a mental model to predict the robot’s behavior, and as
the accuracy of this model increases, the robot is considered more machine-like than human-
like, and anthropomorphic tendencies decrease. On the other hand, studies have found that
children attributedmore anthropomorphic ormore positive judgments after having repeated
interactions with a robot (Leite et al., 2017; Michaelis &Mutlu, 2018). Michaelis &Mutlu
(2018) had ten- to twelve-year-old children participate in in-home guided reading activities
with a robot, and found thatmore children attributed feelings, emotions, and a personality to
the robot after the two-week study than before. Though not measuring anthropomorphism
directly, Leite et al. (2017) focused on likeability and found that four- to ten-year-old children
liked the robot more after having multiple conversations with it. The study in this chapter
is aimed at further investigating changes in children’s evaluations of a robot in terms of an-
thropomorphism after multiple interactions with this robot, and relating these evaluations
to their learning outcomes in a vocabulary training.

125



5

5.1.3 Anthropomorphism and learning

Education is one of the most widely used domains in which social robots are used. Robots
can be used to support children’s learning, and as such, complement teachers. One of the
most often used applications is the use of a robot as a tutor, such that the robot and child
together work through educational materials and the robot provides individual support to
the child (Belpaeme, Kennedy, et al., 2018). A robot can interact with the children in their
physical, referential world. The robot’s embodiment and its potential for social interactions
to establish common ground is one of the advantages social robots in theory have over other
forms of technology such as tablets (Belpaeme, Kennedy, et al., 2018). Physical robots indeed
have generally been found to be more enjoyable and a preferred social partner compared to
their virtual counterparts (Kidd, 2003; Pereira et al., 2008). It is assumed that such robots
are more natural conversational partners, and robot-assisted learning interactions may ben-
efit from similar social behaviors as humans use in learning interactions, such as the use of
gestures (deNooijer et al., 2013; deWit et al., 2018; Kelly et al., 2009;Macedonia et al., 2011;
Tellier, 2008; Verhagen et al., 2019). Furthermore, children have been shown to be less anx-
ious and more motivated when learning with a robot than without a robot (Alemi et al.,
2015). Finally, an advantage of a robot is that it can endlessly repeat tasks with individual
children where a teacher has to pay attention to other children.

These advantages of robots in educationmay particularly benefit robot-assisted language
learning, which is studied in this chapter. Robots can gesture, move around, andmanipulate
objects, and by doing so, embed the language that they are teaching in the physical environ-
ment that they share with the learner. For example, robots can point to the objects they
are naming or act out the meaning of a word. This embedding is known to be important
for language learning (Barsalou, 2008; Hockema& Smith, 2009; Iverson, 2010; Oudgenoeg-
Paz et al., 2015; Wellsby & Pexman, 2014). As a result, (second) language learning has often
been studied robot-assisted learning research (see van den Berghe et al. (2019); Kanero et al.
(2018) for reviews). So far, results on the effectiveness of robots for language learning are
mixed, however. In this chapter, we further explore one of the factors that may, at least in
part, explain the mixed findings in earlier work, but has received relatively little attention to
date: anthropomorphism. As discussed earlier, anthropomorphizing robots seems advanta-
geous for human-robot interactions (Duffy, 2003; Fink, 2012), but it is not clear if and how
anthropomorphism can affect robot-assisted (language) learning. Yet, the degree to which
learners anthropomorphize robots may play an important role in learning situations too, as
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learning is first and foremost a social process (Vygotsky, 1978). Children who anthropomor-
phize the robot to a greater degree might interact with the robot in ways similar to how they
would interact with peers. Peer learning has been shown to be beneficial to learning (see Top-
ping (2005) for a review), either directly through helping each other, or indirectly through
enhancing motivation, confidence and enjoyment. Anthropomorphism is related to social
presence: “the degree to which a user feels access to the intelligence, intentions, and sensory
impressions of another” (Biocca (1997), Section 7.2). It reflects paying attention to each
other, understanding each other, and adapting behavior and emotions towards each other.
It is no surprise that such values are also crucial to successful vocabulary training (Marulis &
Neuman, 2010), andmay thus apply to the robot-assisted vocabulary training in this chapter.
It may be worthwhile to design robots in such a way that they make learners feel as if it has a
social presence, but the learner’s perception of the robot and its social presence may be just
as important. It is possible that a robot’s benefits as a peer learner or tutor depend on the
degree to which the learners anthropomorphize it. In other words, it is possible that a robot
perceived as more human-like is more effective when learning a second language than a robot
that is perceived as a machine. This begs the question if and how anthropomorphism and
learning are related to each other, which is the central research question of this chapter.

Research that comes closest to answering this question is that of Chandra et al. (2018).
This studydidnot directly focus on anthropomorphism, but the researchers didmeasure chil-
dren’s perception of a robot in terms of intelligence, likeability, and friendliness, andwhether
this affected their learning in a learning-by-teaching paradigm. In this study, twenty-five
seven-to-nine years old children taught aNAO robot to write over the course of four sessions
as a way to improve their own writing. There were two conditions: (1) the robot improved
its handwriting for half of the children, and (2) the robot did not improve its writing for the
other half of the children. Children in the first conditionwere able to perceive the robot’s im-
provement by the last session, but this as such did not change how they perceived the robot’s
intelligence, likeability, and friendliness. However, children’s own improvement in writing
was positively correlatedwith the likeability of the robot. In the condition inwhich the robot
did not improve, children’s perceptions of the robot’s intelligence, likeability and friendliness
did not change either, but in this condition children’s own learning was correlated with the
perceived friendliness of the robot. These findings need to be interpreted with caution be-
cause of the small sample size and because they did not measure anthropomorphism, but
they suggest that children’s perception of the robot may indeed be related to their learning.
Our study expands on this previous work. It includes an L2 vocabulary training of multi-
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ple sessions, thus enabling us to study children’s anthropomorphism of a robot and changes
therein over a longer period of time. This increases ecological validity, as robot-based inter-
ventions aimed at teaching children a particular topic usually span a few weeks, causing nov-
elty effects of the robot that wear off after multiple interactions (e.g., Kanda et al., 2004). We
assess the degree to which children anthropomorphize the robot both before and after hav-
ing interacted intensively with it, allowing to observe changes in anthropomorphism, and
examine how children’s anthropomorphism and changes therein relate to language-learning
performance.

5.1.4 This study

The current study was part of the L2TOR project, which evaluated the effectiveness of a
multiple-session L2 learning intervention for young children using a social robot in a large-
scale randomized control trial (Vogt et al., 2019) and is the same group of children as inChap-
ter 4. This long-term control study was pre-registered on AsPredicted1 and included four
conditions: (1) an L2 vocabulary training with a tablet and a robot that performed iconic
and deictic gestures to support word learning (gestures that visualize target words and point-
ing gestures), (2) an L2 vocabulary training with a tablet and a robot without iconic gestures
(only pointing gestures), (3) an L2 vocabulary training with a tablet only (no robot involved),
and (4) a control condition in which children only played dancing games with the robot.
Word knowledge was tested on three occasions, during a pre-test, an immediate post-test,
and a delayed post-test (administered between two and four weeks after the training). The
results of this pre-registered study regarding children’s word knowledge are reported in Vogt
et al. (2019) and showed that, irrespective of condition, children knew significantly more
words after the tutoring sessions than before. Moreover, children in the experimental con-
ditions (robot with iconic gestures, robot without iconic gestures and tablet-only) scored
significantly higher than children in the control condition on word-knowledge tests during
the immediate and delayed post-tests. There were no differences between the experimental
conditions, such that children who had taken the tutoring sessions with the robot (with or
without iconic gestures) did not knowmore words than children who had taken the sessions
with the tablet only. In the current chapter, we only included the experimental robot con-
ditions (i.e., conditions 1 and 2) to investigate the degree to which children anthropomor-
phized the robot and the way in which this relates to their word knowledge. In our analyses,

1https://aspredicted.org/6k93k.pdf
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we did not include the tablet-only and control conditions because, children in these condi-
tions either did not interact with the robot (tablet condition) or were not taught any English
words by the robot (control condition). We addressed the following research questions and
hypotheses:

1. Are there individual differences in the degree towhich children anthropomorphize the
robot? We expect children to differ in the degree towhich they anthropomorphize the
robot, in line with previous research on individual differences in anthropomorphism
(Epley et al., 2007, 2008).

2. How does the degree to which children anthropomorphize the robot change through
multiple L2 tutoring sessions with the robot? Although the evidence is mixed (e.g.,
(Bernstein & Crowley, 2008; Kory-Westlund et al., 2016; Michaelis & Mutlu, 2018),
we expect that anthropomorphism will change over time in different ways, due to the
multiple interactions children have with the robot. On the one hand, children may
come to perceive the robot more as a friend after repeated interactions, thus perceive
the robot as more human-like. On the other hand, it is also possible that children
initially have high expectations of the robot’s interactive qualities, which the robot,
however, cannot meet. In that case, their perception would change over time towards
considering the robot as less human-like.

3. How are children’s anthropomorphistic perceptions of the robot and their knowledge
of L2 words related? We expected word knowledge and attributing human-like cogni-
tive, emotional, and biological qualities to the robot to be positively related to each
other. Specifically, we anticipated that children who would anthropomorphize the
robot more would treat the robot as a peer that has social presence, and, as such, ben-
efit more from its presence in terms of increased motivation and engagement, that, in
turn, would foster word learning. It should be noted that while this design does not
enable us to study causal relations between anthropomorphism and word knowledge,
we do study whether the two are related and therefore provide evidence pertinent to
the possible role anthropomorphism can play in the effectiveness of robot-based edu-
cational interventions.
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5.2 Method

5.2.1 Participants

This study reports on a part of the sample described in Vogt et al. (2019) and Chapter 4, that
is, the children in the two experimental robot conditions. Data was used from 104 monolin-
gual Dutch children (50 girls, 54 boys) with an average age of 5 years and 8 months (SD =
5months) who followed the vocabulary training in one of the two robot-assisted conditions
(with or without iconic gestures). These children were recruited from the kindergarten of
nine primary schools in the Netherlands. Within schools, children were randomly assigned
to one of the conditions, while ensuring a similar gender distribution over the conditions.

1. Robot with iconic gestures: N = 53,Mage = 5 years and 8 months, SD = 5 months,
30 boys and 23 girls

2. Robot without iconic gestures: N = 51, Mage = 5 years and 8 months, SD = 5
months, 25 boys and 26 girls

Sixteen additional children were excluded when they: (i) knewmore than half of the tar-
get words in the pre-test (n = 3), (ii) did not complete the experiment due to technical issues
(n = 2), (iii) did not want to participate anymore (n = 8), and (iv) did not complete the an-
thropomorphism questionnaire during the pre-test (n = 3). All children’s parents signed an
informed consent form to allow their children to participate in this study. Children received
a small gift at the end of the study to thank them for participation. The project in which
the study was embedded, the L2TOR project, received ethical approval from Utrecht Uni-
versity’s Ethics Committee under protocol number FETC16-039.

5.2.2 L2 tutoring sessions

The aim of the L2 tutoring sessions was to teach each child 34 English words in the domains
of mathematical and spatial language. Each child received seven tutoring sessions involving
the robot and a tablet. During each of the sessions children were introduced to five or six
new target words. The Softbank Robotics NAO robot was used, which was sitting in a 90-
degree angle next to the child (see Figure 5.1). A three-dimensional game was developed for
the tablet, in which a particular scenario was displayed (e.g., animals in the zoo that had es-
caped their cages). This served as the context in which the L2 words were introduced (see
Figure 5.2). For each word, the child and the robot had to perform different tasks on the
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Figure 5.1: A child playing with the robot.

tablet (e.g., selecting or dragging objects on the screen, repeating target words out loud, or
acting out target words). For instance, the robot would ask the child to drag three escaped
animals back into their cage on the screen. While dragging, the robot would count in English
the number of animals in the cage. During these tasks, the robot acted as a slightly more
knowledgeable peer who was also being taught English words, but could provide feedback
on the child’s actions when needed. For example, when a child dragged the wrong animal to
a cage on the tablet, the robot could ask the child to drag the correct animal to the cage. See
Table 5.1 for an example of the child and robot interaction.

The sessions were designed without relying on children’s speech because speech recog-
nition is currently still unreliable with children (Kennedy et al., 2017). For the few times
children had to repeat a word, a Wizard of Oz was used where the researcher pressed a but-
ton on a control panel after the child had repeated after the robot. The rest of the interaction
was carried out autonomously. The interaction was one-on-one in a separate room, but the
experimenter stayed in the same room to intervenewhen necessary and to control theWizard.

5.2.3 Robot behavior

During the sessions the robot was in breathing-mode (moving with its arms) to appear more
lively. As the robot motors can be quite loud when the robot moves, the breathing-mode
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Table 5.1: An example of an interac on between robot and child

Robot Child’s action

Tablet shows an environment with three cages, and three giraffes outside one of the cages
Let’s put the <giraffe>in its cage! drags giraffe in cage
Well done!
There are still <two giraffes>outside of the cage. There are <more
giraffes>outside of the cage than inside the cage. Can you <add
one>giraffe?

drags giraffe in cage

Well done!
We had the <add one giraffe>and now there are <two giraffes>in
the cage. There are <more giraffes>inside the cage than outside
the cage. Can you add <one giraffe>?

drags giraffe in cage

Well done!
Please touch the cage with the three animals, so we can hear what
three is in English

touches cage with the
three giraffes

Tables says <three>
Repeat me: <three>

says three
Well done! <…….. >
Tablet shows adds three trees to the tablet environment
Cool! The last thing we need to do is put food in the cage with
the giraffes. This cage has the <most>animals so they need the
<most>trees. Put the trees in the cage so the giraffes can eat from
them. We have <three>giraffes, so we need <three>trees. Put the
trees in the cage. Count them while dragging

Drags first tree

Let’s do one more Drags second tree
And the last one Drags third tree
Well done!
Great! Now each giraffe has their own tree because there are
<three>trees and <three>giraffes. The cage is pretty full because
<most>animals are in the giraffe cage with the <most>food. You
did very well! Let’s do something else!
Note: The whole interaction was in Dutch, except for the words between brackets<>.
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Figure 5.2: Example of one of the virtual environments that was used as a context for the language-
learning interac on

also reduced the initial sound shock when the robot was going to make a gesture and moved
up its arms. In both conditions the robot used deictic gestures, such as pointing, to draw
the child’s attention to the tablet, and head movements to look at the child when the child
was asked to perform a certain task on the tablet. The only addition to the iconic + deic-
tic gesture condition on top of the deictic gesture condition was the robot’s use of iconic
gestures. Specifically, an iconic gesture was designed for each of the included target words,
and the robot would perform this gesture whenever it produced that word in the L2. Ges-
tures were designed using key framing (Pot et al., 2009), an animation technique where the
designer defines a number of key positions of a character’s limbs, and smooth transitions be-
tween these points are automatically generated. The design was based on human-performed
gestures, which were recorded bymeans of a gesture elicitation procedure where participants
were asked to come upwith a gesture depicting each of the target words. The resulting robot
gestures were recreated based on the recorded examples, while taking into account the robot’s
physical limitations (such as its inability tomove individual fingers) and the fact that the robot
would be sitting down rather than standing, as the human performers were. Figure 5.3 shows
examples of the robot gestures for the target words running and behind.

