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“I spy with my little eye... bird.”

The girl gets up, stretches her arms, and starts moving them up and down
gracefully to depict the act of �ying. I am in the middle of conducting our �rst study
(Chapter 3), and this was the �rst time I had seen one of the children get up and
mimic one of the robot’s gestures. That is when I realized that there is something
magical about how these gestures can contribute to our communication with each
other and, as it turns out, with robots as well.

This �rst studywas part of the L2TOR (‘el tutor’) project, a European Commission-
funded collaboration between several universities and industry partners across
Europe (Belpaeme et al., 2015). The aim of this project was to investigate the potential
role of social robots — robots that look human-like, and are designed to engage with
people in everyday interactions (Bartneck & Forlizzi, 2004; Du�y, 2003) — as tutors
for second language (L2) learning. There is a need for innovative technological
tools in education, because the average number of students per teacher is increasing.
This limits the teachers’ ability to accommodate their students’ individual needs, for
example regarding their preferred learning style (Blatchford & Russell, 2020). The
L2TOR project sought to answer the question whether social robots can �ll this need
for technological support in education and, if so, how we can design interactions in
such a way that social robots can be e�ective as second language tutors.

Compared to alternative technologies that can help provide individual tutoring
(e.g., tablets), social robots are physically present in the context where learning takes
place. This could enable them to provide additional social support and communicate
with the student in a natural, human-like way, which has been argued to be conducive
to learning (Saerbeck et al., 2010). These communicative skills, as well as abilities
such as detecting the learner’s emotional state, are together referred to as a robot’s
perceived social intelligence (Fong et al., 2003). An important component of this
social intelligence is the ability to use non-verbal communication, including the use
of manual (hand) gestures. Therefore, in the current thesis we focus on studying the
e�ects of a social robot’s use of manual gestures to facilitate the learning process.

To support our communication with others, we tend to spontaneously make
use of di�erent types of hand gestures (Hostetter, 2011; McNeill, 1992; Rohl�ng
et al., 2012). In this thesis, we will focus mostly on deictic gestures, also known as
pointing gestures, iconic gestures, and metaphoric gestures. Deictic gestures are used
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CHAPTER 1. INTRODUCTION

to refer to objects, people, or locations, and can be used to direct someone’s visual
attention (Kita, 2003). Iconic and metaphoric gestures convey meaning by eliciting a
mental image that corresponds to the relevant concept (McNeill, 1985). While iconic
gestures refer to concrete objects or actions (e.g., depicting a telephone by holding a
hand up to one’s ear, with the thumb and pinky �nger extended), metaphoric gestures
refer to abstract concepts (e.g., depicting that something is large by extending one’s
arms and spreading them far apart).

Gestures have been argued to play an important role in education as well (see,
e.g., Roth, 2001, for a review). They have been shown to aid students’ understanding
of lesson content, and can help retain newly acquired knowledge over time (Alibali
& Nathan, 2007; Cook et al., 2008). Furthermore, children’s attention appears to be
drawn more to the object of learning if a teacher uses gestures, which can lead to
better learning outcomes compared to when a teacher only uses speech (Wake�eld et
al., 2018). Speci�cally in (second) language learning, iconic and metaphoric gestures
can aid the learning process (Rohl�ng, 2019), by ‘grounding’ new and unknown
words in the student’s existing non-linguistic knowledge or experiences (Barsalou,
2008; Hald et al., 2016), which can lead to improved second language vocabulary
acquisition for adults (Kelly et al., 2009; Macedonia et al., 2011) as well as children (de
Nooijer et al., 2013; Rowe et al., 2013; Tellier, 2008).

Because social robots typically have arms and hands in one form or another,
they may be able to use gestures in a similar manner as human speakers do. It
is therefore conceivable that the positive e�ects of gestures that are observed in
education could apply to tutoring provided by social robots as well. Research into
robot-performed gestures in general has indeed shown promising results (e.g., van
Dijk et al., 2013; Yadollahi et al., 2018), although to the best of our knowledge their
contribution speci�cally to second language tutoring has not been explored prior to
the start of the L2TOR project. Next to supporting the robot’s tutoring e�orts and
being part of a robot’s socially intelligent behavior, gestures might also contribute
to other aspects of the robot’s social intelligence, such as being able to express
emotions (e.g., J. Xu et al., 2014) and building rapport (e.g, Stolzenwald & Bremner,
2017). Displaying more complex and diverse forms of social intelligence, in turn, can
result in sustained engagement during the educational interactions (Leite et al., 2013),
and could make people more likely to accept social robots in their daily lives (de
Graaf & Ben Allouch, 2013): two important elements for establishing a lasting impact
on the �eld of education.
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1.1. SOCIAL ROBOTS AS (SECOND LANGUAGE) TUTORS

One key di�erence between the gesturing behavior of robots and humans, is that
we tend to produce our gestures spontaneously (Hostetter & Alibali, 2008), while
for robots the entire gesture production process has to be deliberately designed
and implemented. This includes designing the gestures themselves — what should
a gesture for a car look like? — as well as integrating these gestures with other
modalities, such as speech, and adjusting to various contextual factors (e.g., adding
variation to make the robot seem less repetitive). At the same time, the robots that
are currently available are limited in their motor degrees of freedom, which means
that it is impossible to have a robot copy the exact physical behavior of a human.
The design decisions that have to be made when imbuing a robot with the ability to
use gestures will likely have consequences, in terms of the gestures’ contribution
to second language learning or the degree of engagement with the robot. If, for
example, the robot were to gesture too frequently, or the meaning of the gestures is
unclear, they might not help children learn words in a second language, and may
even have a detrimental (i.e., distracting) e�ect. It is therefore important to explore
the design space of robot-performed gestures, in order to optimize the use of this
modality, and by extension to optimally make use of the robot’s physical presence.
As a result, the main objective of this thesis is to study the e�ects of robot-performed
gestures in the context of second language tutoring with children, and to explore
how design decisions regarding the robot’s gesture production process may in�uence
these e�ects.

1.1 Social robots as (second language) tutors
Several literature reviews have explored the use of social robots as tools for educa-
tion (Belpaeme et al., 2018; Mubin et al., 2013; Toh et al., 2016). Similarly to other
technologies that have previously been introduced to the educational �eld, such as
tablet devices and virtual agents, robots could potentially complement teachers —
but certainly not replace them — as tutoring devices. A robot can tirelessly repeat
content to practice as long as needed (Chang et al., 2010), and the tutoring interaction
can be tailored to the needs of an individual student (e.g., Leyzberg et al., 2018). The
added bene�ts of using social robots rather than alternative technologies are thought
to lie in their physical presence in the real world, as well as their human-likeness and
the resulting ability to provide social support to the student. However, it remains a
challenging task to create robots that are able to engage in complex social interac-
tions (Yang et al., 2018). More research is needed to determine whether social robots
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CHAPTER 1. INTRODUCTION

can live up to our expectations, how we can best make use of this new technology,
and who can bene�t from interacting with social robots, in which contexts.

Physical embodiment and presence in the physical world are said to be important
bene�ts of social robots, compared to alternative technologies such as tablets. This
allows them to observe, move around in, and interact with the environment in which
learning takes place, which could further support their teaching e�orts (e.g., Hood
et al., 2015). The robot could, for example, refer to or manipulate objects in the
environment. However, this avenue of research is still relatively underexplored, pos-
sibly because it is challenging for the types of social robots that are currently widely
available to manipulate objects in complex, unconstrained environments (Kemp et al.,
2007). The robot’s physical presence in and of itself has been shown to stimulate
social behavior from the student and result in greater learning outcomes (Belpaeme
et al., 2018), as well as increase trust toward the robot, compared to when it is telep-
resent via a screen (Bainbridge et al., 2011). A literature study found that physically
embodied and present robots were rated more positively compared to telepresent
robots and virtual agents (Li, 2015). This was especially true if the robot used gestures,
which therefore appears to be an important way for robots to take advantage of their
presence in the physical world.

Because social robots often look human-like, people tend to anthropomorphize
them: they assign human characteristics and behavior to them (Du�y, 2003). As
a result, people want to — and expect to — communicate with social robots in a
human-like way (Bartneck & Forlizzi, 2004), for example using natural language
and non-verbal means of communication, such as gaze and hand gestures. If a
robot is able to meet these expectations, people might be more likely to build so-
cial bonds with them (de Graaf, 2016). A robot’s social behavior further includes
aspects such as observing and exhibiting emotions, and the ability to establish social
relationships (Fong et al., 2003). However, social behavior proves to be challenging
to implement, as it relies on complex sensing and decision-making functionalities
(i.e., picking up on social signals, and then reciprocating in an appropriate manner).
Engaging in social interaction, especially in the long term, is therefore considered
one of the grand challenges in robotics (Yang et al., 2018). If a robot does manage
to build a social bond with people, this will likely support the robot’s ability to act
as a tutor. For example, research has shown that students who experience a social
bond with a robot are more likely to exhibit social behavior, such as help-seeking,
themselves (Howley et al., 2014), and experiencing rapport with a social robot has
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1.1. SOCIAL ROBOTS AS (SECOND LANGUAGE) TUTORS

been shown to contribute to greater learning outcomes (Kory-Westlund & Breazeal,
2019).

Surveys in the domain of (second) language learning illustrate the potential
of using social robots to support children and adults in acquiring new language
skills (Kanero et al., 2018b; van den Berghe et al., 2019). An advantage of using
robots is that they can switch between the student’s primary (L1) and secondary (L2)
languages. Students in a study also reported feeling less anxious and more motivated
when a social robot accompanied a teacher during a second language vocabulary
lesson (Alemi et al., 2015). Gestures in particular are mentioned as an important
feature of social robots in this context, because they have previously been shown
to support second language learning with human teachers (Kanero et al., 2018b).
However, there is still a lack of conclusive evidence regarding the e�ectiveness of
social robots as second language tutors, particularly in the long term. In addition, it
is unclear how robot tutors compare to alternative technologies or human tutors,
and to what extent their e�ectiveness is subject to individual di�erences between
students.

It is possible that people’s expectations, for example in terms of perceived social
intelligence, exceed the capabilities of the robots that are currently available, resulting
in a sense of disillusionment known as the social robotics winter (Henschel et al., 2020).
When evaluating the design of the robot’s behavior, it is therefore important to not
only consider the e�ects of these design decisions on (short-term) learning outcomes,
but to also investigate indicators of interest in, and relationship formation with social
robots, such as the levels of engagement or involvement with the interaction, and
how the robot is perceived by the people interacting with it (e.g., as a social agent,
or rather an inanimate toy). This applies to the robot’s use of hand gestures as well,
which may not only result in better learning outcomes, but could also contribute to
greater levels of engagement and change the students’ perception of the robot.

The L2TOR project

This thesis was carried out as part of the L2TOR (‘el tutor’) project (Belpaeme et al.,
2015), a European Commission Horizon 2020 funded project that ran from 2016–2019,
in which a number of European academic and industry partners collaborated to
investigate whether social robots could successfully be used as second language
tutors for children in kindergarten (4–6 years old, the �rst two grades of primary

7



CHAPTER 1. INTRODUCTION

school in the Netherlands)1. The collaborating universities were Bielefeld University
(Germany), Ghent University (Belgium), Koç University (Turkey), Plymouth Univer-
sity (United Kingdom), Tilburg University (the Netherlands), and Utrecht University
(the Netherlands). The industrial collaborators were SoftBank Robotics (France) and
Zora Robotics (Belgium).

To address several of the important outstanding questions in the �eld of social
robotics for second language learning outlined in the previous paragraph, the project
consisted of a number of studies that each focused on a particular design feature
of the robot, such as adapting to the skill level of the student (Schodde et al., 2017,
and Chapter 3 of this thesis), providing di�erent types of feedback (de Haas et al.,
2020), and gestures — the focus of this thesis. In addition, di�erent aspects of the
interaction between the children and the robot were studied, including not only the
resulting learning outcomes, but also engagement with the task and the robot, the
degree to which children anthropomorphized the robot (van den Berghe, de Haas,
et al., 2021), and individual di�erences, for example based on children’s existing
word knowledge in their �rst language (van den Berghe et al., 2021b). The initial
explorations culminated in a large-scale study, in which the combined use of a robot
and a tablet was compared to using only a tablet to investigate the added value
of having a robot physically present, and this study spanned multiple sessions to
measure potential long-term e�ects (Vogt et al., 2019).

The L2TOR project played a leading role in the move within the human-robot
interaction (HRI) �eld toward open science, as the project deliverables2, source code3,
and data are made publicly available. Furthermore, to our knowledge, our study (Vogt
et al., 2019) was the �rst publication at the HRI conference to have been preregistered,
and several of our later studies (including Chapter 6) followed suit.

1.2 Gestures in education
Hand gestures can be described as ‘visible actions’ depicted with our bodies (Kendon,
2004). They serve an important communicative role, as they can be used to manage
and guide the attention of others (Rohl�ng et al., 2012), and can make information
easier to understand compared to only using speech (Hostetter, 2011). Gestures can

1Additional information regarding the L2TOR project, including a promotional video, can be found on
our website: https://web.archive.org/web/20210415022714/http://www.l2tor.eu/

2https://web.archive.org/web/20210415022714/http://www.l2tor.eu/
3https://github.com/l2tor
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1.2. GESTURES IN EDUCATION

be bene�cial in educational settings as well, where they are shown to aid students’
understanding of the materials, particularly in di�cult domains (e.g., language
learning), or when dealing with complex or new concepts (Alibali & Nathan, 2007;
Booth et al., 2008; Kelly et al., 2008; McGregor et al., 2009), potentially by reducing
cognitive load (Goldin-Meadow, 2000). Students are likely to pay more attention to a
lecture in which the teacher uses gestures (Valenzeno et al., 2003), which could lead
to further improvements in their understanding and, hence, their learning outcomes.

Based on taxonomies from existing literature in gesture studies, we can distin-
guish between di�erent types of gestures (Ekman & Friesen, 1969; McNeill, 1992).
Deictic or pointing gestures are used to refer to objects, people, or locations, and
thereby to direct someone’s visual attention (Kita, 2003). Beat gestures can be used to
emphasize certain parts of speech (Bosker & Peeters, 2021; Krahmer & Swerts, 2007).
Meaningless motions that are subconsciously performed, such as self-touching, are
referred to as adaptors. Regulators are gestures that facilitate various aspects of our
communication, such as turn taking (Ekman & Friesen, 1969; Żywiczyński et al.,
2017). Emblematic or symbolic gestures have a particular meaning that is agreed upon
(e.g., waving to greet someone), and they can ful�l a social role or help structure the
conversation (Kendon, 1995). Iconic and metaphoric gestures also convey meaning
but, contrary to emblematic gestures, they elicit a mental image that automatically
corresponds to the relevant concept, and as such their meaning does not have to
be agreed upon (McNeill, 1985). Iconic gestures refer to concrete objects or actions,
while metaphoric gestures refer to abstract concepts.

For iconic and metaphoric gestures to have a positive e�ect in education, it
is argued that it is important for them to convey meaning, and that this meaning
is understood by the student: Research has shown that arbitrary movements or
gestures that do not match what is communicated via speech do not improve learning
outcomes, while meaningful gestures do (Kelly et al., 2009; Macedonia et al., 2011). It
is further proposed that these gestures are more e�ective if they are not completely
redundant with what is communicated via speech, so that they add further details or
examples (Hostetter, 2011).

There are di�erent ways, also referred to as modes of representation (Müller,
2014), to depict a certain concept using iconic or metaphoric gestures. For example,
the gesture for a car could consist of outlining the general shape of a car and its
wheels, or the action of driving a car (or a combination of both). Although there is
often a default gesture that most people would choose — in case of the car, likely the
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CHAPTER 1. INTRODUCTION

action of driving it — there is variation in how people transform their mental image
of a concept into motion (Dargue & Sweller, 2018; Masson-Carro et al., 2017; Ortega
& Özyürek, 2016; Ortega & Özyürek, 2020; van Nispen et al., 2014; van Nispen et al.,
2017). This could be explained by the concept of schemata, proposed by Piaget and
Cook (1952), referring to mental representations of objects and concepts that may
di�er between people. As we experience more aspects of an object or concept, our
schema becomes more elaborate. In fact, observing gestures by others is said to
facilitate this schematization process, by focusing the attention on particular salient
aspects of a concept or event (Aussems & Kita, 2019). Variation theory (Marton &
Booth, 2013) further states that an object of learning may be perceived di�erently
between students, with one student’s focus being on a di�erent aspect of the object
(e.g., the pointy shape of the tip of a pencil) than another student’s (e.g., a pencil as a
tool for drawing).

This variation in gesturing strategies can potentially also be explained by age:
Children are more likely to use their entire body to depict a concept, while adults
usually represent and manipulate the concept from an ‘outsider looking in’ perspec-
tive, by using only their hands (Sekine et al., 2018). For example, while children
may form the tip of a pencil by raising both hands above their head to ‘become’ the
object, adults will likely display the act of writing or drawing with an imaginary, but
realistically sized pencil. Children generally also produce faster and less coordinated
motions than adults (Jain et al., 2016), and the type of information they are trying to
convey as well as their cognitive abilities have been shown to in�uence children’s
gesturing behavior (Abramov et al., 2021). Next to the mental image and age of the
producer of the gestures, characteristics of the person the gestures are addressed to
may play a role as well. Research on action demonstration has shown that adults
perform di�erent, often more exaggerated motions when they are addressing an
infant compared to another adult (Rohl�ng et al., 2006), and infants prefer these
motions over adult-directed versions (Brand & Shallcross, 2008). This di�erent way
of demonstrating actions to infants is also referred to as ‘motionese’ — a variation of
‘motherese‘ as infant-directed speech.

Not only do children produce gestures di�erently, they also appear to rely more
on gestures performed by others than adults do (Hostetter, 2011). However, the
ability to understand and make use of iconic and metaphoric gestures is a skill that
develops during our early years (Novack et al., 2015; Stan�eld et al., 2014), such that
very young children (i.e., until three years old) may not be able to bene�t fully from
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1.2. GESTURES IN EDUCATION

these gestures. There are further individual di�erences between children: When
learning a second language, children with weaker skills in their �rst language appear
to bene�t more from gestures than those with stronger L1 skills (Rowe et al., 2013),
which could be due to the fact that gestures are particularly useful for complex
tasks (McNeil et al., 2000), and the task of learning words in a second language may
be more di�cult if the student is not as con�dent in their �rst language.

Preliminary research indicates that, in supporting language learning, gestures for
particular types of concepts could be more e�ective than for other types of concepts.
For example, one study observed that gestures referring to spatial concepts (e.g.,
under) or motor events (e.g., running) were more communicative than those referring
to more abstract concepts (e.g., blue; Hostetter, 2011). However, students that were
taught second language vocabulary in a di�erent study still bene�ted from gestures
even for abstract concepts (Repetto et al., 2017). Additionally, research has shown
that gestures could be particularly useful for teaching verbs (Wake�eld et al., 2018).

One �nal factor that may in�uence the e�ectiveness of gestures in education
is whether the student also imitates or reenacts the gestures. Studies in solving
mathematical problems (Cook et al., 2008), as well as �rst and second language
vocabulary learning (de Nooijer et al., 2013; Repetto et al., 2017; Tellier, 2005, 2008)
all showed that gestures were e�ective at improving learning outcomes when they
were reenacted by the students, although the studies in second language learning did
not compare between merely observing and reenacting the gestures. This bene�cial
e�ect of actively depicting the objects of learning might be explained by embodied
cognition (Hostetter & Alibali, 2008) and, in the case of language learning, the
language-action connection (Glenberg & Gallese, 2012).

To summarize, gestures are shown to have positive e�ects on (second language)
education, although there are a number of factors that may in�uence their e�ective-
ness: whether they are meaningful and understood by the student, how they relate
to what is conveyed via speech, the chosen mode of representation, the age of the
student, the type of concept that the gesture relates to, and whether the gestures
are merely observed or also reenacted. Hence, the question arises whether these
positive e�ects of gestures also apply when it is a robot performing them, instead of
a human.
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1.3 Robot-performed gestures

The previous sections have illustrated that gestures may be considered a key element
of a robot’s socially intelligent behavior, and an important way for a robot to make use
of its physical presence. Because robots look human-like, they can perform similar
gestures to those of human tutors, and these gestures may therefore also be e�ective
at supporting the robot’s tutoring e�orts. However, currently available robots are
limited in their motor degrees of freedom, which means that they cannot perform
gestures with the same �uidity and detail as humans can. This, in turn, may have a
negative e�ect on their performance, and thus it is important to evaluate whether
the robot’s gestures are elaborate and clear enough for them to be understood by the
students.

Another important di�erence between gestures performed by humans and robots
is that our gesture production process is spontaneous and subconscious (Hostetter &
Alibali, 2008), while for robots the gestures will have to be designed and integrated
with other modalities, such as speech. On the one hand, this gives the designer a large
degree of control over the robot’s behavior, so that gestures can be aligned with the
robot’s physical capabilities, and characteristics of the student (e.g., child-directed
gesturing styles with exaggerated motions). On the other hand, this introduces
a number of design decisions that may in�uence the e�ectiveness of the robot’s
gestures for better or for worse. For example, it is unclear what a desirable frequency
of gesturing by robots is, but this is argued to be lower than a human’s frequency to
avoid forming a distraction (Pollmann et al., 2020).

Existing research into the e�ects of robot-performed gestures in education is
scarce. However, studies in the �eld of storytelling indicate that a robot’s use of
gestures can help retain details of the stories (Huang & Mutlu, 2013; Sza�r & Mutlu,
2012). In a learning-by-teaching scenario, where children had to correct the robot’s
reading, children with high reading pro�ciency themselves performed better if the
robot used deictic gestures while reading, but children with low reading pro�ciency
appeared to be distracted by the gestures (Yadollahi et al., 2018). To our knowledge,
no previous studies, prior to the work presented in this thesis, have focused on
second language learning. However, a study on memorizing �rst language verbs
with adults showed that a robot’s use of iconic gestures resulted in better recall
compared to a robot that did not gesture (van Dijk et al., 2013). In addition, during
interview studies, children of 10–12 years old (Ahmad et al., 2016a) and language
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teachers (Ahmad et al., 2016b) both mentioned seeing a potential in using robots
as language tutors, and particularly stressed the important role that gestures could
play.

Compared to robots that remain static, robots that gesture are often perceived
as more human-like (Asselborn et al., 2017; Salem et al., 2013a), and are rated more
positively (e.g., as likeable and lively; Huang & Mutlu, 2014; Salem et al., 2012).
Furthermore, interactions with robots that gesture are found to be more enjoy-
able (Carter et al., 2014), and result in higher levels of engagement (Asselborn et al.,
2017; Bremner et al., 2011), compared to robots that do not use gestures. These factors
may, in turn, lead to the robot being perceived as a social agent (Bao & Cuijpers,
2017; Burns et al., 2018), and to the development of a relationship between the child
and the robot (van Straten et al., 2020), which could further improve the e�ectiveness
of the robot’s tutoring e�orts. Because the gestures are deliberately designed, it may
be possible to exert some form of control over how the robot is positioned as a tutor,
for example by providing it with a certain personality (e.g., based on Big Five traits,
or in terms of dominance; Aly & Tapus, 2013; Peters et al., 2019), or an emotional
state (e.g., positive or negative; J. Xu et al., 2014), which can help shape the way the
robot is perceived by others.

In summary, based on existing research from related �elds, robot-performed
gestures show potential in supporting second language tutoring, as they could lead to
improved learning outcomes as well as increased enjoyment and engagement, which
could indirectly lead to better learning outcomes as well by means of a stronger social
bond with, and greater acceptance of robots as tutors. However, these e�ects have
not been empirically validated yet. There is also no clear overview of how di�erent
factors — relating to the design of the robot’s gestures, their integration with the
tutoring interaction, and individual di�erences between students — in�uence the
potential bene�cial e�ect of robot-performed gestures on second language learning.
The current thesis aims to tackle these issues.

1.4 This thesis
In this thesis, we address the need for empirical research into the e�ects of robot-
performed (iconic) gestures on second language tutoring, and identify factors that
may in�uence these e�ects. Concretely, the following overarching research question
will be addressed: What are the e�ects of robot-performed gestures in the context of
second language tutoring with children, and how are these in�uenced by the design
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decisions regarding the robot’s gesture production process? This research question
can be divided into the following subquestions, which will be addressed in the
upcoming chapters, and together shape our contribution to human-robot interaction
and gesture studies:

RQ1 How can we best design and implement robot-performed iconic gestures?
(Chapters 2–6)

RQ2 What are the observed bene�ts of robot-performed iconic gestures in human-
robot interaction, and in robot-supported education in particular, according to
existing literature? (Chapter 2)

RQ3 Does a robot that uses iconic gestures to support its second language tutoring
e�orts result in better learning outcomes than one that does not use iconic
gestures? (Chapters 3, 4, and 6)

RQ4 Are children more engaged with a robot that uses iconic gestures, compared
to with one that does not use gestures? (Chapters 3, and 6)

RQ5 What are potential factors that in�uence the e�ect of robot-performed iconic
gestures on second language learning outcomes?
(Chapters 3, 4, and 6)

RQ6 How can we collect naturalistic human-performed examples of iconic gestures,
and use these as input for designing a robot’s gestures?
(Chapters 5, and 6)

RQ7 Do gestures contribute more to learning performance when multiple gestures
are used for the same concept, highlighting di�erent salient features of this
concept, compared to a single gesture for each concept? (Chapter 6)

RQ8 Does variation in the robot’s gesture repertoire result in higher levels of
engagement with the robot or the task, compared to a single gesture for each
concept? (Chapter 6)

1.5 Thesis outline
In Chapters 2–6, we present the results of applying a combination of methods in order
to answer the research questions outlined above: a systematic literature review, three
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experimental studies that were conducted at primary schools in the Netherlands, and
one dataset that was collected in a gameful human-robot interaction. This research
was carried out as part of the Horizon2020 L2TOR project. For all studies except
for the literature review, the SoftBank Robotics NAO V5 robot was used, which is a
commercially available social robot with 25 degrees of freedom, shown in Figure 1.1.

Figure 1.1: The NAO robot used in Chapters 3–6 of this thesis.

Chapters 2 and 4 are submitted to, and Chapter 5 is published in an academic
journal. Chapters 3 and 6 were presented at the ACM/IEEE Human-Robot Interaction
(HRI) conference, in 2018 and 2020 respectively. All chapters are therefore written
as self-contained articles and, as a result, some overlap between the introductions
(and with the general introduction), stylistic di�erences, and inconsistencies in the
measurements and analyses used are unavoidable. However, the studies presented in
these chapters do build upon each other to form a coherent narrative, and together
contribute to answering the main research question.

Chapter 2 Before addressing the main research question, it is important to create an
overview of the state of the art regarding the design of a social robot’s gesturing
behavior, as well as the observed e�ects of these gestures. This was done by
conducting a systematic review of existing literature in the �eld of human-
robot interaction, with 167 articles that met the inclusion criteria. In this
review, to create a comprehensive overview of existing research, we looked at
robot-performed hand gestures in general, not only in the �eld of education.
This allowed us to identify various factors that could potentially play a role in
the e�ectiveness of the robot’s gestures, as well as e�ects of gestures that could
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indirectly support a robot’s tutoring e�orts, such as changes in its perceived
human-likeness.

Chapter 3 In one of the �rst studies as part of the L2TOR project, also known as ‘the
animal experiment’, we aimed to investigate whether a robot’s use of iconic
gestures could help Dutch children (4–6 years old) learn six animal names in
English. This was done by having children play a game similar to I spy with my
little eye with the robot, where the robot would ‘spy’ an English animal name,
and the child then had to pick the corresponding image from a set displayed on
a tablet device. In collaboration with our colleagues from Bielefeld University
we also explored the role of adaptivity, where the order and frequency of
presenting the animal names was based on children’s performance on those
words earlier in the interaction. Both aspects, gestures and adaptivity, were
combined in one study because they could both a�ect the level of di�culty for
the child, and thus in�uence learning outcomes and levels of engagement.

Chapter 4 Based on promising �ndings from the study described in Chapter 3, the robot’s
use of iconic gestures was further investigated as part of a more complex, longi-
tudinal study, spanning seven sessions. The tutoring interaction in general was
now more complicated than the game of I spy with my little eye, where children
and the robot visited di�erent three-dimensional virtual environments on the
tablet, interacted with objects in this environment, repeated English words,
and enacted a number of verbs. The 34 English words included in this study
were also more complex than the animal names from the study in Chapter 3,
for example including prepositions such as next to. The general results of this
study, which were published at the HRI conference (Vogt et al., 2019), showed
no bene�t of the robot’s use of gestures on children’s learning outcomes. In
Chapter 4, we present additional analyses from this experiment to investigate
whether several factors — the clarity and ‘quality’ of the design of the ges-
tures, di�erences between types of English words, age of the children, and
spontaneous reenactment of the gestures — had an in�uence on the observed
learning outcomes.

Chapter 5 One of the main insights from the literature review (Chapter 2) is that the
process of designing the robot’s gestures is often not given much thought, and
that gestures are commonly based on a researcher’s idea of what they should
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look like. At the same time, literature in gesture studies indicates that people
might use di�erent ways to represent a concept via gesture, and it is conceivable
that children perform — and perhaps also expect to see — di�erent gesture
forms than adults. While existing datasets of human-performed gestures do
exist, most of them are collected in a lab, where participants were constantly
aware that they were providing these data, and they were given concrete
prompts, e.g., to perform brushing your teeth rather than toothbrush. This does
not capture any variation in gesturing approaches that is likely to occur in
a naturalistic environment. In Chapter 5, we therefore present a dataset of
human-performed gestures, collected from children and adults in the �eld:
at the NEMO science museum and the Lowlands music festival, both in the
Netherlands. Participants engaged in a game of charades with the robot, to
ensure that they were not constantly aware of being recorded. The dataset can
be used to base the design of a robot’s gestures on real-world examples, and
it also addresses a need in the �eld of gesture studies for more data that can
be used to study the human gesturing process (i.e., variation, links between
kinematics and semantics, di�erences between children and adults).

Chapter 6 To address the mixed �ndings from Chapters 3 and 4, in this study we revisited
the relatively simple game of I spy with my little eye, but now including animal
names as well as more complex and abstract English words, such as bridge.
The robot’s gestures were inspired by recordings from the dataset introduced
in Chapter 5, but they were recreated by hand to take into account the robot’s
physical limitations, and to ensure that they were as clear as possible. From
Chapter 5 we observed that, indeed, there is variation in how people depict
concepts using gestures. Initial explorations in educational sciences further
indicate that providing variation in stimuli (i.e., using multiple images or
di�erent voices to train vocabulary) could lead to better learning outcomes.
Therefore, the study documented in Chapter 6 contains an experimental con-
dition in which the robot used �ve di�erent gestures for each English word,
rather than repeating the same gesture every time this word was trained. We
measured whether the robot’s use of iconic gestures, either repeated or varied,
a�ected children’s learning outcomes and their levels of engagement with the
task and the robot, and whether age played a role.

Chapter 7 In this �nal chapter, we re�ect upon the previous chapters and integrate their
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�ndings, in order to answer the eight research questions, and �nally the main
research question of this thesis. We also propose avenues for future work, and
introduce our vision of the future of using social robots for education.
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2.1 Introduction
Social robots are designed to engage in everyday interaction with human inter-
locutors, such as visitors to a store or students in a classroom. Combined with the
use of natural language to communicate, robots can leverage their embodiment and
their presence in the physical world to exhibit socially intelligent behavior (Bartneck
& Forlizzi, 2004; Du�y & Joue, 2000). An essential part of this socially intelligent
behavior is facilitated by the embodied nature of robots and consists of non-verbal
communication, such as gaze and manual (hand) gestures (Fong et al., 2003).
While a comprehensive overview of social gaze behavior by robots and its e�ect
on human-robot interactions can be found in HRI literature (Admoni & Scassellati,
2017), to the best of our knowledge a survey of the state of the art and open research
questions for robot-performed manual gestures is still missing. We see a need for
such a survey, because robot-performed gestures are often highlighted as a de�ning
property of social robots in existing literature studies (e.g., Johanson et al., 2020;
Mavridis, 2015; Robert et al., 2020; Saunderson & Nejat, 2019; Skantze, 2020), but
are typically not further discussed in detail. In addition, a robot’s ability to use
gestures within the physical world has been shown to be one of its main advantages
over alternatives, such as virtual agents or robots presented on a screen (Li, 2015),
which can therefore be considered one of the main channels through which social
robots can make use of their physical embodiment and presence. With the increasing
interest in social robots from research and industry across a multitude of domains,
including the hospitality industry (Ivanov et al., 2017), healthcare (Cifuentes et al.,
2020), and education (Belpaeme et al., 2018), it is important to optimize the design
and application of the robot’s gestures. In this chapter, we aim to address this need
for a comprehensive overview of robot-performed gestures by presenting the results
of a structured and exhaustive literature study into (1) the design and planning
approaches to robot-performed gestures, and (2) the e�ects that these gestures have
on human-robot interactions. We address these two topics together, because we
consider them to be strongly related: In order for a robot’s gestures to have an e�ect,
they will need to be well designed and implemented.

2.1.1 Robot versus human gestures
Because gestures of social robots tend to look human-like, we can derive conjectures
about the potential e�ects of robot-performed gestures from observations regarding
human produced gestures. Manual (hand) gestures are seen as an important element

23



CHAPTER 2. ROBOT�PERFORMED GESTURES: A SYSTEMATIC REVIEW

of our communication with others, as they help us to convey our intentions, attitudes,
feelings, and ideas — either voluntarily or involuntarily (Kendon, 2004). McNeill
(1992) distinguishes between four types of gestures: deictic or pointing gestures
that help guide someone’s attention toward a particular object, location, or person;
beat gestures that can be used to emphasize parts of speech; iconic gestures that
depict a particular action or object (e.g., molding the shape of a ball with our hands);
and metaphoric gestures that relate to abstract concepts (e.g., time or size). Iconic
gestures can be performed in di�erent ways, for example by portraying actions
(with or without involving imaginary objects), or movements that outline shapes
of objects (Müller, 2014). Additional gesture types, such as emblems (Beattie, 2003;
Ekman & Friesen, 1969), also known as symbolic gestures (Krauss & Chen, 2000), have
further been proposed. These refer to gestures for which themeaning has been agreed
upon, for example waving as a form of greeting someone. Finally, adaptors have been
de�ned both as meaningless idle motions, such as self-touching (Ekman & Friesen,
1969), as well as motions that are used for managing the �ow of conversation, in that
case also called regulators (Ekman & Friesen, 1969). Although most gesture types
can be used in isolation, which is referred to as pantomime (McNeill, 1992), they are
often integrated with speech. In the latter case, the gestures can be redundant, in that
they convey the same message that is communicated through speech, or they can be
complementary by adding information to the co-occurring verbal utterance (Goldin-
Meadow, 2005; McNeill, 1992), for example by waving in the far distance while
mentioning a particular city. This avoids the listener having to recall the distance
between someone’s home and the city they travelled to.

Research has shown a number of bene�cial e�ects from the use of these dif-
ferent types of gestures. Iconic and metaphoric gestures have been shown to facil-
itate communication, by aiding the speaker’s language production process (Cravotta
et al., 2019; Hostetter, 2011) and by making it easier for the listener to comprehend
the multimodal message that is communicated to them (Arachchige et al., 2021;
Goldin-Meadow, 2005; Hostetter, 2011; Kelly et al., 1999). Because these gesture
types convey meaning, they also play a supportive role in education by improving the
memorization of new, complex concepts (Alibali & Nathan, 2007; Kelly et al., 2008),
and students tend to be more engaged with a teacher that uses gestures compared
to one that is static (Valenzeno et al., 2003). For iconic gestures to be bene�cial
to learning and to communication in general, it is important that the gestures are
congruent with the concept that is conveyed via speech (Kelly et al., 2009; Kelly et al.,
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2010b; Macedonia et al., 2011). Deictic gestures play an integral role in early language
acquisition (Iverson & Goldin-Meadow, 2005), and in facilitating joint visual atten-
tion (Kita, 2003; Louwerse & Bangerter, 2005; Tomasello et al., 2007). Beat gestures
have been shown to provide stronger emphasis on speci�c spoken words compared
to using only prosody (Bosker & Peeters, 2021; Krahmer & Swerts, 2007), while
regulators and adaptors can help structure conversations, for example by creating
a more natural turn taking process (Mlakar et al., 2021; Żywiczyński et al., 2017).
Finally, emblems often play a social role by conveying a certain emotional state or
politeness (Kendon, 1981, as cited in Lindenberg et al., 2012), and can also be used to
structure the discourse, or to communicate illocutionary intent — information that is
‘between the lines’, e.g., conveying that what is said as a statement is actually meant
to be a request (Kendon, 1995; Kita, 2009).

As humans, our gesturing behavior is to a large extent automatic and sponta-
neous (Hostetter & Alibali, 2008): we do not consciously plan the type of gesture,
shape, or timing while we are speaking. For robots, however, the gestures will
have to be shaped or designed, and the correct way to perform them will have
to be implemented. This includes selecting a gesture to depict, and determining the
timing of this gesture, for example to coincide with speech or to �t the current (social
or emotional) context. How these gestures are designed and integrated may a�ect
how the robot is perceived, and to what extent the robot manages to successfully
support humans in the tasks they are trying to perform. In addition, robots that
are currently available are more limited in their gesturing capabilities, in terms of
degrees of freedom and �uidity of movement, compared to humans. This raises the
question whether robot-performed gestures can provide the same positive e�ects
that are observed with human-performed gestures. Although there is a large number
of studies addressing this question, a comprehensive overview is currently lacking.

2.1.2 Why this literature review
Robots are not able to gesture automatically without �rst implementing the design
and planning steps of the gesture production process. Several design decisions
will have to be made in order to create gesturing behavior that achieves the desired
positive outcomes in human-robot communication. For example, it is important
that the robot’s gesture and speech are correctly aligned (Mavridis, 2015). While
literature reviews do exist on speci�c topics related to gesture design, including the
use of animation techniques (Schulz et al., 2019), or motion design for a broad range

25



CHAPTER 2. ROBOT�PERFORMED GESTURES: A SYSTEMATIC REVIEW

of robot platforms including non-humanoids (Venture & Kulić, 2019), the subsequent
planning steps including (1) gesture selection, (2) co-speech timing, and (3) adjusting
motion parameters based on contextual information are not covered in detail in
these existing reviews. We believe there is a need for uni�ed, clear guidelines for the
creation of robot-performed gestures, and therefore the �rst aim of this literature
review is to provide a survey of ways in which the design and planning steps of a robot’s
gesture production process can be implemented.

Although the e�ects of robot-performed gestures have emerged as a theme
in existing literature reviews — for example in the aforementioned comparison
with telepresent robots and virtual agents (Li, 2015), as well as surveys on robot
personalities (Robert et al., 2020) and turn taking (Skantze, 2020) — to our knowledge
there is no review that focuses speci�cally on the e�ects of the robot’s use of manual
gestures in human-robot interactions. In addition, several existing reviews take on a
holistic approach when studying robots’ communicative behaviors, including verbal
components (Johanson et al., 2020; Mavridis, 2015), or other non-verbal channels,
such as proxemics and haptics (Saunderson & Nejat, 2019). Because of the broader
nature of these reviews, they are only able to cover the tip of the iceberg regarding
humanoid robots and their use of manual gestures. Even though in recent years
various surveys have appeared, focusing on the state of the art in social robotics, for
example for educational purposes (Belpaeme et al., 2018; Kanero et al., 2018b; van den
Berghe et al., 2019), they do not address the role of gestures, even though the ability to
produce manual gestures is recognised as one of the core properties of social robots.
With the increasing use of humanoid, social robots in a wide range of application
domains, there is a need for a comprehensive overview of the e�ects that manual
gestures have on the quality of the communication between humans and robots,
speci�cally in terms of (1) communicative purposes, including behavioral responses
(e.g., mimicry), (2) the perception of the robot (referred to as ‘cognitive framing’ in
Saunderson & Nejat, 2019), (3) engagement, and (4) the performance of the robot
and human interlocutors on various tasks, such as learning or direction-giving. The
second aim of the present literature review is therefore to compile a comprehensive
overview of the e�ects of robot-performed gestures in the multitude of domains where
social robots could be used. We believe that these e�ects rely on the approaches taken
regarding the design and planning of the robot’s gesturing behavior, which is why
both aspects — the gesture production process, and the observed e�ects — will be
addressed together in this chapter.
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2.2 Methodology
A systematic search of published scienti�c articles was conducted in order to
identify relevant sources for the two main objectives of the present literature study:
(1) a survey of implementations of the design and planning steps, and (2) a com-
prehensive overview of the e�ects of robot-performed gestures. This review was
conducted following the updated Preferred Reporting Items for Systematic reviews
and Meta-Analyses guidelines (PRISMA 2020; Page et al., 2021a; Page et al., 2021b).

2.2.1 Data sources and search strategy
In order to �nd relevant literature, the following broad search queries were used:

• robot AND gestures AND (humanoid OR social)

• robot AND iconic AND gestures

• robot AND pantomime

We did not use literal searches (with quotationmarks) so that synonyms or related
terms (e.g., singular ‘gesture’) would also be included. To get a comprehensive
overview, the search queries were run on three di�erent databases that are
relevant in the �eld of human-robot interaction:

• Association for Computing Machinery (ACM) Digital Library

• Institute of Electrical and Electronics Engineers (IEEE) Xplore

• Web of Science

These databases work with di�erent formats and have di�erent interfaces. In
the ACM DL, all �elds including the full-text were searched because searching only
abstract and title appeared to return limited results and this required manually editing
the query syntax. For IEEE Xplore and Web of Science all metadata were included
but not the full-text. Data were collected in March, 2021. Additionally, during our
search, a limited number of additional papers (� “ 8) came to our attention, either
while examining related work of articles that were already included in the study,
suggested by the authors of previously included articles, or serendipitously while
working on other publications and reviews. These were included as well.
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2.2.2 Selection process
The results of running the search queries on the three databases were exported
to the BibTeX format, after which they were loaded into the Mendeley reference
manager1 for conducting the selection process. This process consisted of two stages:
initial screening based on title and abstract, followed by full-text assessment for
eligibility. The following inclusion criteria were taken into account:

• The article documents either a method for planning robot gesturing behavior
(objective 1), OR an experimental study in which the e�ects of robot-performed
gestures were studied (objective 2);

• A humanoid robot was used. This excludes virtual agents, and non-humanoid
robots, such as industrial or zoomorphic (animal-like) robots. In some cases,
articles involving a virtual simulator were included, but only if this was a
simulator of an existing humanoid robot platform;

• The robot performed communicative manual (hand) gestures;

• The study focused on robot-performed gestures, not recognition of human-
performed gestures by robots;

• The robot is designed to interact with humans;

• The article is published in a scienti�c journal or conference proceedings;

• The article is written in English.

These criteria were used when assessing full-texts for eligibility, and in most
cases could already be evaluated when screening abstracts and titles. If the type of
robot used was unclear during this initial screening step, the full-text was brie�y
scanned for images of the robot. Articles documenting the design of robot-performed
gestures were not explicitly selected and included, as this design step tends to be
a prerequisite for gesture planning implementations and for experimental studies.
Therefore, we inferred the di�erent design approaches from the papers already
included in the dataset based on the inclusion criteria, and searched for additional
literature explaining these approaches when needed.

1https://www.mendeley.com/
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After careful discussion of the criteria by all authors, the selection process was
conducted by one researcher, who took on a lenient approach in the initial scanning
stage by including papers for which it was unclear whether they met all criteria.
Because the inclusion criteria were relatively unambiguous and there were no doubts
about the eligibility of any of the included articles after assessing the full-text, it was
not deemed necessary to include a second reviewer. The selection process, including
the number of articles included in each stage, is displayed in Figure 2.1.

Records identi!ed from databases: n = 4,706
ACM DL: n = 3,619
IEEE Xplore: n = 718
Web of Science: n = 369

Records screened based on abstract and title:
n = 4,139

Full-text articles assessed for eligibility:
n = 411

Records included from databases: n = 159

Total records included: n = 167

Full text articles excluded: n = 252
Criteria for exclusion:
• Does not cover a planning method, or an

experimental study;
• No (humanoid) robot was used;
• Gestures were not communicative

manual (hand) gestures;
• Robot did not perform gestures

(e.g., gesture recognition);
• No human-robot interaction took place;
• Not published in journal or conference

proceedings;
• Not wri"en in English.

Records excluded: n = 3,728

Records identi!ed from other sources: n = 8

Duplicate records removed before screening:
n = 567

Figure 2.1: Overview of the article selection process.
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2.2.3 Information obtained from each article
The 167 articles that were included in the review after the selection process were
labeled as describing gesture planning, an experimental study, or both. From all
included papers, the following information was obtained:

• Year of publication

• Robot platform used (see Appendix 2.A for images)

• Context or application domain

• Region in which the research took place

• Seminal gesture theory references that were cited

• Gesture type, and examples of gestures

• Gesture design approach, who designed the gestures

In addition, for papers documenting a planning approach we obtained:

• The goal of the planning approach (e.g., gesture selection, co-speech timing)

• The method or technical implementation that was used (e.g., neural network)

• Whether and how the proposed system was evaluated

From papers that presented an experimental study we obtained:

• Research question

• Sample size and demographic

• Location of the study (lab, �eld, online)

• Number of sessions with the robot

• Planning approach that was used

• Experimental design

• Whether and how the quality of the design of the gestures was assessed (e.g.,
comprehensibility)
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• E�ects studied and measurement instruments used

• Findings

• Suggestions for future work

Finally, papers were assigned a theme (e.g., ‘communicative purposes’), which
allowed us to structure the following results sections, and we noted whether the
e�ects found in experimental studies were positive, negative, neutral, or mixed, or if
no e�ects were found. The tables summarizing the included articles can be found
in Appendix 2.B (planning) and 2.C (experimental studies), and the full versions of
the tables containing all of the information mentioned above are made available as
supplementary materials2.

2.3 Gesture design
Social robots are used in areas where they are intended to interact with humans,
providing services, such as teaching, that we are used to receiving from other people.
Therefore, generally the aim is to also have the robot use gestures that we know from
our communication with other people, because these match the expectations we have
of how to communicate non-verbally. However, because there are di�erences in the
freedom and �uidity of movement, both between robots and humans and between
the di�erent robot platforms that are available, it is often not possible to directly
transfer human-performed motion onto the robots. Consequently, these gestures
will have to be designed, oftentimes speci�cally for one robot platform. There are
two ways to approach this design process: manually, or from demonstration.

2.3.1 Manual gesture design
Manual design means that someone — e.g., the researchers, or a professional animator
— implements a gesture step-by-step. This is generally done by de�ning a series of
key frames, representing salient points within a motion (area 1 in Figure 2.2). By
moving the key frames around on the timeline a movement can be either sped up
or slowed down, and by having the same frame twice, the robot can hold a pose for
a desired amount of time. The robot then performs this sequence of key frames as
gestures, by smoothly interpolating between the de�ned poses at a set speed. This
technique has its origin in the �eld of character animation, and is therefore also used
2https://osf.io/uj9fq/
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Figure 2.2: Manual gesture design by de�ning key frames (left, area 1), either by
adjusting the values of the robot’s joint orientations (left, area 2) or by physically
moving the robot’s limbs into the desired positions (right). This example uses the
Choregraphe interface by SoftBank Robotics (Pot et al., 2009); di�erent interfaces
exist for other robots.

in contexts other than human-robot interaction, such as cartoons or games. The key
poses can be de�ned by setting the coordinates or angles of the robot’s joints using
an interface or code (area 2 on the left side of Figure 2.2), or by physically moving
the robot’s limbs to the correct position and then storing the joints’ information, a
process known as kinesthetic teaching or puppeteering (Figure 2.2, right picture).

The main advantage of the manual approach to designing gestures is that the
designer has full control over what the gestures will end up looking like.
The designer can draw inspiration from human-performed gestures, for example
by recreating gestures that have been observed in �eld studies or by conducting an
elicitation study, and they can also use animation techniques to add more expres-
siveness and exaggeration (Marmpena et al., 2019) (for an overview of the use of
animation techniques in human-robot interaction scenarios, see Schulz et al., 2019).
At the same time, because the process is done by hand it is possible to work around
the particular robot’s physical limitations, in order to create gestures that could
be considered optimal given the current robot platform’s capabilities. The main
disadvantage of this approach is that it tends to be labor intensive as each gesture
needs to be de�ned step-by-step, although parts can often be reused. In addition, the
gestures may appear arti�cial and prede�ned because of the smooth interpolation
between key points, so there is no degree of variation or human-like noisy movement
included in the motions.
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2.3.2 Gesture design from demonstration
Manually designed gestures can be inspired by human-performed gestures, by observ-
ing recorded gestures and then recreating them using key frames to accommodate
the robot’s physical properties. It is also possible to record human motion and then
translate this automatically onto the robot, while taking into account di�erences in
morphology. This process is known as learning from demonstration or imitation
learning, and was originally used to teach robots how to perform certain tasks, such
as manipulating objects in the physical world (Argall et al., 2009). A real-time map-
ping of human movement is also applied for telepresence purposes, where the
robot is used as a physically present representation of someone who is presenting
or attending a meeting remotely (e.g., Bremner & Leonards, 2015a). Traditionally,
human motion is recorded using motion capture technologies, complex multi-camera
set-ups that often require the performer to wear markers. However, recently more
compact depth sensors (e.g., Microsoft’s Kinect) have become available, which allow
markerless tracking with only one portable camera, although at the cost of recording
accuracy (Figure 2.3). Even more recently, using advanced AI and computer vision
techniques researchers have managed to extract three-dimensional motion record-
ings from data found ‘in the wild’, such as YouTube videos (e.g., Hua et al., 2019;
Shimazu et al., 2018; Yoon et al., 2019; Yu & Tapus, 2020). After collecting recordings
of human-performed gestures, a form of mapping or translation of these recordings
is required, because there are di�erences in both size and kinematic abilities between
the original human performer and the robot that is copying the gesture — this is
known as the correspondence problem (Mohammad & Nishida, 2013). This mapping
is done either algorithmically, e.g., by calculating the angles between various joint
locations, or using neural network-based approaches (e.g., Matsui et al., 2005).

Compared to manual gesture design, learning from demonstration is less labor
intensive: Once the mapping is in place any number of recordings can be transferred
onto the robot. This also makes it easier to introduce variation, and the gestures
are more detailed because they are de�ned frame-by-frame, instead of interpolating
between key frames (Marmpena et al., 2019). Additionally, aspects such as intention
and enthusiasm, that are subconsciously incorporated into human gesturing behavior,
can be included when directly transferring recordings onto the robot (Shimazu et al.,
2018). The main drawback to the method is that it is di�cult to take the di�erences
between the human and the robot, in terms of their physical appearance (e.g., height)
and kinematic abilities, into account. This invariably results in a loss of detail when
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Figure 2.3: Example of a real-time learning by demonstration set-up, with a human
performer that is recorded by a depth camera, and a robot that is directly copying
the human’s movements. Note: the Microsoft Kinect is positioned incorrectly, for it
to �t in the photo.

translating the gestures from the original recording onto the robot (Venture & Kulić,
2019). In addition, the resulting robot-performed motions can contain movement or
‘jerkiness’ that was not present in, or di�erent from the original gesture because of
imperfect capturing by the sensor or inaccuracies in the mapping process. This can
however be partly remedied by applying post-processing steps, such as denoising
and dimensionality reduction (e.g., Kucherenko et al., 2019) to create a smoother
gesture.

2.3.3 Platform-agnostic gestures

There is a wide variety of humanoid robot platforms available, and gestures are
often developed speci�cally for one particular robot, in order to take optimal ad-
vantage of its physical characteristics. To facilitate replicability of studies, and to
allow for a fair comparison between di�erent robots, it would be valuable to have a
platform-agnostic gesture representation. For manual design approaches, oftentimes
proprietary software and methods are used that are unique to a particular robot
platform, making it di�cult to create gestures that can easily be transferred onto a
di�erent robot. When applying learning from demonstration approaches, the record-
ings of human gestures — particularly after reducing their complexity (Kucherenko
et al., 2019) — could be seen as such a platform-agnostic representation, which can
then be mapped to di�erent robot platforms. However, as previously described these
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mappings still cause a substantial loss of information to occur. Therefore, several
higher-level, more abstract motion representations have been proposed, such
as the Laban notation (Von Laban, 1975) which was originally designed to describe
dance movements, as well as descriptions of basic, small motions (e.g., ‘raise right
hand above head’) that are implemented on multiple platforms and can be used as
‘building blocks’ to create complex gestures (van de Perre et al., 2018). However,
the vast majority of the research covered in this review focuses on a single robot
platform, and only implements gestures for that particular platform.

2.4 Gesture planning
After deciding on a gesture design strategy, the second step in providing robots with
the ability to produce gestures is planning. At this stage, a relevant gesture has to be
picked from the available lexicon of gestures, and it has to be integrated with the
other communicative modalities, for example speech. Optionally, in this step the
robot could make adjustments to the gestures depending on various factors, such
as the emotional state that the robot wants to convey, or the physical location of
objects or people that the robot wants to refer to. A total of 61 papers included in
this study present a gesture planning approach, and will therefore be discussed in
the upcoming sections.

2.4.1 Methodological characteristics of planning approaches
We observed the following characteristics when inspecting the set of 61 papers that
introduce a planning technique:

• Focus/theme: 18 papers cover gesture selection (Section 2.4.2), 6 co-speech
timing (Section 2.4.3), 12 gesture synthesis (Section 2.4.4), and 37 adjusting
motion parameters (Section 2.4.5);

• Gesture types produced by the robot: 36 emblematic (symbolic, meaning is
agreed upon), 30 deictic (pointing), 21 metaphoric, 20 iconic, 18 beat, 9 adaptors
(1 unknown);

• Gesture theory references 36 out of 61 papers (59%) explicitly cite studies
on human gesture production;

• Commonly used robots: NAO (22), Pepper (13), Erica (4), ASIMO (2), iCub
(2), Wakamaru (2);
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• Gesture design approach: 30 manual, 17 from demonstration (15 unknown);

• An evaluation of the planning approach is presented in 48 out of 61 papers
(79%).

A table summarizing key details of the papers covered in this chapter is included
in Appendix 2.B, and the full table is available in the supplementary materials3.

Evaluating gesture planning
The quality of the di�erent planning approaches (selection, timing, synthesis, and
adjusting the motion parameters) can be measured in two di�erent ways. First,
this can be done by using computational methods, for example by comparing an
algorithm’s accuracy at selecting and timing gestures to a ground truth from a
dataset or by measuring gesture traits, such as ‘jerkiness’. Second, the quality can
be assessed using evaluation studies with human subjects, by means of a live study
or by recording an interaction and embedding this into a survey. A subset of these
evaluation studies incorporates the gesture planning approach into an experiment
where the e�ects of the robot’s gesturing behavior are also studied — these are studies
that also appear in Section 2.5.

Of the 61 papers included in this part of the review, 16 (26%) used computational
methods, 36 (59%) included an evaluation of the proposed planning method with
human subjects, and 13 (21%) did not evaluate their approach. Four papers (7%) used a
combination of computational methods and human evaluation studies, which is why
the total amounts to more than 100%. Of the 36 human evaluation studies, 19 (53%)
studied the e�ects of the robot’s gesturing behavior on the resulting human-robot
interaction and are therefore also included in Section 2.5. The sample size of the
evaluation studies with human subjects ranged from 10 to 396 (� “ 46,��� “30, �� “ 65; 1 unknown). These studies mainly focused on assessing aspects such
as the naturalness of the robot’s behavior, or whether participants were able to
understand the message or emotion that the robot was conveying, and this was
commonly done using self-report measures.

2.4.2 Gesture selection
As previously mentioned, human gesturing generally occurs spontaneously and
automatically, and typically while speaking (Hostetter & Alibali, 2008). This has to
3https://osf.io/uj9fq/
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Figure 2.4: Gesture selection by manually annotating the script (example from the
markup language used in the Choregraphe tool for controlling the NAO robot; Pot
et al., 2009). The robot performs the gesture for ‘dog’ when the annotated tag
(highlighted in the text) is encountered in its speech output.

be programmed deliberately for robots, which can broadly be done in two ways:
by manually annotating the script of the robot’s speech output to indicate when a
particular gesture should be performed, or by mapping between words and gestures
so that a gesture is triggered whenever that word occurs in the robot’s speech. The
latter method does not take various contextual factors, such as the preceding words
or gestures into account, which can be modelled separately and then included in the
gesture selection process.

The manual annotation approach is commonly done by adding tags to the
robot’s utterances (Figure 2.4), describing which gestures to perform, and when to
perform them (Ondáš et al., 2017; Shi et al., 2010). This method o�ers the designer
full control over the robot’s behavior, although it is also the most labor intensive
approach and it requires the interaction designer to plan all of the robot’s utterances
ahead of time. Several markup languages exist to simplify and structure the process
of de�ning multimodal output for robots and virtual agents, such as:

• Multimodal Utterance Representation Markup Language (MURML; Kranstedt
et al., 2002);

• Behavior Markup Language (BML; Vilhjálmsson et al., 2007);

• Function Markup Language (FML; Heylen et al., 2008).

To make gesture selection more scalable and less labor intensive, several re-
searchers have started creating mappings between words and corresponding
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Figure 2.5: Gesture selection by triggering a gesture whenever a particular word is
encountered. In this example, the robot performs the gesture for ‘dog’ whenever
the word ‘dog’ occurs in its speech output. Using lexical databases, the robot can
also trigger the gesture for semantically similar words, such as ‘fox’, if no gesture for
‘fox’ is available.

gestures. Whenever such a word is encountered in the robot’s speech, the robot will
simultaneously perform the matching gesture (Ondáš et al., 2017). These mappings
can bemanually de�ned, or inferred from data of human speech and gesturing (Ghosh
et al., 2019). By using lexical databases, such as WordNet (Miller, 1995), it is pos-
sible to make this system more intelligent by also linking gestures to words that
are semantically similar to the originally assigned word (Augello and Pilato, 2019;
Figure 2.5). This approach prevents the designer from having to prede�ne all of
the robot’s utterances or determine all of the mappings, and therefore supports
more dynamic natural language generation. Initial explorations in human gesturing
behavior indicate that the gestures of words that are semantically similar share
kinematic similarity as well (Pouw et al., 2021), a further indication that using lexical
databases could be a cost-e�ective way to expand the robot’s gesturing behavior.
A commonly used system to support this process of linking words and gestures is
BEAT (Cassell et al., 2004), which was originally created to generate multimodal
output for virtual agents and has since also been applied in robotics. Researchers
have also begun exploring neural networks as a way to automatically link gestures
to generated utterances based on large datasets (Hwang et al., 2020).

A drawback of these automated methods is that they do not take context into
account. For example, beat gestures have been found to lead to more engagement
from the interlocutor if they are performed in a way that naturally connects with
the preceding gesture (Bremner et al., 2009). The robot should also not gesture too

38



2.4. GESTURE PLANNING

frequently to avoid confusing or frustrating others, and the situation could arise
that the automated gesture selection method proposes multiple gestures, such as
an iconic gesture and a beat gesture, at the same time. Predictive and probabilistic
models enable the robot to include additional sources of information other than its
speech output when deciding whether to gesture, and if so, what type of gesture to
perform. Examples of factors that are included in these decisions are prosody and
linguistic features (Ishi et al., 2018; Mlakar et al., 2013; Pérez-Mayos et al., 2020), the
desired level of expressiveness of the gestures (Ng-Thow-Hing et al., 2010; Tay &
Veloso, 2012), priority of a certain motion over another (Sunardi & Perkowski, 2020),
the a�ective state of the robot (Paplu et al., 2020) or its audience (Aly & Tapus, 2020;
Bourguet et al., 2020a), or the current dialog and environmental context (Admoni
et al., 2016; Augustine et al., 2020; Ishi et al., 2018; S. Lim et al., 2009). The logic
behind these models can be based on rules and probabilities that are learned from
annotated recordings of human-performed multimodal communication (Huang &
Mutlu, 2014; Ng-Thow-Hing et al., 2010). The fact that the robot shows greater
intelligence regarding its gesturing behavior with the use of these models has been
shown to result in interactions that are perceived as more natural compared to
implementations that only take into account words as triggers (Ishi et al., 2018).

2.4.3 Co-speech timing
After determining which gesture to perform, the motions also need to be timed in
such a way that they correspond to the related information that is conveyed through
the robot’s speech. This can be done, for example, using a process of trial-and-error

Figure 2.6: Manually annotating the script to control gesture timing (example from
the markup language used in the Choregraphe tool for controlling the NAO robot; Pot
et al., 2009).
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to �nd a starting point that allows the stroke of the gesture to coincide with the
corresponding word (e.g., Willemsen et al., 2018). This option is feasible if the robot’s
output is known beforehand, as is the case when manually adding gesture tags, so
that the timing can be manually annotated as well (Figure 2.6). The timing of
gestures can also be based on heuristics derived from human gesture studies, such
as placing the starting time of the gesture 0.3 seconds before pronouncing the word
it refers to (Aly & Tapus, 2016; Augello & Pilato, 2019). However, these heuristics
do not consider di�erences between humans and robots, for example in the speed
at which they can perform the gestures. To take the robot’s physical abilities into
account, there are implementations that pre-render the robot’s utterance to an audio
�le via text-to-speech before actually playing this audio (Salem et al., 2013b; Shi et al.,
2010). This �le can be used to �nd out how long it will take the robot to pronounce
certain words, which can be combined with knowledge of the robot’s motor speeds
to more accurately align the timing of co-speech gestures (Ng-Thow-Hing et al., 2010;
Salem et al., 2013b; Shi et al., 2010; Figure 2.7). As with gesture selection, contextual
factors can play a role in determining the optimal timing of a gesture. This includes
information at the syllable level, for example by aligning the gesture stroke with
the most accentuated syllable in a phrase (Mlakar et al., 2013), as well as handling
scenarios where two planned gestures overlap in time, or in dialog settings where
the robot’s speech could be interrupted (Ishi et al., 2019).

2.4.4 Gesture synthesis
A recent trend in the planning of robot-performed gestures is to consider the design,
selection, and timing steps as one single integrated step of synthesizing gestures from

Figure 2.7: Gesture timing based on the robot’s speech signal, combined with the
robot’s known motor speeds.
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a trained mapping between an input signal — audio or text — to an output signal: the
motions for the robot to perform. While one paper (Aly & Tapus, 2012) documents
an implementation using coupled hidden Markov models (CHMM), the majority of
the reviewed work follows scholars’ increasing interest in (deep) neural network-
based approaches. Sequence-to-sequence algorithms in particular are commonly
used for the purpose of gesture synthesis. The direct mapping from speech to
motion can be learned by training neural networks on the frames of pre-existing
robot gestures (Marmpena et al., 2020; Marmpena et al., 2019; Rodriguez et al., 2019),
motion capture data (Tuyen et al., 2020a, 2020b), but also on large, naturalistic corpora
that were not collected speci�cally for the purpose of generating robot-performed
gestures, including recordings of TED talks (Shimazu et al., 2018; Yoon et al., 2019;
Yu & Tapus, 2020), or talk shows (Hua et al., 2019). As a pre-processing step, audio
features such as Mel-frequency cepstral coe�cients, log �lter banks, pitch, or energy
can be extracted from the speech signal (Aly & Tapus, 2012; Ondras et al., 2020;
Shimazu et al., 2018). Alternatively, the speech signal can be transcribed to text (Hua
et al., 2019; Tuyen et al., 2020a, 2020b; Yoon et al., 2019), which is then sometimes fed
into a word embedding algorithm, such as word2vec (Mikolov et al., 2013a; Mikolov
et al., 2013b) or GloVe (Pennington et al., 2014). This enables the neural network
to also generate motions that originally accompanied semantically similar, but not
identical words to what it was trained on. At the same time, the pose of the people
in the videos over time is extracted automatically using a pose tracking algorithm
such as OpenPose (Cao et al., 2017). The neural network then learns a mapping
from either auditory features or word vectors to gestures that can be performed by
the robot (Figure 2.8). It is also possible to generate the robot’s motion based on
the interlocutor’s motion, instead of the co-occurring speech signal, to read a social
situation (e.g., a person is crying), and to have to robot reciprocate (e.g., by o�ering
a hug) (Ko et al., 2020).

Because the gestures are learned from naturalistic examples, and neural networks
are able to generalize the existing motions to create new gestures (Rodriguez
et al., 2019), the resulting motions are more varied than those that are designed
beforehand (Ondras et al., 2020; Yoon et al., 2019), and they are also generally
perceived as more ‘vivid’ (Shimazu et al., 2018). Additionally, because the training
process can be automated and the synthesis generalizes to new text input, this
approach is less labor intensive than the gesture design and selection methods
discussed previously. One of the main challenges with a neural network-based
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Figure 2.8: Gesture synthesis, where (transcribed) audio and pose data are automati-
cally extracted from video recordings on a large scale, which can then be used for
the robot’s gesture production process.

approach however, is that the resulting gestures can be incongruent with the meaning
that is conveyed through speech (Ondras et al., 2020), particularly when prosodic
cues are used as input instead of the content of the utterance. This can be solved
by taking a hybrid approach, where the synthesized gestures are augmented with
several key frames from a gesture that was selected from a lexicon, based on word
meaning (Shimazu et al., 2018). In addition, with neural networks there is less
control over the types of gestures that are included, and it is more di�cult to include
contextual information, compared to the aforementioned rule-based, predictive, and
probabilistic approaches.

2.4.5 Adjusting motion parameters
As humans, our gestures will never look identical: there is natural variation in our
motions even if we perform the same shape twice, we tend to change our gesturing
behavior based on whether our communication is successful or not (Hoetjes et al.,
2015), or on established common ground (Mertens & Rohl�ng, 2021). Furthermore,
the way we gesture can be in�uenced by our personality and emotional state or
mood (Dael et al., 2013; Hostetter & Pottho�, 2012; Kipp & Martin, 2009), as well as
our age (Jain et al., 2016). Particularly for children, the type of information that is
described and di�erences in cognitive abilities (Abramov et al., 2021) further a�ect
their gesturing behavior. In addition, we take into account contextual information and
use this to, for example, target our pointing gestures at the right referent (Haviland,
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2000), or mirror the postures and behavior of our interlocutor to build rapport (Lakin
& Chartrand, 2003). These factors that in�uence our gesture production process have
been implemented and studied in the context of robot-performed gestures as well.
For example, it is conceivable that a robot that adds some degree of variation to its
gesturing behavior is perceived as more human-like, natural, and intuitive (Gielniak
et al., 2011), and could sustain people’s interest in the robot for a longer period of
time (Marmpena et al., 2019). Variation can be added by manually designing di�erent
gestures for the same concept (Paplu et al., 2020; Chapter 6), by using neural networks
to generate such variations automatically (González et al., 2019; Marmpena et al.,
2020; Marmpena et al., 2019), by introducing (random, but constrained) noise to the
motion (Gielniak et al., 2011), or by building complex gestures out of basic, simple
motions with a probabilistic approach to add variation (Sunardi & Perkowski, 2020).

Social robots could also use their gestures to convey a certain emotion such
as happiness, sadness, anger, fear, or high level a�ective states such as excitement
or arousal. This can be done by creating gestures that focus solely on conveying
an emotion, for example a cheering motion to depict happiness (Aly & Tapus, 2020;
Jung et al., 2004; Paplu et al., 2020; Viergutz et al., 2014), which can then be triggered
using one of the gesture selection approaches discussed in Section 2.4.2, for example
whenever an emotional word, such as sadness, is encountered either in the robot’s
or the interlocutor’s speech (Aly & Tapus, 2020). An emotional component can
also be added to existing gestures by altering their velocity (speed) or amplitude
(size)4 (Claret et al., 2017; Le et al., 2011; A. Lim et al., 2011; Ng-Thow-Hing et al.,
2010; Prajod & Hindriks, 2020; van de Perre et al., 2018; J. Xu et al., 2013). After using
a neural network to synthesize gestures, researchers found that the resulting ‘gesture
space’ contained examples of the same gesture with varying amplitude, therefore the
emotional component of the gesture could be altered by sampling from di�erent areas
in this gesture space (Marmpena et al., 2020; Marmpena et al., 2019). Next to motion
characteristics, the robot’s pose (e.g., hand height, palm facing upward or downward,
�ngers stretched) has been shown to play a role in conveying di�erent emotions (J.
Xu et al., 2013). In one study, the robot used one arm to perform the original gesture,
and the other to display an emotion, for example by pointing while covering its face
to express fear (van de Perre et al., 2018). Both pose and motion can also be used to

4J. Xu et al. (2013) note that these modi�cations to existing, task-based gestures tend to convey long-
term mood, while speci�cally designed gestures convey short-lived emotional states. However, the
work that is discussed in this section appears to use the terms emotion and mood interchangeably.
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convey a certain personality, such as introversion versus extroversion (H. Kim et al.,
2008; Stolzenwald & Bremner, 2017), or dominance (Peters et al., 2019).