5.2.4 Materials and measurements

Anthropomorphismquestionnaire This anthropomorphismquestionnairewas con-
structed for the purposes of the present study and administered by an experimenter in a one-
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a: Running b: Behind

Figure 5.3: Examples of iconic gestures used in this study, photographed from a posi on where the
child would sit. (a) Running is gestured by moving both arms back and forth as if the robot is running.
(b) The word behind is gestured by moving the right hand up and down behind the le hand. Figures
taken from (Vogt et al., 2019).

on-one session with the child. The questionnaire took about ten minutes to complete. It
consisted of twelve questions (for an overview, see Table 2 in theResults section) and assessed
the degree to which children anthropomorphized the robot with regard to various types of
properties: biological (e.g., feeling pain, need for food, and ability to grow), cognitive (e.g.,
thinking, remembering), and emotional (e.g., being happy, being sad). Each question could
be answered with “yes”/“no”/“I don’t know” and was followed by an open-ended query ask-
ing children why they gave this response. The items were based on Jipson &Gelman (2007),
who investigated to what extent children make a distinction between living and non-living
items. The questionnaire was adapted to fit the present study by adding several items tomore
thoroughly assess anthropomorphism (e.g., rather thanmeasuring the robot’s emotional abil-
ities by only asking whether the robot could feel happy, an item was added on whether the
robot could feel sad). The children’s closed-ended answers were compared with the open-
ended answers to find out whether the children understood the question. Two of the in-
cluded questions (i.e, “Can the robot break?” and “Is the robot made by humans?”) proved
unreliable as children’s answers to the open-ended query did not correspond to their answers
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on the close-ended questions. Therefore, we removed these items from our analysis. The
children were awarded one point for each “yes”-answer, which indicated that they attributed
human-like properties to the robot, and their anthropomorphism score was the proportion
of “yes”-answers. We used proportions rather than total scores because there were missing
values on some items for some children. This was the case for one child at the pre-test (four
of the twelve questions were not administered) and for five children at the post-test (for each
of whom one question was not administered). Thus, the maximum score was 1, with a score
closer to 1 denoting a child’s tendency to consider the robot as human-like. Cronbach’s al-
pha indicated that the internal consistency of the questionnaire was satisfactory, α = .72 at
the pre-test and α = .75 at the post-test.

Comprehension test The comprehension test was a picture-selection task. In this test,
children were presented with a prerecorded target word and asked to choose which one out
of three pictures or short video clips matched this word best (“Where do you see: [heavy]?”).
Each target word was presented three times with different target and distractor stimuli in
random order to decrease the chance of children guessing the correct answer. Only half of
the 34 target words that were presented in the vocabulary training were included, as a test
including all target words would have taken too long for these young children. The same test
was used in both post-tests. The internal consistency of the comprehension test was good,
with Cronbach’s alpha α = .84 at the first post-test and α = .87 at the second post-test.

Additional measures In addition to the anthropomorphism questionnaire and com-
prehension task, we administered several tasks assessing general cognitive skills. These tasks
are beyond the scope of this study as they did not assess anthropomorphism (see Vogt et al.
(2019)). They were: (1) a Dutch receptive vocabulary test (Peabody Picture Vocabulary Test;
Dunn et al. (2005)), (2) a selective attention task (visual search task; Mulder et al. (2014)),
and (3) a phonological memory test (quasi-universal nonword repetition test, Boerma et al.
(2015)). Moreover, we administered two translation tests to measure children’s knowledge
of the English words, in which children listened to the target words in L2 and were asked for
their Dutch translations, or vice versa. The English-to-Dutch translation test was used as a
pre-test. Note that themain purpose of this translation test during the pre-test was to enable
us to exclude any children who knew many words prior to the lesson series, although it also
allowed us to compare pre- and post-test scores (see Vogt et al. (2019) for these analyses). We
chose not to include a comprehension test as a pre-test, as childrenmay learn from such tests,
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given that, unlike in the translation task where no answer is provided, a word is presented
with pictures, one of which depicts the word’s meaning. Moreover, in this chapter, we did
not include the translation tests in the analyses, as therewas lowvariability in children’s scores.
Thus, in this chapter, we only include the comprehension test as ameasure of children’sword
knowledge.

5.2.5 Procedure

Prior to the experiment, all children participated in a group introduction with the robot to
familiarize the children with the robot, build trust, and explain the basic similarities and dis-
similarities between the robot and humans (e.g., the robot speaks withoutmoving its mouth,
but looks at us while speaking in the same way as humans do; Belpaeme, Vogt, et al. (2018)).
These explanations were deemed necessary to make sure that children would know how to
interact with the robot in the subsequent sessions. During the introduction, participants
danced together with the robot, were allowed to shake the robot’s hand, and played a brief
gesture imitation game. The robot was not explicitly framed as either a human or a machine,
by avoiding pronouns and by being called “Robin the robot” (i.e., a combination of a gender-
neutral human name and the label “robot”). After the introduction, a pretest was admin-
istered including the anthropomorphism questionnaire and several tests measuring general
cognitive skills as well as children’s knowledge of the English words. In the weeks thereafter,
the children received seven one-on-one tutoring sessions with the robot. Each session took
approximately 17 minutes to complete. One or two days after the last session, an immediate
post-test was administered including the anthropomorphism questionnaire for the second
time, the comprehension test, and other tasks measuring children’s knowledge of the En-
glish words. Finally, a delayed post-test was administered in which the comprehension test
and other English vocabulary tasks were repeated, between two and four weeks after the tu-
toring sessions.

5.2.6 Analyses

In the results section, each research question is addressed in a separate paragraph. First, we
examined whether there are individual differences in the degree to which children anthro-
pomorphize the robot before the tutoring sessions (RQ1). We used independent-samples
t-tests to explore effects of gender and condition, and a linear regression analysis for age. We
used age as a continuous variable in our analyses, but reported means for a “younger” and
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an “older” age group in Table 5.3 in the results section, calculated through a median split
(at 68.2 months). Second, we investigated how the degree to which children anthropomor-
phized the robot changed through multiple L2 tutoring sessions with the robot (RQ2). We
used a paired-samples t-test to compare anthropomorphism scores before and after the tu-
toring sessions. We also explored effects of gender, condition, and age, using a mixed-design
ANOVAwith gender or condition as a between-subject variable and time as a within-subject
variable, and a linear regression analysis for age and change in anthropomorphism scores.
Third, we used Pearson’s correlations to investigate how anthropomorphism and knowledge
of L2 words are related (RQ3). We correlated children’s scores on the anthropomorphism
questionnaire before and after the tutoring sessions, change in scores on the anthropomor-
phismquestionnaire, and scores on the comprehension test on each post-test (i.e., immediate
and delayed).

5.3 Results

5.3.1 Anthropomorphism before tutoring sessions

We investigated our first research question: Are there individual differences in the degree that
children anthropomorphize the robot? Table 5.2 displays the questions of the questionnaire
and the proportions of children that answered the question with “yes”. As a group, children
tended to attribute more human-like properties to the robot thanmachine-like properties as
is reflected in the overall proportions being higher than .50 at both before and after the tu-
toring sessions, but the scores varied strongly between the questions. Children highly agreed
that the robot “can enjoy something”, “can be happy”, and “can think”. They disagreedmore
often on various biological properties, such as “Do you think Robin the robot feels it when
you tickle Robin the robot?” and “Do you think that Robin the robot can feel pain?”.

We explored whether there were effects of gender, age, and condition. The mean anthro-
pomorphism scores, separated for gender, age, and condition, are displayed in Table 5.3. An
independent-samples t-test showed no effect of gender, t(102) = −.30, p = .77, d = .06,
and a linear regression analysis showed no effect of age, F(1, 102) = 2.24, p = .14. With
respect to condition, we explored whether children perceived the robot differently in the
iconic-gesture condition compared to the condition without iconic gestures as measured be-
fore the robot interaction, using an independent-samples t-test. There were no differences
between the two conditions in the degree to which children anthropomorphized the robot,
t(102) = −.36, p = .72, d = .07.
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Table 5.2: Propor ons of Children Answering Yes on the Ques onnaire before and a er the Tutor-
ing Sessions.

Do you think that Robin the robot… Before After

… can see things? .79 (82) .81 (84)
… can be sad? .66 (69) .41 (43)
… remember something? .64 (67) .69 (72)
… can feel it when you tickle Robin the robot? .45 (47) .33 (34)
… can think? .78 (81) .65 (68)
… has to eat? .27 (28) .17 (18)
… understands when you say something? .66 (69) .74 (77)
… can feel pain? .46 (48) .29 (30)
… can enjoy something? .92 (96) .92 (96)
… grows? .15 (16) .12 (12)
… can be happy? .94 (98) .87 (90)
… can recognize you? .49 (51) .89 (92)

Overall scores .60 (60) .57 (60)
Note: The total number of children can be found between brackets.

5.3.2 Change in anthropomorphism after tutoring sessions

Then, we investigated our second research question: How does the degree to which chil-
dren’s anthropomorphize the robot change through multiple L2 tutoring sessions with the
robot? There was a positive and moderately strong correlation between scores before the
tutoring sessions and after the tutoring sessions on the anthropomorphism questionnaire,
r(104) = .505, p < .001, indicatingmoderate overall stability of anthropomorphism. How-
ever, there was also large variability among the children in whether and how the degree to
which they anthropomorphized the robot changed before and after the tutoring sessions.
Most childrenwere consistent in the degree to which they anthropomorphized the robot (45
children), that is, their anthropomorphism scores during the two testmomentswere the same
or differed by a maximum of one question. However, a relatively large number of children
anthropomorphized the robot less after having interacted with it in the tutoring sessions (35
children). An increase in anthropomorphism also occurred, but was least common (24 chil-
dren). We compared children’s answers on the anthropomorphism questionnaire after the
tutoring sessions to their answers before the tutoring sessions. Table 5.2 shows that children
changed their opinion drastically on a number of questions. Fewer children believed after the
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Table 5.3: Children’s mean anthropomorphism scores (SD) before and a er the tutoring Sessions,
separated for gender, age, and condi on.

Before After

Gender Male .60 (.20) .53 (.22)
Female .61 (.19) .62 (.17)

Age Younger .62 (.19) .56 (.20)
Older .59 (.20) .59 (.20)

Condition No iconic gestures .60 (.19) .59 (.20)
Iconic gestures .61 (.20) .57 (.20)

tutoring sessions that the robot could feel it when being tickled, that it could feel pain, or that
it could be sad. More children believed after the tutoring sessions that the robot could under-
stand what they said, and that the robot could recognize them. However, a paired samples t-
test did not show significant differences between children’s overall scores before and after the
tutoring sessions on the anthropomorphism questionnaire, t(103) = 1.53, p = .13, d = .15.
We then explored whether there were effects of gender, age, and condition (see Table 5.3
for the means). A mixed-design ANOVA with gender as a between-subject variable and test
moment (before and after the tutoring sessions) as a within-subject variable showed an in-
teraction between gender and test moment, F(1, 102) = 4.35, p = .04, ηp2 = .04. Boys
assigned more human-like qualities to the robot before interacting with the robot than after
the tutoring sessions, t(54) = 2.28, p = .03, d = .32, while there was no difference in girls’
anthropomorphism scores between the two test moments, t(48) = −.54, p = .60, d =

.07. The interaction is displayed in Figure 5.4. Moreover, an interaction effect with age was
found. A linear regression analysis was used to predict the difference score in anthropomor-
phism from age. Age significantly predicted the change in anthropomorphism over time;
F(1, 102) = 5.56, p = .02, with an R of .05. Children’s predicted changed anthropomor-
phism score is equal to −0.68 + 0.01×(age in months). Figure 5.5 shows that a younger
age was associated with a larger decrease in anthropomorphism before to after the tutoring
sessions. Participants’ change in anthropomorphism increased 0.01 for each month of age.

To explore whether children perceived the robot differently in the iconic-gesture condi-
tion compared to the condition without iconic gestures over time, a mixed-design ANOVA
with condition as a between-subject variable and test moment as a within-subject variable re-
vealed that condition did not interact with time, F(1, 102) = .64, p = .43, ηp2 = .01. Thus,
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Figure 5.4: Anthropomorphism scores as a func on of gender before and a er the tutoring sessions.
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Figure 5.5: Age and the difference in anthropomorphism scores.

the use of iconic gestures apparently was not associated with a different change of children’s
anthropomorphizing of the robot.

5.3.3 Anthropomorphism andword knowledge

Finally, we investigated our third research question: How are children’s anthropomorphistic
perceptions of the robot and their knowledge of L2words related? As alreadymentioned, we
only included the children’s comprehension test scores to look at the relation with anthro-
pomorphism. Table 5.4 displays children’s scores on the comprehension test during both
post-tests.

Pearson’s correlations showed that anthropomorphism before the tutoring sessions was
weakly related to the comprehension scores on the immediatepost-test, r(104) = −.208, p =
.03 (see Table 5.5). The relation was negative, suggesting that children who anthropomor-
phized the robot more prior to the session series knew fewer words during the immediate

141



5

Table 5.4: Children’s mean scores (SD) on the comprehension test.

Condition Immediate post-test Delayed post-test

Iconic gestures 29.47 (5.85) 30.43 (6.22)
No iconic gestures 29.39 (6.08) 29.75 (6.44)
Note: The maximum score on the comprehension test was 54.

post-test than children who anthropomorphized the robot less. Anthropomorphism after
the tutoring sessions was not related to comprehension scores on either post-test, both ps
> .090. Children’s change in anthropomorphism was weakly but significantly and posi-
tively related to the comprehension scores on the delayed post-test, r(104) = .212, p = .03.
Thus, the larger the change towards anthropomorphism of the robot over time, the higher
the performance on the delayed post-test and vice versa.

Table 5.5: Correla ons between the anthropomorphism scores and the L2 comprehension scores.

Comprehension

Anthropomorphism Immediate post-test Delayed post-test

Before tutoring sessions -.208* -.137
After tutoring sessions -.167 .074
Change .036 .212*
Note: Statistical significance: * p < .05.

5.4 Discussion

In this chapter, we investigated (1) the degree to which five-year-old children anthropomor-
phized a social robot, (2) whether the degree of their anthropomorphism changed after in-
tensive experience with the robot acting as a peer tutor in an L2 word learning intervention,
and (3) whether anthropomorphism and the change therein were related to children’s word
knowledge.

5.4.1 Anthropomorphism before tutoring sessions

We investigated the way children perceived the robot after a group-wise introduction session
and prior to the tutoring sessions. Overall, children slightlymore often agreed than disagreed
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with statements attributing human-like properties to the robot, but there were large differ-
ences between children in the degree to which they anthropomorphized the robot, in line
with research on individual differences in the tendency to anthropomorphize objects (Ep-
ley et al., 2007, 2008). Moreover, children agreedmore often with statements that attributed
cognitive and, to some extent, also positive emotional states to the robot than biological prop-
erties and negative emotional states, in line with previous work that also found that young
children are likely to ascribe cognitive mental states to robots (Beran et al., 2011). As this
was not the scope of the current chapter, we did not present and analyze children’s answers
to the open-ended questions, which asked them to motivate why they perceived the robot as
more or less human-like. However, we noticed that there were large differences between the
children, similar to their overall anthropomorphism scores, in the way they explained why
they perceived the robot in the way they did. For example, some children thought that the
robot would be sad if children did not want to play with it, while other children thought the
robot would be sad if it was in pain. Some children thought that the robot could not be sad
because it had no feelings, while other children thought the robot could not be sad because
it could not handle water and, thus, could not cry. Contrary to our expectation that gestures
wouldmake the robotmore human-like, children did not anthropomorphize the robotmore
when it used iconic gestures than when it only used deictic gestures. This might be due to
our design of the experiment, as the robot used the same repetitive gesture each time it used
a target word. This repetitive behavior could have reduced the positive effect of the gestures
in respect to human-likeness of the robot. As humans do not use the same gesture each time
they use a targetword, variation in gesture usemight increase the human-likeness of the robot
again, whichwould be interesting to explore further. It is possible that in this study the iconic
gestures did not convey the concepts as clearly as they were intended and as a consequence
of that, the gestures did not impact anthropomorphism. The robot used iconic gestures for
each target word and some words were more difficult to act out, such as ‘more’, for which
an iconic gesture is not that iconic. This is supported by the lack of differences in learning
outcomes (Vogt et al., 2019), in contrast to a different study (de Wit et al., 2018), where the
iconic gestures clearly portrayed the meaning of the word and in which differences in word
knowledge were found.

5.4.2 Change in anthropomorphism after tutoring sessions

We investigated the degree to which children anthropomorphized the robot had changed
after the L2 tutoring sessions. There were no significant differences in overall anthropomor-
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phism, and, similar to the pre-test, children on average slightly more agreed than disagreed
with attributing human-like properties to the robot at the post-test. However, with regard
to specific properties some major changes were observed. Fewer children answered “yes” to
questions attributing biological properties and negative emotions to the robot at the post-
test as compared to the pre-test. This concerned, for example, questions asking whether the
robot “could feel it when being tickled” or “could feel pain”. This is in line with the study
of Sciutti et al. (2014), who found that the robot’s sensory and motor properties became
more salient to children after they had interacted with a robot. At the post-test, more chil-
dren answered “yes” to questions addressing cognitive abilities, such aswhether the robot can
remember something, understand them when they say something, and is able to recognize
them. These changes together indicate an interesting shift in the way in which the robot is
seen by children after intensive experience, namely as a basically mechanical being but with
positive mental states, whereas initially children showed more confusion regarding the bi-
ological aspects and were less strongly convinced of the cognitive capabilities of the robot.
We believe that this shift is due to the way in which the sessions were designed. At the start
of each session, the robot greeted the children personally while mentioning their names, re-
ferred to the previous sessions and tracked the children’s faces to suggest that the robot looked
at them. The open-ended answers confirmed that possibility as their explanations changed
from “Robin the robot has not met me yet” to “Robin the robot said my name every time
we played”. It is likely that children were less inclined to believe that the robot could recog-
nize them at the pre-test, simply because they had not yet played intensively with the robot
in a one-on-one setting yet at that time. The same shift was found in the explanations of
children for the question whether the robot can remember something: children started with
many different explanations before the interaction like “No, Robin the robot has small ears
so cannot remember much”, “Yes, Robin the robot looks like a human so can also remember
things” and changed their explanation after the interaction to “Yes because Robin the robot
remembered where we played before”. Regarding negative emotional states, fewer children
believed at the post-test that the robot “could be sad”, which can also be explained by the
design of the sessions. Even though the robot expressed happiness (by changing the colors of
its eyes) and also when it was not specifically happy (by not changing the colors of its eyes),
it never expressed negative emotions, such as sadness or anger. Again, this was supported by
the children’s open answers where they mentioned the robot’s colored eyes during the post-
test questionnaire. Most children anthropomorphized the robot either to the same degree or
to a lesser degree during the post-test as compared to the pre-test. Fewer children increased
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their anthropomorphism of the robot. Explorative analyses showed that age and gender had
an influence on the change in anthropomorphism: Boys and younger children had a larger
decrease in anthropomorphism than girls and older children. It is possible that decreases
in anthropomorphism were due to children initially having high expectations of the robot’s
interactive (human-like) qualities, which the robot could not meet (Dautenhahn & Werry,
2004). This effect could have affected the younger children more as older children seem to
anthropomorphize robots less in general (van Straten, Peter, Kühne, & Barco, 2020). More-
over, gender influenced the change in anthropomorphism. It is possible that girls were more
forgiving of the robot’s flaws than boys were and that girls, therefore, did not change their
perception as much as boys (Tung, 2011).

The robot was semi autonomous during the tutoring sessions, but did not engage in
personalized conversations with the children. The robot kept to the preprogrammed script
and did not answer children’s questions. For children with high expectations regarding the
human-likeness of the robot, this could have led them to decrease their attribution of human-
like properties to the robot. Conversely, childrenwhohad a less human-like perceptionof the
robot prior to the tutoring sessions may have had low expectations of the robot’s interactive
(human-like) qualities. Since the robot displayed at least some human-like behaviors, such
as mentioning the child by name (suggesting that it recognized the child) or indicating that
it liked the sessions, this could have increased children’s beliefs about the robot as human-
like over repeated interactions. Thus, the observed changes in anthropomorphism may not
only have been dependent on the robot’s behaviors (in line with Tung (2016)), but also on
whether this behavior matched children’s prior expectations. A final possibility is that the
observed change in anthropomorphismmerely reflects the phenomenon of regression to the
mean, with initially higher scores decreasing and initially lower scores increasing at post-test
due to randommeasurement error. Whilewe cannot fully rule out this explanation, it should
be noted that more children decreased rather than increased in anthropomorphism, and the
analysis at the item level revealed a complex but interpretable pattern of changes that pointed
to a shift in how children perceived the robot within a similar overall anthropomorphism
score at the pre-test and post-test.

5.4.3 Anthropomorphism andword knowledge

Finally, we investigated whether anthropomorphism and word knowledge were related. We
found two weak but significant correlations. Children’s anthropomorphism of the robot
at pre-test was negatively related to their comprehension scores at the immediate post-test,

145



5

though not at the delayed post-test. In contrast, a change in perception towards more an-
thropomorphism was positively related to word knowledge at the delayed post-test, though
not at the immediate post-test. Possibly, both correlations point again to the role of chil-
dren’s expectations about the robot as a human-like being. If children had low expectations
of the robot and the robot exceeded these expectations, theymay have becomemore engaged,
which is beneficial for learning. In contrast, children with high expectations which the robot
could not meet, may have become disappointed while working with the robot over several
tutoring sessions. There are two important caveats concerning this link between anthropo-
morphism and word knowledge. First, the correlations, though statistically significant, were
rather weak. Moreover, we did not include child characteristics such as age and cognitive abil-
ity that could possibly underlie the observed correlations. It is possible that the correlations
are spurious and caused by a shared third factor. Second, the present design did not allow
for testing the causal direction of the observed correlations. Thus, it is not clear whether chil-
dren learnmore from the robot because they come to perceive it more as human-like, or that
they come to perceive the robot as more human-like because they have successful language-
learning interactions with it.

5.4.4 Limitations, strengths, and future research

The current study has several limitations. First, we did not use a standardized questionnaire
for anthropomorphism because of our young target group. Standardized tests, such as the
Godspeed questionnaire (Bartneck et al., 2009), often use Likert scales or semantic differen-
tials, which are too difficult for young children. In contrast, other measures that are specifi-
cally designed for young children and are therefore more appropriate to use (Kory-Westlund
& Breazeal, 2019a), do not capture the type of human-like properties children attribute to
robots. We based our questionnaire on previous work (Jipson & Gelman, 2007) and the
questionnaire was found to be reliable, showing also moderate stability between pre-test and
post-test. The proposed questionnaire can therefore be seen as a first step towards a validated
questionnaire to measure children’s anthropomorphism of robots. Furthermore, we do not
know how the introduction of the robot before the pre-test affected the degree to which
children anthropomorphized the robot. To ensure that children could establish a common
ground with the robot and to decrease any anxiety, the introduction contained several state-
ments about the properties of the robot that related to, amongst others the robot being a peer,
speaking as a human and looking as a human. It is possible that these statements may have
biased children’s perception towards anthropomorphism at the pre-test. However, adminis-
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tering the anthropomorphism questionnaire prior to the introductionwould have had other
disadvantages. For instance, itwouldnot have been clearwhether children’s perceptionswere
based on actual interactions with similar robots, with different robots, or were based on car-
toons, movies or television programs, or just on imagination. The large variation in scores
indicates that children still formed their own opinions about the robot, but we do not know
whether these opinions were biased towards anthropomorphizing. Note that despite this
possible bias, the changes in anthropomorphism we observed, in particular at the item level,
can be considered genuine and likely to relate to the intensive experience children had with
the robot during the sessions. Moreover, we could only conduct correlational analyses to ex-
amine how anthropomorphism and word knowledge were related. Moreover, we could not
rule out that other child-related factors underlie the relations that were observed between
children’s anthropomorphism and word knowledge. Future research with field experiments
is needed to test whether framing the robot as a machine or as similar to a human affects chil-
dren’s learning differently. A high level of anthropomorphism in itself may not be required
for successful tutoring sessions, as no positivemain effects of anthropomorphismwere found
in our study. On the other hand, managing children’s expectations of robots especially at
first, may be important, as lower initial levels, indicating more reserved expectations of the
robot, relate to more word knowledge than when expectations are (too) high. Furthermore,
it is difficult to translate these results to other fields in which technology is used to support
learning, such as VR, AR, XR or serious games. These types of technology often use virtual
avatars, which users may anthropomorphize and may thus be subject to similar relations be-
tween anthropomorphism and learning outcomes as in our study. It is possible that, since no
differences could be found between the two different robot conditions, interacting with a
robot over a longer period of time is more important for children’s anthropomorphism than
specific behaviors the robot displays, such as gestures. Such behaviors of the robot can still be
important for anthropomorphism, but mainly in short interactions (Tung, 2016) and after
multiple exposures, the interaction itself becomes more important (e.g., the conversations or
type of activity that the child and robot engage in). This would give an indication that our
results can also be translated to other fields. However, as we onlymeasured children’s percep-
tion with a robot, we will need to investigate more thoroughly to determine whether this is
the case. Finally, there are studies suggesting that presenting robots as human-like to children
is undesirable (Broadbent, 2017), as a robot expressing simulated feelings as real feelings is de-
ceptive. Moreover, children may form relationships with robots that may come at the cost
of relationships with people. It is important for developers to make sure that children realize
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that robots are different from human beings. Repeated exposure may more easily reveal a
robot’s flaws and thus lead to decreases in anthropomorphism, but a subset of the children
in our study were found to increase in anthropomorphism, despite our robot’s flaws. This
is in line with a study finding higher anthropomorphism after repeated exposure (Michaelis
& Mutlu, 2018). Thus, even after engaging with a “flawed” robot, children may continue
to anthropomorphize a robot. Therefore, researchers may want to consider whether present-
ing the robot as a social entity and suggesting it has cognitive, emotional, or social abilities is
required for their study. After all, even though transparency about the robot’s lack of psy-
chological abilities leads to lower anthropomorphism, children may feel as close to the robot
as when children’s expectations about the robot’s psychological abilities are managed (van
Straten, Peter, Kühne, & Barco, 2020). Our study also has several strengths. It is one of the
first studies to investigate anthropomorphism and changes therein after children had multi-
ple interactions with a robot, and to relate it to children’s word knowledge. Furthermore, we
included a large sample of young children. Finally, the different robot properties presented
in the questionnaire allowed for a more thorough and differentiated understanding of the
ways in which children perceive robots.