Part of a social robot’s intelligence stems from its ability to observe its physical
and social surroundings, and to optimize its gesturing behavior based on these
observations. Therefore, a number of sensing capabilities have been implemented
to improve the accuracy of a robot’s pointing gestures, including object localiza-
tion (Gulzar & Kyrki, 2015; Lemme et al., 2013), region identi�cation (Hato et al.,
2010), and social context recognition (e.g., presence and positioning of people) to
ensure socially appropriate pointing (Ishi et al., 2020; Liu et al., 2017). Other gesture
types, such as iconic gestures, may also need to be modi�ed if the interlocutor is
not directly facing the robot (Kondo et al., 2012; Tay & Veloso, 2012). The robot
may also have to change its position or orientation before performing gestures, in
order to target them correctly (Gulzar & Kyrki, 2015; Shi et al., 2010; Tay & Veloso,
2012). In addition to targeting their gestures, robots can monitor and adapt to the
interlocutor’s or user’s emotional state (González et al., 2019; Jung et al., 2004; Tuyen
et al., 2021; Valenti et al., 2020) or personality (Aly & Tapus, 2016; Stolzenwald &
Bremner, 2017), their level of engagement with the interaction (Sza�r & Mutlu, 2012),
or auditory feedback received from an audience (Kraemer et al., 2016). As further
discussed in Section 2.5.6, people with autism spectrum disorder (ASD) could bene�t
from training non-verbal communication skills with a robot by means of imitation.
However, autistic people are known to vary in their imitation and motor coordina-
tion skills, which is why researchers have built a system that is able to measure a
person’s ability to mimic the robot’s gestures, and to adjust parameters of the robot’s
movements (e.g., amplitude, velocity, and frequency) if needed (Ranatunga et al.,
2015). Finally, in some cases the robot is also made ‘self-aware’, for example of any
objects it may be holding that prevent it from gesturing (Holroyd et al., 2011), cost
in terms of motor power required (Holroyd et al., 2011), joint failure (Jutharee &
Maneewarn, 2016), or its current positioning (e.g., sat on a chair; Rodriguez et al.,
2018).

2.4.6 Summary
In this section we have provided an overview of the state of the art in gesture
planning. Similar to the design of robot-performed gestures (Section 2.3), we can
distinguish between two di�erent approaches: manually annotated, and automated
using rule-based or arti�cial intelligence-based approaches. Gesture synthesis can
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be seen as the extreme case of an automated approach, as it integrates the design
and planning of the gesture production process by inferring the motions themselves,
their mapping to speech, and contextual information from large sets of data. In
addition, these implementations can generalize to create new gestures, and they are
able to perform gesture selection and timing for utterances they were not trained on.
Following the philosophy behind arti�cial neural networks that power the majority
of gesture synthesis implementations, these systems could be considered as most
closely resembling the way we as humans (subconsciously) decide when and how to
gesture.

The most suitable gesture planning approach depends on the use case: manual
and rule-based planning provide more control over the robot’s behavior than gesture
synthesis, and thus result in a more predictable, constrained interaction, where
contextual factors can be taken into account. This is desirable if the robot’s gestures
need to be accurate and relevant to the message that is conveyed through speech, for
example in the case of using gestures to support a robot’s teaching e�orts. For general
social conversation, the interaction might bene�t from the added variation and
scalability of automated approaches. In the next section, we will discuss experimental
studies that have investigated the e�ects of robot-performed gestures, in which most
studies rely on either manual or rule-based automated planning to ensure consistency
between interactions.

2.5 E�ects of robot-performed gestures
2.5.1 Methodological characteristics of experimental studies
Our review of existing literature resulted in 124 papers that discussed the (potential)
e�ects of robot-performed gestures based on a human-robot interaction study. From
these 124 papers, we identi�ed the following characteristics:

• Focus/theme: 26 papers discuss robot-performed gestures for communicative
purposes (Section 2.5.2), 69 investigate the perception of the robot and inter-
action (Section 2.5.3), 18 examine engagement with the interaction (Section
2.5.4), 36 focus on task performance (Section 2.5.5), and 11 cover gestures for
interactees with special needs (Section 2.5.6);

• Gesture types produced by the robot: 58 emblematic (symbolic, meaning
is agreed upon), 50 deictic (pointing), 31 iconic, 16 metaphoric, 12 beat, 3
adaptors, 3 sign language (12 unknown);
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• Gesture theory references: 75 out of 124 papers (60%) explicitly cite studies
on human gesture production;

• Commonly used robots: NAO (68), Pepper (11), Robovie (5), Wakamaru (5),
ASIMO (3), Erica (3), and Sota (3);

• Gesture design approach: 62 manual, 19 from demonstration (47 unknown);

• The quality (i.e., comprehensibility) of the gestures’ design was assessed
in 26 out of 124 papers (21%);

• Gesture planning (i.e., selection, co-speech timing, adjusting motion parame-
ters) was done manually (e.g., Wizard of Oz, prede�ned scripts, or prerecorded
videos) in 70 cases, and was automated (e.g., using rule-based systems or neural
networks) in 39 papers (15 unknown);

• Participants in the studies were adults in 93 papers, children or teenagers in
28, elderly in 5, and interactees with special needs (e.g., learning problems) in
2 (7 unknown);

• Sample sizes ranged from 6 to 7685 (� “ 193,��� “ 32, �� “ 833) (3
unknown);

• Group size: 112 were one-on-one sessions with the robot, 2 were with pairs
of participants, and 7 were groups of at least 3 participants, or public spaces
where any number of people could be drawn to the robot simultaneously (3
unknown);

• Number of sessions: 108 single session experiments, 16 consist of multiple
sessions (ranging from 2–12 sessions, � “ 5,��� “ 4, �� “ 3);

• Location: 75 papers describe lab studies, 31 �eld studies, and 14 online studies
(5 unknown);

• E�ects found: 70 papers report a positive e�ect of gestures, 30 neutral (e.g.,
not focusing on comparing gestures to no gestures) or no e�ect, 15 found
mixed results, and 9 report a negative e�ect.
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A table summarizing key details of the papers covered in this chapter is included
in Appendix 2.C5, and the full table is available in the supplementary materials6.

Measuring the e�ects of robot-performed gestures
The diverse e�ects of robot-performed gestures that are covered in this section were
measured in multiple di�erent ways, including both quantitative and qualitative mea-
surements, and focusing on both attitudinal and behavioral aspects of a participant’s
interaction with the robot. Of the 124 papers covered in this part of the review, 53
(43%) present a between subjects study, 44 (35%) within subjects, 7 (6%) have a mixed
design, and 19 (15%) were exploratory studies without experimental conditions (1
unknown). Furthermore, 27 (22%) used observations to study participants’ behavior
or emotional state, 10 (8%) used focus groups or interviews, 50 (40%) measured a form
of task performance (e.g., accuracy, recall, response time), and 14 (11%) used other
methods, such as automatic logging, content analysis, or implicit measures, such as
electroencephalography (EEG), eye tracking, or automatic facial expression analysis.
Finally, the majority of studies, 90 (73%), used self-report measures, generally in
the form of a questionnaire. Of these 90, 66 (73%) constructed their own questions
speci�cally for their study, while 37 (41%) used existing measurement scales, such
as the Godspeed scale (Bartneck et al., 2009), Negative Attitudes Towards Robots
Scale (NARS; Nomura et al., 2006), or Self-Assessment Manikin (SAM; Bradley &
Lang, 1994) — 13 (14%) used a combination of both custom and existing scales. The
majority of these self-report measures, and also of the evaluation methods in general,
appears to result in quantitative data. Out of the 124 papers, 55 (44%) combined at
least two of the aforementioned measures.

2.5.2 Gestures for communicative purposes
In this section, we look at communicative gestures: gestures that are produced
intentionally to convey information, facilitate the �ow of conversation, or to indicate
the robot’s intentions. Particularly for iconic, metaphoric, and emblematic gestures,
it is important that their meaning is understood by the interlocutor for them to reach
their communicative goals. For gestures that serve a goal in facilitating human-robot
communication, such as the use of adaptors to help indicate the desire to end a

5Note: this table contains 125 references instead of 124: Because one article (Aly & Tapus, 2020)
describes the same study as another (Aly & Tapus, 2015) it was only included once in the description
of characteristics, but both are in the table.

6https://osf.io/uj9fq/
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conversation, it is important to investigate whether they are successful at reaching
these communicative goals.

A number of studies have veri�ed whether the information conveyed through
robot-performed iconic, metaphoric, and emblematic gestures is understood by
people, in spite of the robot’s limited capability to perform these gestures in terms
of smoothness and degrees of freedom. These studies generally present positive
results, where most robot-performed gestures are correctly understood by
participants (Bremner & Leonards, 2015a; Cabibihan et al., 2012; M. Zheng et al.,
2019; M. Zheng & Meng, 2012). While in some studies the comprehensibility of
robot-performed gestures was on par with human-performed versions (Bremner &
Leonards, 2015a), most of the studies found that human-performed gestures are better
understood than their robot-performed versions (Cabibihan et al., 2012; M. Zheng
et al., 2019; M. Zheng & Meng, 2012). Cognitive processing of human-performed
gestures has been shown to happen automatically (Kelly et al., 2010a), however
a study has found that this does not appear to be the case for robot-performed
gestures (Hayes et al., 2013). There does seem to be a relationship between people’s
aptitude at understanding human-performed and robot-performed gestures (Riek et
al., 2010), and research further indicates that robot-performed gestures might become
easier to understand once people’s familiarity with robots increases (M. Zheng et
al., 2019). An exploratory study reported that gestures described as ‘simple’ and
‘relatable’ were easier to comprehend than more complicated and abstract ones, that
the actuator sounds from the robot’s moving limbs were distracting, and that other
modalities such as facial expressions could help clarify the robot’s message (Abdul
Jalil et al., 2012). For cooperative gestures (e.g., beckoning), abrupt and front-facing
gestures evoked faster responses than smooth and side-oriented ones (Riek et al.,
2010).

Although the ability for robots to accurately refer to objects or locations using
deictic (pointing) gestures does not reach human-like performance (St. Clair et al.,
2011), our review identi�ed �ve factors that improve pointing accuracy: The target
is easier to identify (1) if the robot is pointing at objects that are on the same side
as the pointing arm, (2) when participants stand behind the robot instead of next
to it, (3) if the robot also orients its head toward the target, (4) if the robot is able
to actually touch the object, and (5) with practice over time (Bennewitz et al., 2005;
Sauppé & Mutlu, 2014; St. Clair et al., 2011; X. Wang et al., 2014).

Given the fact that gestures are generally understood correctly, researchers have
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(a) Using gestures to give feedback (‘Please
calm down’) as a social mediator (from Tahir
et al., 2020, image reprinted with permission
from the original authors).

(b) Using a reaching gesture to support per-
spective taking (from Zhao and Malle, 2019,
image reprinted with permission from the
original authors).

Figure 2.9: Examples of studies regarding the use of gestures for communicative
purposes.

started exploring various communicative roles that these gestures could ful�l.
This includes using gestures to acknowledge a request for service (although gaze
was found to be a stronger cue; Yamazaki et al., 2016), to trigger curiosity and topic
exploration (Meena et al., 2012), to further clarify verbal feedback given as a social
mediator (Tahir et al., 2020; Figure 2.9a), and to facilitate a natural way to end a
conversation (Isaka et al., 2018). Beat gestures, similar to their role in human-human
communication, can be used to emphasize parts of the robot’s speech, although at
a lower success rate than human-performed beat gestures (Bremner & Leonards,
2015b). Two studies have shown that a robot’s use of reaching gestures can stimulate
visual perspective taking (Zhao et al., 2016; Zhao &Malle, 2019). The degree to which
perspective taking occurs appears to be linked to how human-like the robot is in
appearance, where human-like robots such as Erica (Figure 2.9b) can stimulate visual
perspective taking as well as a human can, while robots that have a less human-like
appearance, such as NAO, can only do this to a lesser degree (Zhao & Malle, 2019).

As in human-human communication, robots can mirror the interlocutor’s gesture
characteristics (e.g., speed) in order to build rapport (Stolzenwald & Bremner, 2017).
This mirroring also happens the other way around, where it has been observed that
human interlocutors mirror the timing (Robins et al., 2008), exact movement (Bao &
Cuijpers, 2017), emblematic gestures (Nalin et al., 2012), or deictic gestures (especially
when presented in combination with gaze; Bennewitz et al., 2005; Iio et al., 2011)
performed by the robot. Another line of research investigated robots as proxies
for people who are unable to gesture themselves, such as people with Parkinson’s
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disease (Valenti et al., 2020), or tetraplegics (Kashii et al., 2016). In the latter case,
it was found that interacting with the gesturing robot proxy mostly improved the
experience for the hypothetical tetraplegic patient (no actual patients were recruited),
and not the interlocutor. Finally, two robots can also gesture to each other, to let
people in the environment know that they are able to communicate with the robots
via gestures (Kanda et al., 2002). Interestingly, although gestures have been found to
play an important role in turn taking behavior in human-human communication,
this appears to be unexplored in human-robot interaction studies (Skantze, 2020).

2.5.3 Gestures’ e�ects on the perception of the robot and the interaction
Gestures and the way they are performed can a�ect how we are perceived by others.
For example, various aspects of our personality (Hostetter & Pottho�, 2012), such
as extroversion, as well as our mood or emotional state (Dael et al., 2013; Kipp &
Martin, 2009), are represented in how we gesture. We therefore expect that the
perception of a robot and the interactions with this robot are also shaped by whether
and how it uses gestures to communicate. This perception of the robot is most
commonly measured using self-report, for example by asking participants to indicate
the personality type or emotion they think the robot is expressing, or by using
a questionnaire (e.g., Godspeed; Bartneck et al., 2009) to measure, among others,
the likeability and human-likeness of the robot. In this section we will cover four
di�erent elements of the way the robot is perceived by others: personality, emotional
state or mood, human-likeness, and overall likeability combined with enjoyment of
interacting with the robot.

Researchers have successfully incorporated a number of personality types
into the robot’s gesturing behavior, including Big Five traits (Bremner et al., 2016),
extroversion and introversion (Aly & Tapus, 2016; H. Kim et al., 2008; Ligthart et al.,
2019), thinking versus feeling (H. Kim et al., 2008), and dominance (Li et al., 2015;
Peters et al., 2019). Extroversion is usually accomplished by modulating the gestures’
speed, size, and frequency (H. Kim et al., 2008; Ligthart et al., 2019), while dominance
relates to the size of the gestures, or expansiveness of the robot’s posture (Peters
et al., 2019; Figure 2.10a). It was found that a less energetically gesturing, introverted
robot elicited more self-disclosure from both introverted and extroverted children,
compared to an extroverted robot (Ligthart et al., 2019). In another study, a robot that
used larger and faster gestures was perceived as more extroverted, and was reported
to be more enjoyable and capable (H. Kim et al., 2008). It was also shown that people
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might prefer a robot that matches their level of extroversion (Aly & Tapus, 2016).
Together with its appearance and voice, gestures are found to be an important cue
to recognize a robot’s personality and individuality (Mikata et al., 2019).

It is also possible for robots to use their gesturing capabilities to express various
emotions, including anger, happiness, fear, and sadness (Aly and Tapus, 2015, 2020;
Augustine et al., 2020; Claret et al., 2017; Kaushik and Simmons, 2021; Prajod and
Hindriks, 2020; Rehm et al., 2016; Tielman et al., 2014; Tsiourti et al., 2017; Figure
2.10b), as well as arousal (Claret et al., 2017; Marmpena et al., 2020; Prajod & Hindriks,
2020), valence (Marmpena et al., 2020; Prajod & Hindriks, 2020; Valenti et al., 2020),
and mood (J. Xu et al., 2014, 2015a, 2015b). Literature has shown di�erences in
how well certain emotions, conveyed through robot-performed gestures, can be
recognized compared to others, where happiness and sadness generally tend to be
easier to recognize compared to calm, anger, fear, and surprise (Claret et al., 2017;
Kaushik & Simmons, 2021; Prajod & Hindriks, 2020; Tsiourti et al., 2017). How well
humans are able to recognize emotions from the robot’s gestures further appears to be
dependent on demographic factors, such as previous experience with robots, cultural
background, age, their level of introversion–extroversion, and gender (Aly & Tapus,
2015, 2020; Kaushik & Simmons, 2021; Rehm et al., 2016; Tuyen et al., 2021). For
example, extroverted participants in one study rated the robot’s emotional behavior

(a) The robot can change
its posture and gesture char-
acteristics to appear more
dominant (from Peters et al.,
2019, image reprinted with
permission from the origi-
nal authors).

(b) Gestures can be used to
display certain emotions, in
this case sadness (from Aly
and Tapus, 2015, image
reprinted with permission
from the original authors).

(c) People tend to �nd
robots that match their
culture’s gestures more
likeable (from Trovato
et al., 2013, image reprinted
with permission from the
original authors, copyright
Takanishi Lab).

Figure 2.10: Examples of studies into how gesturing a�ects the way the robot is
perceived.

51



CHAPTER 2. ROBOT�PERFORMED GESTURES: A SYSTEMATIC REVIEW

as more expressive than introverted participants (Aly & Tapus, 2020). In addition, in
this same study — which used a female (ALICE) robot — male participants generally
found the robot’s emotional behaviors more expressive than female participants.
The authors postulate that this may be caused by the opposite-sex attraction of
participants to robots (Aly & Tapus, 2020).

Emotion-expressing gestures can be implemented by designing speci�c gestures
that portray a certain emotion (imitating crying to indicate sadness), or bymodulating
the speed and size of existing gestures (Marmpena et al., 2020; J. Xu et al., 2015a). By
matching its mood, expressed through gestures, to the mood of a story it is telling,
the robot is able to come across as more enthusiastic (J. Xu et al., 2015a). A study with
gesture synthesis shows that if a mapping between prosodic speech information and
gestures is extracted from TED talks, the resulting gestures performed by the robot
are perceived as enthusiastic as well (Shimazu et al., 2018). In a study comparing
between a humanoid robot (NAO) conveying emotion through gestures and a non-
humanoid robot (Jibo) using animations on its screen to show emotions, children
indicated that they prefer emotion conveyed through gestures from the humanoid
robot (Émond et al., 2020). Furthermore, a robot that aligns its emotional gestures
with a child’s perceived emotional state was evaluated more positively than one that
did not adapt to the child, and the adaptive robot in turn elicited more expressive
behavior (e.g., smiles and frowns) from the child (Tielman et al., 2014).

Gestures generallymake the robot appear human-like or natural (Bennewitz
et al., 2005), especially compared to a robot that does not gesture (Asselborn et al.,
2017; Carter et al., 2014; Hasegawa et al., 2010; Huang & Mutlu, 2014; Liles et al.,
2017; Okuno et al., 2008; Ondáš et al., 2017; Park et al., 2011; Salem et al., 2013a;
Tahir et al., 2020), although this depends on the design and implementation of the
gestures (Ahn et al., 2013; Shimazu et al., 2018), and how well their timing and speed
match the co-occurring speech (Ghosh et al., 2019). Gesturing robots tend to be
seen as social agents, especially when they also use gaze (Bao & Cuijpers, 2017)
or imitate the gestures of the interlocutor (Burns et al., 2018). Research further
indicates that there may be a moderating e�ect of the perceived human-likeness
(anthropomorphism) of a robot on the e�ects of perceived competence and warmth
— two factors that play an important role in building trust with other humans as
well as with robots (Christoforakos et al., 2021). A recent meta-analysis by Roesler
and colleagues further supports this e�ect, as they showed that anthropomorphism
generally results in a higher degree of trust toward, and acceptance of robots (Roesler
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et al., 2021).

While one study in our review found that a robot that used congruent gestures
was perceived as more human-like than one that performed random movements (K.
Xu, 2019), in another study a robot that used incongruent gestures was rated as more
human-like than one that used congruent gestures (Salem et al., 2013a). Next to
the e�ects of congruent and incongruent gestures, the degree to which gestures are
exaggerated can be used to make the robot seem more machine-like, human-like,
or cartoon-like (Gielniak & Thomaz, 2012). It is thus conceivable that gestures also
play a role in navigating the ‘Uncanny Valley’, where a robot or character that is
seen as extremely human-like (but not quite human) can be experienced as creepy
or eerie (Mori, 1970), which is often studied based on appearance. Initial research
indicates that the uncanny e�ect also occurs when a robot uses head nodding without
gestures (Thepsoonthorn et al., 2021). The addition of gestures improved the NAO
robot’s human-likeness and a�nity ratings, moving beyond the uncanny valley,
particularly when these gestures were designed from demonstration (using Kinect
for real-time motion tracking), rather than manually designed (Thepsoonthorn et
al., 2021). Several studies found no di�erences on perceived human-likeness or
naturalness between a robot that did or did not gesture (Aly & Tapus, 2015; A. Kim
et al., 2012), between congruent and incongruent gestures (A. Kim et al., 2012; Vogt
et al., 2017b), only deictic gestures compared to deictic and iconic gestures (van den
Berghe, de Haas, et al., 2021), or between a �xed, more frequent, or varied number
of repetitions of a motion (Seo et al., 2014, 2015). Pointing gestures were rated as
more natural if the robot also used gaze (Iio et al., 2011). Furthermore, humans
are able to tell whether a robot’s pointing behavior is controlled by, or based on,
human behavior (Wykowska et al., 2015), and additional facilitation processes (e.g.,
establishing joint attention) also lead to more natural pointing interactions (Sugiyama
et al., 2007).

Finally, most studies that looked into the perception of the robot report positive
e�ects of gestures on the robot being perceived as likeable, active, lively, enthusiastic,
sympathetic, friendly, fun-loving, attractive, socially intelligent, credible, and people
were more willing to accept the robot, and to keep using it in the future (Aly & Tapus,
2016; Asselborn et al., 2017; Huang & Mutlu, 2014; A. Kim et al., 2013; Liles et al.,
2017; Meena et al., 2012; Moro et al., 2019; Ondáš et al., 2017; Salem et al., 2013a;
Salem et al., 2012; Salem et al., 2011; Tahir et al., 2020; Tielman et al., 2014; J. Xu et al.,
2015a; K. Xu, 2019), particularly when a robot’s cultural gestures matched the cultural
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background of the interlocutor (Trovato et al., 2013; Figure 2.10c), when the robot
did not act dominantly (Li et al., 2015), if it was using extroverted or exaggerated
gestures (Hsieh et al., 2020; H. Kim et al., 2008), and when a motion (waving) was
repeated more frequently (Seo et al., 2015), or a varying number of times (Seo et al.,
2014). Participants in studies also reported a higher degree of shared reality (Lohse et
al., 2014; Salem et al., 2013a), physical and social (tele)presence (Groechel et al., 2019;
Kawaguchi et al., 2016), and being more empathetic with a robot that gestured (Burns
et al., 2018; Sakamoto et al., 2005). Interactions with a gesturing robot were rated
more positively and found to be more enjoyable (Carter et al., 2014; Pollmann
et al., 2020), especially if the interlocutor was invited to mimic the gestures (Ligthart
et al., 2020), or if the robot used listener-oriented gestures or aligned with the listener
when giving directions (Hasegawa et al., 2010; Ono et al., 2001). For elderly, a robot
that adjusted its gesture timing to their utterance speed was rated more positively
than one that had �xed timings (Muto et al., 2009). Di�erences appear to exist
between congruent and incongruent gestures, where a robot that used congruent
gestures was perceived more positively (Goto et al., 2020; Wicke & Veale, 2020),
and speci�cally as more sympathetic (Salem et al., 2012), while a robot that used
incongruent gestures was perceived as more engaged and communicative compared
to when gestures were absent (Salem et al., 2012). A robot that used incongruent
gestures was found more likeable, and rated higher on intimacy and involvement
than one that used congruent gestures (A. Kim et al., 2012; Salem et al., 2013a). One
study showed no di�erence in likeability between a robot that used congruent or
incongruent gestures (Vogt et al., 2017b). Researchers have also shown that the size
and speed of the robot’s gestures a�ect how the robot is perceived in terms of animacy,
anthropomorphism, likeability, and the interlocutor’s perceived safety (Deshmukh
et al., 2018). Four studies found no e�ect of a robot’s use of gestures on the perception
of the robot (Admoni et al., 2016; Ham et al., 2015), speci�cally on trustworthiness
or credibility (Huang & Mutlu, 2014; K. Xu, 2019). In one case, a robot that did not
use gestures was deemed more trustworthy than one that did (Tielman et al., 2014).
Another study indicates that a robot that uses exaggerated gestures, and gestures
too frequently, could be perceived as confusing and irritating (Pollmann et al., 2020).

2.5.4 Gestures and engagement with the interaction
Engagement, often also referred to as user engagement in the �eld of human-
computer interaction, can be de�ned as the level of involvement with an interaction:
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how much attention and interest is invested by the user into this interaction (Lalmas
et al., 2014; O’Brien & Toms, 2008). It can be subdivided into cognitive engagement
(e.g., attention), a�ective engagement (e.g., emotional involvement), and behavioral
engagement (or task engagement; e.g., complying with actions requested by the
robot). There are several approaches to measuring these di�erent types of engage-
ment, including annotation, gaze tracking, or self-report. Robots could potentially
use gestures to increase engagement from the interlocutor with the robot itself, as
well as with the task at hand. As such, a robot that is more actively moving around
will likely draw more attention than one that is static. Gestures can also support the
robot’s ability to express itself, potentially resulting in emotional involvement from
the interlocutor. Finally, the robot’s gestures may help to clearly communicate to
the interlocutor about the tasks they are expected to perform, and to persuade them
to actually perform these tasks.

A number of studies have looked at whether a robot’s use of gestures supports
its ability to attract attention from passersby in a public setting, where one study
found no e�ect (K. Kim et al., 2017), one found a negative e�ect (Aizawa & Umemuro,
2021), while others found that people were more likely to engage with the robot, and
listened to it for a longer time (Bremner et al., 2011; Moshkina et al., 2014; Figures
2.11a and 2.11b). These e�ects were only observed with congruent, human-like
gestures and not with random movement (Bremner et al., 2011). Gestures have
also been shown to help maintain engagement during ongoing interactions
(Asselborn et al., 2017; Carter et al., 2014; Meena et al., 2012; Figure 2.12), particularly

(a) Gestures can help draw attention from
a crowd (from Moshkina et al., 2014, image
reprinted with permission from the original
authors).

(b) A crowd is attracted by the (gesturing)
robot from Figure 2.11a (from Moshkina et
al., 2014, image reprinted with permission
from the original authors).

Figure 2.11: Examples of studies into the e�ects of gestures on engagement with the
robot and the interaction.

55



CHAPTER 2. ROBOT�PERFORMED GESTURES: A SYSTEMATIC REVIEW

Figure 2.12: Adaptors while the robot is idle can help maintain engagement over
time (from Asselborn et al., 2017, image reprinted with permission from the original
authors).

in an educational setting (Ahmad et al., 2016b; De Carolis et al., 2019; Chapter 3;
Chapter 6), and while a robot was assisting elderly with everyday tasks (Moro et
al., 2019). This positive e�ect of gestures on engagement appears to persist over
multiple sessions (A. Kim et al., 2013), and people indicated that gestures would likely
retain their engagement on the long term (Wu et al., 2017). Exaggerated gestures in
particular are perceived as more engaging than ‘unexaggerated’ gestures (Gielniak &
Thomaz, 2012). No e�ect was observed regarding the presence or absence of actuator
sounds on attention toward the robot (Jouaiti & Hena�, 2019). Several researchers
have developed robots that can monitor the engagement level of an interlocutor or
audience in real-time, and then use gestures to regain attention when this level
drops (Bourguet et al., 2020a; Sza�r & Mutlu, 2012). However, gestures can also draw
too much attention: An eye tracking study showed that robot-performed gestures
during a presentation draw more visual attention than similar gestures performed
by a human presenter, and this was reported as a distracting factor, speci�cally due
to the high frequency of gesturing and unnatural co-speech timing (Bourguet et al.,
2020b).

2.5.5 How gestures can a�ect task performance
Humanoid, social robots are used in �elds that involve frequent communication with
humans, such as education, healthcare, and hospitality. We have seen that gestures
can improve human-robot communication, help shape the way the robot is perceived,
and increase user engagement. In addition, tasks that take place within these �elds
may also stand to bene�t directly from a robot’s use of gestures. For example, a
robot’s use of gestures can contribute to its success in persuasion (Chidambaram
et al., 2012; Ham et al., 2015; Figure 2.13a), especially when combined with gaze (Ham
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(a) Gestures can make the robot more persua-
sive, e.g., in a Desert Survival Task (from Chi-
dambaram et al., 2012, image reprinted with
permission from the original authors).

(b) Robots can also use gestures to support
their teaching e�orts (from Chapter 3, image
reprinted with permission from the original
authors).

Figure 2.13: Examples of studies regarding the in�uence of robot-performed gestures
on task performance in various domains.

et al., 2015), or when polite gestures are used (N. Lee et al., 2017). This in turn can
increase compliance to healthcare suggestions made by the robot (N. Lee et al., 2017),
although another study did not �nd an e�ect on compliance (Moro et al., 2019).

Robots are also researched as tools in education, where their ability to use gestures
is seen as an important feature by both teachers and primary school children (Ahmad
et al., 2016a, 2016b), and a robot that uses gestures is perceived as a better facilitator
of learning (Liles et al., 2017). It has been shown that gestures, particularly those
that are congruent with what is conveyed via speech, can support second language
tutoring (Vogt et al., 2017b; Vogt et al., 2019; Zhang and de Haas, 2020; Chapter 3;
Chapter 6; Figure 2.13b), and the robot can also teach (culture-related) gestures (De
Carolis et al., 2019). In one study, a robot used gestures to express either a positive
or a negative mood. While this did not lead to a di�erence in quiz performance,
the lecture with the positive robot received better ratings (J. Xu et al., 2014). In
addition, researchers explored the idea of adding virtual (augmented reality) arms
to a physical robot, but did not �nd improvements on an educational math task
performance (Groechel et al., 2019). There may be di�erences in the e�ectiveness
of gestures depending on learner characteristics: In a learning-by-teaching task,
where the student had to correct mistakes in the robot’s reading, robot-performed
deictic gestures improved the ability of students with high reading pro�ciency to
identify the robot’s mistakes, but had a distracting e�ect on students with low reading
pro�ciency (Yadollahi et al., 2018).

In the hospitality �eld, robots can use gestures to improve their ability to give
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directions or refer to objects or locations (Ali and Williams, 2020; DePalma et al.,
2021; Hasegawa et al., 2010; Lohse et al., 2014; Okuno et al., 2008; Ono et al., 2001;
Figure 2.14), resulting in higher accuracy or speed of identifying the goal location, or
better retention of the directions in the interlocutor compared to a robot that does
not use gestures. There is however a potential adverse e�ect of robot-performed
pointing gestures, as in one study participants also started pointing at the targets (in
this case, other robots) instead of referring to them by name (Bennewitz et al., 2005).
Also in the hospitality domain, a scheduling assistant robot that used gestures was
rater higher on usability than one that did not use gestures (S. Lim et al., 2009).

Robot-performed gestures have further resulted in better information reten-
tion (Huang & Mutlu, 2013; van Dijk et al., 2013). This has been researched, for
example, in the context of storytelling, where gestures can aid the memorization
of story events (Gielniak & Thomaz, 2012; Sza�r & Mutlu, 2012), particularly when
these gestures are exaggerated (Gielniak & Thomaz, 2012). However, one study
found that a robot’s use of adaptor gestures while idle did not result in increased
performance of children on a memory game (Asselborn et al., 2017). In another
study, participants’ retelling performance of an informative presentation did not
improve if the robot used gestures (Huang & Mutlu, 2014). These mixed �ndings
might be explained by several studies indicating that the bene�ts of gestures only
apply to more di�cult tasks (Admoni et al., 2016; Lohse et al., 2014), and in one case
only when the robot was conveying a negative mood during the di�cult task (J. Xu
et al., 2015b). In addition, it is possible that gestures have to be congruent with what
is communicated via speech for them to be e�ective: Several studies observed a
negative e�ect of incongruent gestures on task performance (Huang & Mutlu, 2014;

Figure 2.14: Particularly pointing gestures can help refer to objects or locations
(from Ali and Williams, 2020, image reprinted with permission from the original
authors).
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Ono et al., 2001; Salem et al., 2013a), although two studies did not see a di�erence
between congruent and incongruent gestures (Bremner et al., 2011; A. Kim et al.,
2012). Finally, one study showed that the presence of actuator noise can negatively
impact the performance on a rhythmic interaction (Jouaiti & Hena�, 2019).

2.5.6 Using gestures to support interactees with special needs

Our search uncovered one research group that is investigating whether social robots
could be capable of communicating with humans using sign language (Akalin et al.,
2013; Kose et al., 2015; Kose et al., 2012). This would enable people who are deaf or
hard of hearing to interact with robots in a natural way. However, sign language
remains a challenging endeavor as the currently available robots, including the NAO
and Robovie R3 that are used in these studies, have limited degrees of freedom in
their movement. While the NAO has only three �ngers that can only move together
in a gripping motion, Robovie has �ve �ngers that can move individually, which is
why it is generally preferred over the NAO for this purpose (Kose et al., 2015; Figure
2.15a). Initial research in this area shows that there are di�erences between various
signs in how easy it is to recognize them (Akalin et al., 2013; Kose et al., 2012), and
that children and teenagers �nd them more di�cult to recognize than adults (Kose
et al., 2015; Kose et al., 2012). Due to the robot’s physical limitations, a number of
signs risk ending up looking similar to others, making it more di�cult to distinguish
between them (Akalin et al., 2013).

(a) To a limited extent, robots can use (in this
case Turkish) sign language (from Kose et al.,
2015, image reprinted with permission from
the original authors).

(b) Children with ASD can train gesture imi-
tation with a humanoid robot (from Taheri
et al., 2020, image reprinted with permission
from the original authors).

Figure 2.15: Examples of studies into using robots to support interactees with special
needs.