5.5 Conclusion

The studypresented in this chapter explored the degree towhich children anthropomorphize
a social robot, whether this had changed after seven tutoring sessions, and whether anthro-
pomorphism correlated with children’s word knowledge after these sessions. We found that
children generally anthropomorphized the robot, although there were large differences be-
tween children in the degree to which they did. Our results showed that children’s overall
tendency to anthropomorphize had not significantly changed after the tutoring sessions, but
the analysis at the item level revealed a complex pattern of changes indicating a shift within
this overall tendency towards seeing the robot as more mechanical while at the same time
attributing more cognitive capabilities to the robot. As an exploration, we found a weak
but significant correlation between children’s increased anthropomorphism and their word
knowledge. Children who came to perceive the robot more as a human knew more words
after the tutoring sessions. Although the causal directionof this relation is not yet clear, the re-
sults underscore the importance of taking children’s anthropomorphism into consideration
when designing robot-assisted tutoring sessions.
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Engagement is important within second-language learning. When children remain en-
gaged, they are arguably also more motivated and they will actively focus more on the task
which can potentially result in better short-term learning gains (Morgan et al., 1990) and long-
term learning gains (Dörnyei, 1998). However, the evidence that engagement contributes to
learning in child-robot interaction is still sparse. Therefore, themain focus in this dissertation
was engagement in child-robot interactions.

This dissertation reported multiple studies in which children interacted with a social
robot. In these studies, the robot acted as a tutor teaching children different second-language
words. The study in Chapter 2 investigated the effect of peer-like and adult-like feedback on
children’s task engagement, robot engagement and word knowledge and zoomed in on the
role of gaze in engagement. Chapter 3 described a study that based the feedback on strategies
recommended by student teachers and investigated the effect of this feedback over time on
children’s task engagement, robot engagement and word knowledge. Chapters 4 and 5 both
reported on one study, a study that examined the robot’s presence on task engagement, the
robot’s use of iconic gestures on children’s task engagement and robot engagement (Chapter
4) and children’s perception of the robot (Chapter 5). The experiments showed that the be-
havior of the robot (feedback and gestures) had an effect on children’s task engagement and
robot engagement and children’s engagement scores and their perception of the robot vary
over time. Moreover, while children anthropomorphized the robot, its non-verbal behavior
did not have an influence on their perception. Finally, our results showed that children can
learn from the robot, but that the robot is not necessarily better than a tablet in teaching L2
vocabulary.

6.1 Insights in measuring engagement

There are several aspects of a learner’s behavior that are important for determining their en-
gagement, such as their eye gaze, posture and emotional expressions. Of these aspects espe-
cially eye gaze can play a large role because this shows the direction of the learner’s attention.
Accordingly, we first identified the role of eye gaze, as specified in

Research question 1: Can children’s eye gaze be used to monitor their task engage-
ment and robot engagement?

InChapter 2, we showed that both task engagement and robot engagement could largely
be predicted by the duration that children looked in a certain direction. Regression analyses
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revealed that, assuming a default high task engagement level (i.e. a relatively high intercept),
gaze toward targets involved in the interaction reduced the engagement level. This happened
more so for gaze toward the experimenter and elsewhere than toward the robot and the blocks
(i.e. the negative slopes for gazing toward the robot and blockswere half the size than for look-
ing at the experimenter and elsewhere). This suggests that disengagement is easier to detect
(by gazing away) than engagement (by gaze in direction of the task). Robot engagement was
also negatively affected by gaze directions elsewhere and to the experimenter but in contrast
to task engagement it was positively influenced by children’s eye gaze toward the robot, sug-
gesting that gaze toward the social partner is more important for robot engagement.

These results were consistent with previous studies although these researchers did not
specify the type of engagement they weremeasuring. Ishii et al. (2013) used eye gaze to deter-
mine disengagement with adults, found a correlation between eye gaze and disengagement,
and used this finding to regain participants’ engagement by providing re-engaging behavior
by the robot. Moreover, when interviewing preschool teachers about engagement indicators,
eye contact was an indicator for engagement and gaze away was an indicator for disengage-
ment (Schodde et al., 2017). It is important to note that we measured eye gaze during one
specific episode of two minutes. This shows that eye gaze was related to engagement over a
longer period during the interaction. However, this duration might also have a limiting ef-
fect, because we did not measure eye gaze during short periods meaning that if engagement
was low for a shorter duration, we only measured the overall effect.

These differences between the role of eye gaze on task engagement and on robot engage-
ment highlight that it is important to differentiate between children’s engagement with the
task, and engagement with the robot. This is because the distinction can clarify whether chil-
dren aremore involvedwith the task or the robot’s behavior when executing a robot-tutoring
learning task. Likewise, distinguishing the two engagement types can show the effect of the
robot’s presence as a social partner. After all, childrenmay consider the robot’s behavior as in-
teresting, and as a result be engaged, but may not like the task or vice versa. Therefore, when
researchers separate these two concepts, it provides more insight regarding children’s engage-
ment and the factors influencing that. Moreover, if we separate the two, we can observe the
effect of both separately on children’s learning outcomes.

However, both engagement types could not completely be predicted by children’s eye-
gaze directions which demonstrates that despite eye gaze having a large role in engagement,
it does not predict all aspects of engagement. There is still a possibility that a child is looking
at the robot during the whole interaction while not being robot-engaged and vice versa. As
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preschool teachers indicated (Schodde et al., 2017), head movements such as nodding and
shaking, resting their head on their hand, movements, answering the questions are potential
additional factors that could be taken into account. In fact, Perugia et al. (2020) tried to
model engagement based on attentionmeasures, valence and arousal and concluded that it is
impossible to measure them separately. Therefore, the studies in later chapters of this thesis
did not rely on analyses of eye gaze, but rather relied on a coding scheme that included other
aspects of engagement, such as children’s expressions, on top of eye gaze. This coding scheme
alsodistinguishes between engagementwith the robot, and engagementwith the task inorder
to get a complete view of engagement.

Finally, not only the learner’s gaze behavior is important but also the robot’s gaze behavior.
The large role of eye gaze for determining engagement can also be interpreted in away that the
robot should use correct gaze behavior in order to show the learner that the robot is engaged
in the interaction. Gaze behavior by the robot has indeed been assumed to be important for
the interaction and has been used in earlier work to provide cues during the interaction and
as a result can influence engagement (Mwangi et al., 2018). In this dissertation we did not
look at gaze behavior of the robot specifically, however we did investigate the effect of other
non-verbal robot behaviors on engagement, such as iconic gestures.

6.2 Factors that influence engagement

With insights into how we can measure children’s task engagement and robot engagement,
we investigated what kind of robot behavior can influence these two engagement types. We
concentrated on two factors that can benefit children’s learning and engagement, answering

Research question 2: Do robotic feedback and iconic gestures influence children’s
task engagement and robot engagement?

We will first discuss the influence of feedback on engagement and then of gestures.

6.2.1 Feedback

Our studies inChapters 2 and3 revealed that type of feedbackprovidedby the robot has an ef-
fect on task engagement and robot engagement (althoughnot on learning gains). These chap-
ters showed that feedback makes tasks encouraging and engaging. Chapter 2 showed that
three-year-old children’s task engagement and robot engagement tended to increase during
the lessonwhen receiving feedback, whereas without feedback children’s engagement tended
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to decrease over time. Consequently, we suspected that feedback would have more impact
when provided over a longer time period and in Chapter 3 we therefore explored the effect
of feedback over the duration of three different sessions. Moreover, we wanted to make sure
that we designed the feedback to be as effective as possible and, thus, we interviewed student
teachers how they would provide feedback using the robot and implemented their answers
into a teacher-preferred feedback strategy and teacher-dispreferred feedback strategy.

In Chapter 3, we implemented these strategies onto the robot and found that children
aged 5 and 6 scored higher on task engagement and robot engagement when the robot pro-
vided teacher-preferred feedback than when the robot did not provide any feedback or feed-
back dispreferred by teachers. Furthermore, we found that the order in which the different
types of feedback were provided had an influence on children’s task engagement: children
who first received teacher-preferred feedback and then a different type, scored lower on task
engagement in the following sessions.

Since the two studies used different types of feedback (with children of different ages) it
is not possible to directly compare them, but both studies showed that feedback tends to have
a positive effect on children’s engagement. This finding is consistent with data obtained in
human-human studies in which positive feedback increases children’s motivation (Blumen-
feld et al., 2006). Moreover, negative feedback can result in a higher task confidence because
children can correct themselves after receiving this negative feedback which can result in a
higher engagement. Our studies have been unable to demonstrate whether positive or nega-
tive feedback had different effects. Based on our data, we tentatively conclude that the role
of different kinds of feedback is small, but that feedback itself is important for children’s en-
gagement.

6.2.2 Gestures

In Chapter 4, we investigated the effect of the robot’s iconic gestures on children’s task en-
gagement and robot engagement. Robot gestures indeed had an influence on children’s task
engagement and robot engagement, but in an opposite pattern fromwhat we expected. Task
engagement was generally higher for children when interacting with a robot using no iconic
gestures than with a tablet or with a robot using iconic gestures. The latter only holds when
comparing the first three sessions with the following three sessions. Robot engagement was
higher for children interacting with a robot using iconic gestures than without iconic ges-
tures.

These results canpossibly be explainedby looking closer at the gestures of the robot. Both

153



6

robot conditions used deictic gestures to redirect the child’s attention to the tablet when the
child had to execute a task on the tablet. These deictic gestures could have resulted in a higher
task engagement for both condition, however we only saw a higher task engagement for the
no iconic gesture condition. This inconsistency, therefore, is likely caused by the iconic ges-
tures used in the iconic gesture condition. These iconic gestures might have attracted the
child’s attention to the robot when there was a task on the tablet, resulting in a lower task
engagement, as suggested by Kennedy et al. (2016). This is, moreover, extra important for
certain groups of children. In a study on learningmath tables with a robot (Konijn&Hoorn,
2020), children who had a lower school performance were more easily distracted than chil-
dren with a higher school performance and showed to be more distracted by social behavior
of the robot.

A similar reasoning can be provided for the results of robot engagement. A robot in
the iconic gesture condition that moves its arms and hands will draw more attention to it-
self, resulting in a higher robot engagement. Moreover, a robot using no iconic gestures will
draw less attention to itself than a robot using iconic gestures, resulting in a lower robot en-
gagement. These findings are consistent with our RQ1 results, where we found that robot
engagement had a positive relation with children’s gaze toward the robot. When the robot
draws more attention to itself by using iconic gestures, this seems to influence robot engage-
ment positively.

These findings imply that the robot’s gestures must be well designed in an interaction.
For example, when robot engagement is important for the task, such as when the robot is ac-
tively having a conversation with the child, (iconic) gestures can be used to draw attention to
the robot. However, when there is a task on a tablet that needs attention, itmay bemore help-
ful not to use (distracting) gestures and only provide deictic gestures to redirect the child’s
attention to the tablet.

Finally, when combining these two robot behaviors: feedback and gestures, it is possible
that thenon-verbal behavior during the feedbackplayed a role in engagement. The robotused
non-verbal behavior when providing the engagement-increasing feedback. For instance, the
robot nodded when providing positive feedback and used colored eyes to indicate happiness.
Previous studies showed that motivational gestures, such as a high five, thumbs up or a fist
bump played a role in engagement (van Minkelen et al., 2020; Morris & Zentall, 2014) and
that children paid most attention to feedback accompanied by an arm gesture (Serholt &
Barendregt, 2016). Future research should explore this role of motivational gestures.
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6.3 Novelty effect

Engagement is not only dependent on the robot’s behavior, it also is dependent on time.
To investigate the novelty effect of the robot and the effect of multiple tutoring sessions, we
specified the following

Research question 3: How do children’s task engagement and robot engagement
develop over time?

For this purpose, we measured children’s interactions over multiple sessions in Chap-
ters 3 and 4. Both studies showed that children’s engagement was relatively high during the
first interaction and that it decreased over time, in accordance with the novelty effect, but
that there were large individual differences between children. The experiment in Chapter
3 included three sessions, and showed that overall, children’s task engagement and robot en-
gagement tended to decrease during these three lessons. This experimentwas awithin design,
and children received three types of feedback: teacher-preferred, teacher-dispreferred and no
feedback in a random order. However, it seemed that children’s task engagement was influ-
enced by the robot’s feedback behavior in the previous lesson. In the case that the children
first received teacher-preferred feedback, and then another form of feedback (no feedback or
teacher dispreferred), their task engagement decreased significantly. Receiving no feedback
or teacher-dispreferred feedback after a session with the robot using teacher-preferred feed-
back might have demotivated the children and as a consequence decreased their engagement.
It is therefore important to take previous interactions into accountwhendesigning long-term
child-robot interactions (Leite, Martinho, & Paiva, 2013).

When comparing task engagement with robot engagement over time, we found no large
differences. Both engagement types are influenced by this novelty effect and the individual
differences. This means that researchers have to take into account that both engagement
types can decrease over time.

In Chapter 4, we compared the two engagement types over more sessions. This study
included a group introduction, six tutoring lessons and one recap session, which meant that
children saw the robot twice a week during a full month. When examining children’s en-
gagement patterns, we noticed that after the third lesson, children’s engagement seemed to
decrease less (although it still varied for each child and lesson). Interestingly, this seems to be
consistent with the suggestion by Salter et al. (2004) that when wanting to examine beyond
the novelty effect, researchers should carry out interactions includingmore than two sessions.

155



6

A note of caution is due here since it is difficult to generalize this guideline to other studies
because these studies might have a different design. The precise moment when the novelty
effect starts to wear off is dependent on the number of interactions in total, the length of
these interactions and the behavior of the robot (Leite, Martinho, & Paiva, 2013).