59



CHAPTER 2. ROBOT�PERFORMED GESTURES: A SYSTEMATIC REVIEW

Social robots have also been researched as therapeutic devices in the �eld of
autism spectrum disorder (ASD), for example for training social skills or teaching
gestures to nonverbal autistic people as an alternative means of communication.
Robots show potential in this �eld, because they appear to be seen as something in
between inanimate toys and fully human-like entities. As a result, they can provide
a safe and relaxed environment for practicing social skills, while still ensuring a
degree of realism in the interaction that allows the newly acquired social skills to
carry over into human-human communication (Scassellati et al., 2012). Research
shows that robots can be used to train gesture production and recognition with
autistic children (So et al., 2019a; So et al., 2016; So et al., 2018a; So et al., 2019b; So
et al., 2018b; Z. Zheng et al., 2016), and these skills are retained over time and can
generalize to subsequent human-human communication (So et al., 2016; So et al.,
2018a). Furthermore, gesture training with the robot in the context of storytelling
resulted in improvements in the quality of the narratives children produced (So et al.,
2019a). A robot and human teacher were found in two studies to be equally capable at
training gesturing skills, but children were more likely to establish eye contact with
the robot than with the human teacher (So et al., 2019b), and also tended to pay more
attention to it (Z. Zheng et al., 2016). Other research however found that imitation
performance among both typically developing and autistic children was better with
another human, than with a robot (Taheri et al., 2020; Figure 2.15b). While there
appear to be almost no di�erences between autistic and typically developing children
at identifying the robot’s emotions from facial expressions and gestures, fear in
particular was found to be more di�cult for autistic children to recognize (Salvador
et al., 2015).

2.5.7 Summary
This section provides an overview of the di�erent e�ects of robot-performed gestures
on the interaction, the way the robot is perceived, and the goals that the robot tries
to achieve. The results are generally positive: the meaning of robot-performed iconic,
metaphoric and emblematic gestures is generally understood, and gestures can be
used to ful�l a number of communicative roles that we also see in human-human
communication, such as emphasizing parts of speech. Furthermore, robots can use
their gesturing behavior to convey a certain personality, emotional state, or mood,
and a robot that gestures is often perceived asmore human-like than one that does not.
Di�erent motion parameters, such as the speed or size of the motions, can be adjusted
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to exercise some control over how the robot will likely be perceived: exaggerated
motions could make the robot appear more cartoon-like and enthusiastic, and by
increasing the size and speed of the gestures the robot will generally be perceived as
more extroverted and dominant. Overall, a gesturing robot is also perceived more
positively than one that does not gesture, people are more accepting of it and are more
likely to engage with it over prolonged periods of time, and interactions are found to
be more enjoyable. Finally, gestures can be used to support tasks in several di�erent
application domains, including healthcare, education, and hospitality. Robots and
their gestures further show potential for supporting autistic people, particularly
children, in training their (non-verbal) communicative and social skills, however it
is as of yet unclear how these robots perform relative to a human trainer. Finally,
another valuable application of social robots is in sign language, although the physical
limitations of the currently available robots make it hard to distinguish between
di�erent signs.

Next to these overall positive and promising �ndings, there have been mixed
results particularly relating to the use of exaggerated gestures, as well as congruency
of the gestures with the information that is conveyed via other modalities, such
as speech. There appear to be individual di�erences regarding a preference for
exaggerated gestures, and this might also depend on the context, and the tasks that the
robot is performing. Congruent gestures are generally preferred for improving task
performance and often lead to positive ratings, but incongruent gestures might make
the robot appear more likeable and human-like because of its perceived imperfections.
Future work could further examine these nuances in the design of robot-performed
gestures. In addition, we found little to no research exploring the e�ects of gestures
in facilitating turn taking in conversations, and of the robot mirroring gestures
or gesture properties (e.g., speed) from the interlocutor. Finally, there is no clear
guideline on the desired overall frequency of the robot’s gesturing, although some
of the studies covered in this section seem to indicate that this frequency should be
lower for robots than for humans, to avoid the movements being too distracting.

2.6 General discussion and conclusion
The aim of this literature review was to create a comprehensive overview of the state
of the art in social robots that use hand gestures to support their communicative
e�orts. We focused speci�cally on (1) di�erent implementations for the design and
planning steps of a robot’s gesture production process, and (2) the e�ects of robot-
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performed gestures on human-robot interaction in the various domains where social
robots could be used. To ensure that the review is current and complete, we ran an
exhaustive search, using broad search queries, on three relevant databases in the
�eld of human-robot interaction. After screening the resulting papers and assessing
full-text articles for eligibility, a total of 167 papers remained, of which 61 covered
gesture planning approaches and 124 discussed an experimental study of the e�ects
of robot-performed gestures. Information on the di�erent approaches to gesture
design was inferred from the set of 167 papers as well. In the sections below, we
highlight the main results of the literature review, re�ect on the state of the research
�eld of robot-performed gestures, and introduce outstanding questions and avenues
for future research based on these �ndings and re�ections. The ten outstanding
questions brought forward in this discussion have been summarized in Table 2.1.

2.6.1 Design of robot-performed gestures
The di�erent gesture design approaches discussed in literature can be divided into
two categories: manual design, and design from demonstration. Manual design is
often done using key framing techniques known from character animation, where
salient poses from a gesture are de�ned, and the robot smoothly moves between these
poses when performing the gestures. In design from demonstration, motions are
recorded from human performers and are then transferred onto the robot.

The main advantage of manually designing the robot’s gestures is that the
designer has full control over what the gestures will look like. This means that the
robot’s morphology and physical limitations can be taken into account, and instead
of basing the robot’s gestures on human-performed examples, the designers could
also draw inspiration from animation theory, to make the gestures more exaggerated
or cartoon-like. It may also be easier to modify manually designed gestures so that
they convey a certain emotional state or mood. This increased level of control is
likely the reason for the majority of the planning approaches and studies covered in
this literature review to use manually designed gestures. Gestures that are designed
from demonstration, however, are less labor intensive because they can be generated
automatically on a large scale, and they tend to look more human-like because the
entire motion, including its imperfections, is recorded from a human model and then
performed by the robot. With portable depth sensors such as Microsoft’s Kinect,
and recent developments enabling pose tracking from arbitrary two-dimensional
recordings, such as TED talks, we anticipate a move toward more gestures being
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designed from demonstration. At the same time, it would be interesting to explore
whether hybrid approaches could succeed in combining the bene�ts of both gesture
design methods, while avoiding their pitfalls (e.g., as initially explored in Shimazu
et al., 2018). This leads to our �rst outstanding question in the �eld: Will developments
in sensor technology and AI improve the quality of robot-performed gestures collected
from naturalistic data, and thus remove the need for manually designed gestures?

The studies discussed in Section 2.5 highlight that the way in which gestures
are designed plays a crucial role in their e�ectiveness, in terms of the way the robot
is perceived, levels of engagement with the interaction, and the bene�ts to task
performance. For example, exaggerated gestures can make the robot seem more
cartoon-like, which in some studies resulted in a more positive response toward the
robot (e.g., Hsieh et al., 2020; H. Kim et al., 2008), while in another study this led to
confusion and irritation (Pollmann et al., 2020). It is therefore important that gestures
are designed with a certain goal in mind (e.g., human-likeness, extroversion), that
subsequent design decisions are carefully weighed, and that there is an iterative
design process that evaluates whether the gestures succeed at reaching their goal
before they are used. This holds for iconic, metaphoric, and emblematic gestures
in particular: Since they are intended to convey a certain meaning, they need to
be designed in such a way that this meaning is clearly understandable. Di�erent
strategies exist for performing iconic and metaphoric gestures, e.g., outlining the
shape of a concept, or performing a certain action that is related to the concept (Müller,
2014). Which of these strategies is adoptedmay vary depending on the type of concept
that is depicted, but also on characteristics of the person performing the gesture, such
as their age (Jain et al., 2016). As a result, if the goal is for the robot to interact with
children, it might be more e�ective to incorporate gestures that align with children’s
preferred gesturing strategies, and to also evaluate the quality of the gestures with
children. However, a relatively small number of studies included in this review (21%)
report on an evaluation of the comprehensibility of the gestures, before using them
in their study. Given the substantial number of factors to consider at the design stage
of a robot’s gesture production process, combined with the lack of evaluations of
this design step, we raise the second outstanding question: How can we add structure
and consistency to the process of designing and evaluating robot-performed gestures?

Because most studies use the NAO or Pepper robots, and only six studies compare
between di�erent robots, it is as of yet unclear how a robot’s gesturing behavior
relates to its physical appearance. For example, machine-like gestures might be
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perceived as more natural on a mechanical-looking robot than a NAO robot, and
it might appear unsettling for a robot that is human-like in appearance (e.g., Erica)
to perform exaggerated, cartoon-like motions. Appendix 2.A contains images of all
the robots that were used in the papers included in the literature review, and this
shows substantial di�erences in physical appearance, in terms of how mechanical
or human-like the robots look, and also in terms of their gesturing capabilities. It is
conceivable that the robot’s appearance, together with its use of gestures, determines
how it is perceived and how the communication with others is shaped, although it is
as of yet unclear how these two factors relate to and in�uence each other. According
to one study, not only the way the robot as a whole, but also speci�cally its gestures
are perceived may be a�ected by its appearance, as male participants rated a female
robot’s gestures as more expressive than female participants, which the authors
attribute to opposite-sex attraction — a phenomenon from human-human interaction
that appears to apply to human-robot interaction as well (Aly & Tapus, 2020). Because
only limited research has investigated the relationship between a robot’s physical
appearance and gesturing behavior, the third outstanding question is: How does a
robot’s physical appearance relate to its use of gestures, and how does the interplay of
appearance and gesture in�uence human-robot interactions?

2.6.2 Gesture planning
We identi�ed four di�erent themes within the planning step of a robot’s gesture
production process: gesture selection, co-speech timing, gesture synthesis, and
adjusting the motions’ parameters before executing a gesture, for example to tailor
the gesture to a particular context. Gesture synthesis uses arti�cial intelligence to
infer the design, selection, and co-speech timing of the robot’s gestures from large
sets of data. This is a promising avenue for future research, as it is now possible to
use readily available sources of data, such as YouTube videos, as input, and these
algorithms are able to generalize to generate new gestures, and to add gestures
to new speech input. Interestingly, co-speech timing was only addressed by six
papers, even though this is not a trivial task in complex real-world situations, such
as free-form dialog, where the robot’s speech can be interrupted. Incorrect timing
can also lead the robot to be perceived as less human-like or natural (Ghosh et al.,
2019).

Within the di�erent planning approaches, we observe a similar distinction be-
tween manual and automatic approaches to gesture selection and timing as
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previously discussed for gesture design. Manual selection and timing can be done
for example by annotating the robot’s speech output to indicate exactly when a
particular gesture is to be performed. Automatic, rule-based or arti�cial intelligence-
based systems, including gesture synthesis, are less labor intensive because they
map particular words (and, optionally, similar words) to gestures, and can even
infer these mappings from datasets. In this case, too, we observe that the majority
of experimental studies covered in Section 2.5 use manually planned gestures, for
example by creating scripts for the robot to follow, by triggering gestures using
a Wizard of Oz set-up, or by making video recordings of an interaction or even
isolated gestures and then showing these to participants. This predominance of
manual planning approaches is likely related to the large number of studies that
took place either in the lab (61%) or online (11%), and the fact that we only included
studies where the e�ects of the robot’s gestures were investigated, where consistency
between participants is desired in order to reliably study these e�ects. It is also easier
with manual or rule-based approaches to take contextual information, such as the
emotional state of the robot or interlocutor, into account.

Adjusting the motions’ parameters before producing the gestures was the largest
theme, with 36 papers investigating ways to add variation to the robot’s gestures,
or to tailor the gestures to a particular situation or context. A robot that is more
contextually aware, for example by adjusting to the interlocutor’s emotional state
or by re-positioning itself to perform clearer pointing gestures, will appear to be
more (socially) intelligent. The literature shows that it is possible to adjust gestures
in order to express a certain mood, or to give the robot a particular personality.
This could be tailored to the desired role of the robot, for example by making it
appear more dominant to establish authority. Therefore, as with the design of the
gestures themselves, thought should go into the decisions involving gesture
planning, as these will also partly determine how the robot will be perceived and
whether it will be accepted by the people interacting with it. For example, frequent
gesturing makes the robot appear more extroverted, but if it gestures too frequently
this can cause irritation or distraction (Bourguet et al., 2020b; Pollmann et al., 2020).
Particularly variation in the robot’s gesturing behavior is an interesting topic of
studies, which has received some attention from a gesture planning perspective (e.g.,
Gielniak et al., 2011; Marmpena et al., 2019), but the e�ects of which have not been
studied as elaborately yet (see, e.g., Chapter 6, for �rst explorations).

Compared to the design of the gestures, evaluations of the planning approaches
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are more common (78% of the papers). However, only 59% conducted an evaluation
with human participants, and approximately half of these examined the e�ects of the
planning approach on one or more aspects of the interaction between a human and
the robot, and were therefore also discussed in Section 2.5 of this literature review.
We believe it would be valuable to study the e�ects of these planning approaches in
situ, but limited research appears to have done so. Therefore the fourth outstanding
question is: How do design decisions regarding gesture planning (e.g., introducing
variation) a�ect the resulting overall human-robot interaction?

2.6.3 E�ects of robot-performed gestures on human-robot interaction
We presented a comprehensive overview of the various e�ects that robot-performed
gestures can have on di�erent aspects of human-robot interactions. These e�ects
were divided into �ve di�erent themes: communicative purposes, perception of the
robot and the interaction, engagement, task performance, and e�ects speci�cally for
interactees with special needs. The majority of papers discussed present positive
e�ects, indicating for example that a robot that uses gestures is generally perceived
as more likeable or enthusiastic (e.g., Salem et al., 2011), and that the robot’s gestures
can support tasks in a number of domains, such as education (e.g., Chapter 3). In
addition, a number of neutral e�ects were found, for example when the perception of
the robot changed because of its gestures, not necessarily for better or for worse (e.g.,
H. Kim et al., 2008). The predominance of positive e�ects could, however, be the result
of publication bias (Rothstein et al., 2006), and there is a need for more replication
studies in the �eld of human-robot interaction (Ho�man & Zhao, 2020; Irfan et al.,
2018).

From studies into the comprehensibility of robot-performed gestures, we
observe that they are generally understood by others, although not always as well as
human-performed versions of the same gestures (Cabibihan et al., 2012; M. Zheng et
al., 2019; M. Zheng & Meng, 2012). People’s ability to understand the robot’s gestures
has been shown to depend on a number of factors, both related to the design of the
gestures themselves (as discussed previously in Section 2.6.1), as well as individual
di�erences in the observer. For example, a robot’s gestures appear to be easier to
understand for people that are more adept at interpreting gestures performed by
humans (Riek et al., 2010), and familiarity with robots appears to play a role as
well (M. Zheng et al., 2019). Preliminary research further indicates that the age of
the observer may a�ect how well gestures are understood, where younger children
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tend to perform worse than older children, and both children and elderly worse than
adults (Kose et al., 2012; Rehm et al., 2016; Chapter 6). Because the comprehensibility
of the robot’s gestures is likely a key prerequisite for them to be e�ective, particularly
regarding task performance, we formulate the following �fth outstanding question:
Can we de�ne the quality (e.g., comprehensibility, ‘communicative success’) of a robot-
performed gesture, and can this be measured in a standardized, perhaps even automatic
way? A similar call for standardized evaluation metrics has been made speci�cally in
the �eld of learning from demonstration (Argall et al., 2009), and recently quanti�ed,
computational evaluation methods (Zabala et al., 2021) as well as guidelines on
how to conduct and report on gesture generation and evaluation for embodied
conversational agents (Wolfert et al., 2021) have been proposed, as �rst steps toward
addressing this outstanding question.

Integration of the robot’s gestures with other non-verbal modalities, such
as eye gaze or facial expressions, has been shown to aid the comprehension of the
gestures (e.g., Abdul Jalil et al., 2012), and can lead to stronger bene�cial e�ects
compared to using gestures alone (e.g., Ham et al., 2015; Iio et al., 2011). In this
literature review, we only included studies in which the e�ects of gestures were
studied independently, so that we could assess the nature of these e�ects, and identify
the role that (the design of) the robot’s gestures played in the interaction. While
it might be valuable to study the di�erent modalities in isolation in the context
of scienti�c research, in practice these could together be considered as the robot’s
socially intelligent behavior (Fong et al., 2003). Therefore, the sixth outstanding
question is: Should gesture generation be considered a separate system, or should we
consider non-verbal multimodal output generation as one task?

Overall, a robot’s use of gestures has been shown to have a number of bene�cial
e�ects: the gestures can ful�ll communicative roles (e.g., ending a conversation in a
natural way), help refer to objects or locations, and allow the robot to convey a certain
personality or emotional state. Furthermore, gestures can result in more positive
ratings of the robot and the interaction, lead to higher levels of engagement, and are
able to improve the robot’s persuasive abilities, its teaching e�orts, and information
that is conveyed by the robot in combination with gestures is often better retained by
an audience. From the literature covered in this review, we have identi�ed a number
of factors regarding the design of the robot’s gestures that may a�ect how the
robot is perceived by others, and how e�ective the gestures are at supporting various
tasks. These factors include the previously discussed gesture properties such as speed

67



CHAPTER 2. ROBOT�PERFORMED GESTURES: A SYSTEMATIC REVIEW

or size, as well as the frequency of gesturing, and the extent to which the gestures are
exaggerated or not. Another important factor is whether the gestures are congruent
with the information that is conveyed via other modalities (e.g., speech), where
congruent gestures appear to generally be preferred. Incongruent gestures can be
used to make the robot appear more human-like and likeable, but this can come at the
cost of reduced task performance. Although a number of these factors related to the
design and implementation of the robot’s gestures have been identi�ed and studied,
there is a lack of studies into how individual di�erences in the observers of the
robot’s gestures in�uence the e�ects that these gestures may have. Most studies are
conducted with adults, from a single cultural background. There is reason to believe
that there may be di�erences, particularly regarding the perception of the robot and
its gestures, based on gender (Aly & Tapus, 2020) or cultural background (Trovato
et al., 2013; Tuyen et al., 2021), which leads to the seventh outstanding question: How
do individual di�erences, e.g., based on cultural background, in�uence the e�ects of
robot-performed gestures?

An interesting theme that emerged from this review is gesture mirroring, both
performed by the robot as well as by the interlocutor. In human-human commu-
nication, behavioral mimicry can be seen as an indication of rapport if it occurs
subconsciously — known as the chameleon e�ect (Chartrand & Bargh, 1999) — and
some have argued that this can be consciously used to increase rapport and lik-
ing (Chartrand & Bargh, 1999; Lakin & Chartrand, 2003). The fact that participants in
several of the studies covered in this literature review started mirroring the robot’s
gestures (Bao & Cuijpers, 2017; Bennewitz et al., 2005; Iio et al., 2011; Nalin et al.,
2012; Robins et al., 2008) could be seen as an indication that the robot is regarded as
a social agent by the participants, with which they can form a social bond. This, in
turn, could lead to long-term acceptance and engagement with the robot, which is
important to establish lasting e�ects, for example in healthcare or education (Leite
et al., 2013). One study illustrates that it is possible to have a robot mirror elements
of the participants’ gesturing behavior (Stolzenwald & Bremner, 2017), which could
potentially be used as a tool to build rapport. Speci�cally in the �eld of education,
having the student mirror the teacher’s gestures can lead to increased learning out-
comes compared to merely observing these gestures (e.g., Cook et al., 2008; Tellier,
2005), although to our knowledge this has not been researched with a robot as
teacher. In short, limited research on gesture mirroring with robots shows promising
results, and it would be worthwhile to investigate whether certain design decisions
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regarding the robot’s gestures can stimulate mirroring by others. Therefore, we
pose the eighth outstanding question: Is mirroring of gestures, by the robot or by the
interlocutor, always bene�cial, and can we design the robot’s gestures in such a way
that they elicit more frequent mirroring from others?

A further observation is that gestures generally make the robot appear more
human-like. This is often considered a desirable quality, because it enables us to
interact with robots in a way that is familiar and natural to us, and this tends to
result in greater acceptance of these robots in our lives (Fink, 2012; Roesler et al.,
2021). A more human-like robot, albeit in appearance in this particular study, was
indeed shown to elicit more social behavior from humans in the form of visual
perspective taking (Zhao & Malle, 2019), and human-likeness is mentioned as one of
the components for stimulating child-robot relationship formation (van Straten et al.,
2020). The meta-analysis by Roesler et al., 2021 also highlights the positive e�ects
of human-likeness on likeability, perceived intelligence, activation, pleasure, trust,
acceptance, task performance, and social behavior by the interactee, but mostly in the
social domain — only some of these e�ects were found for the service and industrial
domains. It is worth noting that this meta-analysis includes human-like features
other than the robot’s (gesturing) behavior, such as its appearance. It is as of yet
unclear how the uncanny valley e�ect, where a robot that becomes too human-like
can be perceived as eerie, applies to a robot’s gesturing behavior. One study did
investigate this e�ect, and found that human-like gestures can help move beyond the
uncanny valley, but this was only tested with one robot platform (Thepsoonthorn
et al., 2021). It is unclear whether human-likeness is always required and desired,
or whether it is perhaps limiting the robots’ potential to go beyond human abilities,
and make use of their ‘superpowers’, such as having endless patience (Dörrenbächer
et al., 2020). Furthermore, the fact that people tend to build social bonds with human-
like robots could have a drawback of getting (too) emotionally attached to these
robots (Zhao & Malle, 2019), and there are several ethical and societal implications
to consider (Darling, 2017; de Graaf, 2016), particularly with regard to child-robot
interactions (van Straten et al., 2020). The robot’s gestures could, together with its
appearance, potentially be used to navigate the scale of human-likeness, for example
by making the gestures more exaggerated to position the robot as more cartoon-like,
but further research is needed to verify to what extent this is possible, and desirable.
This is the ninth outstanding question: Under what circumstances should we aim for a
human-like appearance and gestures, or rather consider robots a distinct entity with
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their own mode of expressing themselves (e.g., using exaggerated, cartoon-like motion)?
Finally, robot-performed gestures show potential in supporting interactees

with special needs. In the current literature review, we found promising results in
the �eld of using robots as therapeutic devices for autism spectrum disorder (ASD),
speci�cally to teach gestures to nonverbal autistic people and for training various
social skills (see, e.g., Scassellati et al., 2012, for a review). Additionally, researchers
have begun exploring whether the robot can communicate using sign language, to
make robots more accessible to people that cannot use speech to communicate, such
as the deaf or hard of hearing. However, particularly for sign language the currently
available robot platforms appear to be limited in their degrees of freedom, which
means that signs will have to be adjusted for the robot to be able to perform them,
or they will be less clear compared to when they are performed by humans. Further
research is needed to verify whether currently available robots are indeed able to
communicate fully via sign language or, if not, to explore alternative options to
make robots more accessible. One potential solution could be to use mixed reality,
where virtual arms and hands can be used to allow for greater �uidity and freedom
in movement compared to physical versions. We found one study that explored
this option, but in the context of education and not sign language (Groechel et al.,
2019). The need for accessibility in interactions with robots results in the tenth and
�nal outstanding question: How can we make robots more universally accessible: can
we enable people with special needs to communicate with them in a meaningful and
natural way?

2.6.4 The state of the research field
Next to investigating the state of the art in robot-performed gestures and identifying
outstanding questions, we have taken a critical re�ective look at the way research in
this �eld is conducted. A positive trend is that the majority of research covered in
this literature review includes a controlled experimental study in which (aspects of)
the robot’s gesturing behavior was manipulated. This allows us to systematically
identify the e�ects of gestures on human-robot interactions, and provides further
qualitative information regarding the design decisions that may have in�uenced
their e�ectiveness. Furthermore, 44% of the papers combine multiple measurement
instruments to obtain a comprehensive overview of the e�ects of robot-performed
gestures. Four methodological aspects that could be improved in the majority of the
research covered in this literature review relate to replicability, external validity, the
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measurement instruments used, and connections with other disciplines. Based on
our re�ections, we propose four points of improvement addressing these method-
ological aspects, most of which have previously been suggested for the human-robot
interaction �eld in general (Bethel & Murphy, 2010; Ho�man & Zhao, 2020).

Table 2.1: Outstanding questions in the study of robot-performed gestures.

1. Will developments in sensor technology and AI improve the quality of robot-
performed gestures collected from naturalistic data, and thus remove the
need for manually designed gestures?

2. How can we add structure and consistency to the process of designing and
evaluating robot-performed gestures?

3. How does a robot’s physical appearance relate to its use of gestures, and
how does the interplay of appearance and gesture in�uence human-robot
interactions?

4. How do design decisions regarding gesture planning (e.g., introducing varia-
tion) a�ect the resulting overall human-robot interaction?

5. Can we de�ne the quality (e.g., comprehensibility, ‘communicative success’)
of a robot-performed gesture, and can this be measured in a standardized,
perhaps even automatic way?

6. Should gesture generation be considered a separate system, or should we
consider non-verbal multimodal output generation as one task?

7. How do individual di�erences, e.g., based on cultural background, in�uence
the e�ects of robot-performed gestures?

8. Is mirroring of gestures, by the robot or by the interlocutor, always bene�cial,
and can we design the robot’s gestures in such a way that they elicit more
frequent mirroring from others?

9. Under what circumstances should we aim for a human-like appearance and
gestures, or rather consider robots a distinct entity with their own mode of
expressing themselves (e.g., using exaggerated, cartoon-like motion)?

10. How can we make robots more universally accessible: can we enable people
with special needs to communicate with them in a meaningful and natural
way?
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Regarding replicability of studies in the �eld of robot-performed gestures, we
observe that crucial information is often missing, which prevents replication of
the majority of the studies that are covered in this literature review. This mainly
relates to a lack of clear descriptions regarding the design and (pilot) evaluation
of the robot’s gestures. It is often not clari�ed who designed the robot’s gestures,
and if they were based on human-performed examples, theoretical knowledge or
best practices on how these should be designed for a particular target group. It is
also not commonly measured how suitable the gestures themselves are at reaching
their intended goal, before integrating them in an interaction. Furthermore, the
process of integrating the gestures (i.e., planning approaches, frequency of gesturing)
is often not documented in detail. Related to this point, the data, gestures (ideally
in a platform-agnostic format), or other stimuli and measurement instruments are
generally not made publicly available for others to use. We strongly believe that the
research �eld would bene�t from a move toward an open science approach.

The second point relates to the external validity of the studies that are covered
in this review, where it is unclear whether the �ndings can be generalized to other
robot platforms, contexts, or populations. We have identi�ed four potential threats
to external validity. First, studies use a number of di�erent robots, that tend to di�er
greatly in terms of their physical appearance and gesturing capabilities (see Appendix
2.A for an overview). Particularly the NAO and, to a lesser extent, Pepper robots are
frequently used, while the other robots only come up in very few studies. There is
only a limited number of studies that compare between di�erent robots, which is
understandable given the high cost of these robots, as well as having to implement
the same gestures across multiple platforms. However, this could hamper external
validity as it is hard to gauge to what extent a particular robot’s appearance and
capabilities play a role in the �ndings from these studies, and how much is actually
related to the gestures themselves. This could perhaps be solved by addressing our
previous point, by making studies more replicable so that other researchers can
perform them with di�erent robots and across di�erent contexts (e.g., cultures).
Second, the majority of the studies consist of a single session, and they take place
either in the lab, or online with prerecorded videos of the robot’s behaviors. This
begs the question whether the e�ects we observe in these studies persist over time.
In addition, it is likely that the robot’s gestures have a stronger e�ect if the robot is
physically present, as opposed to using prerecorded videos (Li, 2015). Third, most of
the studies involve one-on-one interactions, although we expect it is likely for robots
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to be approached by multiple people at once when they are used in daily life. Finally,
oftentimes a convenience sample is used. Especially for research on robot-performed
gestures to support people with special needs — which shows promising results, but
is still relatively scarce — it is important to involve the right target group early on,
and frequently.

Thirdly, a broad range of di�erent measurement instruments is used to study
the research questions set out in the papers. This cannot be avoided, because robots
are studied in several di�erent domains, and there are multiple aspects and outcomes
related to people’s interactions with robots (e.g., learning outcomes, perception of
the robot). However, oftentimes self-constructed questionnaires are used to obtain
self-report data. This, combined with the relative complexity and ‘fuzziness’ of the
concepts that are measured, such as likeability and human-likeness, provides further
challenges when trying to integrate the �ndings of multiple studies. By extension,
it is challenging to study how these di�erent concepts may relate to or a�ect each
other, for example whether a more human-like robot is automatically also perceived
as more likeable, or how people might show more (a�ective) engagement with a
robot that is considered human-like and likeable. Also in this case, publicly sharing
the measurement instruments used and raw data, as well as the use of validated
questionnaires, would help address these challenges.

Finally, although a substantial number of the articles discussed (approximately
60%) does cite one or more seminal works from gesture studies, this is commonly
done merely to introduce gestures and gesture taxonomies, and not to provide
theoretical foundation for the study’s design. We believe that it would be valuable
to connect more deeply with related �elds of research, such as human gesture
studies, in order to further structure the research into robot-performed gestures.
This will also allow for a more elaborate comparison between gestures performed
by a robot and those performed by a human, e.g., in terms of cognitive processing
of these gestures (Hayes et al., 2013), and whether we establish the same ‘shared
intentionality’ with robots as we do with other people (e.g., Dennett, 1987; Tomasello
& Carpenter, 2007). Future studies in this direction will also provide further insight
into how robots are generally perceived by others — e.g., as an entity that is close to
a human and perceived as a social agent (Bao & Cuijpers, 2017; Burns et al., 2018),
or more as an inanimate object — and how gestures might potentially be used to
in�uence this perception.
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2.6.5 Conclusion
Hand gestures have emerged as a de�ning property of social robots and their physical
embodiment and presence. By means of a systematic literature review, including 167
articles that met the inclusion criteria, we have created an overview of the state of
the art regarding (1) the design and planning steps of a robot’s gesture production
process, and (2) the e�ects of the robot’s gestures on the resulting human-robot
interactions. Within the robot’s gesture production process, there are manual as
well as automatic approaches to the design and planning (e.g., gesture selection,
co-speech timing) steps. Furthermore, in the planning stage it is possible to adjust
several aspects of the gestures, such as their speed, to add variation or to adapt
based on various types of contextual information (e.g., the robot’s or interlocutor’s
emotional state).

Studies into the e�ects of a robot’s use of hand gestures were divided into
several themes: communicative purposes (e.g., visual perspective taking), perception
of the robot (e.g., human-likeness, likeability), engagement, task performance, and
supporting interactees with special needs. Articles across these di�erent themes
mostly present positive or neutral results, where studies with neutral results either did
not compare with a robot that does not gesture, or found no di�erence between robots
that do and do not use hand gestures. We can therefore conclude that it is important
to incorporate gestures when designing a robot’s socially intelligent behavior, as
this will generally have a positive e�ect on the resulting human-robot interaction.
This conclusion aligns with the essential role of gestures in communication between
people (e.g., Clark, 1996). While gestures themselves are considered a crucial part
of the robot’s socially intelligent behavior (Fong et al., 2003), this literature review
further shows that they can be used to facilitate other aspects of socially intelligent
behavior as well, such as the robot’s ability to express emotion and to build and
maintain social relationships. In addition, we observed that the two topics of this
review intertwine: design decisions made while implementing the gesture
production process appear to in�uence the e�ectiveness of the gestures.

From the existing body of literature, we extracted ten outstanding questions
that we believe could serve as a guideline for future work in the �eld. This includes
monitoring developments in sensor technology and AI, adding structure to the ges-
ture design and evaluation process, studying the relationship between a robot’s
physical appearance and gestures, investigating the e�ects of planning on the overall
interaction, standardizing measurements of gesture ‘quality’, potentially integrating
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gestures with other modalities, incorporating individual di�erences, further studying
gesture mirroring, discussing whether human-likeness is desirable, and ensuring
universal accessibility of robots. Finally, in a critical look at the research �eld we
observe that there are many well-designed studies that focus speci�cally on robot-
performed gestures, and combine the use of multiple measurements to create a more
comprehensive image of the e�ects of the robot’s gestures. Based on this critical look,
we propose four methodological points of improvement, which relate to replicability,
external validity, measurement instruments used, and the need for connections with
other disciplines. With these outstanding questions and suggestions, we aim to
provide a concrete starting point for future research in this �eld.
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˚ ˚ ˚
In the current chapter, we provided an overview of the state of the art in robot-performed
gestures. We observed that there are di�erent ways to approach the design and planning
steps of a robot’s gesture production process, and that there are several potential e�ects
of gestures on human-robot interactions, such as increased levels of engagement, or
better performance on joint tasks. Not much research has been done in the �eld of
education, and the e�ects of a robot’s gestures on second language learning in particular
have remained largely unexplored. In the next chapters, we therefore present several
studies that do focus on this �eld, where we measured how robot’s use of iconic gestures
a�ected children’s learning outcomes and levels of engagement.

Based on our survey of existing literature, we further presented ten outstanding
questions in the research �eld, as well as four methodological suggestions. We were
unable to address all of the outstanding questions in the present thesis, because several
of them depend on future (technological) developments, because we only used one robot
(NAO), and because we had to limit our scope (e.g., focusing on second language learning)
for feasibility reasons. Our research (partly) addressed six of the outstanding questions
(1, 2, 4, 5, 7, and 8). For example, the dataset of human-performed gestures that is
presented in Chapter 5 can help improve the design of robot-performed gestures (Q1); in
Chapter 6 we explore the e�ects of variation in the robot’s gesturing behavior (Q4); in
Chapters 3, 4, and 6 we investigate whether age in�uences the e�ects of robot-performed
iconic gestures (Q7); and in Chapter 4 we look at spontaneous mirroring of the robot’s
gestures (Q8).

Our methodological suggestions focused on replicability, external validity, the mea-
surement instruments used, and connecting more deeply with related �elds of research
(e.g., human gesture studies). We follow these suggestions as well as possible in the
upcoming chapters, which is why our studies take place in the �eld, the source code
for the systems used in these studies is publicly available, and we provide elaborate
documentation of the design and evaluation of the robot’s gestures, as well as the mea-
surement instruments used. This documentation also addresses outstanding questions 2
and 5, that relate to a need for more structure regarding the design and evaluation of
robot-performed gestures.
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2.A Overview of robots used in research

(a) A100 (b) Actroid-SIT (c) ALICE (d) Alpha (1)

(e) Alpha (2) (f) AMI (g) AMIET (h) ASIMO

(i) Bandit (j) BERTI (k) Casper (l) DARwIn-OP2

(m) Erica (n) EveR-4E (o) iCub (p) Jeeves

(q) Justin (r) KASPAR (s) KHR2-HV (t) KOBIAN
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(u) KT-X PC (v) Kuri (w) Melvin (x) Namo

(y) NAO (z) Octavia (aa) Pepper (ab) Quori

(ac) REEM-C (ad) ROBIN (ae) RoboThespian (af) Robovie

(ag) Robovie R2 (ah) Robovie mR2 (ai) Robovie R3 (aj) Scout

(ak) SIMON (al) Sota (am) Speecys (an) TalkTorque2

(ao) Wakamaru (ap) Zeno R50

Figure 2.16: Robots used in the research covered in this literature review.
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3.1. INTRODUCTION

3.1 Introduction
Robots show great potential in the �eld of education (Mubin et al., 2013). Embodied
agents in the form of humanoid robots, in particular, may deliver educational content
for various subjects in ways similar to human tutors. The main advantage of using
such a robot compared to traditional learning tools is its physical presence in the
referential world of the learner (Leyzberg et al., 2012). The human-like appearance
and presence in the physical environment may facilitate interactions that are, to
some extent, similar to the ways in which human teachers would communicate with
their students. Care should be taken, however, to design for the correct amount of
social behavior, so as to avoid distracting students from the task at hand (Kennedy
et al., 2015).