We found that children’s task engagement and robot engagement increased again during
the final session, the recap session, possibly because the interaction during the recap session
was different from the other sessions. Introducing novel behaviors and tasks has already been
recommended in the past by Leite, Martinho, & Paiva (2013) and been used by Tanaka et al.
(2007) to increase children’s engagement. Furthermore, it is also possible that because this
recap session was more interactive than the other sessions, children became more engaged.
For eachof the 34 targetwords, children coulddrag a virtual sticker into a virtual picture book
and they had to repeat the robot after the target word was placed in the picture book, which
made this interaction more interactive. This interactivity might have made the children feel
more in control, increasing their sense of autonomy which has been previously linked with
more motivation (Deci & Ryan, 1985) and with that might increase engagement. Moreover,
it is possible that children recognized the words which made the session easier. Finally, it
is possible that children knew it would be the last time they would play with the robot and
tablet and thismightmake them attentive during the interaction, making them enjoy it more
and hence increasing their engagement.

Both studies in Chapters 3 and 4 showed that there were large individual differences in
children’s engagement patterns between each session. These patterns varied from a decrease
of children’s engagement and an increase of children’s engagement tomore complex patterns
such as children being engaged in the first session, not engaged during the second lesson and
engaged again in the last session. It is very important to investigate these individual differences
more closely and measure engagement continuously during the session in order to personal-
ize the lesson when a child is less engaged by e.g. introducing more breaks during the session
or changes in robot behavior (Kim et al., 2020). Konijn&Hoorn (2020) found that children
who performed worst at school were easily distracted by the robot’s social behavior and sug-
gested that these groups of children might benefit more from neutral behavior by the robot.
These findings, showing that the robot’s behavior sometimes is an advantage to children but
sometimes a disadvantage to other groups of children are a strong argument for personalized
lessons.
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6.4 Relation between children’s engagement andword learning

Human studies indicate that engagement is critical in language acquisition and children learn
better when they are engaged (Deci & Ryan, 1985). Therefore, we addressed

Research question 4: What is the relation between children’s task engagement and
robot engagement, and their second-language learning gain?

In all studies presented in the Chapters 2,3 and 4 we compared children’s engagement with
children’s L2 word knowledge before and after the lessons. The two studies in Chapters 2
and 3 did not show a relation between the two engagement types and word knowledge, but
the long-term study in Chapter 4 showed a positive relation between both task engagement
and robot engagement and L2 word knowledge. This suggests that both engagement types
play a role in word learning over more sessions. It seems possible that these results are due
to having more sessions in Chapter 4 compared to the one session and three sessions experi-
ments in Chapters 2 and 3 respectively. A higher engagement might be especially important
over multiple sessions, helping children to stay motivated beyond the novelty effect. An al-
ternative explanation could be that children were presented with more L2 words in the long-
term interaction and therefore could also learn more words, which might have created larger
differences between the highly engaged and not engaged children, resulting in a significant
correlation. This suggests that it is evenmore important that children’s engagement remains
high over time and interactions are designed to keep this engagement high.

The positive relation between robot engagement andword learning gain is somewhat un-
expected, because the results from Kennedy et al. (2015) and Konijn et al. (2021) suggested
that the robot’s behaviormight distract children from the task andwe therefore expected that
a high robot engagement would decrease children’s L2 learning gain compared to a high task
engagement. However, in our long-term study we found a positive correlation between chil-
dren’s robot engagement and their word knowledge. It is possible that in our experiment, the
robot’s behavior was related to the task (because it used iconic gestures for the L2words) and
that children therefore still learned the connection between the L1 concept and L2 concept.
This suggests that not all robot attention is bad, if the robot’s behavior is related to the task,
it might be even better for the children’s learning gain.
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6.5 Children’s perception of the robot

Lastly, we determined whether children’s perception of the robot changed over time. When
children are interacting with a social robot, they will undeniably develop a social bond with
this robot (van Straten, Peter, Kühne, & Barco, 2020). How this perception will change over
time, is something we addressed with the following research question:

Research question 5: How do children’s perceptions of the robot develop over time
when interacting with a robot tutor and is it related to their L2 learning gain?

Chapter 5 shows that on average children’s anthropomorphism remained approximately the
same before and after seven tutoring sessions with the robot. When looking more closely to
the children’s answers, we found that children changed their perception mainly regarding
the cognitive aspects of the robot. After the seven tutoring sessions, they perceived the robot
more as a mechanical being with positive mental states.

This shift can be explained by our design of the sessions. At the beginning of our sessions,
the robot greeted the childwith their name and referredback to the previous sessions to create
common ground between them which could have led the children to believe that the robot
had cognitive capabilities. Furthermore, the children attributed mainly positive emotions to
the robot and no negative emotions. This can also be explained by our design because the
robot used verbal and non-verbal behavior to express positive emotions, such as happiness,
but did not express any negative emotions. The question remainswhatwould have happened
to children’s perception when the robot would also have expressed negative emotions. It is
possible that the effect would have been even stronger because a recent study (Nijssen et al.,
2021) showed that children perceived a robot as more human-like when it expresses that it
has positive and negative feelings, although in a completely different setting.

The Chapter 5 study also showed many individual differences. For example, when com-
paring boys and girls, we found that boys anthropomorphized the robot less after the lessons
than girls. Moreover, we found a relation between children’s age and anthropomorphism,
where younger children had a larger decrease in anthropomorphism than older children.

In addition, there was a correlation between children’s anthropomorphism score and
their word knowledge before the lessons and immediately after the lessons. Children’s word
knowledge scores at the delayed post-test were related to children’s change in anthropomor-
phism. In other words, children who anthropomorphized the robot more after the lesson
remembered more L2 words over time, while children who anthropomorphized the robot
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less after the lesson than before remembered fewer L2 words. Moreover, children’s anthro-
pomorphism before the sessions was related to their immediate word knowledge, but not to
their retention. If children had low expectations of the robot and the robot exceeded these ex-
pectations, they may have become more engaged, which might have been beneficial for their
learning. In contrast, children with high expectations which the robot could not meet, may
have become disappointedwhile workingwith the robot over several tutoring sessions. Over-
all, this shows there is a relation between children’s perception of the robot and their word
learning, however it is not yet clear whether there is a causal relationship between them.

Our findings may also shed some light on the relation between children’s perceptions
and robot engagement. As said in the previous paragraph, in our experiment, we observed
that when children had high yet unmet expectations regarding the robot’s behavior, children
became more confused by and frustrated with the robot, resulting in less robot engagement
(D’Mello & Graesser, 2012). For instance, when a child expected the robot to behave in a
human-like manner, such as talking back when they told a story, and the robot did not reply,
the child might have thought that the robot did not listen to the child and as a result became
less excited to tell more stories or interact in a differentmanner. This is also in line with previ-
ous studies in ameta-analysis, (Blut et al., 2021), whose authors suggest a conceptualmodel in
which perception of the robot can be amediator for, among others, the robot’s likability and
positive and negative affect for the robot. However, since we did not specifically investigate
the relation between anthropomorphism and engagement, this should be explored more.

6.6 Strengths and limitations

The previous sections discussed the studies we carried out in context of the L2TOR project
and answered our research questions. Looking back on our studies, there are several strengths
and limitations in these studies. This section will expand on these strengths and limitations
and identify directions for future research.

6.6.1 Strengths

Our studies have various strengths. First, the study described in Chapters 4 and 5 is among
the first long-term studies in the HRI field that included a relatively large sample and that
was preregistered. Second, in all studies described in this dissertation, we applied the same en-
gagement coding schemewhichmakes the resultsmore comparable. This engagement coding
scheme was adapted from an existing coding scheme to be applicable for robot interactions.
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Third, we differentiated task engagement from robot engagement to study the robot as so-
cial partner and the role of the task in child-robot interactions. Finally, we familiarized the
children before all experiments so they were used to the robot. Young children should first
familiarize themselves with the robot to reduce anxiety (Vogt et al., 2017). This introduction
explained what the robot is able to do, how it can move and how children can interact with
the robot to set their expectations before the one-on-one interactions with the robot.

6.6.2 Limitations

Our study also has several limitations. First, our interactions were not adaptive. One of the
advantages of using a robot is that it can adapt itself and its teaching methods or stories for
each child which can help long-term relations (Jacq et al., 2016; Ligthart et al., 2019). In
our experiments, the robot’s behavior followed a script, with some exceptions such as when
the robot had to choose between positive or negative feedback. We chose this design because
in this way we could control the manipulations, making it possible to directly compare con-
ditions between children. However, we might have found other results if we would have
used adaptive scenarios. Earlier adaptive studies did yield mixed results. One study from the
L2TOR project found that adaptivity did not support children’s learning gain over one ses-
sion, but it did have an influence on their engagement: children in the adaptive condition had
a smaller decrease in engagement during the session than childrenwhowere in a non-adaptive
condition (de Wit et al., 2018). In addition, in another study in our project (Schodde et al.,
2019) the robot informed the learner about its adaptive decisions, providing the learner with
insights on how they could improve. These explanations supported the participants’ learning
gain, especially for slow learners. A different study showed that slow learners also preferred
a robot using extra explanations over one without, while fast learners indicated that a robot
using extra explanationswas going too slow (Hindriks&Liebens, 2019). In a similarway, Ah-
mad et al. (2019) used a robot that adapted the feedback in the lessons based on the children’s
emotional state and found that this robot was successful in sustaining children’s engagement.
Thus, adaptivity should be explored more.

Second, our studies did not include automatic speech recognition. At the timewe started
the L2TOR project, speech recognition was not reliable enough (Kennedy et al., 2017). In
addition, speech recognition of children’s non-native pronunciation ismore difficult because
there is less training data for state of the art recognition software. However, this speech recog-
nition is important when teaching a second language, especially when focusing on produc-
tion skills. In our experiments we could only focus on comprehension and translation skills.
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Third, in most of our studies, the interaction between child and robot were reliant on
the tablet game in front of the robot. The main lesson manipulations were executed on the
tablet and the robot supported the childrenduring these tasks verbally andnon-verbally. This
role of the tablet might have directed the attention of the child away from the robot and
the robot’s behavior such as feedback and gestures. Therefore, children might have focused
less on our manipulations and therefore the effect of these manipulations was smaller than
anticipated. A recent study showed that children learnedmore andweremore engagedwhen
training with a social robot without a tablet compared with only a tablet (Konijn et al., 2021)
and this indicates that it might be worthwhile to reduce the role of the tablet in follow-up
studies.

Fourth, it is difficult to generalize our results to other age groups. Our study only in-
cluded young children of 3 to 5 years old. It is possible that older children might respond
differently to the robot’s behavior. In our L2TOR studies, we found that older children
often perform better and benefit more from the robot’s behavior (e.g., Chapter 4 of this dis-
sertation and deWit et al., 2020).

Finally, non-native people often rely more on gestures than native people in a language,
however they are also bothered more by distracting sounds in the background when the lan-
guage is non-native (Drijvers et al., 2019). It is not clear yet whether the robot’s noise of its
motors is actually doing more harm than good during the gestures and whether the effect of
gestures is larger than the negative effect of the noise of the motors. In a study by Zhang &
deHaas (2020) participants learned the different tones in Chinese, something very reliant on
sound. The participants performed better when interacting with the robot without gestures,
possibly because the noise of the robot’s accompanying gestures that made it harder to hear
the specific tones. To reduce this noise effect in our experiment, we designed our sessions
taking the motors’ noise into account, and making sure that the robot’s L2 words were pro-
nounced after the robot used an iconic gesture. However, this resulted into a slowed interac-
tion because children’s had to wait until the gesture was finished before hearing the L2 word.
While newer robots make less noise when moving their arms, it would be interesting for fu-
ture studies to take this noise more explicitly into account when designing second-language
learning interactions.
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6.7 Concluding remarks

This dissertation expands our knowledge of using a robot tutor to teach young children a
second language and showed that children are engaged with a robot and task and that over
long-term, children’s engagement has a positive relation with children’s learning gains. The
first sentence in this dissertation was about a future image of using a robot in the classroom
as support for teachers. This vision has only become more relevant since I started my PhD
research because the recent COVID-19 pandemic has once more made it painfully evident
howmuch education depends on digital innovations.

When schools were closed and caregivers had to home-school their children, there were
widespread concerns about the impact of the lock-down measures on the quality of educa-
tion. Digital tools, including social robots andAI, which can adapt to individual learners, are
available all the time, have infinite patience, and can be distantly monitored by professional
human teachers, would have been extremely valuable in this situation, supporting teachers
and schools.

Not only for at-home education during our pandemic, but even after the pandemic this
trend may continue. However, before being able to introduce the robot in education and
making the future classroom a reality, it is important to take further steps. On the one hand,
it is good to already deploy robots for tasks they are currently suited for, such as single lessons
tailored to maximize the contribution of robots. On the other hand, for the future, more
studies need to be carried out over longer periods and without an experimenter having to
control the robot. With these extra experiments in mind, we are confident that robots will
increasingly be able to support the teachers of the future.
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Appendix

This appendix provides the English andDutch annotation guidelines for engagement coding
as used in Chapters 2, 3 and 4.

English version coding scheme engagement

This manual is based on an extensively tested measuring instrument called ”ziko” (Laevers
et al., 2005). Before you can get started, you need to get to know 1 of the concepts behind
the instrument: engagement. It is important that you learn in advance to look specifically at
children and know how towork with the instrument. You can only enter the scores correctly
if you have mastered the manual. The preparation of the self-evaluation is of great impor-
tance. If you want more information and help with practicing ziko, go to ecego. You can
find more information on the website of child and family (www.kindengezin.be) and of
ecego (www.cego.be) or this publication:
Laevers, F. (2005). Well-being and involvement in care settings. a process-oriented self-
evaluation instrument (sic’s). Kind en gezin; Research Centre for Experiential Education;
Leuven, 1-20.

What is engagement?