When designing such interactions, we can draw upon ways in which human
teachers give contingent support to students in their learning activities. For instance,
particularly in one-on-one tutoring situations, teachers tend to adjust the pace and
di�culty of learning tasks based on the past development and current skill set of
the student (van de Pol et al., 2010). For example, teachers may help by sca�olding,
taking the initial knowledge base as a starting point and trying to optimize the
learning gain by choosing the hardest task to perform that still lies within the zone
of proximal development (Vygotsky, 1978) of the student.

The use of gestures that coincide with speech is another way for teachers to
provide sca�olding, particularly when the concepts which the gestures refer to
are not yet mastered by the student (Alibali & Nathan, 2007). For instance, when
teaching a second language (L2), gestures can help to ground an unknown word in
the target language by linking it iconically or indexically to a real world concept.
Such a facilitating e�ect on word learning has been found for imitating gestures of a
virtual avatar (Bergmann & Macedonia, 2013). However, it is an open question if the
embodied presence of a robot can be exploited to support language learning through
a robot’s gesturing, and if so, what kind of gestures would have a positive impact.

In this chapter, we present the results of an experiment conducted to explore how
these two tools for sca�olding the learning of language— choosing the task that yields
the greatest potential learning gain for a particular student and the use of appropriate
co-speech gestures — carry over to a humanoid robot. Both were combined in one
study to better estimate what the relative importance of the respective techniques is,
while keeping all other factors constant, and to �nd out whether the bene�ts of the
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two strategies can potentially reinforce or impede each other. The techniques were
implemented and tested in a one-on-one tutoring system where children, four to six
years old, play a game with a robot to learn an L2. In the next section, we brie�y
present the approaches taken to realize the adaptive tutoring along with co-speech
gesturing of the robot. We then describe the experimental methodology, before
reporting and discussing the results obtained.

3.2 Background

3.2.1 Adaptive Bayesian Knowledge Tracing

A robot tutor that personalizes the learning experience for individual students has
been shown to have a positive e�ect on performance (Leyzberg et al., 2014). This
robot is also perceived as smarter or more intelligent and less distracting or annoying.
In order to simulate the way human tutors tailor learning activities and di�culty
levels to a particular student, an adaptive tutoring system would have to measure and
track the knowledge level of the student. Often the knowledge is traced skill-wise,
where in the case of language learning, the mastery of particular words or phrases
in the target language is represented probabilistically (e.g., Gordon & Breazeal, 2015).
This approach yields promising results, but it lacks �exibility because of the need
to de�ne domain-speci�c distance metrics to choose the next skill. Others have
used Dynamic Bayesian Networks to represent the learner’s knowledge about a skill,
conditioned on the past interaction and taking into account skill interdependencies
(Käser et al., 2014). This approach requires detailed knowledge about the learning
domain to model those interdependencies and their parameters. Recently, Spaulding
et al. (2016) used a simpler approach based on Bayesian Knowledge Tracing (BKT)
(Corbett & Anderson, 1994). The general BKT model consists of latent variables ��
representing the extent to which the system believes a particular skill to be mastered
by the student. The belief state of the system is updated based on observed variables�� , which correspond to the result of a learning action (e.g., correctly or incorrectly
answering a question), while accounting for possible cases of guessing p(guess) and
slipping p(slip) during the answer process. It was shown that this model outperforms
traditional approaches for tracing the knowledge state in learning interactions, and
that it can be easily extended to, for example, incorporate the emotional state of a
child. In previous work (Schodde et al., 2017), we have extended the basic BKT with
action nodes to also model the tutor’s decision-making based on current beliefs about

92



3.2. BACKGROUND

Figure 3.1: Dynamic Bayesian Network for BKT taken from Schodde et al., 2017,
with permission: with the current skill-belief the robot chooses the next skill �� and
action �� for time step � and observes �� as response from the user.

the student’s knowledge state (see Figure 3.1). Additionally, we employed a latent
variable � that can attain discrete values for each skill, corresponding to six bins
for the belief state (0%, 20%, 40%, 60%, 80%, 100%). This allows for quantifying the
robot’s uncertainty about a learner’s skills as well as the impact of tutoring actions
on future observations and skills.

This so-called Adaptive Bayesian Knowledge Tracing (A-BKT) approach can be
used to choose the next skill from which the learner will most likely bene�t, by
estimating the greatest expected knowledge gains. It tries to maximize the belief of
each skill while also balancing over all skills and not teaching a particular skill over
and over again, even if the answer to the task was wrong and the skill belief is the
lowest. The system does not only allow to choose the best skill to address next, but
also the action to be used for sca�olding the learning of this skill. In this context,
actions can be, for example, di�erent types of exercises, pedagogical acts, or task
di�culties. For the sake of simplicity, three task di�culties have been established
(easy, medium, hard) to address a skill and to �nd the best action for a given skill.

The goal of this strategy is to create a feeling of �ow which can lead to better
learning results (Craig et al., 2004). It strives not to overburden the learner with
tasks that would be too di�cult nor to bore them with tasks that would be too
easy, both of which may lead to disengagement and thus hamper the learning. Note
that this approach is comparable to the vocabulary learning technique of spaced
repetition as implemented, for instance, in the Leitner system (Leitner, 1972). The
implementation of A-BKT used in the current study is identical to the one used
previously in Schodde et al. (2017). However, it has not yet been evaluated with
children nor in conjunction with other techniques that might a�ect action di�culty
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(such as gestures). Furthermore, its impact on student engagement has not been
explored previously.

3.2.2 Gestures

Iconic gestures elicit a mental image that corresponds directly, either in form or
execution, to the concept or action that is being described verbally at the same time
(McNeill, 1985). For example, a �ying bird could be depicted by stretching both arms
sideways and moving them up and down. Studies have shown that iconic gestures,
when performed by a human teacher, may aid the acquisition of L2 vocabularies
(de Nooijer et al., 2013; Kelly et al., 2009; Macedonia et al., 2011; Tellier, 2008). Hald
et al. (2016) provide an overview of how gestures can contribute to learning an
L2. They propose that gestures might have a ‘grounding’ e�ect by linking existing
perceptual and motor experiences to a new word. This is expected to result in a
richer mental representation. Research by Rowe et al. (2013) shows that gender,
language background, and level of experience in the native language (L1) in�uence
the extent to which gestures can contribute to L2 learning. The positive e�ects of
gestures hold true for younger students as well; in fact, gestures are suggested to
be a crucial part of communication with children (Hostetter, 2011). It has also been
shown that gestures help not only to acquire knowledge, but also to retain it over
time (Cook et al., 2008).

Previous research has explored the use of gestures by virtual agents (e.g., Bergmann
& Macedonia, 2013) and robots (e.g., van Dijk et al., 2013), �nding similar, positive ef-
fects on memory performance when gestures are produced by an arti�cial embodied
agent compared to a human tutor. While humans tend to spontaneously perform and
time their gestures, they will often need to be manually designed and coordinated
with speech for the robot. Due to its limited degrees of freedom, however, the robot
is unable to perform motions with the same level of detail, �nesse, and accuracy as a
human. This may lead to a loss in meaning when human gestures are being trans-
lated directly to the robot, indicating a need for alternative gestures. As a concrete
example, the SoftBank Robotics NAO robot that was used in this case is unable to
move its three �ngers individually, preventing it from performing pointing gestures
or �nger-counting. However, research suggests that iconic gestures are almost as
comprehensible when performed by a robot, compared to a human (Bremner &
Leonards, 2016).
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3.3 Methodology
An experiment was conducted to investigate the e�ect of using iconic gestures and
an adaptive tutoring strategy on children’s acquisition of L2 vocabularies, with the
intention of answering the following three hypotheses:

H1: There is a greater learning gain when target words are accompanied by iconic
gestures during training, than in the case of not using gestures.

H2: There is a reduced knowledge decay when target words are accompanied by
iconic gestures during training, than in the case of not using gestures.

H3: There is a greater learning gain when target words are presented in an adaptive
order during training, based on the knowledge state of the child, than when
target words are randomly introduced.

These hypotheses rely upon the underlying assumption that children are able to
acquire new L2 words during a single session with a robot tutor, regardless of
experimental conditions; this assumption was also put to the test.

The experiment had a 2 (adaptive versus non-adaptive) x 2 (gestures versus no
gestures) between-subjects design. In the two conditions with the adaptive tutoring
strategy, the A-BKT system described in Section 3.2.1 was used to select the target
word for each round, based on the believed knowledge state of the child. In practice,
this meant that children would be presented with a particular target word more
frequently if they had answered it incorrectly in the past, thereby changing the
number of times each target word occurred during training, although each target
word was guaranteed to occur at least once. Other conditions had a random selection,
where each of the six target words would always be presented �ve times, in a
randomized order, for a total of thirty rounds. In the gesture conditions, whenever a
target word was introduced in the L2 it was accompanied by an iconic gesture (as
shown in Figure 3.3). All conditions had the robot standing up and in “breathing”
mode, which meant that it slowly shifted its weight from one leg to the other and
had a slight movement in its arms to simulate breathing.

3.3.1 Participants
Participants were 61 children, with an average age of 5 years and 2 months (�� “ 7
months), 32 girls. They were recruited from primary schools in the Netherlands, by
�rst contacting schools and then sending out an information letter together with a
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consent form through the schools to the parents of children that satis�ed the age
limit of four to six years. Only native Dutch children with Dutch as their L1 are
included in the evaluation, although all 99 children that had signed up were allowed
to participate in the experiment. The children were randomly assigned to conditions,
while taking into account a balance in age and gender.

3.3.2 Materials
The aim of the tutoring interaction was to teach children six animal names in English:
bird, chicken, hippo, horse, ladybug, and monkey. These speci�c words were chosen
because the Dutch words are distinctly di�erent from their English translations and
because it was possible to create uniquely de�ning iconic gestures for them.

The SoftBank Robotics NAO robot was used, which was standing in front and
slightly to the right of the child. After an experimenter had �lled in the name of
the child and pressed the start button, the experiment ran fully autonomously. Two
experimenters were always present, where one would take care of getting the child
from the classroom and explaining the procedure of the experiment, while the other
would set up the system. To avoid having the child seek them out for feedback, the
experimenters would announce that they would be occupied. The child was asked to
sit on pillows, close to the tablet which was raised on a box and slightly tilted. Two
cameras were used to record the interaction, one facing the front of the child and one
at an angle from the side. The basic setup is shown in Figure 3.2, although it di�ered
slightly between locations due to the layout of the rooms. In the condition with
gestures every occurrence of the target word in L2, except when giving feedback,
was accompanied by the matching iconic gesture (see Figure 3.3). The gesture was
timed in such a way that the pronunciation of the target word would coincide with
the stroke of the gesture, i.e., the accented phase that is most related to the meaning.

Figure 3.2: The setup for the experiments.
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Figure 3.3: Examples of the stroke of two iconic gestures performed by the robot
(taken from de Wit et al., 2017, with permission). Left: imitating a chicken by
simulating the �apping of its wings; right: imitating a monkey by scratching head
and armpit.

A perception study was conducted to evaluate the quality of the gestures (de Wit
et al., 2017), where 14 participants were shown video recordings of all six gestures
performed by the robot and then asked to indicate which out of the six target words
corresponds to each particular recording. Based on the results of this study, each
gesture was deemed to be su�ciently unique to distinguish between the six target
words.

The adaptive tutoring system starts with medium (0.5) con�dence for all target
words, a value associated with two distractors during training. Each distractor is
a false answer to a task, an image belonging to one of the �ve other target words.
In the random conditions, since there is no knowledge tracing the di�culty was
always set to medium (two distractors). The tablet was used to get input from the
child, because speech recognition does not work reliably with children (Kennedy
et al., 2017). This is also why only comprehension and not production of the target
words is evaluated. An example of what the tablet screen would look like is shown in
Figure 3.4. The images used during training belong to a di�erent set of images than
the ones used for the pre-test and post-tests. The set of images used during training
matches the gesture that the robot performs related to the animals, for example the
image of the horse for the training stage (shown in Figure 3.4) also includes a rider
because the robot shows the act of riding a horse as a gesture. The image that was
used during the tests did not include a rider and the horse is standing still, facing the
opposite direction (shown in Figure 3.5). In addition to changing the pose or context
of the animals, colors also varied. Together with having a recorded voice in the tests
instead of the robot’s synthesized speech, this aims to verify whether children learn
how the English words map to the concepts of the animals and their matching Dutch
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Figure 3.4: The tablet during training,
showing images corresponding to the
target word and two distractors.

Figure 3.5: The pre-test and post-tests
on a laptop, using a recorded voice and
a di�erent set of images from those on
the tablet.

words, rather than to one speci�c image.

3.3.3 Procedure
Prior to partaking in the experiment, participants were introduced to the robot during
a group introduction. This approach is inspired by the work of Vogt et al. (2017a)
with the intention of lowering the anxiety of children in subsequent one-on-one
interactions with the robot. The introduction consisted of a description of what
the robot is like, including a background story and how it is similar to humans in
some respects, and di�erent in others. Together with the children (and sometimes
teachers and experimenters) the robot performed dances, after which all children
were presented with the opportunity to shake the robot’s hand before putting it to
bed. Introductory sessions were scheduled several days before the �rst participant
was to take part in the experiment, allowing time for the children to process these
new impressions.

Before starting the tutoring interaction, a pre-test was administered to gauge the
level of prior knowledge with respect to the animal names in the L1 (Dutch) and L2
(English). This test was administered on a laptop, where images of all six animals
were randomly positioned on the screen. A recording of a (bilingual) native speaker
pronouncing one of the six animal names was played, after which the child was
asked to click the corresponding image on the screen (Figure 3.5). This was done for
all six target words, �rst in Dutch and then in English.

After completing the pre-tests, the child would go through each target word one
by one, still using the laptop. This is done to give the children a �rst exposure to
the correct mappings between target words and the concepts they refer to, to avoid
turning the �rst rounds of learning with the robot into a guessing game. Because
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there is no feedback during the pre-tests, this also ensures that concepts are linked
to the correct word, rather than having the child assume that their answers during
the pre-tests were all correct. For each word, the image of the corresponding animal
would be shown in the center of the screen and the laptop would play a recording
by a (bilingual) native speaker saying: “Look, this is a [target in L2]. Do you see the
[target in L2]? Click on the [target in L2]!”

The training stage of the experiment consisted of the child and robot playing
thirty rounds of the game I spy with my little eye. The robot, acting as the spy, would
pick one of six target words and call out: “I spy with my little eye...”, followed by
the chosen word in the L2. For this stage, children were assigned to one of four
conditions:

1. Random tutoring strategy, no gestures (� “ 16)
2. Random tutoring strategy, gestures (� “ 14)
3. Adaptive tutoring strategy, no gestures (� “ 15)
4. Adaptive tutoring strategy, gestures (� “ 16)

Prior to playing the game, the robot explained the procedure and asked the child
to indicate whether they understood by pressing either a green or a red smiley. If
the red smiley is pressed, the interaction would pause and an experimenter would
step in to provide any further explanations. After this introduction, there were two
practice rounds: one in Dutch and one in English.

After the robot had “spied” an animal, a corresponding image was shown on
the tablet along with a number of distractor images (Figure 3.4). The child was then
asked to pick the image that matched the animal name that the robot had spied. The
number of distractors was determined by the di�culty level of the round, which in
the case of the adaptive conditions depended on the con�dence that the system had
in that the child knew this particular target word. A low con�dence resulted in only
one distractor, while a high con�dence had three distractors.

Feedback to the task was given by both the tablet and the robot. The tablet
highlighted the image selected by the participant, either with a green, happy smiley
if the correct answer was provided or a red, sad smiley if the selected image was
an incorrect answer. The robot then provided verbal feedback, which in the case
of a correct answer consisted of a random pick out of six positive feedback phrases
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(e.g., “well done!”), followed by “The English word for [target in L1] is [target in
L2]”. In the case of negative feedback, the robot would say “That was a [chosen
answer in L1], but I saw a [target in L2]. [Target in L2] is the English word for
[target in L1]”. Whenever an incorrect answer was given, the same round would be
presented once more but at the easiest di�culty (with only one distractor: the image
that was incorrectly chosen in the previous attempt). This, combined with additional
exposures in the corrective feedback, means that the number of times each target
word was presented in the L2 may vary between children, depending on how many
rounds were answered incorrectly. After �nishing thirty rounds of training with the
robot, the child was asked to complete a post-test on the laptop. This test is identical
to the pre-test that was administered at the start of the experiment, in L2. Finally,
the post-test was repeated once more, at least one week after the experiment, to
measure long-term retention of the newly acquired knowledge.

3.3.4 Analysis

Immediate learning gain was measured as the di�erence between the number of
correct answers on the post-test, administered directly after the training stage, and
the number of correct answers on the pre-test, taken prior to the tutoring interaction.
Test scores were always between 0 and 6 because each target word was asked once
in the L2. The post-test was administered once more, (at least) one week after the
experiment. We then looked at the di�erence between this delayed test and the
pre-test for long-term learning gain. Finally, we took the di�erence between the
delayed test and the immediate post-test as a measure of knowledge decay. The
design of these tests is described in more detail in Section 3.3.2.

Children’s tasks during training were of varying task di�culty in the adaptive tu-
toring condition, with one to three distractor images. To account for these di�erences,
as well as to allow a comparison with the post-test results (�ve distractor images),
we mapped binary task success (1: correct response; 0: incorrect response) onto
the span between 0.0 and 1.0 by subtracting a value of 0.2 for each of the potential
�ve distractor images that was not provided, which would, for example, result in a
score of 0.6 for a correct response in a task with three distractors. The total score
during training was then divided by the number of rounds (30), resulting in a training
performance value between 0.0 and 1.0 (Figure 3.6).
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Figure 3.6: Interaction e�ects of gesture use and training strategy. The error bars are
+/- 1 SD.

3.4 Results
The average duration of the training stage of the experiment was 18:38 minutes (�� “
3:03). Including the introduction, pre-test, and post-test this amounted to a session
length of roughly thirty minutes. To con�rm whether children managed to learn any
new words from a single tutoring interaction, regardless of strategy or the use of
gestures, a paired-samples t-test was conducted to measure the di�erence between
post-test and pre-test scores for all conditions combined. There was a signi�cant
di�erence between the scores on the pre-test (� “ 1.75, �� “ 1.14) and immediate
post-test (� “ 2.85, �� “ 1.61), �p60q “ 5.23, � † .001. The same analysis was
conducted for the delayed post-test that was taken (at least) one week after the
experiment. Results revealed a signi�cant di�erence between the pre-test scores
(� “ 1.75, �� “ 1.14) and the delayed post-test test scores (� “ 3.02, �� “ 1.40),�p60q “ 6.81, � † .001. However, there was no signi�cant di�erence between the
delayed post-test and the immediate post-test, �p60q “ .92, � “ .34. This means that
H2 is not supported by these results, since no signi�cant decay was observed in any
of the conditions.

To investigate the e�ects of the di�erent conditions on training performance,
a two-way ANOVA was carried out with tutoring strategy (adaptive versus non-
adaptive) and the use of gestures (gestures versus no gestures) as independent
variables and performance during training as the dependent variable (Figure 3.6). As
described in Section 3.3.4, these scores are weighted by the number of distractors
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present and divided by 30 rounds, resulting in a value between 0.0 and 1.0. For the
30 rounds of training there was a main e�ect of gesture use, �p1, 57q “ 18.23, � †.001, �2� “ .24, such that training with gestures led to higher score (� “ .38, �� “.09) than learning without gestures (� “ .29, �� “ .08). Children in the adaptive
condition achieved a higher score (� “ .36, �� “ .12) than children in the non-
adaptive condition (� “ .32, �� “ .06), but the e�ect of tutoring strategy was not
signi�cant, �p1, 57q “ 3.62, � “ .06, �2� “ .06. There was a signi�cant interaction
e�ect between use of gestures and tutoring strategy, �p1, 57q “ 4.72, � “ .03, �2� “.08. Without gesture use, there was no signi�cant di�erence between tutoring
strategies. When gestures were present, however, children in the adaptive condition
turned out to perform better than those in the non-adaptive condition. Hence,
children’s learning outcome was best when gesture use and adaptive training were
combined.

Another two-way ANOVA was carried out to measure learning gain, with the
di�erence score between the post-test results and the pre-test results as the dependent
variable (Figure 3.7). There was no signi�cant e�ect of tutoring strategy, �p1, 57q †.012, � “ .95, �2� † .001, or use of gestures, �p1, 57q “ 1.53, � “ .22, �2� “ .03. These
results do not support H1 and H3 (greater learning gains when gestures and adaptive
tutoring are used). The same two-way ANOVA with the di�erence score between
results of the delayed post-test and the pre-test also did not give a signi�cant e�ect

2The original article reports this value as † .001, but � was in fact .004.
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Figure 3.7: Test scores for the gesture vs no gesture conditions (left) and the adaptive
vs random conditions (right). The error bars are +/- 1 SD.
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of tutoring strategy, �p1, 57q “ .36, � “ .55, �2� “ .006, but there was a signi�cant
e�ect for use of gestures, �p1, 57q “ 6.11, � “ .02, �2� “ .097, indicating that the
learning gain between pre-test and delayed post-test was greater when gestures
were used during training (� “ 1.70, �� “ 1.56) than when no gestures were used
(� “ 0.81, �� “ 1.25). Although this does not fully support H1 or H2, it does show
a long-term learning gain when gestures are used during learning. No interaction
e�ect was found, �p1, 57q “ .04, � “ .84, �2� § .001.
3.4.1 Evaluation of engagement
The engagement of the children during the training stage with the robot was exam-
ined to �nd out whether children became more disengaged with the tutoring tasks
toward the end of the thirty rounds, and whether the application of an adaptive
tutoring strategy and gestures would in�uence the change in engagement levels.
This was done by asking 18 adult participants, without speci�c training in working
with children, to rate video clips (without audio) of the children interacting with
the robot. The choice for conducting a perception study with adults using video
recordings of the experiment was made for two reasons: so that the training would
not have to be interrupted for questions regarding the experience, thereby potentially
in�uencing the engagement, and because it is di�cult for children of a young age to
re�ect upon their experiences and verbalize these thoughts (Markopoulos et al., 2008).
For each child, one clip was taken from the �fth round of training and one clip from
the twenty-�fth round, to get observations that are close to the beginning and end
of the training, but far enough from these actual moments to avoid short bursts of
engagement when children realize the experiment is starting or �nishing. The clips
start right after the robot �nishes introducing the task, i.e., the point at which the
turn switches to the child to provide an answer. All clips then run for �ve seconds.
One child that was excluded from the previous analysis because delayed post-test
results were missing, was included for this part of the evaluation. However, data from
one other child was missing, making the number of stimuli 122 (61 children, two clips
each), with 14 to 16 children in each condition. Participants in the evaluation were
asked to rate all 122 clips, randomly presented to them, on a scale from 1 (completely
disengaged) to 7 (completely engaged). As a practice round, two clips of a child that
was not included in the main experiment were presented, where one example was
clearly engaged and the other was clearly not engaged. After this practice round,
participants were told which features from the examples showed engagement (i.e.,
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rapid response to the question, upright body posture, displaying joy after answering
the question) and disengagement (i.e., slower response to the question, supporting
the head by leaning on the arms, showing less interest in the task).

For each participant, the ratings were averaged over all children belonging to
the same experimental condition, resulting in a total of eight average ratings (four
conditions, each with �fth and twenty-�fth round). Figure 3.8 visualizes the data
from the evaluation. Results from a paired-samples t-test showed that children
were considered to be signi�cantly less engaged in the twenty-�fth round (� “4.38, �� “ .84) than in the �fth round (� “ 5.21, �� “ .64), �p71q “ ´12.09, � †.001. Furthermore, a two-way ANOVA with tutoring strategy (adaptive versus
non-adaptive) and gesture use (gestures versus no gestures) as factors showed no
signi�cant e�ect for the use of gestures, �p1, 68q “ 1.36, � “ .25, �2� “ .02, but
there was a signi�cant e�ect for tutoring strategy, �p1, 68q “ 86.26, � † .001, �2� “.559. The drop in engagement between round �ve and round twenty-�ve was less
when an adaptive strategy was applied (� “ ´.40, �� “ .35) than when words
were randomly presented (� “ ´1.27, �� “ .44). There was no interaction e�ect
between gestures and tutoring strategies, �p1, 68q “ .01, � “ .93, �2� “ .00. The
same analysis was conducted with the average engagement level of the �fth and
twenty-�fth rounds combined, to get an idea of the overall engagement throughout
the entire training session in di�erent conditions. In this case the overall level of
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Figure 3.8: Rated engagement levels early and late in the training interaction for the
gesture versus no gesture conditions (left) and the adaptive versus random conditions
(right), ranging from 1. Completely disengaged to 7. Completely engaged. The error
bars are +/- 1 SD.
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engagement was signi�cantly higher in the gesture condition (� “ 5.02, �� “ .63)
than in the condition without gestures (� “ 4.57, �� “ .68), �p1, 68q “ 8.75, � “.004, �2� “ .114. There was also a signi�cantly higher engagement when an adaptive
strategy was used (� “ 4.97, �� “ .67) as opposed to a random tutoring strategy
(� “ 4.63, �� “ .67), �p1, 68q “ 5.10, � “ .03, �2� “ .07. No interaction e�ect
between the two factors was found, �p1, 68q “ .08, � “ .78, �2� “ .001.
3.4.2 Exploration of the e�ect of age
In the studies described in Chapters 4 and 6, we found that the older children had
signi�cantly higher learning outcomes than the younger children, but only when
the robot used iconic gestures. Because these studies all had participants of a similar
age to the current study (4–6 years old), we explored whether a similar e�ect of
age occured here as well. Chapter 4 does not report on engagement, but Chapter
6 further shows a signi�cant e�ect of age on engagement with the task, where
older children were on average more engaged with the task compared to younger
children. There was no signi�cant e�ect of age on (social) engagement with the
robot. In the following section, we investigate the potential e�ect of age on children’s
levels of engagement in the current study, although a di�erent method of measuring
engagement was used compared to Chapter 6. In the current study, we do not
distinguish between engagement with the task and with the robot, but rather use
one overall measure. In addition, in the current study engagement was rated by
means of an online study, while in Chapter 6 a coding scheme was used to annotate
engagement levels. Note that this section was not part of the original published
article, and was added as part of this thesis chapter.

E�ect of age on learning outcomes
Figure 3.9 shows a linear �t to children’s age on the x-axis, and their di�erence
scores on the immediate (left) and delayed (right) post-tests on the y-axis, for the
experimental conditions with and without gestures. For the immediate post-test, the
average di�erence scores of older children in the conditions with iconic gestures
is lower than the scores of younger children. For the delayed post-test, the older
children in the conditions with iconic gestures on average learned more words than
the younger children. For the conditions without gestures, the learning outcomes
appear to be independent of age, on both the immediate and the delayed post-tests.

To ensure consistencywith Chapter 6, we conducted a repeatedmeasures ANOVA
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Figure 3.9: Linear �t to the di�erence scores on the immediate (left) and delayed
(right) post-tests compared to the pre-test for the conditions with and without iconic
gestures, relative to children’s age.

to measure learning outcomes, instead of the two-way ANOVAwith di�erence scores
presented in Section 3.4. This repeated measures ANOVA includes scores on the
pre-test, immediate post-test, and delayed post-test as dependent variable (with
three di�erent measurement points as ‘time’ within-subjects factor), and the robot’s
use of iconic gestures (yes or no) as independent variables. The results show a
main e�ect of time, �p2, 118q “ 27.50, � † .001, �2� “ .32, indicating that children
learned from the tutoring interaction, consistent with Section 3.4. Furthermore, there
was a signi�cant interaction e�ect of time and the robot’s use of iconic gestures,�p2, 118q “ 3.30, � “ .05, �2� “ .05, which is also consistent with Section 3.4.

We then ran the same analysis, now with age as covariate. The results no longer
show a main e�ect of time, �p2, 116q “ 0.58, � “ .56, �2� “ .01. The interaction
e�ect of time and the robot’s use of iconic gestures was also no longer signi�cant,�p2, 116q “ 2.96, � “ .056, �2� “ .05. There was no main e�ect of age, �p1, 58q “1.01, � “ .32, �2� “ .017. The interaction of time and age was also not signi�cant,�p2, 116q “ 0.48, � “ .62, �2� “ .008.

After splitting the data based on whether the robot performed iconic gestures
(yes/no), and then conducting the same repeated measures ANOVA, there was no
main e�ect of age for the conditions with iconic gestures, �p1, 28q “ .15, � “
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.70, �2� “ .005, nor without iconic gestures �p1, 29q “ .96, � “ .34, �2� “ .032.
There was also no signi�cant interaction e�ect of age and time within either sub-
sets, �p2, 58q “ .06, � “ .95, �2� “ .002 for the conditions without gestures, and�p1.71, 47.89q “ 1.69, � “ .20, �2� “ .06 for the conditions with gestures (with
Huynh-Feldt correction because the assumption of sphericity was violated). This
is contrary to Chapter 6, where a signi�cant interaction e�ect of time and age was
found for the experimental conditions involving robot-performed iconic gestures.

E�ect of age on engagement

Again for consistency with Chapter 6, we conducted a repeated measures ANOVA
with the average level of engagement per child on a 7-point scale (1. completely
disengaged – 7. completely engaged), as rated by adult participants in our evaluation
study, as dependent variable (with round 5 and round 25 measurements as ‘time’
within-subjects factor), and the robot’s use of iconic gestures (yes/no) as independent
variable. This shows a signi�cant main e�ect of time, �p1, 58q “ 17.88, � † .001, �2� “.24, where children on average were less engaged in round 25 (� “ 4.37, �� “ 1.31)
than in round 5 (� “ 5.22, �� “ .79). In addition, there was a signi�cant main
e�ect of the robot’s use of iconic gestures, �p1, 58q “ 6.22, � “ .02, �2� “ .097,
where children in the conditions with iconic gestures were on average more engaged
throughout the interaction (� “ 5.03, �� “ 0.71) compared to children in the
conditions without gestures (� “ 4.56, �� “ 0.75). The interaction e�ect of time
and the robot’s use of iconic gestures was not signi�cant, �p1, 58q “ 0.12, � “.73, �2� “ .002. All of these �ndings are consistent with the paired samples t-test and
two-way ANOVA presented in Section 3.4.

After adding age as a covariate and conducting the same repeated measures
ANOVA with engagement in round 5 and 25 as dependent variable, and the robot’s
use of iconic gestures as independent variable, the main e�ect of time was no longer
signi�cant, �p1, 57q “ 2.42, � “ .13, �2� “ .041. The main e�ect of the robot’s use of
iconic gestures was signi�cant, �p1, 57q “ 6.20, � “ .02, �2� “ .098. The interaction
e�ect of time and the robot’s use of iconic gestures was not signi�cant, �p1, 57q “.08, � “ .78, �2� “ .001. There was no signi�cant main e�ect of age, �p1, 57q “0.13, � “ .72, �2� “ .002, nor an interaction e�ect of time and age, �p1, 57q “ 1.24, � “.27, �2� “ .021. This indicates that there is no e�ect of age on the observed levels of
engagement.
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3.5 Discussion

The results presented above show that by spending a single tutoring interaction of
about twenty minutes with a robot tutor, young children were able to acquire new
words in an L2, regardless of the experimental condition, and were also able to retain
this newly acquired knowledge for a prolonged period of time. Care was taken to
design the pre-test and post-tests in such a way to be clearly distinct from the training
session with the robot in terms of physical context (laptop versus tablet), voice, and
characteristics of the images used, with the aim of getting a reliable measure of the
attained knowledge. Results from the pre-test show that there is indeed a realistic
amount of prior knowledge, on average above chance, presumably because some
children have been exposed previously to the target words, for example in television
programs. The observed number of correct answers on the immediate and delayed
post-test are higher than on the pre-test, indicating the expected knowledge gain
after engaging in learning activities. The scores on the post-test are lower than the
number of correct answers toward the end of the training stage, which could show
that indeed the test evaluates whether children acquire the underlying concepts,
rather than simply being able to link a word being pronounced by the robot to one
speci�c image (in some cases with the help of gestures that are not present in the
tests). One potential point of improvement for the tests could be to introduce context
when querying the target words, for example by using sentences rather than isolated
words. Although explicitly instructed, children seemed not always aware that they
were supposed to select the image corresponding to an English word, causing them
to choose the animal with the most similar sounding name in Dutch instead (e.g.,
bird was often confused with the Dutch word ‘paard’).

When gestures were performed by the robot during training, there was a higher
retention of newly acquired words after at least one week. This aligns with similar
e�ects that were shown previously in the context of math with a human tutor (Cook
et al., 2008) and indicates that these indeed carry over to a robot; a compelling �nding
that warrants future research into the intricacies of gesture use by humanoid robots.
As mentioned by Hostetter (2011) with respect to human-human communication,
it appears that gestures retain their positive e�ects on communication when they
are scripted rather than being produced spontaneously. In this work, only iconic
gestures are used that clearly relate to the concept they describe. Future work could
investigate whether a similar contribution to learning gain is found when non-iconic
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gestures are used. Furthermore, the target words used in this experiment were chosen
speci�cally such that matching gestures could be designed for the robot. It would
be interesting to explore how well a broader range of gestures, describing various
abstract and concrete concepts, could be performed by a robot as opposed to a human
interlocutor. Finally, asking children to actually re-enact the gestures (e.g., as in
de Nooijer et al., 2013; Tellier, 2008), or to come up with their own gestures, might
further increase the potential utility of gestures in learning due to the embodiment
e�ect (Dijkstra & Post, 2015).