A childwho is engaged is, in away, “completely absorbed” in his activity: Playingwith blocks,
modelling clay or puzzling, listening to a story, talking to others, it is a very specific experi-
ence that you can recognize in both babies and adults. Engagement is something very special.
Anyone will get surprised by it, just by looking at children. You feel intuitively that youmust
not disturb the game. If there is engagement, we know that children are addressing their pos-
sibilities and that they are ‘developing’: they learn at a deeper level, and they become more
competent. Engagement includes:

• Motivation. When you are engaged, you feel attracted by the activity, so you really are
interested. You do not get engagement if others ask you or oblige you to do things. Your
motivation arises from yourself, so although this may have been assigned to you, you are
actively working on it yourself.
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• Intense mental activity. When you are engaged you find yourself completely open to
experiences: the impressions you gain are intense. Body sensations and movement experi-
ences, colours and sounds, smells and flavours have a hue and depth that would otherwise
remain unnoticed. You use your imagination and cognitive ability fully. In the absent of
engagement, the sensations are not full lived through, that is, they are superficial.

• Satisfaction. Engagement is awonderful condition: you are ecstatic. What you experience
is energy that passes through your body. Children spontaneously take initiatives that will
keep them in that state. Playing is an excellent manner in which they find this satisfaction.
If engagement is lacking, you get bored, a feeling of emptiness and frustration.

• Exploration urge. The source for engagement is the urge to explore, the urge to go around
the world to gain sensory impressions, to get a grip on reality. Initially, that ’getting a hold’
can be taken literally: touching and grasping whatever comes close. Gradually it is more
about ”understanding” reality.

• At the limit of your capabilities. Engagement is possible if an activity is a challenge, nei-
ther too easy nor too difficult. When engaged, people move at the limit of their capabili-
ties. They use their abilities to the fullest, they give the best of themselves - whether we are
talking about babies or adults, or about children with poor mental development or about
highly intelligent people.

Your job You will determine the engagement of the child. You will observe the child for
two minutes. Give each child a score for engagement based on a five-point scale (1-5), where
1 is low engaged and 5 is highly engaged. You can also give half points, so the child can also be
3.5 engaged. When watching the video, remember that it is a snapshot, so it is possible that
the same child scores low on engagement in one moment a higher in another moment. That
means that if the child shows a higher engagement in the beginning of the clip compared to
the last part; then you mediate the score of engagement over these two values. This mediat-
ing also depends on the period of time that the child shows this level of engagement, so for
instance if the child shows a third of the video clip a high engagement (5) and shows a lower
engagement (3) during two-thirds of the clip. The final level for engagement will be between
3.5 and 4. Therefore, it is useful to make notes on how engaged the child is and why you
think so. We measure two types of engagement: task engagement and robot engagement.
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Measuring task engagement

Task engagement defines how the child is engagedwith the task. A child can be engagedwith
a tablet, blocks in front of him/her, but also with the robot when the robot asks the child
to do something (such as repeat and copy). If the child looks at the robot because the robot
is talking, the child is still engaged in the task. Also, if the child looks at the robot when the
robot shows a gesture, child task engagement remains. After all, repeating and gesturing are
part of the task. Only in the case that the child focuses on something else during the task
or looks at the robot for no reason do you score a lower level for the child task engagement.
This also means that you do not measure how committed the child is with the robot, since
that is the focus of the other engagement scale. Task engagement is also accompanied by
errors in the game; in general, a lower engagement leads to more errors by the child. But, as
you probably recognize by conducting the experiments yourself, the system sometimes saw
errors that were actually not wrong. In this case it is up to you not to include these errors in
your child engagement score. But always be aware that a low score on learning is not equal
to a low engagement score, it is only possible that the two are related.

Measuring robot engagement

Robot engagement only looks at how the child is engaged with the robot. This is not related
to the task. The child can be engaged with the robot without the child performing the task.
Child-robot engagement is determined by how often the child talks to the robot and looks
at the robot. Only repeating a target word is not a sign of child-robot engagement, since the
children in the tablet condition also talk after the tablet. If the child also looks at the robot
when repeating the target word, it does count as child-robot engagement. Children who
imitate the gestures of the robot also show a high engagement. A child who only looks at the
tablet and ignores the robot (tries to ignore it) will score lower.
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Table 1: Scale for task engagement

Level Engagement Examples

1 Very low The child shows virtually no activity:
- No concentration: staring, dreaming away;
- An absent, passive attitude;
- No targeted activity, aimless actions, not triggering anything;
- Meaningless ticking on the screen in order to continue;
- Only concerned with the experiment leader and not with the task;
- No signs of exploration and interest;
- Do not absorb anything, no mental activity

2 Low The child shows some activity, but is regularly interrupted:
- Limited concentration: looking away, fidgeting, dreaming;
- Easily distracted;
- Tasks are performed to a limited extent

3 Mediocre There is activity all the time, but not really concentrated
- The child is routine, fleeting;
- Has limited motivation, does not feel challenged, shows no real commitment;
- Does not gain in-depth experience;
- Is not absorbed by what it does;
- Only uses his capacities in moderation;
- The activity does not touch the imagination and the mind of the child.
- Most tasks are performed.

4 High There are usually signs of engagement:
- The child is totally absorbed in his game;
- There is usually concentration, but sometimes the attention drops;
- The child feels challenged, there is a certain drive;
- Uses its abilities;
- Appeals to the imagination and the mind.

5 Very high The child is continuously busy and becomes absorbed in his activity:
- Is continuously concentrated, absorbed by the activity, forgets about the time;
- Is very motivated, feels strongly addressed;
- Cannot be distracted;
- Looks carefully at the task, pays attention to details;
- Is constantly appealing to all its capacities and possibilities;
- There is a strong mental activity: the imagination and the mind run at full speed;
- Gains profound new experiences;
- Enjoy being so passionately engaged.
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Table 2: Scale for robot engagement

Level Engagement Examples

1 Very low The child shows virtually no interaction with the robot:
- Ignores the robot completely;
- Has a closed (body) position towards the robot;
- An absent, passive attitude;
- No targeted activity, aimless actions, not triggering anything;
- No signs of interest in the robot.

2 Low The child shows some interaction with the robot, but this is regularly interrupted:
- Limited looking at the robot;
- Easily distracted from the robot.

3 Mediocre There is activity all the time with the robot
- The child works routinely, being fleeting;
- Has limited motivation, does not feel challenged, shows no real commitment;
- Has an open (body) attitude towards the robot;
- Does not gain in-depth experience;
- Is not absorbed by the activity;
- Aimlessly touching the robot.

4 High There are usually signs of robot engagement:
- The child is totally absorbed in his game with the robot;
- There is usually joint attention;
- There is usually concentration, but sometimes the attention drops;
- The child feels challenged, there is a certain drive.

5 Very high The child is continuously absorbed in his activity with the robot:
- Is continuously focused on the robot;
- Feels strongly addressed;
- Cannot be distracted from the robot;
- Looks carefully at the robot, pays attention to details;
- Talks to the robot;
- Copies gestures; (in the iconic gesture condition);
- There is joint attention
- Enjoy being so passionately engaged with the robot.
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Nederlandse versie codeerschema engagement

Deze handleiding is gebaseerd op een uitgebreid getest meetinstrument genoemd “ziko”. Vo-
ordat je aan de slag kan, moet je 1 van de begrippen achter het instrument leren kennen: en-
gagement. Het is belangrijk dat je vooraf leert om gericht te kijken naar kinderen en weet
hoe je moet werken met het instrument. Enkel als je de handleiding onder de knie hebt, kan
je de scores juist invullen. De voorbereiding van de zelfevaluatie is van groot belang. Wil
je meer informatie en hulp bij het inoefenen van ziko? Daarvoor kan je terecht bij ecego. Je
vindtmeer informatie op dewebsite van kind en gezin (www.kindengezin.be) en van ecego
(www.cego.be) of in deze publicatie:
Laevers, F., Daems, M., De Bruyckere, G., Declercq, B., Moons, J., Silkens, K., … van Kessel,
M. (2005). Ziko. zelfevaluatie-instrument voor welbevinden en betrokkenheid van kinderen
in de opvang. Brussel: Kind &Gezin.

Wat is engagement

Een kind dat engaged is, wordt als het ware ‘helemaal opgeslorpt´ in zijn activiteit: Spelen
met blokken, boetseren of puzzelen, luisteren naar een verhaal, met anderen praten, het is een
heel aparte beleving die je zowel bij baby´s als bij volwassenen kan herkennen. Engagement is
iets heel bijzonders. Iedereen die gewoon naar kinderen kijkt, wordt erdoor verrast. Je voelt
intuïtief aan dat je het spel niet mag verstoren. Is er engagement, dan weten we dat kinderen
hunmogelijkheden aanspreken en dat ze ‘in ontwikkeling’ zijn: ze leren op een dieper niveau,
ze worden echt competenter. Engagement bestaat uit de volgende elementen:

• MotivatieAls je engaged bent, voel je je aangesproken door de activiteit, dus ben je werke-
lijk geïnteresseerd. Engagement krijg je niet als je dingen alleen maar doet omdat anderen
het vragen of er jou toe verplichten. Je motivatie komt vanuit jezelf, dit kan dus wel opge-
dragen zijn vanuit anderen, maar je bent er zelf actief mee bezig.

• Intense mentale activiteit Bij engagement stel je je helemaal open voor ervaringen: de in-
drukken die je opdoet zijn heel sterk. Lichaamsgewaarwordingen en bewegingservaringen,
kleuren en klanken, geuren en smaken hebben een schakering en een diepte die er anders
niet zijn. Je spreekt je verbeelding en je denkvermogen ten volle aan. Bij niet-betrokken
activiteit zijn de gewaarwordingen niet doorleefd, dus oppervlakkig.

• Voldoening Engagement is een heerlijke toestand: je bent in vervoering. Wat je beleeft is
energie die door je stroomt. Kinderen nemen spontaan steeds opnieuw initiatieven die hen
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in die toestand brengen. Spel is de plek bij uitstek waarin ze deze genoegdoening vinden.
Ontbreekt engagement, dan krijg je verveling, een gevoel van leegte en frustratie.

• ExploratiedrangDebronvoor engagement is deontdekkings- of exploratiedrang, dedrang
om de wereld te ervaren, om zintuiglijke indrukken op te doen, om greep te krijgen op de
werkelijkheid. Aanvankelijk is dat ‘greep krijgen´ letterlijk te nemen: aanraken en grijpen
wat in de buurt komt. Gaandeweg gaat het meer om het ‘begrijpen´ van de werkelijkheid.

• Aande grens van jemogelijkhedenEngagement ismogelijk als een activiteit eenuitdaging
is, niet te makkelijk en ook niet te moeilijk. Bij engagement bewegen mensen zich dus aan
de grens van hun mogelijkheden. Ze spreken hun vermogens ten volle aan, ze geven het
beste van zichzelf - of we het nu over baby´s hebben of volwassenen, over kinderenmet een
zwakke mentale ontwikkeling of over hoogbegaafden.

Jouwtaak Je gaat de engagement van het kind bepalen. Je observeert het kind gedurende
een tweetal minuten. Geef elk kind een score voor engagement op basis van een vijfpunten-
schaal. Jemag ook halve punten geven, dus het kind kan ook 3.5 engaged zijn. Bij het scannen
gaat het om een momentopname, het kan dus zijn dat hetzelfde kind het ene fragment een
lage engagement scoort en het anderemoment een hogere engagement. Daarnaast kijk je naar
de engagement over het gehele fragment. Laat het kind dus in het begin van het fragment een
hogere engagement zien dan in het laatste gedeelte; danmiddel je over deze tweewaardes. Dit
middelen laat je ook afhangen van de periode dat het kind deze engagement laat zien, als het
kind dus een derde van het videofragment een hoge engagement (5) laat zien en gedurende
2 derde van het fragment een lagere engagement (3) laat zien. Dan is de uiteindelijke niveau
voor engagement dus tussen een 3.5 en een 4. Handig is dus om tijdens de fragmenten te
noteren hoe engaged het kind is en waarom je dat vindt. We gaan twee soorten engagement
meten: taak engagement en robot engagement.

Het meten van taak engagement

Taak engagement kijkt naar hoe de kind engaged is met de taak. Dit kan op de tablet zijn,
maar ook als de robot vraagt dat het kind iets moet doen (zoals nazeggen en nadoen). Als het
kind doordat de robot praat richting de robot kijkt, is het kind nog steeds engaged met de
taak. Ook in het geval dat het kind naar de robot kijkt als de robot een gebaar laat zien, leidt
dit niet tot een lagere taak engagement. Immers, het nazeggen en de gebaren behoren tot de
taak. Alleen in het geval dat het kind ergens anders op focust tijdens de taak of naar de robot
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kijkt zonder enige reden scoor je de taak engagement lager. Dit betekent ook dat je niet meet
hoe engagement het kind met de robot is, dat is de focus van de andere engagement schaal.

Taak engagement gaat ook gepaard met fouten in het spel, over het algemeen leidt een
lagere engagement tot meer fouten bij een kind. Maar, zoals jullie vast herkennen door het
zelf afnemen van de experimenten, zag het systeem soms fouten die eigenlijk niet fout waren.
In dit geval is het aan jou om deze fouten niet mee te laten tellenmet jouw engagement score.
Op de volgende pagina is de schaal voor taak engagement in een tabel met voorbeelden gezet.

Het meten van robot engagement

Robot engagement kijkt alleen naar hoe de kind engaged is met de robot. Dit is niet gere-
lateerd aan de taak. Het kind kan engaged met de robot zijn zonder dat het kind de taak
uitvoert. Robot engagement wordt bepaald door demate van hoe vaak het kind praatmet de
robot en kijkt richting de robot. Alleen het nazeggen van een target word is geen teken van
robot engagement, immers de kinderen in de tablet conditie praten ook de tablet na. Als het
kind bij het nazeggen van het target woord de robot ook nog aankijkt, dan telt het wel mee
voor de robot engagement. Ook kinderen die de gebaren van de robot na doen laten een hoge
engagement zien. Een kind dat alleen richting de tablet kijkt en de robot negeert (probeert te
negeren) zal juist lager scoren.
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Table 3: De schaal voor taak engagement

Niveau Engagement Voorbeelden

1 Uitgesproken laag Het kind vertoont nagenoeg geen activiteit:
- Geen concentratie: staren, wegdromen;
- Een afwezige, passieve houding;
- Geen gerichte activiteit, doelloze handelingen, niets teweegbrengen;
- Alleen aan het tikken op het scherm om door te gaan
- Alleen bezig met de experiment leider en niet met de taak;
- Geen tekenen van exploratie en interesse;
- Niets in zich opnemen, geen mentale activiteit.