The test results regarding the adaptive tutoring system are currently inconclusive.
This might be a result of the manner in which learning gain was measured, i.e., a
quanti�cation of newly acquired words — perhaps the adaptive system did not result
in more words learned, but rather led to a more focused acquisition of exactly those
words that the child found most di�cult. The main remaining di�erence between the
ways in which human teachers and the system presented here personalize content is
that teachers tend to draw upon a memory that spans a longer period of time. In
this experiment, the memory of the adaptive system was built up, and then applied,
over the course of a single session. The system might come to fruition if there
are multiple sessions with the same child, allowing the results of one session to
become prior knowledge for the next one. It is also possible that the actions that the
system performs based on the estimated knowledge levels of the child are too subtle.
Currently, only the order and frequency of words is tailored, within the thirty rounds,
and di�erent levels of di�culty are represented by adding or removing one distractor
image. Actions and di�culty levels could be more complex than that, for example by
applying completely di�erent tutoring strategies or games that might �t a particular
child better. For the sake of this experiment, the number of rounds was �xed to
thirty, but this session length might also be left up to the adaptive system to control.
This would allow the interaction to end at the exact moment where the learning is
‘optimal’, i.e., a point at which the adaptive system thinks that the child has achieved
his or her highest potential learning gain. A �nal avenue for improvement that is
currently being pursued is to incorporate additional information about the a�ective
state of the child. Some children might not be in the right mood to learn when they
start, or their attention might fade during the interaction; rather than focusing only
on the learning objectives the robot might want to engage in activities that work
toward creating and maintaining the right atmosphere for learning.

We found it valuable to include the measure of children’s engagement during
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the interaction. A higher level of engagement indicates increased motivation and
willingness to learn (Blumenfeld et al., 2005). Although students might succeed in
simple word learning with limited engagement and the use of a low-level learning
strategy, increased engagement could stimulate them to go beyond simple memo-
rization and relate these new words to prior knowledge. Furthermore, engagement
can serve as a measure of how well the learning activities are tailored to the child’s
abilities — constantly presenting tasks that are either too hard or too easy could
have a detrimental e�ect on engagement. The results of our evaluation show that
indeed the adaptive system appears to match the learning activities to each child’s
needs by providing a realistic yet challenging task, resulting in a reduced decline
in engagement toward the end of the interaction. Gestures contribute to a higher
overall engagement, which could be explained by the fact that the robot appears
more active and playful in this condition, thereby stimulating the child to remain
engaged.

3.6 Conclusion
The study presented in this chapter aimed to explore if a humanoid robot can support
children, four to six years old, in learning the vocabulary of a second language. We
found that, indeed, children manage to learn newwords during a single tutoring inter-
action, and are able to retain this knowledge over time. Speci�cally, we investigated
whether the e�ects of tailoring learning tasks to the knowledge state of the learner
and using co-speech gestures — both of which are strategies used by human teachers
to sca�old learning — transfer to the use of a humanoid robot tutor. Our results show
that the robot’s use of gestures has a positive e�ect on long-term memorization of
words in the L2, measured after one week. Furthermore, children appear more en-
gaged throughout the tutoring session and are able to provide more correct answers
when gestures are used. An adaptive tutoring strategy helps to reduce the drop in
engagement that inevitably happens over the course of an interaction, by providing
contingent, personalized support to each learner. By combining both methods in
a tutoring session, adaptivity seems to succeed in �nding the ‘sweet spot’ of chal-
lenging children enough to keep them motivated while gestures can add to overall
engagement and support children in �nding the correct answer. Therefore, gestures
can form an additional tool in the toolbox of A-BKT to be deliberately employed, for
example, when a reduced di�culty is deemed necessary or engagement is decreasing.
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˚ ˚ ˚
Our �rst study into robot-performed iconic gestures to support second language learning,
presented in this chapter, showed promising results: children showed higher levels of
engagement and retained more English words if the robot used iconic gestures to support
its tutoring e�orts. However, the English animal names in this study had expressive,
clear gestures, and therefore we were left wondering whether these observed e�ects
would remain if children were learning more abstract words, relating to a broader range
of semantic categories. This is addressed in Chapter 4. Furthermore, the study presented
in Chapter 4 contains more diverse activities for the child and robot to engage in (e.g.,
repeating words), and it consists of multiple sessions to see whether a robot tutor can
support second language learning on the longer term.
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4.1 Introduction

There is an increasing interest in the use of robots for educational purposes (Bel-
paeme et al., 2018; Mubin et al., 2013; Toh et al., 2016). They can be used as a subject
of learning, for example by building and programming robots together with students
to teach them about robotics, arti�cial intelligence, or computer programming. Al-
ternatively, social robots can take on the role of tutors by presenting educational
content and engaging in teaching activities in a multitude of domains (Mubin et al.,
2013), including language learning — which is the focus of the current study. One of
the main motivations that drive the use of technology, and social robots speci�cally,
in education is the need to accommodate individual children’s diverse needs while at
the same time the average number of students per teacher is increasing (Blatchford
& Russell, 2020). By working alongside teachers (and certainly not replacing them),
robots can present a cost-e�ective way of expanding and personalizing the content
that can be o�ered to learners. On top of the functional role of presenting educa-
tional content — which can also be done with other tools such as tablets — robots
are arguably able to provide additional social support, for example by providing
(non-verbal) feedback and giving empathic responses rather than focusing merely
on knowledge transfer, which has been shown to enhance the learner’s engagement,
as well as learning outcomes (Saerbeck et al., 2010).

An important part of a robot’s perceived social intelligence (Fong et al., 2003) is its
ability to use non-verbal communication such as gestures. Pointing (deictic) gestures,
for instance, can be used to guide the attention of the learner toward the educational
content, by referring to relevant objects (Sauppé & Mutlu, 2014). Iconic gestures,
which are closely related in shape or motion to the concept being described (McNeill,
1992), can be used to ground new knowledge in familiar concepts or actions from the
real world (Barsalou, 2008). For example, a ball can be depicted by molding a sphere
with one’s hands (shape), or by kicking an imaginary ball (motion). One particular
domain that appears to bene�t from gestures is (second) language learning (Hald
et al., 2016; Rohl�ng, 2019), a domain that has recently also gained considerable
attention from research into educational robots (see e.g., Kanero et al., 2018b; van
den Berghe et al., 2019, for overviews of existing work). In second language learning,
gestures can be used as a bridge between unknown words in the second language
and existing knowledge of concepts or experiences (Hald et al., 2016). In other
words, gestures can be used to link the learner’s non-linguistic (e.g., motor, visual)
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knowledge of a concept to the linguistic form of said concept.
However, robot-performed gestures may have to look di�erent from what we

are used to, as current commercially available robots are more limited in their motor
degrees of freedom than humans. For example, most commonly used robots are not
able to move individual �ngers, making it hard to perform �nger-counting or detailed
hand gestures (Vogt et al., 2017a). This means that in many cases it is not possible to
directly copy the way humans perform a gesture onto a robot, potentially resulting
in a loss of information which reduces the communicative ability of the gesture.
This raises the question whether robot-performed gestures are able to provide the
same bene�cial e�ects to learning that we see with human-performed gestures (e.g.,
Hostetter, 2011; Roth, 2001).

In a previous study we investigated whether a NAO humanoid robot could
support its second language tutoring e�orts with iconic gestures. We found that
children of four to six years old retained more words over time, and were more
engaged during the interaction if a robot used iconic gestures when introducing
words in the second language, as opposed to a robot that did not use such gestures
(Chapter 3). In a follow-up to this previous work, which will provide the basis for the
current chapter, we have made several adjustments to the set-up of the study: instead
of the highly iconic animal names that were taught in the previous study, the follow-
up included concepts for which it is more challenging to come up with gestures with
a high degree of iconicity, such as prepositions (next to) and comparatives (most).
Additionally, the follow-up study consisted of seven sessions with the robot, instead
of the single session in the �rst study. The follow-up study was conducted with
children of a similar age group to the previous study, and it included a larger sample.
In this case, however, we found no e�ect of the robot’s use of iconic gestures on
children’s learning outcomes (Vogt et al., 2019).

These mixed �ndings across the two studies, combined with the overall positive
results found in literature on both human-performed and robot-performed gestures
in supporting language learning (e.g., Hald et al., 2016; van Dijk et al., 2013), show
us that it is important to carefully consider the design and implementation of the
robot’s gestures, and to investigate any contextual factors that may have prevented
children from bene�ting from them in our second study.

Based on existing studies into human gesturing, we have identi�ed four factors
that may in�uence the e�ectiveness of robot-performed gestures in the context
of education. First, iconic gestures only appear to contribute to learning if their
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meaning is clear, and congruent with what is conveyed via speech (Kelly et al., 2009;
Macedonia et al., 2011). It is therefore important that the gestures are designed
in such a way that they are comprehensible for the learner. Second, the ability to
interpret the meaning of iconic gestures develops during a child’s early years (Novack
et al., 2015; Stan�eld et al., 2014). Based on the literature, the children in our study
were generally at an age (5–6 years old) where they should be able to interpret
the gestures. However, the fact that they were performed by a robot, with certain
physical limitations and a di�erent morphology from humans, might have negatively
a�ected this ability. Age could therefore have played a role in the e�ectiveness of
the robot’s gestures. Third, various studies have shown indications that gestures
may have a greater contribution for teaching the linguistic forms of certain types
of concepts (e.g., motor events such as running), compared to others (de Nooijer
et al., 2013; Hostetter, 2011). Finally, research with human-performed gestures in the
context of language learning suggests that reenactment or imitation of the teacher’s
gestures by the learner could further strengthen their contribution to the learning
process (Repetto et al., 2017; Tellier, 2005). Based on these previous studies, we pose
the following research question:

(RQ) To what extent do the comprehensibility of the robot’s gestures, the age of
participating children, di�erent semantic categories, and gesture reenactment
in�uence the successful application of robot-performed iconic gestures in
second language tutoring for children?

In the current chapter, we build upon our previous study (Vogt et al., 2019). This
is done, �rstly, by thoroughly re�ecting upon and evaluating the design of the robot’s
gestures, in order to �nd ways to improve the gesture design process. Secondly,
we provide additional analyses of the data that were previously collected, focusing
speci�cally on the four aforementioned contextual factors: comprehensibility, age,
concept-based di�erences, and reenactment. Our aim with this work is to present
concrete guidelines for the design and implementation of iconic gestures for social
robots, in order to optimally make use of the bene�cial e�ects that the robot’s
gestures could have on (second language) learning. In the following sections we
provide an overview of existing research in the �eld of robots for education and
gestures, and we cover previous work that investigated gestures performed by robots,
particularly focusing on studies in education. We then introduce the set-up of the
experimental study that was conducted in order to investigate the e�ects of a robot’s
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use of iconic gestures to support second language learning, from which the data are
used in the current study, and describe in detail the process of designing the robot’s
iconic gestures. Finally, we present and then discuss the results of our evaluation of
the comprehensibility of the robot-performed iconic gestures, as well as the role of
age, item-based di�erences, and reenactment.

4.2 Background
4.2.1 Social robots in education

The potential use of social, humanoid robots in education has become a recent focus
of attention in research and in society. Next to their functional goal of presenting
educational content, robots are also able to ful�ll a social role that is conducive to
learning, because people tend to assign human-like characteristics to them (Du�y,
2003), and therefore want to communicate with them in a human-like way (Bartneck
& Forlizzi, 2004). This enables robots to teach meta-cognitive skills such as thinking
aloud that can further support learning (Ramachandran et al., 2018). A socially
intelligent robot (Fong et al., 2003) is able to observe the emotions of others and adjust
its behavior accordingly (Gordon et al., 2016; Sza�r & Mutlu, 2012), and it can also
display emotions of its own, thus showing a certain personality or character (Breazeal,
2004; Robert et al., 2020). Furthermore, it is able to engage in a dialogue with human
interlocutors using natural language, and support its communication with non-
verbal behavior such as gaze and gestures (Anzalone et al., 2015; Scassellati, 2002). Its
socially intelligent behavior enables the robot to build rapport, which in turn elicits
more social behavior, such as constructive help-seeking (Howley et al., 2014), from
the learner as well. The bond between robot and learner can be further strengthened
by personalizing the interactions, for example by addressing learners by their names
and engaging in small talk by asking them about their interests. This can stimulate
others to open up and engage more with the robot (Henkemans et al., 2013). However,
research by Kennedy et al. (2015) shows that caution is advised when designing
educational human-robot interactions, as it is also possible for a robot to become too
social, which could have a detrimental e�ect on learning.

Compared to virtual agents that can o�er similar advantages in education, robots
additionally have a physical presence in the context of the learner, which is suggested
to stimulate social behavior and result in greater learning gains (Belpaeme et al.,
2018). A robot that is physically present is also generally rated more positively, and
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regarded as more persuasive than a telepresent robot that is displayed on a screen
or a virtual agent (Li, 2015). Furthermore, people are more likely to comply with
tasks that can be seen as unusual (e.g., putting books in the trash), which rely heavily
on trust (Bainbridge et al., 2011), when these tasks are presented by a physically
present robot instead of a virtual agent. Depending on the educational domain in
which the robot is active, its ability to move within and interact with the physical
world could be used to support its teaching activities (Özgür et al., 2017), for example
by providing realistic feedback on tasks that require manipulations in the physical
world, and it allows the robot to perform classroom management (Kanda et al., 2012).

One particular educational domain in which robots are commonly deployed is
language learning. Because robots are seen as socially present entities, it is possible
to create an immersive, natural context where learners can engage in conversations
with the robot in order to facilitate language learning by immediately applying
newly acquired skills in practice while receiving feedback (S. Lee et al., 2011). Chang
et al. (2010) further highlight the robot’s ability to tirelessly repeat content, and the
potential use of body language to support language learning. A study by Alemi et al.
(2015) reports that children felt less anxious, were more motivated, and reported
higher levels of enjoyment when training second language vocabulary with a robot
compared to when no robot was present.

Previous research byHan et al. (2008) investigated the di�erence between children
learning a second language from a robot, web-based instruction, and a book with
audiotape in the context of their homes. Content was kept similar by taking the
design for the web-based instruction and turning it into static imagery for the book,
and by displaying it on the robot’s embedded tablet screen. They found that children
were more interested and focused, and performed better when a robot was used.
However, Westlund et al. (2015) compared language learning from a robot, tablet,
and human teacher, and did not �nd any di�erences in terms of learning outcomes,
although children did indicate that they preferred learning from the robot over the
tablet and human teacher.

To summarize, existing research shows promising results regarding the use of
social robots in education. Their physical embodiment and presence in the context
of learning set robots apart from other educational tools, such as tablet devices.
Gestures could form an important way to make use of the robot’s physical presence.

119



CHAPTER 4. DESIGNING AND EVALUATING A ROBOT’S ICONIC GESTURES

4.2.2 Gestures in education
Gestures are generally de�ned as “visible actions” portrayed with our bodies (Kendon,
2004). The use of gestures plays an important role in our communication with
others, for example by guiding the attention of listeners, and by making it easier for
them to understand information that is communicated verbally (Hostetter, 2011). In
communication, we use di�erent types of gestures, including rhythmic beat gestures
to emphasize certain parts of our speech, deictic gestures such as pointing to direct
attention toward a speci�c entity, and representational or iconic gestures in which
the hands or body are used to depict a particular action, object or concept that may
not be physically present (McNeill, 1992). The concept that an iconic gesture refers
to is represented in some way by the motion itself, for example by pretending to
brush our teeth when trying to describe a toothbrush, or by molding the shape of an
imaginary ball in the air. In the current study the robot employed occasional deictic
gestures to guide attention, but we focus mainly on investigating the use of iconic
gestures.

Gestures, and iconic gestures in particular, are often used spontaneously and
together with speech, although silent gesture or pantomime that act as a substitute
for speech occur as well (McNeill, 1992). The use of gestures is an important tool
in educational settings (Kelly et al., 2008), where it can be considered a form of
sca�olding that helps the learner understand the materials, which is particularly
useful when concepts are complex or newly introduced (Alibali & Nathan, 2007).
Additionally, teachers are able to hold the students’ attention for longer periods
of time when they use gestures to support their teaching (Valenzeno et al., 2003).
Speci�cally in second language learning, gestures can serve as a bridge between
a concept that is familiar to someone in their native language, or L1, and its still
unknown translation in the second language, L2, by grounding the new L2 word in
existing knowledge of actions or objects (Barsalou, 2008).

Meaningful, comprehensible gestures
Several studies have examined the added value of iconic gestures for (second) lan-
guage learning (see e.g., Hald et al., 2016; Rohl�ng, 2019, for a review). For example,
Kelly et al. (2009) compared between L2 word learning without support from gestures,
without gestures but with repeated speech, with congruent gestures, or with incon-
gruent gestures (which were the same gestures as in the congruent condition, but
produced with other words than to which they belonged). Participants who received
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support from congruent gestures learned most words, followed by the group that
received repeated speech input, the group without any additional cues, and lastly
the group that received incongruent gestures. Macedonia et al. (2011) conducted a
study in which they compared between the use of iconic gestures and meaningless
gestures to support learning of an arti�cial language, and they found that using
iconic gestures resulted in better learning outcomes than when meaningless gestures
were used. Both studies show that the role of iconic gestures goes beyond merely
drawing attention to the speaker, and that it is relevant to design gestures in such a
way that they communicate the right meaning. Based on this, we pose the following
subquestion to guide our research:

(Q1) How does the comprehensibility of the robot’s iconic gestures a�ect their
contribution to learning?

Age of the learner
We learn to interpret iconic gestures at a relatively young age. Novack et al. (2015)
compared between two- and three-year-old children, and found that two-year-olds
could already take advantage of iconic gestures in the context of learning how to
use new toys, although not as much as three-year-olds. Another study by Stan�eld
et al. (2014) found that children start to understand non-redundant iconic gestures
(e.g., a combination of “read” in speech with an iconic gestures for book) by age
three, and that this skill continues to develop as they grow older. Existing research
highlights a number of additional factors that may in�uence the e�ects of iconic
gestures on communication and learning. For example, children with weaker L1 skills
generally bene�t more from gestures than people that have stronger L1 skills (Rowe
et al., 2013). Children were found to especially �nd support in gestures when the
spoken part of the message was complex (McNeil et al., 2000), potentially also due to
their still developing language skills. These individual di�erences, particularly at
a younger age as our ability to interpret gestures is still developing, lead us to the
second subquestion:

(Q2) What is the role of age in the e�ects of the robot’s iconic gestures on learning?

Concept-based di�erences
It is further suggested that the positive e�ects of iconic gestures are stronger when
they describe spatial concepts (e.g., spatial relations such as under) or motor events
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(e.g., actions such as running) than when the concepts are more abstract, such as
colors, where the link between the motions and the referent is less clear (Hostetter,
2011). However, a study by Repetto et al. (2017), in which young adults were taught a
number of abstract words (e.g., boredom and alternative) in an arti�cial language, still
showed that participants remembered more words when they were presented to them
in combination with gestures, than when the words were presented with pictures
or with no additional cues. Research further suggests that verbs are especially
challenging for children to learn, because children have di�culty generalizing from
the particular objects or context with which they were originally taught. Because
gestures do not involve interactions with real physical objects, they support the
acquisition of generalizable verb knowledge better than actually performing the
action on a speci�c tangible object (Wake�eld et al., 2018). In summary, research on
potential di�erences in the e�ectiveness of gestures based on concept or word types
is scarce, but provides a �rst indication that such di�erences do exist. As a result, we
pose the following subquestion for the current research:

(Q3) Are there (item-based) di�erences in the contribution of gestures in supporting
learning, depending on the types of concepts that are depicted?

Gesture reenactment
One important aspect of the study by Repetto et al. (2017), that might support
learning by means of gestures, is that participants were asked to reenact or imitate
the movements after observing them on screen, rather than merely observing them.
In a study by Cook et al. (2008) children of eight to ten years old were asked to mimic
the instructor’s behavior when solving mathematical problems, which led to better
long-term retention of the instructions compared to children that did not perform
gestures themselves. Tellier (2005) found similar e�ects, �rst in the context of L1
vocabulary learning, where 42 children (�ve to six years old) were split into three
groups: One group was asked to repeat the words, the second also repeated the
words and observed matching gestures, while the third group repeated words and
imitated the gestures. The group that mimicked gestures performed signi�cantly
better in a short-term recall test than both other groups.

In a follow-up study (Tellier, 2008), twenty children within the same age group
as the previous study learned L2 vocabulary over the course of multiple sessions.
They either received pictures of the concepts that the words related to as support,
or video recordings of people performing gestures for these concepts. If they were
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shown gestures, the children were asked to imitate them. The group of children who
encoded the words using gestures performed better on the assessments, particularly
on tests of their active knowledge (production, rather than recognition of the L2
words), than the group who observed pictures (Tellier, 2008). In a study by de Nooijer
et al. (2013), children of nine to eleven years old learned L1 verbs and were divided
into four groups. One group only observed matching gestures while training the
words, while the other three groups imitated the gestures, either 2) during training,
3) while trying to recall the verbs on the post-test, or 4) in both situations. The results
of this study indicated that imitation was only helpful for the object-manipulation
verbs that were present in the study, and not for the locomotion or abstract verbs.

These �ndings regarding the potential bene�ts of enacting in order to memorize
concepts align with the notion of embodied cognition, and the language-action
connection (Glenberg & Gallese, 2012). Although, to our knowledge, there is no
existing research that draws a direct comparison between observing and reenacting
iconic gestures in the context of L2 learning, based on �ndings in other educational
domains and L1 learning we expect that children who (spontaneously) reenacted
gestures in the current study may have bene�ted more from them than those who
did not reenact, therefore we pose the following subquestion:

(Q4) Does reenactment (mimicry, imitation) of the robot’s iconic gestures by the
learners improve learning outcomes?

To summarize, iconic gestures have proven to be valuable tools to support educa-
tion, particularly in the domain of second language learning. Their contribution to
learning appears to be dependent on several factors, including the characteristics of
the learner, the materials that are being taught, and whether the gestures are merely
observed or also imitated. We aim to investigate whether these same factors play a
role in human-robot interaction.

4.2.3 Related work on robots and gestures
Because robots are generally more limited in their motor degrees of freedom, their
gesturing capabilities are not as extensive as that of humans, or modern virtual
agents that are driven by motion capture recordings. This raises the question whether
robots are expressive enough to be able to leverage the aforementioned bene�ts
that gestures provide in human-human communication, speci�cally in educational
contexts. Bremner and Leonards (2016) compared between co-speech iconic gestures
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produced by a human, and the same gestures copied to a robot using motion capture
techniques. They found that for most gestures the participants in their study were
able to identify the meaning in a multiple choice task equally well, regardless of
whether they were performed by a human or a tele-operated robot.

Not only do the robot’s gestures appear to support its communicative e�orts,
robots that add a non-verbal component to their speech output are also perceived
di�erently from those that do not. A study by Salem et al. (2013a) found that a robot
that used gestures was perceived as more human-like and likeable than one that did
not gesture, even more so when the robot made errors by performing motions that
were incongruent with its speech, although at the cost of task performance. Gestures
can also be used to give a certain personality or emotional state to the robot, which in
turn could lead to richer, more personal interactions and to further improve people’s
attitude toward the robot (Aly & Tapus, 2013; Craenen et al., 2018). Furthermore,
several studies have reported higher levels of engagement when robots use gestures,
compared to when they are static or perform random movements (Bremner et al.,
2011; Chapter 3). In a review by Li (2015), the results from several studies indicate
that people’s attitude tends to be more positive toward a physically present robot
compared to one that is telepresent (i.e., displayed on a screen) and to virtual agents,
but only when it is using gestures — the opposite e�ect was found when the robot
did not use gestures. This is an indication that one of the main advantages of a
robot that is physically present over virtual alternatives is that it is able to move and
communicate in the real world context.

Ahmad et al. (2016b) conducted an interview study with primary and high school
teachers. The teachers agreed that social robots could be useful for language learning,
and they stressed the importance of gestures in language education (with and without
robots). Empirical research speci�cally into the e�ects of a robot’s use of iconic
gestures in the context of (second) language learning is however still scarce. In a
study from the related �eld of information retention, van Dijk et al. (2013) showed
in a single session with adult participants that the use of iconic gestures by a robot
increased retention, particularly of verbs, measured using a recall task. Similar results
on information retention were found in the context of storytelling (Bremner et al.,
2011; Huang & Mutlu, 2013). Another study involving storytelling by a robot further
suggests that exaggerated gestures, which are perceived as more cartoon-like, lead to
increased memorization of the story compared to “normal” (unexaggerated) motion,
and the robot was perceived as more engaging and entertaining when exaggerating
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its movements (Gielniak & Thomaz, 2012).
In previous work with four- to six-year-old children, we have shown that the

robot’s use of iconic gestures while presenting words (animal names) in a second
language aided the recall of these words approximately one week after training, and
resulted in an overall higher level of engagement of the child while learning with the
robot (Chapter 3). Although these gestures were intentionally chosen and designed to
have a high degree of iconicity, the results of this study do serve as a �rst indication
that the bene�ts of iconic gestures that we see in human-human tutoring situations
could apply to robot-performed gestures as well. After this initial exploration, we
conducted a large-scale study to further investigate the potential application of
social robots in second language tutoring. In Vogt et al. (2019), we have concisely
described the learning e�ects in the di�erent conditions (brie�y summarized in the
next section), which provides the basis for the current chapter. In this chapter, we
present an in-depth analysis of the design and the e�ects of the robot’s use of iconic
gestures, which was not part of Vogt et al. (2019).

4.2.4 Large-scale study
We conducted a study at nine di�erent primary schools throughout the Netherlands,
in which children of approximately �ve years old (� “ 5 years, 8 months; �� “ 5
months) interacted with an intelligent tutoring system (ITS), consisting of a tablet
device on which educational content was shown, and a robot that engaged in learning
activities with the children. The study included seven sessions, where new L2
vocabulary was introduced in the �rst six, while the seventh session served as a
recap of the previously taught words. Our aim was to investigate: (1) whether the
intelligent tutoring system is e�ective at teaching children L2 vocabulary; (2) whether
the robot’s physical presence contributes to learning outcomes; and (3) whether
robot-performed iconic gestures result in greater learning outcomes, compared to a
robot that does not use iconic gestures. In order to study these e�ects, we assigned
the children to one of the following conditions:

1. Control (no treatment), where children had an interaction with the robot
once a week (for a total of three interactions), which did not involve any
educational content related to second language vocabulary.

2. Tablet only, where children interacted only with the tablet. The robot was
hidden from view, with its speech output routed through the tablet’s speakers.
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3. Tablet + robot without iconic gestures, where children interacted with
the tablet and the robot, and the robot would use deictic (pointing, tablet
manipulation) gestures to guide the child’s attention.

4. Tablet + robot with iconic gestures, where children interacted with the
tablet and the robot, and the robot would use both deictic gestures to guide the
child’s attention and manipulate objects on the tablet, as well as a matching
iconic gesture whenever it pronounced one of the target words in the second
language.

A total of 194 children, 97 boys and 97 girls, participated and met the inclusion
criteria (e.g., scoring a maximum of 17 out of 34 words correct on the English
translation pre-test). They were pseudo-randomly assigned to the experimental
conditions, with a balance in age and gender, resulting in 32 participants in the control
condition (1), and 54 participants in each of the three experimental conditions (2–4).
The children’s legal guardians gave informed consent, and the study was approved
by our institutions’ research ethics committees. The study and analysis plan were
preregistered on AsPredicted1.

The results, which are presented in detail in Vogt et al. (2019), showed that chil-
dren in the three experimental conditions scored signi�cantly higher on translation
as well as comprehension tasks, than those in the control condition (all �-values
† .01). This means that the tutoring interaction was e�ective. However, contrary to
our expectations, no signi�cant di�erences were found between the three experi-
mental conditions of tablet only, tablet + robot without iconic gestures, and tablet
+ robot with iconic gestures. In other words, there was no observed e�ect of the
robot’s physical presence and use of deictic gestures, nor of its use of iconic gestures,
on the students’ learning outcomes. For the remainder of this chapter, we will focus
our attention on the robot’s use of iconic gestures, to get a better understanding of
the role of these gestures in the child-robot interactions.

In the following section, we �rst describe the design of the intelligent tutoring
system as a whole. This is important, because the iconic gestures were included as
part of this tutoring interaction and were not used in isolation, therefore the nature
of this interaction (and how it is di�erent from other studies) could potentially have
in�uenced the e�ectiveness of the robot’s iconic gestures. We then introduce the
process of designing the gestures, and what the resulting gestures looked like. The
1https://aspredicted.org/6k93k.pdf
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measurement instruments are then presented, as these are needed to interpret the
analyses that follow. Finally, we present the results of our analyses, and conclude with
a discussion of our �ndings and recommendations for the design and implementation
of robot-performed iconic gestures.

4.3 Interaction and gesture design
4.3.1 Design of the tutoring interaction
The intelligent tutoring system (ITS) consisted of a Softbank Robotics NAO V5 robot,
combined with a Microsoft Surface Pro 4 tablet through which the child engaged
in the learning interaction. The robot was placed in a crouching position at a 90-
degree angle relative to the child. This helped to position the robot as a peer rather
than a teacher, which has been shown to result in increased task engagement and
performance (Zaga et al., 2015). In addition, this made it easier for the learner to
take on the robot’s perspective, thereby avoiding confusion for gestures such as
left, which would be harder to interpret if the robot would be sitting directly across
from the learner. Figure 4.1 shows the general positioning of the robot and tablet.
This positioning was kept as consistently as possible between di�erent schools. One
camera was placed facing the child, with a second camera to the side and behind the
child, so that the interactions with the tablet could also be recorded. To make the
robot seem more life-like, we enabled “breathing mode” which caused its arms to
move around slightly, giving the illusion that the robot was actively breathing. It
also blinked its eyes every few seconds, and was tracking the child’s face to establish
eye contact.

Figure 4.1: Positioning of the tablet and the robot during the experiment.
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The content of the study comprised seven lessons in total. The �rst six lessons
each took place in a di�erent virtual environment, such as a forest or a playground,
where the native Dutch-speaking child was introduced to 5–6 new words in the
second language (English) during each lesson (see Figure 4.2 for an example). We
opted for the use of virtual environments and objects instead of physical ones be-
cause automatic perception and manipulation of real objects in a dynamic physical
context would have been challenging to implement. Virtual objects have also been
shown to be equally e�ective in supporting math and L1 teaching (Klahr et al., 2007;
Singer & Gerrits, 2015). Moreover, in a preliminary study comparing the e�ects of
physical versus virtual objects on L2 learning, we did not �nd di�erences in learning
outcomes (Vlaar et al., 2017).

Figure 4.2: Examples of the virtual environments shown on the tablet. Left: lesson
one in the zoo, where animals have been brought back to their cages. Right: lesson
six in the playground, which was �rst ‘built’ by placing equipment, and now children
started playing in the area.

In the �rst three lessons, the target words belonged to the number domain,
including concepts such as counting words (one, two, three, four, �ve), mathematical
operations (add, take away) and comparisons (more, most). Lessons four, �ve and six
focused on spatial relations and verbs, which contained words such as above, next
to, walking and sliding. These words were selected based on a survey of existing
educational curricula, word frequency and age of acquisition lists2 to ensure that
children were familiar with the concepts in their native language. The �nal seventh
lesson did not introduce any new target words, but instead recapitulated all 34 target
words from the previous six lessons. Table 4.1 shows a list of all the English words
that were included in the study, as well as the virtual environment in which they

2https://web.archive.org/web/20210415022714/http://www.l2tor.eu/e�e/wp-
content/uploads/2015/12/D1.1-Lessons-series-three-domains.pdf
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Table 4.1: English words included in the study, per lesson.

Lesson Environment English words

1 Zoo One, two, three, add, more, most
2 Bakery Four, �ve, take away, fewer, fewest
3 Zoo Big, small, heavy, light, high, low
4 Fruit shop On, above, below, next to, falling
5 Forest In front of, behind, walking, running, jumping, �ying
6 Playground Left, right, catching, throwing, sliding, climbing
7 Photo book Recapitulation of all words

were presented.

During each lesson, children went through a particular scenario together with
the robot, while they completed several di�erent tasks that were presented to them
by the robot, such as touching or moving objects on the screen, repeating words
after the robot, or performing an action in the real world (such as pretending how to
climb). To further position the robot as a peer, the tablet was responsible for actually
initiating these tasks, for example by making new objects appear on the scene. The
robot would then observe this change on the tablet and suggest the course of action
in order to continue, as if the robot and child were learning together, for example by
stating that “the monkey has escaped — let’s put it back in its cage!”.

The lessons followed prede�ned scripts, so that each child experienced the same
interaction by performing the tasks in the same order. The scripts were created in
such a way that all target words were mentioned at least ten times during the lesson
in which they were introduced, and once more in the lesson that followed it. In
the condition with iconic gestures, the robot would perform the matching gesture
whenever it pronounced a target word in the L2. If the child did not perform any
action or if the action was incorrect, the robot would repeat the task up to two times,
which resulted in additional exposures to the English words and, in the condition
with iconic gestures, the matching gestures. If the task was still un�nished after
two reminders, the robot performed the task for the child, for example by moving
objects on the screen or by counting down and then repeating the words together
with the child, to ensure that the script was always completed. Because of the robot’s
imperfect pronunciation, the �rst mention of each word was by means of a recording
from a native English speaker, which was played back through the tablet, generally
as a response to the child successfully performing an action such as touching or
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moving an object on the screen.

During the seventh lesson, which was a recapitulation of the previously learned
words, children constructed a photo book that contained six pages, each with a
screenshot of the backdrop of one of the previous lessons. The children were then
asked to drag stickers containing objects that were present in the original scenes onto
the pages, while practicing the related English words. Figure 4.3 shows one of the
pages of the photo book, with the stickers not yet placed. While the other lessons all
had three-dimensional environments, the recapitulation lesson was two-dimensional.
Although all 34 target words had to be covered in this lesson, there were fewer
repetitions of these words compared to previous lessons, resulting in a total session
length of approximately 15–20 minutes, which was similar to the other six sessions.

The researcher had a control panel running on a laptop, which could be used to
start a speci�c lesson. This was also used to enter the child’s name, so that the robot
could use it during the interaction, and it provided the researcher with the option
to pause the lesson if needed. The robot acted nearly fully autonomously, with the
exception of recognizing whether children successfully completed tasks in which
they had to repeat words after the robot, or had to enact a certain action, for which
the sensing techniques were di�cult to implement. For example, the use of automatic
speech recognition (ASR) to detect whether children correctly repeated after the
robot is not yet reliable enough (Mubin et al., 2012), especially when attempting
to recognize young children’s speech (Kennedy et al., 2017). For tasks where the
child had to repeat a target word, the researcher therefore pressed a button on the
control panel when the child spoke for the interaction to continue (a Wizard of Oz
approach). For other points during the scenario where we expected a reply from

Figure 4.3: The photo book environment used in the seventh (recapitulation) lesson.
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children (e.g., during small talk, or in the case of enactment), we implemented pauses
to create the illusion that the robot was watching and listening to the children. For
an impression of what the interaction between child and robot looked like, we refer
to a promotional video that was developed as part of the L2TOR project3.

4.3.2 Design of the robot’s gestures
Deictic gestures
The robot performed three types of deictic gestures during the tutoring interactions
with the children (Figure 4.4). The �rst type was implemented at prede�ned locations
within the script, where the robot would point toward the tablet screen to direct the
child’s attention to it. This gesture was always the same, so there was no distinction
between di�erent parts of the screen — the robot directed its gaze toward the tablet,
and pointed in its general direction. The other two types of deictic gestures were used
when the robot provided help to the learner after a task was performed incorrectly
or not performed at all. If the task was to move an object to a di�erent location,
the robot would “swipe” across the screen while at the same time the object would
move to its correct target location. A similar motion was implemented to simulate
the robot touching an object on the screen. In this case the robot would extend its
arm over the tablet and then brie�y open and close its hand. At the same time, the
corresponding object was highlighted on the screen to simulate the robot’s triggering
of the object. Both the swiping and touching gestures, just like the pointing gesture,
were always the same and were not linked to any exact locations on the tablet.
However, this proved to be realistic enough to provide the illusion of the robot
performing manipulations within the virtual environment. We also explained to
children that this was how the robot controlled the tablet, and this explanation was
3https://youtu.be/y8W-2XgdfoI

Figure 4.4: The three types of deictic gestures used in the study. Left: pointing (closed
hand); middle: pretending to touch the screen (the hand brie�y opens and closes);
right: pretending to swipe across the screen (open hand).
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accepted by them.

Designing human-like iconic gestures
The iconic gestures for the chosen target words were based on a dataset that was
collected using a gesture elicitation procedure (Kanero et al., 2018a). In this elicita-
tion study, three participants, all native speakers of English, were recorded while
performing matching gestures for all 34 concepts. Twenty other participants, also
native English speakers, were then asked to view these recordings and rate on a scale
from 1–7 the comprehensibility of the human-performed versions of the gestures,
or the degree to which they matched the words they intended to describe. Because
participants in this study were not constrained to the robot’s physical limitations,
several gestures contained certain features or motor skills that are not supported by
the NAO robot (e.g., jumping up and down or �nger-counting), preventing a direct
mapping from these recorded gestures onto the robot. For this reason, several ges-
tures had to be reinterpreted, although the suggestions from the elicitation procedure
were still used as a guideline. Figure 4.5 (left) displays an example of �nger counting
where such a reinterpretation had to take place: To depict the concept four using the
robot’s �ngers, we had the robot raise both hands showing two of its three �ngers
per hand by turning the wrist so that the thumb was hidden from view. Figure 4.5
(right) shows a gesture that could be translated more directly, without adjustments.
The gestures for the robot were made using the Choregraphe tool that is provided
with the NAO robot (Pot et al., 2009), which allows the designer to de�ne key frames.
The robot then interpolates between these key frames when producing a gesture.

An initial pilot evaluation with �ve verbs (out of the 34 target words) was
conducted to validate whether the gestures’ comprehensibility, or how well the
gestures matched the concepts they intended to describe, indeed in�uences how

Figure 4.5: Examples of the translation of human-recorded gestures onto the robot
for the concepts four (left) and light (right). Images used from the data of Kanero
et al. (2018a) with permission.
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well these gestures support tutoring by leading to improved learning outcomes. This
was done by conducting a between-subjects study with children as participants
(� “ 43, ���� “ 5 years, 9 months, ����� = 7 months), where the gestures were
either performed by a robot or by a human tutor. The results, described in more
detail in one of our project’s deliverables4, indicate that indeed the comprehensibility
of an iconic gesture, as originally rated for human-performed versions by twenty
adult participants, in�uences its e�ect on learning outcomes of children that use
these gestures to learn English words, at least when this is measured by means of
a receptive vocabulary task. No signi�cant di�erences were found in a production
task.

Before including them in the current experiment, the gestures were revised once
more, especially taking into account the change in the robot’s positioning relative
to the child — in the original recordings, participants were standing and facing the
camera, while in the experiment the robot was seated and placed at a 90-degree
angle to the right of the child, changing the way gestures were perceived. Figure 4.6
shows photographs of all 34 gestures as they were used in the study, taken from the
perspective of the learner.

There is a further distinction between the gestures that were designed for this
study: Examples such as running use the whole body, where the robot actually
“becomes” the runner (character viewpoint), while others such as jumping instead
use one hand to depict an imaginary character or object that is jumping, also known
as the observer viewpoint. Research has shown that younger children tend to use a
larger gesture space, and perform gestures from the character viewpoint (as is the
case with the running example) more often than smaller, imaginative gestures from
the observer viewpoint such as the one for jumping (Sekine et al., 2018). This suggests
that it could be better to use more gestures where the robot actually “becomes” the
concept. However, this is not always possible given the robot’s physical limitations.

4https://web.archive.org/web/20210415022714/http://www.l2tor.eu/e�e/wp-content/uploads/2015/12/
D7.4-Evaluation-report-storytelling-domain.pdf
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Figure 4.6: Gestures for all of the 34 concepts in the study. Video recordings are
available at: https://www.youtube.com/playlist?list=PLJreGGDWkgkqQUIsZXMgekMHP1T-_dfbU.
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Integration with the lesson content
The built-in text-to-speech engine of the NAO robot is able to trigger events — such
as performing a gesture — at speci�c points during the robot’s speech output. This
was used to align speech and gestures, as well as perform coordinated deictic gestures
and shifts in the robot’s gaze to guide the learner’s attention. For the iconic gestures
we introduced pauses in the robot’s speech, such that the corresponding target word
in the L2 would coincide with the stroke, the most salient part of the gesture. If
possible, the pronunciation of the target word was timed for a moment with little to
no movement, thereby minimizing any negative in�uences that motor noise could
have on the audibility of the robot’s speech. The robot then resumed talking in L1
after the gesture was completed.

4.4 Data collection
4.4.1 Procedure
Group introduction
Children were �rst introduced to the robot in a group setting. This was generally
done with an entire classroom, including children that did not (yet) sign up to
participate in the experiment, with the teacher also present. Previous research has
shown that these group introductions reduce anxiety for subsequent individual
interactions (Fridin, 2014; Vogt et al., 2017a). During the group session, the robot
introduced itself as ‘Robin’ — a unisex name, leaving the robot’s gender open to
interpretation — and demonstrated some of its abilities, for example by performing
several dances and by inviting the children to join in taking on a number of di�erent
poses. It also highlighted some of its limitations, for example by mentioning that it
cannot hear very well, thereby instructing children to speak loudly. This was done
so that researchers could clearly hear the children repeating after the robot during
the lessons, allowing them to press the Wizard of Oz button on the control panel.
Children were invited to shake the robot’s hand, which helped them to bond with
the robot.

Pre-test
The pre-test took place either on the same day as the group introduction, or shortly
thereafter. Children were retrieved from their classroom one by one and brought to
a separate, quiet room — often the same room in which they later interacted with
the robot. They sat down at a table on which a laptop was placed, with a researcher
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sitting next to them. The researcher then walked through the di�erent pre-test
segments in a prede�ned order:

1. Peabody Picture Vocabulary Test (L1 vocabulary knowledge);

2. Translation task of the target words from L2 to L1;

3. Visual search task (selective attention);

4. Non-word repetition task (phonological memory);

5. Questionnaire measuring anthropomorphism.

Depending on the type of task, the child either answered verbally or pointed at
items on the screen, while the researcher took notes on a paper sheet or pressed
corresponding buttons on the keyboard. The researcher gave positively voiced
neutral feedback to the child without indicating whether the answers given were
correct or not. If the child did not know an answer to one of the tests, the researcher
reassured them that this was not a problem and stimulated them to proceed with the
tasks. After completing all segments the child was brought back to the classroom.
The pre-test took approximately 45 minutes, and was recorded with a video camera.

Lessons
Children who were assigned to one of the three experimental conditions took part
in a total of seven lessons, which were scheduled so that children received two
lessons per week, and never two lessons on the same day. As a result most children
completed the lesson plan over the course of four weeks. The �rst lesson was planned
at least one day after the pre-test.

The interactions were situated in a separate, quiet room at the school, where the
robot was sitting on the �oor next to the tablet. The child was collected from his
or her classroom and invited to sit in front of the tablet, after which the researcher
started the lesson using the control panel. While the child and robot completed the
lesson together, the researcher was sitting behind the child to discourage the child
from looking at him or her instead of the robot for feedback. If needed the lesson
could be paused and resumed using the control panel. The end of a lesson was always
marked by stars appearing and moving around on the tablet screen, after which the
robot said goodbye and the child was brought back to the classroom. Each session
with the robot took approximately 15–20 minutes to complete.
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Post-test
The post-test was administered twice for each child, �rst an immediate post-test
close to the last lesson (but at least one day later), and then a delayed post-test
approximately 2–5 weeks after the immediate post-test. In both cases the child was
retrieved from the classroom and brought to a quiet room. Similar to the pre-test,
the child sat down at a table with the researcher sitting next to him or her. Using a
laptop, the two translation tasks and comprehension task described in Section 4.4.2
were completed in the following order:

1. Translation from L2 to L1;

2. Translation from L1 to L2;

3. Comprehension task;

4. Questionnaire measuring anthropomorphism (only in the immediate post-test).

The researcher noted down the answers as they were given by the child. Each
post-test took approximately 30–45 minutes to complete, and was recorded with a
video camera.

4.4.2 Measures
Three di�erent tasks were used tomeasure whether children learned and remembered
the target words. This included two translation tasks, one from the L2 to the L1 and
one from the L1 to the L2, to measure children’s ability to freely produce translations
of the target words. In both tasks the researcher would repeat a prede�ned sentence
(“Wat is [word] in het [language]?” — “What does [word] mean in [language]?”),
where the word was either in L1 or L2, and the language was either Dutch or English
depending on the translation task. The pronunciation of the target words was made
consistent by using recordings from a bilingual speaker of Dutch and English, which
were embedded in a set of Powerpoint slides and then triggered by the researcher.

To measure children’s comprehension of the target words in L2, we conducted
a separate task where children were shown a set of Powerpoint slides, each slide
containing three pictures or videos depicting a certain concept (Figure 4.7). A voice
recording from a native speaker was played back every time a new slide was shown,
asking “Waar zie je... [L2 word]” (“Where do you see... [L2 word]”), after which
the child was asked to point at the corresponding picture or video. Depending on
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Figure 4.7: Example of the comprehension task (for the concept in front of ) adminis-
tered as part of the post-tests.

the target word, these stimuli would contain several physical objects, or a person
performing a certain action. Because there is a relatively large probability that the
children would guess correctly (33%), each concept was tested three times using
di�erent contexts, and shown with di�erent distractor concepts (incorrect answers).
However, because this would result in too many trials if all target words were
included, we only tested 18 words, which were pseudo-randomly selected to include
examples from all of the semantic categories (e.g., counting, measurement, movement
verbs), and from all of the six lessons. Multiple versions were developed of both
translation tasks and the comprehension task, in which the concepts were presented
in a di�erent order.

We further measured the children’s receptive L1 vocabulary knowledge using
the Peabody Picture Vocabulary Test (Schlichting, 2005), their phonological memory
with a non-word repetition task (Chiat, 2015), and selective attention by means of
a visual search task (Mulder et al., 2014). In addition, we investigated the extent to
which children anthropomorphized the robot by means of a questionnaire (van den
Berghe, de Haas, et al., 2021).

4.4.3 Analyses
In the current chapter, we conduct an in-depth analysis of the results, obtained
using the measures discussed in Subsection 4.4.2, combined with an evaluation study
of the comprehensibility of the robot’s gestures. We focus on investigating how
four di�erent factors — comprehensibility of the gestures, age-based di�erences,
di�erences between semantic categories, and gesture reenactment — may have
a�ected children’s learning outcomes. We will now present the analysis approach,
followed by the results of these analyses in Section 4.5.
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Comprehensibility of the gestures

To investigate whether the meaning of the 34 �nal gestures included in the study was
clear, we conducted an online evaluation study with 17 adult participants, 10 female
and 7 male, with an average age of 21 years and 6 months (�� “ 2 years, 8 months),
recruited via convenience sampling. They were shown videos of all robot gestures,
recorded from the same perspective as the photographs in Figure 4.6, in random
order. Each video was between three to eight seconds long. Participants were asked
to choose the concept belonging to the gesture they were just shown from a list of
six possible answers. The incorrect answers were always the other concepts from
the same lesson, to measure whether the 34 gestures were iconic enough to identify
them within the context of the lesson in which they were used. The answers were
also randomized for each trial. Lessons two (bakery) and four (fruit shop) contained
only �ve target words in total, therefore the words six and lifting were added to
these respective lessons as additional (incorrect) answers to ensure that the chance
of guessing correctly was always the same.

Along with identifying the matching concept (binary scores, correct or incor-
rect), participants were asked to rate the clarity and naturalness of the gesture,
both on a �ve-point scale ranging from 1. extremely unclear/unnatural to 5. ex-
tremely clear/natural. We then calculated the accuracy for each concept, which is
the number of participants in the gesture evaluation study that correctly identi�ed
the concept divided by the total number of participants, resulting in a score from
0–1, as a measure of how comprehensible the matching gesture was. Correlation
analysis (Kendall’s tau-b, because of the relatively small sample size) was used to
test whether the accuracy (as a measure of comprehensibility of the gesture), clarity,
and naturalness are signi�cantly correlated. In addition, we grouped the concepts
into semantic categories, such as counting words and prepositions, based on exist-
ing language learning curricula5. Using paired samples t-tests, we tested whether
there were signi�cant di�erences between the semantic categories, in terms of the
comprehensibility, clarity, and naturalness of the gestures.

To see whether the comprehensibility of a concept’s gesture had an in�uence
on children’s learning outcomes for the English word belonging to that particular
concept during the large-scale study, for each concept we calculated the score of the
54 children in the experimental condition where the robot used iconic gestures on

5See for example: https://www.gov.uk/government/collections/national-curriculum
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the translation tasks. There were two translation tasks, from the L2 (English) to the
L1 (Dutch) and from the L1 to the L2. Because there was a strong correlation between
the two tasks, indicating that they both measure a similar language production
skill, the scores on both tasks were averaged. This means that for each concept, the
score of one child could be either 0 (incorrect on both tasks), 0.5 (correct on one
of the two tasks), or 1 (correct on both tasks). For this analysis, we only included
the experimental condition where the robot used iconic gestures, to focus on the
relationship between gesture comprehensibility and the resulting learning outcomes
when these gestures were used. Children’s scores on the translation tasks were
averaged across all children in the condition with iconic gestures (� “ 54), to reach
an average score for that particular concept (ranging from 0–1). We then compared
the scores on both post-tests (immediate and delayed) for each concept to the rated
comprehensibility of the gesture for that concept using correlation analysis. Note
that the comprehension task of the post-tests only tested 18 out of the 34 target
words, therefore we can only analyze the relationship between comprehensibility
and post-test scores for these 18 words.

Age-based di�erences between learners

To study the e�ect of the participating children’s age on their learning outcomes,
we ran the same analysis that was used in the original study (Vogt et al., 2019) to
measure learning outcomes, but now with children’s age at the time of the pre-test
(in months) as a covariate. This analysis includes all four conditions so that we can
investigate whether an observed e�ect of age applies to learning in general, or only
when the robot uses deictic and/or iconic gestures.

The analysis is a doubly multivariate repeated measures ANOVA, with the trans-
lation scores (average of L2 to L1, and L1 to L2 translation tasks) and comprehension
task scores as dependent variables, condition as independent variable, and age as
covariate. The scores on the translation tasks were combined for all target words,
which means that every participant had a score in the range of 0–34 (0.5 for each
correctly translated word on one of the two translation tasks). The score on the
comprehension task ranged from 0–54 (18 target words, 3 trials per word), where the
chance of guessing correctly was 18 (33%), because every trial included the correct
answer and two incorrect distractor items.
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Di�erences between semantic categories
For studying the di�erences between semantic categories, we included the tablet-
only condition, where the robot was not physically present at all, and the two robot
conditions (with and without iconic gestures), to see if the attention-guiding deictic
gestures or the iconic gestures may have contributed to di�erences in children’s
learning outcomes for the di�erent semantic categories. The 34 concepts for the
translation tasks, and 18 concepts for the comprehension task, were divided into
the same semantic categories used in the analysis of the gestures’ comprehensibility
(Subsection 4.4.3), and the post-test task scores were calculated for these semantic
categories for the di�erent experimental conditions. Scores on the translation tasks
per child and per word were again either 0, 0.5, or 1, and for the comprehension task
this was 0, 0.33, 0.66, or 1. These scores per child and per word were then averaged
across children within the semantic categories, resulting in scores ranging from 0–1
for each category.

To check whether the di�erences between semantic categories were signi�cant,
we used a MANOVA with the scores on all six semantic categories, on the translation
and comprehension tasks, as dependent variables (12 in total), and experimental
condition (tablet-only, tablet + robot without iconic gestures, tablet + robot with
iconic gestures) as independent variable. Furthermore, to test for an e�ect of age, in
case di�erences occurred only for the older children in the sample, we ran the same
MANOVA, including only the group of children who were at the average age of 5
years and 8 months or older (a mean split). This resulted in a subset of 38 children in
the tablet-only condition, 32 in the tablet + robot without iconic gestures condition,
and 29 in the tablet + robot with iconic gestures condition.

Gesture reenactment
To investigate whether children that spontaneously reenacted the gestures bene-
�ted more from them than children who did not perform gestures themselves, we
annotated these reenactment events and compared them with the children’s learn-
ing outcomes. This was done by reviewing the recordings of the interactions of
all children that were in the experimental condition where the robot used iconic
gestures (� “ 54), and noting down every occurrence of reenactment including
the timestamp within the video and the concept that was reenacted. For feasibility
reasons, this annotation was only done for the �rst lesson, with the underlying
assumption that this would give a representative idea of how much reenactment
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actually took place during the entirety of the experiment. Furthermore, in the last
two lessons the children were prompted to enact a number of action verbs, which
in the experimental condition with iconic gestures essentially means that children
were actively requested to reenact the gestures. Due to technical issues, the robot
did not gesture during the �rst lesson for one of the children, therefore we had to
exclude this child from the analysis, resulting in 53 observed sessions.

4.5 Evaluating the robot’s gestures
In this section we present a detailed examination of the di�erent factors that may
have in�uenced the e�ectiveness of the robot’s iconic gestures. We will �rst look
at the comprehensibility of the gestures (Q1), followed by the role of age (Q2),
di�erences between semantic categories of the target words (Q3), and �nally the
potential bene�ts of not only observing but also reenacting the gestures (Q4).

4.5.1 Comprehensibility of the gestures
Studies into human-performed gestures indicate that it is needed for iconic gestures
to actually convey meaning, as meaningless or incongruent gestures do not appear to
contribute to language learning and may in fact even have a detrimental e�ect (Kelly
et al., 2009; Macedonia et al., 2011). We therefore investigated whether the meaning
of the gestures included in the current study was clear by means of an online evalua-
tion, and then compared these comprehensibility scores to the learning outcomes
of children in the study to see whether the comprehensibility of the gesture of a
particular concept contributed to learning the English word for that concept.

Evaluation study with adults
Appendix 4.A shows a full overview of the comprehensibility (accuracy) scores,
and the ratings of clarity and naturalness, from the adult participants in the online
evaluation study. Kendall’s tau-b correlation was calculated to test the relationship
between participants’ accuracy in identifying the concept that was described by
a gesture (� “ .72, �� “ .09) — the comprehensibility — and the rated clarity of
the gestures (� “ 3.69, �� “ 0.42). This showed a signi�cant medium correlation,�� “ .37, � “ .045, where participants who rated the gestures as more clear also had
a higher chance of matching this gesture with the correct answer. In addition, the
correlation between gesture clarity and naturalness was signi�cant, �� “ .36, � “.043, indicating that gestures that were rated as more clear were generally also
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rated as more natural. However, the correlation between comprehensibility and
the rated naturalness of the gestures (� “ 3.48, �� “ 0.35) was not signi�cant,�� “ .35, � “ .06.

Table 4.2 presents a summary where we grouped the concepts by semantic
categories. The lowest comprehensibility scores, .35 and .51, were found for counting
words and comparatives, while operations and movement verbs had the highest
comprehensibility scores: .97 and .88. Measurement words and prepositions received
scores of .75 and .79. In the measurement words, the word heavy scored low (.29)
compared to the other words in that semantic category, while light — which has a
similar gesture — was generally identi�ed correctly (.88). For the prepositions, the
gesture for on scored especially low on comprehensibility (.47), compared to the other
gestures in the same category. Using paired samples t-tests, we tested whether there
were signi�cant di�erences between the semantic categories. The results, which are
presented in full in Appendix 4.B, show that there was a signi�cant di�erence in
comprehensibility between all semantic categories, except for measurement words
and prepositions (� “ .30). The clarity and naturalness ratings showed similar
patterns to each other: They both di�ered signi�cantly between counting words

Table 4.2: Comprehensibility (0–1), clarity (1–5), and naturalness (1–5) ratings for
the gestures per semantic category (SD in parentheses). Chance level for compre-
hensibility is .17.

Semantic category Comprehensibility Clarity Naturalness

Counting .35 (.11) 3.00 (1.30) 2.94 (1.13)
One, two, three, four, �ve

Comparatives .51 (.23) 3.22 (1.01) 3.19 (0.92)
More, most, fewer, fewest

Operations .97 (.04) 3.03 (1.29) 2.94 (1.18)
Add, take away

Measurement .75 (.24) 3.92 (0.89) 3.68 (0.87)
Big, small, heavy, light, high, low

Prepositions .79 (.15) 3.89 (1.10) 3.56 (0.98)
On, above, below, next to, in front of, behind, left, right

Movement verbs .88 (.11) 4.11 (1.12) 3.83 (1.10)
Falling, walking, running, jumping, �ying, catching, throwing, sliding, climbing
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and measurement words, prepositions, and movement verbs (all �-values < .001),
between comparatives and measurement words, prepositions, and movement verbs
(all �-values § .007), between operations and measurement words, prepositions, and
movement verbs (all �-values § .01), and between prepositions and movement verbs
(both �-values = .02).

In summary, the evaluation study of the gestures with adults shows di�erences
in the comprehensibility (accuracy at the identifying the matching concepts), clarity,
and naturalness, both between and within the di�erent semantic categories. Partic-
ularly counting words and comparatives were often not correctly identi�ed, while
operations and movement verbs were relatively easy to recognize. Comprehensibility
correlates with the rated clarity, but not the naturalness, of the gestures. Naturalness
does correlate with clarity.

Comprehensibility and learning outcomes
Figure 4.8 shows the comprehensibility scores — collected during the rating study
with adults and discussed in the previous subsection — on the horizontal axis, and
the children’s average scores on the translation tasks in the study on the vertical
axis, for both the immediate (left) and delayed (right) post-tests. From these graphs
we can identify three clusters, which appear for both post-tests:

1. High scores on the translation tasks, but low comprehensibility ratings — this
cluster consists mainly of counting words, such as four ;
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Figure 4.8: The individual gestures’ comprehensibility, in terms of mean accuracy by
adult raters (horizontal axis), compared to the average translation scores of children
in the condition with iconic gestures (� “ 54) for these concepts (vertical axis).
Scores per child were either 0 (no correct), 0.5 (correct on 1 translation task, L1->L2
or L2->L1), or 1 (correct on both tasks). Left: immediate post-test; right: delayed
post-test.
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2. Medium to high scores on the translation tasks, and high comprehensibility
ratings — this cluster mainly includes movement verbs, such as jumping;

3. Low scores on the translation tasks, and medium to high comprehensibility
ratings — this cluster includes most of the comparatives (e.g.,most), operations
(e.g., take away), measurement words (e.g., heavy), and prepositions (e.g.,
behind).

An analysis using Kendall’s tau-b correlation shows that the correlation between
the comprehensibility of the gestures, as rated by adults, and the scores of children
participating in the condition with iconic gestures on the translation tasks was not
signi�cant for the immediate post-test (�� “ ´.19, � “ .13) nor for the delayed
post-test (�� “ ´.20, � “ .11).

Figure 4.9 shows the same gesture comprehensibility scores on the horizontal
axis, but now with children’s average scores on the comprehension task on the
vertical axis, for the immediate (left) and delayed (right) post-tests. Note that only
18 out of the 34 target words were included in this task. The results show a similar
pattern for the comprehension task to the scores on the translation tasks, where
children scored well on counting words and motion verbs. Additionally, children
seemed to perform slightly better on some of the measurement words (small, heavy)
and comparatives (most) on this task. Note that chance level for this score was
0.33. The Kendall’s tau-b correlation between the comprehensibility ratings of the
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Figure 4.9: The individual gestures’ comprehensibility, in terms of mean accuracy by
adult raters (horizontal axis), compared to the comprehension task scores of children
in the condition with iconic gestures (� “ 54) for these concepts (vertical axis).
Scores per child were either 0 (no correct), 0.33 (1 round correct), 0.66 (2 rounds
correct), or 1 (all 3 rounds correct). Chance level is 0.33. Left: immediate post-test;
right: delayed post-test.
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gestures, and children’s performance on the comprehension task was not signi�cant
for the immediate post-test (�� “ ´.17, � “ .36), nor for the delayed post-test
(�� “ ´.17, � “ .36).

To summarize, with this analysis we do not �nd conclusive evidence that there
is a relationship between the comprehensibility of the gestures, as measured with
adults, and performance of children in the large-scale study on the post-test tasks.
It appears that other factors, such as variation in di�culty of the concepts, play a
larger role than the comprehensibility of the matching gesture.

4.5.2 Age-based di�erences between learners
Based on indications in existing research that the ability to perform and interpret
(iconic) gestures develops during early childhood (Novack et al., 2015; Sekine et al.,
2018; Stan�eld et al., 2014), we explored whether age was a factor in children’s
learning outcomes during our study, with and without the robot’s use of iconic
gestures. Figure 4.10 shows the scores on the translation tasks of the immediate and
delayed post-tests plotted against the participants’ age in months at the start of the
experiment.

A linear �t to these data shows a steeper curve for the experimental condition
where the robot used iconic gestures, that starts at a lower score on the translation
tasks for younger children compared to the other experimental conditions, while

Figure 4.10: Linear �t to the post-test scores for the translation task per condition,
by age.
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it ends at a higher score than the other conditions for the older children in the
study. This pattern does not emerge for the comprehension task, which is shown in
Appendix 4.C.

A doubly multivariate repeated measures ANOVA, with translation scores (com-
bined into one score for both translation tasks) and scores for the comprehension
task as dependent variables, condition as independent variable, and children’s age
in months at the time of the pre-test as covariate, showed a signi�cant e�ect of age
for scores on the translation tasks, �p1, 189q “ 6.13, � “ .01, �2� “ .03, where older
children in the study showed higher scores on the translation tasks of the post-tests
than younger children. This e�ect was not signi�cant for the comprehension task,�p1, 189q “ 1.24, � “ .27, �2� “ .007.

To further examine whether this e�ect holds for all experimental conditions,
we split the dataset and ran the aforementioned ANOVA per condition, with the
translation scores and comprehension scores as dependent variables, and age as
covariate. This showed the same signi�cant e�ect of age for scores on the translation
tasks, but only for the experimental condition where the robot used iconic gestures,�p1, 52q “ 4.59, � “ .04, �2� “ .08. No signi�cant e�ects were found for the compre-
hension task, nor for any of the tasks in the other three conditions (all �-values in
range r.26, .56s).

The results of this analysis show that the older children in our study performed
better on the translation (language production) tasks than the younger children,
but only if the robot used iconic gestures while the children were learning the
English words. Because this e�ect only shows in the experimental condition where
the robot used iconic gestures, we postulate that older children may be better at
understanding and making use of the robot’s iconic gestures, compared to younger
children. However, the e�ect of age should be interpreted with caution, because the
e�ect size is relatively small.

4.5.3 Di�erences between semantic categories
Existing research suggests that iconic gestures for certain types of concepts (e.g.,
spatial concepts, motor events, or items that are relatively concrete) contribute
more strongly to learning than gestures for concepts that are, for example, more
abstract (de Nooijer et al., 2013; Hostetter, 2011; Wake�eld et al., 2018). We therefore
divided the English words into six semantic categories, and investigated whether
there are any di�erences on average post-test scores between these categories, and
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if these can be attributed to the robot’s use of gestures.

Table 4.3 shows the average scores of all children on the post-test tasks, on the
immediate and delayed post-tests, for the three experimental conditions. The table
shows no large di�erences between conditions for any of the semantic categories.
To test whether there were any statistically signi�cant di�erences, we conducted
a MANOVA with the post-test scores on the six semantic categories, on the trans-
lation tasks and the comprehension task, as dependent variables (12 in total), and
experimental condition as independent variable. This showed no signi�cant e�ect of
experimental condition on children’s performance on the semantic categories for
the immediate post-test (all �-values in range r.11, .94s), nor for the delayed post-test
(all �-values in range r.23, .99s).

Because we observed an e�ect of age, where the older children appeared to
bene�t more from the iconic gestures than the younger children in the study, we
also present the average post-test task scores on the semantic categories of children
that were at the average age of 5 years and 8 months or older (a mean split). These
results are displayed in Table 4.4. This table shows di�erences between conditions,

Table 4.3: Average translation and comprehension task scores (all 0–1) on semantic
categories between conditions. T = tablet-only, NI = no iconic gestures, I = iconic
gestures.

Translation tasks Comprehension task
T NI I T NI I

Immediate post-test
Counting .72 .70 .65 .82 .71 .77
Comparatives .10 .09 .09 .52 .53 .52
Operations .03 .01 .03 .31 .35 .37
Measurement .10 .09 .12 .56 .57 .58
Prepositions .03 .04 .03 .42 .41 .36
Movement verbs .24 .27 .25 .69 .72 .73
Delayed post-test
Counting .78 .71 .71 .69 .67 .69
Comparatives .12 .12 .09 .52 .56 .53
Operations .01 .00 .02 .69 .62 .67
Measurement .09 .10 .11 .64 .65 .63
Prepositions .03 .04 .04 .52 .55 .55
Movement verbs .26 .26 .26 .46 .43 .46
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Table 4.4: Average translation and comprehension task scores (all 0–1) on semantic
categories between conditions, for children that were at least the average participant
age of 5 years and 8 months (mean split). Values in boldface are signi�cantly higher
than in the other experimental conditions. T = tablet-only, NI = no iconic gestures, I
= iconic gestures.

Translation tasks Comprehension task
T NI I T NI I

Immediate post-test
Counting .77 .75 .74 .84 .74 .86
Comparatives .10 .09 .10 .54 .59 .53
Operations .02 .02 .04 .28 .33 .39
Measurement .08 .06 .16 .55 .55 .61
Prepositions .04 .04 .03 .39 .39 .35
Movement verbs .25 .27 .27 .72 .71 .75
Delayed post-test
Counting .80 .77 .81 .67 .65 .67
Comparatives .12 .14 .09 .52 .56 .55
Operations .00 .00 .04 .70 .61 .68
Measurement .08 .06 .18 .66 .66 .66
Prepositions .03 .04 .05 .52 .54 .58
Movement verbs .27 .26 .29 .46 .43 .49

particularly on the translation tasks for the measurement words, where children
in the condition with iconic gestures scored higher than the children in both other
conditions.

To test whether there were signi�cant di�erences between conditions, the same
MANOVA was conducted for this subset of older participants, which showed a
signi�cant e�ect of condition for the measurement words on the translation tasks on
the immediate post-test, �p2, 96q “ 4.97, � “ .009, �2� “ .09, and for the translation
tasks on the delayed post-test, �p2, 96q “ 5.85, � “ .004, �2� “ .11. For words related
to operations, a signi�cant e�ect of condition was found only for the translation
tasks on the delayed post-test, �p2, 96q “ 3.60, � “ .03, �2� “ .07. No signi�cant
e�ects were found for categories other than measurement words on the translation
tasks of the immediate post-test (all �-values in range r.45, .96s), and no signi�cant
e�ects were found for categories other than measurement words and operations
on the translation tasks of the delayed post-test (all �-values in range r.11, .85s).
Furthermore, no signi�cant e�ects were found for any of the semantic categories on
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the comprehension task, neither for the immediate post-test (all �-values in range
r.11, .76s) nor the delayed post-test (all �-values in range r.23, .99s).

For the measurement words, a post-hoc analysis using Bonferroni correction
shows a signi�cant di�erence on the immediate post-test between the experimental
condition with iconic gestures and the tablet-only condition (���� “ 0.96, � “ .047),
and between the conditions with and without iconic gestures (���� “ 1.21, � “.01). There was no signi�cant di�erence between the tablet-only condition and the
condition without iconic gestures (���� “ 0.25, � “ 1.0). For the delayed post-test, a
post-hoc analysis using Bonferroni correction shows a signi�cant di�erence between
the condition with iconic gestures and the tablet-only condition (���� “ 1.19, � “.017), and between the conditions with and without iconic gestures (���� “ 1.39, � “.006), but not between the tablet-only condition and the condition without iconic
gestures (���� “ 0.20, � “ 1.0).

The post-hoc tests for the operations words on the delayed post-test showed no
signi�cant di�erences between the condition without iconic gestures and tablet-only
condition (���� “ 0, � “ 1.0), between the condition with iconic gestures and the
tablet-only condition (���� “ 0.17, � “ .055), or between the condition with iconic
gestures and the condition without iconic gestures (���� “ 0.17, � “ .07). This is
likely due to a �oor e�ect, as shown by the .00 scores in the tablet-only condition and
the condition without iconic gestures. Scores that are signi�cantly di�erent from the
other experimental conditions have been marked in boldface in Table 4.4.

In summary, by comparing between experimental conditions we investigated
whether the robot’s physical presence, and its use of iconic gestures in particular, im-
proved learning outcomes for speci�c semantic categories of words. When including
all participants in the study, no di�erences between conditions were found for the
semantic categories. However, after only including the older children in the study —
those that appeared to be able to take advantage of the robot’s gestures, as seen in
Subsection 4.5.2 — we observe that the robot’s iconic gestures were mostly bene�cial
to learning the measurement words (e.g., big), and they may have contributed to
learning words pertaining to operations (add, take away) as well.

4.5.4 Gesture reenactment
In several studies that report a positive contribution of iconic gestures to learning,
participants were asked to not only observe, but to also perform the gestures them-
selves (Cook et al., 2008; de Nooijer et al., 2013; Repetto et al., 2017; Tellier, 2005,
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2008). We assume that this could lead to a stronger grounding e�ect of the new
vocabulary in existing sensorimotor experiences.