2 Laag - Het kind vertoont enige activiteit, maar deze wordt geregeld onderbroken:
- Beperkte concentratie: wegkijken, prullen (friemelen), dromen;
- Makkelijk afgeleid;
- Taken worden in beperke mate uitgevoerd.

3 Matig Er is de hele tijd activiteit, maar niet echt geconcentreerd.
- Het kind is routinematig, vluchtig bezig;
- Is beperkt gemotiveerd, voelt zich niet uitgedaagd, toont geen echte inzet;
- Doet geen diepgaande ervaring op;
- Is niet opgeslorpt door wat het doet;
- Gebruikt zijn capaciteiten maar met mate;
- De activiteit raakt de verbeelding en het denkvermogen van het kind niet.
- De meeste taken worden uitgevoerd.

4 Hoog Er zijn doorgaans signalen van engagement:
- Het kind gaat globaal op in zijn spel;
- Er is doorgaans concentratie, maar soms verslapt de aandacht
- Het kind voelt zich uitgedaagd, er is een zekere gedrevenheid;
- Gebruikt zijn capaciteiten;
- Spreekt de verbeelding en het denkvermogen aan.

5 Uitgesproken hoog Het kind is gedurende de hele tijd ononderbroken bezig en gaat sterk op in zijn activiteit:
- Is ononderbroken geconcentreerd, opgeslorpt door de activiteit, vergeet de tijd;
- Is heel gemotiveerd, voelt zich sterk aangesproken;
- Is niet af te leiden;
- Kijkt aandachtig naar de taak, heeft aandacht voor details;
- Spreekt voortdurend al zijn capaciteiten en mogelijkheden aan;
- Er is een sterke mentale activiteit:
- De verbeelding en het denkvermogen draaien op volle toeren;
- Doet diepgaande nieuwe ervaringen op;
- Geniet van zo gedreven bezig te zijn.
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Table 4: De schaal voor robot engagement

Niveau Engagement Voorbeelden

1 Uitgesproken laag Het kind vertoont nagenoeg geen interactie met de robot:
- Negeert de robot volledig;
- Heeft een gesloten (lichaams)houding richting de robot;
- Een afwezige, passieve houding;
- Geen gerichte activiteit, doelloze handelingen, niets teweegbrengen;
- Geen tekenen van interesse in de robot

2 Laag Het kind vertoont enige robot interactie, maar deze wordt geregeld onderbroken:
- Kijkt beperkt richting de robot;
- Makkelijk afgeleid van de robot;

3 Matig Er is de hele tijd robot activiteit, maar niet echt geconcentreerd.
- Het kind is routinematig, vluchtig bezig;
- Is beperkt gemotiveerd, voelt zich niet uitgedaagd, toont geen echte inzet;
- Heeft een open (lichaams)houding richting de robot;
- Is niet opgeslorpt door wat de robot doet;
- Doelloos aanraken van de robot

4 Hoog Er zijn doorgaans signalen van robot engagement:
- Het kind gaat globaal op in zijn spel met de robot;
- Er is doorgaans sprake van joint attention;
- Er is doorgaans concentratie, maar soms verslapt de aandacht;

5 Uitgesproken hoog Het kind gaat sterk op in zijn activiteit met de robot:
- Is ononderbroken met de robot bezig
- Is niet af te leiden van de robot;
- Kijkt aandachtig naar robot,
- Praat tegen de robot;
- Gebaren na doen (in de iconische gebaren conditie);
- Er is sprake van joint attention;
- Geniet van met de robot bezig te zijn
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Summary

The impact of COVID-19 showed that our traditional classrooms are now heavily relying
on digital tools. In the past few years (2020-2021), teachers had to teach children online
and parents had to support their children in their school activities. Digital tools that can
support during teaching, such as social robots, would have been extremely helpful for teach-
ers. Robots have the advantage over tablets that they can use their body to act out behaviors
similar to those of teachers. For instance, by accompanying speechwith physical gestures that
can help children remain focused and increase their learning gain. Moreover, this physical
modality allows children to interact with robots more socially, which is especially important
in second-language (L2) learning.

My PhD trajectory was part of theHorizon 2020 L2TORproject1, in which six different
universities and two companies worked together and investigatedwhether a humanoid robot
can teach preschool children words from a second language. One of the key questions in this
projectwas howwe can develop robot behaviors that keep children engaged over time. There-
fore, I conductedmultiple studies to explore the effect of the robot on children’s engagement
and their perception of the robot.

The role of eye gaze in engagement

We first explored how we can measure children’s engagement.
We distinguished two types of engagement: engagement with
the task and engagement with the robot in order to understand
whether children were mostly captivated by the learning task, or
the robot as interaction partner. To measure children’s engage-
ment, children’s gaze direction is especially important, because
it can show the direction of the children’s attention. Therefore,
we investigated the role of eye gaze in children’s engagementwith
the task and the robot.

1The L2TOR project played a large role within the human-robot interaction (HRI) field toward open sci-
ence. All of the L2tor publications, the project deliverables, source code and data have been made publicly
available via the website www.l2tor.eu and via www.github.nl/l2tor andmost studies were pre-registered.
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InChapter two, we found that the direction in which children looked during the exper-
iment played a large role in children’s engagement. Children’s task engagement and robot
engagement could largely be measured by the duration that children looked in a certain di-
rection. For children’s task engagement all gaze directions were important, and for children’s
robot engagement the most important gaze direction was toward the robot. However, both
engagement types could not completely bemeasured by children’s eye-gaze directions, which
demonstrates that despite eye gaze having a large role in engagement, it does not predict all as-
pects of engagement. Therefore, we developed an engagement coding scheme that was used
in the other studies.

Feedback

Using this coding scheme, we investigated what kind of robot be-
havior can influence these two engagement types. We found that
the type of robotic feedback has an effect on task engagement and
robot engagement but not on learning gain. InChapter two, we
compared the effect of two robotic feedback types on 3-year-old
children’s engagement and learning gains.

These feedback types were based on how adults provide feedback and how peers provide
feedback. Moreover, we compared these two feedback strategies with a condition without
any feedback. Contrary to our expectations, we observed no differences in this study regard-
ing children receiving feedback or no feedback. We suspected that feedback may have more
impact when provided over a longer time period.

Consequently inChapter three, we investigated 5-year-old children’s engagement, who
have a longer attention span than 3-year-old children. We also designed three lessons instead
of one. In addition, we wanted to make sure that we designed the feedback to be as effective
as possible and, thus, we interviewed student teachers how they would provide feedback us-
ing the robot. We used their answers in a teacher-preferred feedback strategy and compared
it to the, as discussed with them, worst feedback strategy. This time, children learned and
the robot sessions were successful in teaching children new vocabulary. However, children
learned as many words with the robot’s feedback as without feedback. We did find a differ-
ence in children’s engagement. Children were more engaged with the robot and task when
interactingwith a robot using teacher-preferred feedback than in the other conditions. More-
over, some childrenmentioned the feedback in an after experiment interview, where they said
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that they liked that the robot helped them finding the correct answer.

Gestures

As explainedbefore, the typeof feedback canhave an influenceon
both children’s task engagement and robot engagement. How-
ever, we did not yet find a difference between children’s task en-
gagement and robot engagement. To explore the added value of
a robot compared to the task,Chapter four describes a study in
whichwe investigated a robot using iconic gestures (gestures that
depict the meaning of a second-language concept), a robot using
no iconic gestures, compared to a tablet-only condition.

To explore this effect on the long-term,we conducted a seven sessions studywith over 200
children. The task was the same in all conditions, in order to have consistent results. This re-
sulted in no differences in children’s task engagement. However, when looking at children’s
robot engagement, we found that children were more robot-engaged when the robot used
iconic gestures than with a robot without iconic gestures. It seems that the robot gestures
had a positive influence on children’s robot engagement. A robot in the iconic gesture con-
dition that moves its arms and hands will draw more attention to itself, resulting in a higher
robot engagement. These findings imply that the robot’s gestures must be well designed in
an interaction.

Perception

Finally, by interacting with robots over a long period of
time, children will undoubtedly develop a relationship
with the robot. This relationship can change over time,
due to the behavior of the robot.

Therefore, in Chapter five, we investigated the children’s perception prior to the seven ses-
sions study, and after this study. We found that children perceived the robotmore as a human
before the experiment than after the experiment and that specifically boys perceived the robot
more as a computer after the experiment. We suspect that the reason for this is because the
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children had very high expectations before the experiment, ones that the robot was not able
to fulfill and therefore, children’s perception of the robot changed after the experiment.

Relation engagement, perception andword learning

Over the different chapters, we investigated the relation
between children’s engagement and their word knowl-
edge after the experiment. Word knowledge was related
to ahigher engagement, but this held true for both types
of engagement and only in our study during seven ses-
sions. This study showed that children’s word knowl-
edge was higher when children were engaged with the
task, or engagedwith the robot, or both. This also holds
the other way around, children who remembered fewer
words were less engaged with the task and the robot.

Moreover, inChapter five, we also explored the relation between children perception of
the robot and their learning. We found that children’s perception before the experiment was
related to theirword knowledge after the lessons. But also that childrenwhoviewed the robot
more as a human over time, remembered more words over time and vice versa, children who
perceived the robot more as a computer after the experiment, remembered less words over
time.

Long-term effects

Engagement is not only dependent on the robot’s behavior, it
also is dependent on time. For this purpose, we measured chil-
dren’s engagementovermultiple sessions (inChapters three and
four). Children’s engagement dropped over time during both ex-
periments, but there were large individual differences. Moreover,
the robot’s behavior and the content of the lessons have an influ-
ence on the decrease in children’s engagement.

Chapter three showed that the robot’s feedback strategy in one session had an influence
on the children’s engagement in the following session. Furthermore, we noticed that dur-
ing our seven sessions study in Chapter four, after the third lesson, children’s engagement

199



&

seemed to decrease less (although it still varied for each child and lesson). Moreover, we found
that the final session increased children’s engagement again, possibly because this session had
a different setup than the rest. It is therefore important to take previous interactions into
account when designing long-term child-robot interactions and to expect that children’s en-
gagement will first decrease and will later stabilize over time.

Concluding remarks

This dissertation expands our knowledge for using robots to sup-
port children in second-language learning. A robot tutor would
have been extremely valuable during the COVID-19 pandemic,
but even after the pandemic this trend may continue. However,
before being able to introduce the robot in education and mak-
ing the future classroom a reality, it is important to take further
steps. On the one hand, it is good to already deploy robots for
tasks they are currently suited for, such as single lessons tailored
to maximize the contribution of robots. On the other hand, for
the future, more studies need to be carried out over longer pe-
riods to explore children’s engagement. With these extra experi-
ments in mind, we are confident that robots will increasingly be
able to support the teachers of the future.
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Samenvatting

Covid-19 heeft laten zien dat onze traditionele manier van lesgeven steeds meer afhanke-
lijk is van digitale hulpmiddelen. In de afgelopen jaren (2020-2021) hebben leerkrachten
kinderen online lesmoeten geven en hebben ouders hun kinderenmoeten begeleiden bij hun
lesactiviteiten. Digitale instrumenten die het onderwijs kunnen ondersteunen zoals sociale
robots, zouden uiterst nuttig zijn geweest voor leerkrachten. Robots die, in tegenstelling tot
tablets, hun lichaam kunnen gebruiken om zich vergelijkbaar te gedragen als leerkrachten.
Bijvoorbeeld door te gebaren tijdens het praten, waardoor kinderen zich beter kunnen con-
centreren wat een voordeel oplevert voor hun leerprestaties. Bovendien stellen robots, meer
dan tablets, kinderen in staat tot een sociale interactie, wat vooral belangrijk is bij het leren
van een tweede taal (L2).

Hierover ging mijn promotietraject wat onderdeel was van het Horizon 2020 L2TOR
project2, waarin zes verschillende universiteiten en twee bedrijven samenwerkten en onder-
zochten of een robot aan kleuters woorden uit een tweede taal kon leren. Een van de belang-
rijkste vragen in dit projectwas hoewe gedrag van de robot konden ontwikkelen dat kinderen
betrokken (engaged)houdt. Betrokkenheid vankinderen is belangrijk zodat zij tijdens langere
tijdsperiodesmetde robot aande slagwillen. Omdeze vraag te beantwoorden, heb ikmeerdere
studies uitgevoerd omhet effect van de robot op de betrokkenheid van kinderenmet de robot
te onderzoeken, alsmede onderzoek te doen naar de perceptie die de kinderen van de robot
hadden.

2Het L2TORproject leverde een grote bijdrage binnen het mens-robot interactie veld in de beweging richt-
ing publieke wetenschap. Alle L2TOR publicaties, de project deliverables, broncode en data zijn openbaar
gemaakt via de website www.l2tor.eu en via www.github.nl/l2tor en de meeste studies werden vooraf
geregistreerd.
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De rol van kijkgedrag in betrokkenheid

We hebben eerst onderzocht hoe we de betrokkenheid van
kinderen kunnen meten. We maakten onderscheid tussen twee
vormen van betrokkenheid: enerzijds met de leertaak zelf en
anderzijds in de omgang met de robot; dit was om te bepalen of
kinderen vooral geboeid waren vanwege de leertaak, of vanwege
de robot. Omde betrokkenheid van kinderen te bepalen kan hun
kijkrichting belangrijk zijn, omdat deze aangeeft inwelke richting
de aandacht van de kinderen gaat. Daarom onderzochten we de
rol van kijkgedrag in betrokkenheid bij de taak en de robot.

In hoofdstuk 2 vondenwe dat de richting waarin kinderen keken tijdens het experiment
een grote rol speelde in de mate waarin ze betrokken waren. Betrokkenheid met de taak en
met de robot werden grotendeels gemeten door de duur dat kinderen in een bepaalde richt-
ing keken. Voor de betrokkenheid van kinderen bij de leertaak waren alle kijkrichtingen be-
langrijk, en voor de betrokkenheid met de robot was het kijken in de richting van de robot
het meest belangrijk. Beide vormen van betrokkenheid konden echter niet volledig worden
gemeten door het kijkgedrag van de kinderen, wat aantoont dat hoewel de kijkrichting een
grote rol speelt in betrokkenheid, het niet alle aspecten vanbetrokkenheid voorspelt. Daarom
ontwikkelden we een coderingsschema om betrokkenheid te meten om te gebruiken in de
overige studies.

Feedback

Met behulp van dit coderingsschema, hebben we onderzocht
welk gedrag van de robot deze twee soorten van betrokkenheid
kan beïnvloeden. We vonden dat het type feedback dat de robot
gebruikte een effect had op zowel de betrokkenheid van het kind
bij de taak als op de betrokkenheid in de omgang met de robot,
maar niet op het leerresultaat.

In hoofdstuk 2 vergelekenwe het effect van twee vormen van feedback op betrokkenheid
en leerresultaat van driejarige kinderen. De robot gaf ofwel feedback zoals volwassenen feed-
back geven, ofwel hoe leeftijdsgenoten feedback geven. Bovendien vergeleken we deze twee
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feedbackmethodenmet een robot die geen feedback gaf. In tegenstelling tot onze verwachtin-
gen, zagen we geen verschillen tussen kinderen die een van de twee verschillende feedback of
geen feedback kregen. We vermoedden dat feedbackmeer effect zou kunnen hebbenwanneer
deze gedurende een langere periode wordt gegeven.

Daarom hebben we in hoofdstuk 3, ook de betrokkenheid van vijfjarige kinderen on-
derzocht, die een langere aandachtsspanne hebben dan driejarige kinderen, en bovendien on-
twierpen we drie lessen in plaats van één, zodat de feedback over een langere periode zou
worden gegeven. Daarbij wilden we er zeker van zijn dat de feedback die de robot zou geven
zo effectief mogelijk door ons zou worden ontworpen. Daarvoor hebben we studenten van
de lerarenopleiding gevraagd hoe zij feedback zouden geven als zij de robot zouden gebruiken.
We gebruikten hun antwoorden in de ‘door de leerkracht uitgekozen’ feedbackmethode en
vergeleken die met de, zoals met hen besproken, ‘slechtste’ feedbackmethode. Deze keer za-
genwe dat de robotsessies succesvol waren in het aanleren van nieuwewoorden aan kinderen.
Kinderen leerden echter evenveel woorden met de robot’s feedback als zonder feedback. We
vonden wel een verschil in de betrokkenheid van kinderen. Kinderen waren meer betrokken
met de robot en bij de taak wanneer ze interactie hadden met een robot die de ‘door de ler-
aar uitgekozen’ feedback gebruikte dan in de andere condities. Bovendien gaven sommige
kinderen in een interview na afloop van het experiment aan dat ze het fijner vonden dat de
robot hen hielp bij het vinden van het juiste antwoord.

Gebaren

Zoals besproken kan het type feedback invloed hebben op de
betrokkenheid van kinderen bij zowel de taak als met de robot.
We zagen echter nog geen toegevoegde waarde van de robot ten
opzichte van de taak. Daarom onderzochten we in hoofdstuk 4
de verschillen tussen het uitvoeren van een taak met een robot
met iconische gebaren (gebaren die een link maken tussen het
tweedetaalwoord endebetekenis), het uitvoeren van een taakmet
een robot zonder iconische gebaren, en dezelfde taak maar dan
alleen met een tablet uitgevoerd.

Om dit effect op lange termijn te onderzoeken, voerden wij een zeven lessen onderzoek
uitmetmeer dan 200 kinderen. Het lessenprogrammawas onder alle drie condities hetzelfde
zodat de deze goed vergelijkbaar waren. Hierdoor waren gemiddeld alle kinderen even be-
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trokken waren bij de taak. Toen we echter naar de betrokkenheid van de kinderen met de
robot keken, vonden we dat kinderen meer betrokken waren met een robot die iconische
gebarengebruikte danmet een robot zonder iconische gebaren. Het lijkt eropdat deze gebaren
een positieve invloed hadden op hoe betrokken kinderenmet de robot waren. Een robotmet
iconische gebaren beweegt zijn armen en handen, trekt meer aandacht naar zich toe, wat re-
sulteert in een hogere betrokkenheid. Deze bevindingen suggereren dat de gebaren van de
robot goed ontworpen moeten zijn in een interactie.

Perceptie

Ten slotte zullen kinderen, door gedurende lange tijd
met robots om te gaan, onvermijdelijk een relatie met
de robot ontwikkelen. Deze relatie kan in de loop van
de tijd veranderen, door het gedrag van de robot.

Daarom onderzochten we in ons laatste onderzoek, in hoofdstuk 5, de perceptie van de
kinderen voorafgaand aan het zeven lessen onderzoek, en na afloop van de lessen. We ont-
dekten dat kinderen de robot vóór het experiment meer als een mens zagen dan na het ex-
periment. Vooral jongens gingen de robot meer als een computer zien. De verandering van
perceptie kan komen doordat de kinderen vóór het experiment zeer hoge verwachtingen had-
den, die de robot niet kon waarmaken, en dat daarom kinderen hun perceptie van de robot
na het experiment veranderden.
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Relatie betrokkenheid, perceptie en leerprestaties

In de verschillende studies onderzochten we de
relatie tussen de betrokkenheid van de kinderen en
hun woordkennis na het experiment. Er bleek een
verband te bestaan tussen woordkennis en een hogere
betrokkenheid, maar we vonden dit alleen in onze
zeven lessen studie. Dit verband gold voor zowel
betrokkenheid met de robot als bij de taak: onze studie
toonde aan dat de kinderen meer woorden onthielden
wanneer kinderen betrokken waren bij de taak, of
betrokken met de robot, of beide.

Dit gold ook de andere kant op, kinderen die minder woorden onthielden warenminder
betrokkenmet de taak en de robot. Daarnaast onderzochten we in hoofdstuk 5 het verband
tussende perceptie vande robot enhun leerprestaties. We toonden aandat de perceptie die de
kinderen vóór het experiment van de robot hadden, gerelateerd was aan hunwoordkennis na
de lessen. We ontdekten ook dat kinderen die de robot na verloop van tijd meer als een mens
zagen, meer woorden onthielden. Vice versa, de kinderen die de robot na het experiment
meer als een computer zagen, onthielden minder woorden na verloop van tijd.

Lange termijn effecten

Beide types van betrokkenheid zijn niet alleen afhankelijk van het
gedrag van de robot,maar ook van tijd. Daaromhebbenwede be-
trokkenheid van kinderen gemeten gedurende de experimenten
in hoofdstukken 3 en 4met drie en zeven lessen. De betrokken-
heid van kinderen daalde in de loop van de tijd tijdens beide ex-
perimenten, maar er waren grote individuele verschillen. Boven-
dien hebben het gedrag van de robot en de inhoud van de lessen
invloed op de daling van de betrokkenheid van kinderen.

Uit hoofdstuk 3 bleek dat de feedbackmethode van de robot in een les invloed had op de
betrokkenheid van kinderen tijdens de volgende les. Verder bleek dat bij het onderzoek van
hoofdstuk 4, de betrokkenheid van kinderen na de derde les minder sterk leek af te nemen
(hoewel het nog steeds per kind en les verschilde). Bovendien ontdektenwe dat de betrokken-
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heid van kinderen tijdens de laatste les weer omhoogging, mogelijk omdat deze les woorden
herhaalden en daarmee een andere opbouw had dan de overige lessen. Het is daarom be-
langrijk om rekening te houden met eerdere interacties bij het ontwerpen van lange termijn
kind-robot interacties en ervan uit te gaan dat hun betrokkenheid over tijd zal afnemen,maar
uiteindelijk op een bepaald niveau zal blijven hangen.

Tot slot

Dit proefschrift draagt bij aan kennis over het gebruik van
robots om kinderen te ondersteunen bij het leren van een tweede
taal. Een robot tutor zou zeer waardevol zijn geweest tijdens de
Covid-19 pandemie, maar ook na de pandemie kan deze tendens
zich voortzetten. Voordat we de robot in het onderwijs kunnen
introduceren enwehet toekomstige klaslokaalwerkelijkheid kun-
nen maken, is het belangrijk om verdere stappen te zetten. Ener-
zijds is het goed om robots nu al in te zetten voor taken waar ze
op dit moment geschikt voor zijn, zoals losse lessen optimaal ont-
worpen voor de robot. Anderzijds moeten er voor de toekomst
meer studies worden uitgevoerd over langere periodes om meer
inzicht te krijgen in de betrokkenheid van kinderen. Met deze
extra experimenten in gedachten hebben wij er alle vertrouwen
in dat robots in toenemende mate in staat zullen zijn de leraren
van de toekomst te ondersteunen.
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ene sushi bar in Tilburg, danwel naar de andere sushi bar in Tilburg, of een Japans restaurant
in Parijs. Ik wacht nog op het moment dat we naar Japan gaan, we hebben al flink geoefend.
Moving on to the rest of theL2TOR team, I also want to thank them. I am so happy that we
were not only hired on the same project, but we were actually a team working together and
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making the first steps in this new field, including great hackathons in Paris at the Softbank
head quarters and drinking beers in Eindhoven. Besonderen Dank an Thorsten, with who
my German practice was short-lived. Daarnaast hebben er veel studenten meegewerkt bin-
nen onze projecten. Bedankt Annabella, Chani, Chiara, Hugo, Esmee, Laura, Laurette,
Madee, Marije, Michelle, Peta, Reinjet, Robin S, Sabine, Sam, Sirkka voor jullie hulp
met het verzamelen van de data. Pieter W, bedankt dat ik jou mocht begeleiden tijdens je
afstuderen en heel veel succes met jouw promotie!

Ookdank aan velen vande universiteit (I hope I didn’t forget anyone). Alexandra, Anna,
Angelique, Chris, George, Lieke, Lisa, Mariana, Marlies, Menno Z, Paris, Thiago and
Tycho, you showed that enjoyment and productivity go together and that you need breaks
and especially Friday evening drinks. Pieter S en Marie, ik wil jullie bedanken voor de gele-
genheid om aan mijzelf te blijven werken tijdens mijn promotietraject zodat ik alvast onder-
wijservaring op kon doen. Marie, bedankt ook het aanmoedigen ommijn eigen tekeningen te
gebruiken in mijn proefschrift. Gonzalo, Maryam, Merel, Lisanne, Peter, I want to thank
you that you have welcomed me in your team of Assistant Profs. Dimitar, Mirella, let’s
make the robot do sign language at some point. Eva en Karin, heel erg bedankt voor al jullie
hulp de afgelopen jaren. Natuurlijk kan het ook niet achterblijven omRobin, Luka, Char-
lie, en Taylor te bedanken, zonder hen was dit niet mogelijk geweest. Ik ben heel blij dat we
er heelhuids doorheen gekomen zijn (op een paar gekneusde vingers na)!

Ik heb ook velen buiten het werk om gehad om afleiding te geven. Irene, we hebben wat
meegemaakt in ons kleine appartementje in Nijmegen, maar ik had nooit voorspeld dat ik
zou verhuizen naar de plek waar jij ongeveer ben opgegroeid. Ik heb altijd heerlijk kunnen
praten met jou over de kids, en hopelijk kan ik nog een keertje langskomen met de robot!
Iris, Kimberley, Sigrid, Ashley, Monique en Daria, ik wil jullie bedanken voor het plezier
buiten mijn werk om als ik weer energie teveel had gekregen van de kinderen en het eraf
moest sporten, of als ik juist helemaal in dubio stond hoe ik verder moest gaan. Maarten en
Leonoor, jullie bedankt voor alle afleiding met spelletjes spelen en het borrelen op maandag-
avonden om de eerste werkdag van de week af te sluiten.

Papa en mama, bedankt dat jullie mij altijd hebben aangemoedigd in wat ik wilde doen.
Als ik nog even een halfjaartje naar het buitenland wilde ondanks dat dat vertraging zou op-
leveren, als ikwilde verhuizennaar de andere kant vanhet land (Noord-Brabant), niets is te ver
voor jullie en jullie hebben mij altijd geholpen wanneer ik het vroeg (maar ook als ik het niet
vroeg). Jullie begrepenmijn academische dilemma’s precies en ik kwamaltijd verder als ikmet
jullie sprak. Ik ben vandaag extra blij dat mijn promotie nog net voor papa’s pensioen komt.
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Wouter enMenno, bedankt dat jullie mij hebben voorbereid op het peer review proces door
jullie plagerijen vroeger maar ook voor alle hoeraatjes tegenwoordig als ik door het proces
heengegaan ben. Arjen, natuurlijk wil ik ook jou niet vergeten. Jij hebt van heel dichtbij
meegemaakt hoe zwaar ik het af en toe had, en dat het lastig was om alles hoog te houden.
Maar jij zorgde er altijd voor dat het duidelijk was dat het af en toe niet erg is om een balletje
te laten vallen en tijd voor mijzelf (en ons) te nemen. Heel erg bedankt daarvoor. Ik wil dan
ook je ouders even noemen, want niemand was blijer voor mij dan jullie,Ad en Elly, toen ik
mijn werk indiende.

Als laatste wil ik graag alle scholen, kinderen, ouders, juffen en meesters bedanken die
meegedaanhebben aanmijnonderzoeken. Inde afgelopen jarenheb ikmeerdan300kinderen
gezien engetest, demeestenmeerdereweken endat verdient zeker eenplek inmijndankwoord.
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