In total, 37 out of the 53 children (70%) reenacted at least once during the �rst
lesson. When children reenacted, they did this 13 times on average (�� “ 13), out
of a minimum of 60 gestures performed by the robot, depending on the number of
times the robot had to repeat a task. Figure 4.11 shows the frequency distribution
of how often children reenacted the gestures and the frequency distribution of how
many di�erent concepts (out of 6) children reenacted during the �rst lesson. To see
whether the act of imitating the iconic gestures from the robot relates to learning
outcomes, we calculated the Pearson correlation between number of reenactments
in lesson one and test scores on the comprehension and translation tasks. Table 4.5
shows the results of this correlation analysis. The correlation was not signi�cant
for the translation tasks nor for the comprehension task, on both the immediate
and delayed post-test. In Appendix 4.D we include a �gure with each child’s test
scores on the vertical axis, and the number of times they reenacted during lesson
one on the horizontal axis, showing no discernible pattern indicating a relationship
between the number of reenactments during the �rst lesson, and children’s learning
outcomes. There was also no signi�cant correlation between the children’s age at
the time of the pre-test, and the number of reenactments during the �rst lesson,� “ ´.18, � “ .19.

Our investigation of spontaneous gesture reenactment shows that a relatively

Figure 4.11: Left: Number of children (y-axis) that reenacted a certain number of times
(x-axis) during the �rst lesson. Right: Number of children (y-axis) that reenacted a
certain number of unique concepts (x-axis) during the �rst lesson. Only children
that reenacted at least once are shown (� “ 37; 16 did not reenact).
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Table 4.5: Correlation between gesture reenactment and learning outcomes.� �
Immediate post-test, translation tasks -.13 .37
Immediate post-test, comprehension task -.09 .53
Delayed post-test, translation tasks -.12 .41
Delayed post-test, comprehension task -.17 .24

large number of children reenacted the robot’s gestures during the �rst lesson
(70%), compared to our previous experiences with running similar studies. However,
reenactment did not appear to a�ect learning outcomes, as there was no signi�cant
correlation between the number of reenactments in lesson one and the learning
outcomes on the post-tests. In addition, the likelihood that a child in the study
reenacted the robot’s gestures did not appear to be linked to their age.

4.6 Discussion
Existing literature in gesture studies and human-robot interaction suggests that iconic
gestures, performed by humans or by robots, are able to support second language
tutoring. However, our previous study (Chapter 3) and the study that formed the
basis of this chapter (Vogt et al., 2019) have shown mixed results, where in the case
of our previous study the robot’s iconic gestures did contribute to learning, while
in the current study they did not. Therefore, in this chapter we set out to explore a
number of factors that may in�uence the successful application of robot-performed
gestures in second language tutoring. Concretely, we examined the importance of
the design, and subsequent comprehensibility of the gestures (Q1), the age of the
learners (Q2), di�erences between semantic categories of vocabulary words (Q3), and
spontaneous gesture reenactment (Q4). In the following sections, we will address
these subquestions, and infer guidelines for the design of robot-performed iconic
gestures, focusing speci�cally on applications in (second language) education.

4.6.1 Design and comprehensibility of the robot’s gestures
While re�ecting upon the design of the robot’s gestures, as well as their integration
in the overall tutoring system, we have identi�ed several di�erences compared to
our previous study. First, the English vocabulary words included in the current
study are more complex, diverse, and abstract than the animal names that were used
previously. These words may have been more di�cult for children to learn — as seen
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in the small number of new words learned in general — and the resulting gestures
were less iconic than those from our previous study. A gesture for a concept such as
most (shown in Figure 4.6), for example, will be more di�cult to comprehend than
a gesture that displays the act of riding a horse. In addition, the positioning of the
robot may have a�ected the clarity of these gestures. While in the previous study
the robot was standing across from the child, in the current set-up it was sitting
close to the child, at an angled position. This limited the robot to only use its upper
body, and it changed the perspective from which children were able to observe the
gestures, which may have negatively a�ected their clarity. Concretely, we have seen
that children misinterpreted gestures, as they were incorrectly mimicking them, for
example by holding up their entire hand or showing three �ngers for the word two.
As a result of these factors, the gestures in the present research were likely more
di�cult to understand than those used in our previous study (Chapter 3), in which
the gestures had a higher degree of iconicity, the robot was positioned facing the
child, and the robot was able to use its full body to perform the gestures.

Although the gestures were designed based on recordings from an elicitation
procedure, this procedure was conducted with adults rather than children from the
same age group that would end up observing (and having to interpret) the gestures.
Because children tend to perform gestures di�erently than adults do (Sekine et al.,
2018), it is conceivable that they also understand gestures that were produced by their
peers better than those produced by people from a di�erent age group. In future work
we propose to take a more iterative approach to the design of gestures, including
more frequent evaluations and revisions — with the target demographic, in this case,
children — before integrating the �nal versions into the tutoring interaction.

The online evaluation with adults of the gestures shows that there are di�erences
in the comprehensibility of the gestures, both between and within the semantic
categories. As we observed while conducting the robot experiment with children,
the gestures for counting words were often misinterpreted because of the NAO
robot’s inability to move its �ngers independently. We did not observe a clear link
between the gestures’ comprehensibility and children’s performance on learning the
corresponding L2 words. It would be an interesting avenue for future research to
study more closely this link between the quality, in terms of comprehensibility, of
robot-performed gestures and how this relates to learning outcomes. We would then
consider conducting the gesture evaluation study with children belonging to the
same age group that would end up interacting with the robot. However, it might be
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di�cult for younger children to correctly identify abstract words such as big and take
away without any context other than the gesture, and they cannot be asked to judge
the clarity and naturalness of the gestures. We therefore intend to explore alternative
ways of conducting these rating studies with children in the future, perhaps in a
game-like setting and using the child’s L1 to provide context.

From this evaluation study we also found a signi�cant correlation between the
comprehensibility and clarity of the gestures, as well as the clarity and naturalness,
but not between naturalness and comprehensibility. Future research could look
further into the nature of these relationships, to investigate how particular design
aspects of gestures can be used to make the robot appear, for example, more human-
like. It can be bene�cial that a robot is perceived as human-like, as research has
shown that this could, in turn, lead to the robot being perceived as warmer and
more competent, which then leads to increased feelings of trust (Christoforakos
et al., 2021). Robots that look and behave in a human-like way are generally also
seen as more likeable, and are more easily accepted by the people interacting with
them (Roesler et al., 2021). In addition, our previous research has shown that the
degree to which a robot tutor is seen as human-like by children correlates with the
children’s learning outcomes (van den Berghe, de Haas, et al., 2021), which leads
us to believe that a robot that is perceived as human-like could be more successful
as a (peer) tutor than one that is perceived as a toy or an arti�cial entity. It would
therefore be interesting to explore which aspects of the robot’s gestures lead to
higher ratings on naturalness and clarity.

Next to the design of the gestures themselves, and the limitations caused by the
positioning of the robot, there are factors related to the integration of the iconic
gestures into the intelligent tutoring system that could further explain why it may
have been di�cult for children to understand the gestures. For instance, the role
that the tablet played within the overall interaction was smaller in our previous
study compared to the current set-up. In Chapter 3, the robot was the instructor
during a game of “I spy with my little eye” and children only had to select the correct
image out of a number of answer options on the tablet. In the current experiment,
children were asked to perform relatively complex tasks such as dragging objects in
a three-dimensional virtual space. It is possible that children found these tasks to be
more di�cult, thereby drawing their attention away from the robot and its gestures.
In addition, this could have increased cognitive load, resulting in less cognitive e�ort
available to process the robot’s gestures. An evaluation of the usability and user
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experience of the intelligent tutoring system also highlighted several issues that may
have negatively a�ected the quality of the interaction, some of which occurred more
frequently or even exclusively in the experimental condition with gestures (de Wit
et al., 2019). Finally, the robot’s gesturing interrupted the �ow of the interaction. In
order to time the motions so that the robot’s pronunciation of the L2 words would
coincide with the most salient part (the stroke) of the gesture, we introduced breaks
in the robot’s speech. Combined with the fact that 50–60 gestures were included in
each lesson, this made the duration of the sessions substantially longer. As a result,
the gestures had to maintain children’s attention for a prolonged period of time.
Research also indicates that a robot that gestures too frequently could be perceived
as confusing and irritating (Pollmann et al., 2020), although this was found with
adults and it is as of yet unclear how di�erent gesturing frequencies by robots are
perceived by children. Additionally, the robot performed the same gesture for a
particular concept every time, so it is possible that children got bored with seeing
an identical motion ten times. Although the same limitations apply to our previous
study (Chapter 3), in the present study the interaction was more narrative-based,
where the activities that the robot and child engaged in were linked to an overarching
story line, compared to the more repetitive game of “I spy with my little eye” used in
the previous study. During this previous study, the gestures were also repeated less
frequently, and repetitions were spread out more over time.

4.6.2 Gestures and the e�ects of age
The fact that the older children in our study appeared to be able to understand
and make use of the iconic gestures while the gestures seemed to have an adverse
e�ect on younger children leads us to believe that either the gestures were too
di�cult or unclear for the younger participants in our study, or that younger children
experienced some form of cognitive overload either due to the complexity of the
interaction or the e�ort required to engage in learning second language vocabulary
in combination with having to understand the gestures. Kennedy et al., 2015 also
postulated that a robot’s social behavior could lead to an increase of children’s
cognitive load, making it more di�cult for them to focus on the task. Cognitive
overload may have distracted the children from the (phonetic elements of the) robot’s
speech as it was practicing the L2 words with them.

It is worth noting that the e�ect size of age in the current study was relatively
small, but so were the age di�erences (all children were approximately 5–6 years old).
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To further investigate this e�ect, and to explore which factors may have a�ected
the results, we have recently conducted a follow-up study where we returned to
the original, single session experiment from our previous work (Chapter 3). We
replaced the animal names with a more diverse set of concepts, and based the gestures
on examples from a dataset of human-performed gestures — mostly performed by
children and teenagers (Chapter 6). Interestingly, in this study we observed a similar
e�ect where older children (six years old) did bene�t from gestures, while younger
children (four years old) appeared to experience an adverse e�ect, causing them on
average to learn fewer words than children their age in the experimental condition
where the robot did not use gestures. The e�ect sizes in this case were larger, which
could be attributed to the broader age range of 4–6 years old, the design of the
study (e.g., single session compared to longitudinal), or the di�erent measurement
instruments (comprehension task, measured as pre-test and post-test, compared to
translation tasks and a comprehension task measured as post-test).

From both the current study and the follow-up study it appears that there is a
certain (cognitive) development that occurs between the age of �ve and six, where
children start being able to take advantage of the robot’s gestures. Although literature
indicates that we rely on gestures from a young age onward, it also shows that it takes
time to fully understand and take advantage of them (Novack et al., 2015; Stan�eld
et al., 2014). Research by Stites and Özçalışkan (2017) further highlights that several
aspects of gesture and speech change around the age of the participants in our study
(5–6 years old). For example, they showed that children rely on gestures to support
their speech when telling a narrative until the age of six, after which they start being
able to use speech without support from gestures. It is therefore still possible that
either the combination of foreign language learning and having to interpret gestures,
or the multimodal interaction with a robot and a tablet may be too challenging for
younger learners. This is further supported by a related study (van den Berghe et al.,
2021b), where we found that children with better selective attention (as measured
using a visual search task; Mulder et al., 2014) scored signi�cantly higher on the
post-tests if the robot used iconic gestures, compared to children with worse selective
attention. It could also be the case that the children in our study di�ered in their
ability to understand these two types of symbolic media — the robot’s gestures and
the depictions on the tablet screen (DeLoache, 2004). In future research we intend to
run a gesture experiment with the robot but without a language learning component,
in order to investigate whether this e�ect of age is indeed related to understanding
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the gestures, or to the cognitive e�ort needed to engage in the language learning
interaction.

The e�ects of age on learning gain in the experimental condition with iconic
gestures are only observed with results on the translation tasks, and not the compre-
hension task. This could either be because the gestures support children in acquiring
a speci�c type of language skills (productive rather than receptive), or it could be
due to the design of the tasks. Both our previous study (Chapter 3) and the recent
follow-up study (Chapter 6) used only a (di�erently designed) comprehension task,
and both found a positive e�ect of gestures on learning, either for all ages (Chater
3) or, similar to the translation task in the present study, with age as a covariate
(Chapter 6). It is possible that the fact that only half of the concepts were included in
the current comprehension task may have a�ected the quality of the measurements.

4.6.3 Di�erences between semantic categories
Existing literature indicates that gestures might be more e�ective at supporting learn-
ing of speci�c word types, such as spatial concepts or motor events (Hostetter, 2011),
or verbs in general (Wake�eld et al., 2018). We therefore compared the percentage
of correct answers on the post-tests for words belonging to the di�erent semantic
categories between experimental conditions (presented in Table 4.3). However, it ap-
peared that children in the experimental condition with iconic gestures did not learn
di�erent types of vocabulary words than children that were in the other experimental
conditions (tablet only, or robot without iconic gestures). For the counting words, it
is conceivable that children already knew these words before participating in the
study, which would explain why they score well on these words even though the
gestures were not recognized by adult participants in the comprehensibility rating
study. This is further supported by the fact that there were no di�erences between
experimental conditions, and by children’s performance on the pre-test translation
task (L2 to L1 only), where they generally scored well on the counting words. This
does not apply, however, to the movement verbs, of which the gestures received high
comprehensibility scores, and for which children had relatively high post-test, but
not pre-test scores. Children in the experimental condition with iconic gestures did
not score better than those in the other conditions, therefore these words in general
seem to have been relatively easy for children to learn compared to other semantic
categories. This may be supported by the fact that the children in all experimental
conditions were asked to act out these movements during the lessons.
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Because only the older children in the study bene�ted from the robot’s use of
iconic gestures, we performed the same analysis on the subset of 99 out of 194 children
that were older than the average age of the entire group of participants (5 years and
8 months) — see Table 4.4. For this group we do see a di�erence in performance
on the translation tasks: Children who interacted with the robot that performed
iconic gestures knew more words from the measurement category (big, small, heavy,
light, high, low), compared to children in the other experimental conditions. With
the exception of heavy, these also had high comprehensibility scores, and above
average ratings on clarity and naturalness in the gesture rating study (Appendix
4.A). Because the group of older participants within the experimental condition
with iconic gestures is relatively small (� “ 24), further research is needed to verify
whether indeed gestures are more useful for certain types of concepts than others.

4.6.4 Gesture reenactment
Research on the potential bene�ts of not only observing but also reenacting or mim-
icking gestures is scarce, but initial �ndings indicate that this can indeed lead to better
learning outcomes compared to merely observing others produce the gestures (Cook
et al., 2008; de Nooijer et al., 2013; Tellier, 2005, 2008). To our surprise, in the current
study 70% of the participants reenacted at least one gesture during the �rst lesson,
without being prompted to do so. This is in stark contrast to our other studies with
robot-performed gestures, where virtually no reenactment took place. Children
might be more likely to imitate the robot’s movements when it is positioned in a
similar way to them: in this case both the child and the robot were sitting on the �oor.
The robot was also in relatively close physical proximity to the children. Because the
robot was sitting, the gestures were generally smaller and limited to hand motions
only, which may have made it easier and more inviting for children to reproduce
the movements compared to more exaggerated, full-body movements. Furthermore,
there was a short pose imitation game included in the group introduction of the robot,
which the children may have remembered during subsequent interactions. Another
potential reason for the more frequent reenactment of gestures is the word repetition
task, where the robot requested the child to verbally repeat one of the English terms.
This task was not included in our previous studies, and while introducing this task
the robot would also gesture, which may have inspired the child to accompany his
or her verbal repetition with a gesture as well. Generally speaking, it is possible
that children in the current study formed a stronger relationship with the robot,

158



4.6. DISCUSSION

compared to the previous study. This could be due to a multitude of factors (see, e.g.,
van Straten et al., 2020, for a review on child-robot relationship formation), such as
the aforementioned physical proximity, and positioning the robot as a peer. Research
suggests that familiarity with the demonstrator plays a role in whether children are
likely to imitate behavior (e.g., Shimpi et al., 2013). Further investigation is needed
to verify which aspects of the design of the interaction — e.g., the positioning of the
robot, the inclusion of word repetition tasks, or relationship formation in general —
can be used to stimulate gesture reenactment.

To investigate whether imitation of the robot’s gestures had a similar positive
e�ect on learning in our study as seen in literature with human-performed gestures,
we annotated the number of reenacted gestures during the �rst lesson, all of which
happened spontaneously as the robot did not ask the children to act out any concepts
until the �fth lesson. We did not �nd a correlation between the number of times
children mimicked a gesture from the robot during lesson one and their performance
on the post-tests. However, since the e�ects of gestures on learning in general
were small and only applied to the older children in the current study, we believe
that more research into reenactment of robot-performed gestures is needed, with
a direct comparison between observing and reenacting them, in order to come to
clear conclusions. Children in all conditions (also those without iconic gestures)
were invited to act out certain concepts in later lessons, particularly the movement
verbs. They scored relatively high on these words on the post-tests, however with
the current data we cannot be sure that this is caused by these enactments. These
gestures were also found to be highly comprehensible, these words might have been
easier to learn compared to other semantic categories, or children may have learned
these words from other sources.

4.6.5 Strengths, limitations, and future work
With this work we continue our line of research into robot-performed gestures and
their e�ects on children’s acquisition of second language vocabularies. We focused
on the speci�c domain of second language tutoring, and within this domain on
a particular set of English words for which gestures were developed. Based on
this study alone, we cannot conclude that our �ndings will generalize to a broader
range of (educational) domains, user types (e.g., adults), and robot platforms without
performing additional research. However, the results of the present study �nd
support in existing research into human-robot interaction and gestures in general,
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which leads us to believe that this work is representative of the current state of
social robots and robot-performed gestures. It is important to note that the original
study, from which the data were used, was not designed with the aim to study the
factors that are presented in this chapter. Rather, these explorations were conducted
post-hoc. Therefore, in the future we aim to conduct several follow-up studies to
investigate these individual factors in more detail.

The focus of this study was on children’s learning outcomes, but there may be
additional e�ects such as engagement with the robot or with the educational content,
and perception of the robot that have not yet been analyzed. We believe that these
aspects of human-robot interactions are important to consider, and are planning to
include these in future work. Furthermore, we wonder to what extent the inclusion of
a tablet device has a�ected our results, especially since the content that was shown
on the tablet was designed speci�cally for this study. It would be interesting to
conduct a similar language learning study either with existing educational software
or without the tablet device present at all, and to measure how this a�ects the overall
quality of the interaction, and the role that iconic gestures play in supporting this
interaction.

The design of the robot’s iconic gestures was based on examples recorded from
human participants in an elicitation study. This is an improvement over designing
these gestures using a researcher’s frame of mind. However, these recordings did not
take into account the physical limitations, nor the seated and angled positioning of
the robot. In addition, the recordings and the evaluations of the robot’s gestures were
both conducted with adult, non-expert participants, even though children would end
up interacting with the robot. It is possible that children have di�erent preferences
when it comes to gesture strategies, which were now not included in the design.
Instead of iteratively re�ning the gestures based on multiple evaluations, due to time
constraints we only evaluated the gestures once after the study had already taken
place. While this still allowed us to control for the quality of individual gestures
as a potential confound, it did not improve the quality of the gestures before they
were used in practice. We have observed in related literature that a validation of
the gesture’s design prior to using them in a study often does not take place at all.
Therefore, to further improve the quality of the gestures, we propose to conduct more
frequent evaluations, and to include participants who have similar demographic
characteristics to the intended target audience.
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4.7 Conclusion
We report on the design of an intelligent tutoring system, which was used to in-
vestigate whether a social robot can be used as a second language tutor for young
children, particularly focusing on the design of the robot’s iconic gestures. In the
original, preregistered analyses of the results of the study with this intelligent tutor-
ing system, we observed no bene�ts of the robot’s use of iconic gestures to learning.
This is in contrast with our results from previous studies, and therefore in the current
chapter we set out to investigate several factors that, based on literature, may play
a role in the successful application of robot-performed iconic gestures to support
learning. These factors included (1) the quality of the gesture’s design (and subse-
quent comprehensibility of these gestures); (2) the age of the learner and how that
may a�ect their ability to make use of the gestures; (3) di�erences in e�ectiveness
of gestures depending on the concept that is being described; and (4) whether the
learner reenacted or imitated the robot’s gestures.

We found that, in the current study, gestures that were rated as more compre-
hensible by adults did not lead to better learning outcomes for children. The age of
the participants did play a role in the experimental condition where the robot used
iconic gestures: older children in this condition showed better learning outcomes
compared younger children. The older children particularly bene�ted from gestures
pertaining to measurement type words, such as small. Reenactment of the robot’s
gestures did not lead to increased learning outcomes in the current study.

This work contributes to the �eld of human-robot interaction by highlighting
potential factors — gesture comprehensibility, age, types of concepts that are referred
to, and gesture reenactment — that could play a role in the e�ectiveness of a robot’s
use of iconic gestures in an educational context. Based on our �ndings, we propose
several improvements to the process of designing a social robot’s iconic gestures,
and integrating them in a (tutoring) interaction. In light of the present research and
its promising outcomes, in future work we intend to conduct a study where we focus
speci�cally on investigating these four factors in more detail.
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˚ ˚ ˚
In Chapter 4, we provide an in-depth analysis of the results of our second study. Contrary
to the �rst study (Chapter 3), we did not �nd a bene�cial e�ect of the robot’s use of
iconic gestures on children’s learning outcomes. We investigated whether four factors —
children’s age, comprehensibility of the robot’s gestures, di�erences between types of
words, and reenactment — in�uenced these results, and found that older children in
our study bene�ted more from the robot’s use of iconic gestures than younger children
did. Based on this, we revisited Chapter 3 to investigate whether age was a factor
in that study as well, but this turned out not to be the case. We therefore postulate
that certain gestures, including those pertaining to animal names, might be easier for
younger children to understand than gestures related to more abstract concepts.

The design of the robot’s gestures in this study was based on an elicitation procedure
with a small number of adult participants in the lab. To learn more about gesturing
strategies and natural variation that might occur when people are invited to produce
gestures for certain concepts, and to study di�erences in gesturing behavior between
children and adults, in the next chapter we present a semi-structured elicitation pro-
cedure, using a game of charades with the robot, that was conducted in the �eld. This
resulted in a set of recordings of naturalistic, human-performed gestures, that can be
used to design gestures for the robot to perform in experimental studies, such as the one
described in the current chapter.
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4.A Detailed Results of the Gesture Rating Study

Table 4.6: Comprehensibility, clarity and naturalness ratings for each gesture (SD in
parentheses). Chance level for comprehensibility is 0.17.

Concept Semantic category Compr. 0–1 Clarity 1–5 Natural 1–5

One Counting 0.35 2.35 (1.00) 2.41 (0.94)
Two Counting 0.53 3.41 (1.33) 3.41 (1.00)
Three Counting 0.24 4.12 (0.86) 3.88 (0.98)
Four Counting 0.29 3.06 (1.20) 2.65 (0.86)
Five Counting 0.35 2.06 (1.03) 2.35 (1.11)
More Comparatives 0.59 3.24 (0.90) 3.12 (0.86)
Most Comparatives 0.18 3.12 (1.05) 3.24 (0.90)
Fewer Comparatives 0.65 3.12 (0.99) 3.18 (0.95)
Fewest Comparatives 0.65 3.41 (1.12) 3.24 (1.03)
Add Operations 0.94 2.53 (1.37) 2.53 (1.28)
Take away Operations 1.00 3.53 (1.01) 3.35 (0.93)
Big Measurement 0.94 3.94 (0.83) 3.65 (1.17)
Small Measurement 0.76 3.82 (1.13) 3.71 (0.99)
Heavy Measurement 0.29 3.88 (0.93) 3.65 (0.79)
Light Measurement 0.88 3.47 (0.72) 3.41 (0.80)
High Measurement 0.88 4.24 (0.83) 3.88 (0.78)
Low Measurement 0.71 4.18 (0.73) 3.76 (0.66)
On Prepositions 0.47 3.71 (0.92) 3.06 (0.90)
Above Prepositions 0.76 3.65 (0.93) 3.18 (0.88)
Below Prepositions 0.94 4.35 (1.06) 4.29 (0.69)
Next to Prepositions 0.76 3.12 (1.36) 3.06 (1.03)
In front of Prepositions 0.88 4.06 (1.03) 3.71 (0.92)
Behind Prepositions 0.76 3.35 (1.22) 3.00 (1.00)
Left Prepositions 0.82 4.29 (0.77) 4.06 (0.56)
Right Prepositions 0.94 4.59 (0.62) 4.12 (0.78)
Falling Movement verbs 0.88 4.53 (0.72) 4.29 (0.77)
Walking Movement verbs 1.00 4.88 (0.33) 4.35 (0.93)
Running Movement verbs 1.00 4.47 (1.01) 4.41 (0.62)
Jumping Movement verbs 0.76 3.12 (1.32) 3.06 (1.09)
Flying Movement verbs 0.94 4.41 (0.80) 3.65 (1.41)
Catching Movement verbs 0.76 3.41 (1.00) 3.18 (1.01)
Throwing Movement verbs 0.88 4.65 (0.61) 4.24 (0.97)
Sliding Movement verbs 0.71 2.71 (0.92) 2.82 (0.81)
Climbing Movement verbs 1.00 4.82 (0.39) 4.47 (0.51)
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4.B Di�erences between semantic categories

Table 4.7: Paired samples t-tests to test di�erences between semantic categories. *
indicates signi�cant di�erence. ���� ����� �p16q �
Comprehensibility (0–1)
Counting–comparatives* -0.16 0.31 -2.14 .048
Counting–operations* -0.62 0.24 -10.59 < .001
Counting–measurement* -0.39 0.26 -6.23 < .001
Counting–prepositions* -0.44 0.30 -6.11 < .001
Counting–movement* -0.53 0.27 -8.14 < .001
Comparatives–operations* -0.46 0.24 -7.90 < .001
Comparatives–measurement* -0.23 0.20 -4.83 < .001
Comparatives–prepositions* -0.28 0.24 -4.72 < .001
Comparatives–movement* -0.37 0.25 -5.98 < .001
Operations–measurement* 0.23 0.16 5.99 < .001
Operations–prepositions* 0.18 0.23 3.23 .005
Operations–movement* 0.09 0.15 2.50 .02
Measurement–prepositions -0.05 0.19 -1.05 .30
Measurement–movement* -0.13 0.16 -3.49 .003
Prepositions–movement* -0.09 0.16 -2.25 .04
Clarity (1–5)
Counting–comparatives -0.22 0.66 -1.38 .19
Counting–operations -0.03 0.78 -0.16 .88
Counting–measurement* -0.92 0.56 -6.83 < .001
Counting–prepositions* -0.89 0.44 -8.35 < .001
Counting–movement* -1.11 0.44 -10.39 < .001
Comparatives–operations 0.19 0.89 0.89 .39
Comparatives–measurement* -0.70 0.48 -6.06 < .001
Comparatives–prepositions* -0.67 0.57 -4.82 < .001
Comparatives–movement* -0.89 0.57 -6.43 < .001
Operations–measurement* -0.89 0.88 -4.20 .001
Operations–prepositions* -0.86 0.80 -4.44 < .001
Operations–movement* -1.08 0.71 -6.30 < .001
Measurement–prepositions 0.03 0.50 0.26 .80
Measurement–movement -0.19 0.40 -1.95 .07
Prepositions–movement* -0.22 0.35 -2.63 .02
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Table 4.7: Paired samples t-tests to test di�erences between semantic categories. *
indicates signi�cant di�erence. ���� ����� �p16q �
Naturalness (1–5)
Counting–comparatives -0.25 0.65 -1.57 .14
Counting–operations 0.00 0.74 0.00 1.00
Counting–measurement* -0.74 0.61 -4.94 < .001
Counting–prepositions* -0.62 0.44 -5.73 < .001
Counting–movement* -0.89 0.58 -6.36 < .001
Comparatives–operations 0.25 0.99 1.04 .31
Comparatives–measurement* -0.49 0.52 -3.86 .001
Comparatives–prepositions* -0.37 0.49 -3.10 .007
Comparatives–movement* -0.64 0.68 -3.89 .001
Operations–measurement* -0.74 0.89 -3.40 .004
Operations–prepositions* -0.62 0.88 -2.90 .01
Operations–movement* -0.89 0.87 -4.22 .001
Measurement–prepositions 0.12 0.30 1.63 .12
Measurement–movement -0.15 0.41 -1.54 .14
Prepositions–movement* -0.27 0.42 -2.67 .02
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4.C Age and scores on the comprehension task

Figure 4.12: Linear �t to the post-test scores for the comprehension task per condition,
by age (chance level is 18).
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4.D. REENACTMENT AND LEARNING GAIN

4.D Reenactment and learning gain

Figure 4.13: Post-test scores on the translation tasks (top) and comprehension task
(bottom) plotted against the number of reenacted gestures in lesson 1. Chance level
is 18 for the comprehension task.
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5.1. INTRODUCTION

5.1 Introduction

To support studies into non-verbal behavior, and in order to imbue robots and virtual
agents with the ability to communicate with us in a human-like way, there is a need
for structured, labeled, and large-scale datasets of human-performed gestures (Argall
et al., 2009; Ortega & Özyürek, 2020). Ideally, these datasets contain gestures that
are recorded in an ecologically valid way, and stored in a format that lends itself to
automated analysis. Furthermore, it should be possible to collect additional data in a
consistent manner, for example in order to include gestures for additional concepts
or to replicate data collection in a new (demographic or cultural) context. With the
aim to collect such a dataset of iconic gestures in a naturalistic setting, we developed
a game of charades with a humanoid robot. This game was used to record a large
number of iconic gestures from a diverse group of participants at the NEMO science
museum and at the Lowlands Science event, as part of the Lowlands music festival.
Both events took place in the Netherlands.

The resulting dataset of motion capture recordings for 35 di�erent objects, such
as animals and musical instruments, has a number of unique aspects that make
it a valuable tool for studies and applications involving iconic gestures. First, it
is a large-scale set both in terms of the number of unique recordings, as well as
the number of participants that are included. Second, the participants were free
to choose how they wanted to portray the concepts using silent gesture. Third, a
broad range of demographic backgrounds — children and adults, several di�erent
cultures — is represented in the dataset. Fourth, to our knowledge no existing
research has looked into the degree to which people tend to change their gesturing
approach when an interlocutor fails to recognize their �rst attempt at depicting a
concept. The current dataset provides support for �rst explorations into these repair
strategies, and how often they were used. The combination of these four aspects
has allowed us to capture di�erent variations that are likely to occur in gesture
production. This enables researchers to answer various research questions related to
human-performed gestures, and factors that could potentially in�uence gesturing
behavior.

The dataset contains two-dimensional and three-dimensional motion capture
recordings of the participants performing the gestures. These are stored in a consis-
tent format, which makes the set suitable for automated, large-scale gesture analysis,
as well as various applications in the �eld of arti�cial intelligence such as gesture pro-
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duction and recognition by virtual agents and robots. Automatic gesture recognition
is often done only for well-de�ned gestures, where the system knows what motion
to expect. However, this means that people are limited in choosing their preferred
way of depicting a concept using gestures. The current dataset allows researchers to
explore whether it is possible to create recognition systems that can handle a variety
of di�erent representations for the same concept. An agent’s gesture production
capabilities can also be based on the recordings in our dataset, thus supporting
studies into the added value of using data-driven gestures, and how comprehensible
these are compared to manually designed gestures. Because the game of charades is
made publicly available, it is possible to extend the dataset to include new concepts,
or to record additional gestures in di�erent cultures or contexts.

5.1.1 Gesture and interaction
Manual gestures (Kendon, 2004) are an integral part of our communicative abilities:
they help guide the recipients’ attention, and support the comprehension of informa-
tion that is being conveyed in speech (Goldin-Meadow, 2005; Hostetter, 2011). They
serve a purpose for the person producing the gestures as well, by helping them to
be more �uent and rich in their speech (Cravotta et al., 2019; Hostetter, 2011). In
this work we focus on iconic gestures, a speci�c subset that includes movements
where the depicted shape is related to the concept that is referred to (McNeill, 1992).
For example, an iconic gesture for the concept of a bird could consist of gracefully
moving one’s hands up and down repeatedly, as a reference to the act of �ying.
Iconic gestures in particular play an important role in supporting speech compre-
hension (Kelly et al., 1999), especially in noisy environments (Drijvers & Özyürek,
2017). Furthermore, people with certain impairments that prevent them from (fully)
using or understanding speech, such as aphasia (language impairment due to brain
injury), can bene�t from gestures as a communicative and therapeutic device (van
Nispen et al., 2018). Finally, research in the �eld of education has shown that iconic
gestures can be used as a means of providing sca�olding to support the learning
process (Alibali & Nathan, 2007). In light of this important role of iconic gestures in
communication and education, with the current work we aim to provide a dataset
and recording method to support further studies into the intricacies of gesturing
behavior.

Because gestures are a natural and intuitive way for us to communicate with
each other, researchers have started to explore whether we can use them to interact
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with machines as well (Karam & Schraefel, 2005). Recent technological developments
enable everyday computer systems to track body posture and hand gestures in a
minimally invasive fashion, which allows for the use of gestures as input device
instead of using traditional controllers such as a mouse and keyboard (Lun & Zhao,
2015). This is especially relevant when these interactions involve arti�cial agents,
either virtual or robotic, with whom we expect to be able to communicate by means
of natural language (Bartneck & Forlizzi, 2004). Ideally, these agents should be able
to understand the gestures produced by humans, as well as produce gestures of their
own to support their social and communicative behaviors (Fong et al., 2003). We
recently investigated whether gestures are able to support a robot’s teaching e�orts
and found that children of 4–6 years old were more engaged with the interaction and
showed higher learning gains when they interacted with a robot tutor that performed
iconic gestures while teaching second language vocabulary, compared to one that
did not use gestures (Chapter 3).

There are various methods — or modes of representation (Müller, 2014) — to
describe a certain concept by means of iconic gestures. For example, one could
gesture by outlining the physical shape of an object, such as the handle and bristle
of a toothbrush, or by performing the act of using or interacting with the object:
brushing our teeth. Although many concepts appear to have a default mode of
representation (Dargue & Sweller, 2018; Masson-Carro et al., 2017; Ortega & Özyürek,
2016; Ortega & Özyürek, 2020; van Nispen et al., 2014; van Nispen et al., 2017), this
is known to vary based on aspects such as the cultural background (Kita, 2009)
or age of the performer (Jain et al., 2016; Masson-Carro et al., 2015; Sekine et al.,
2018; Stites & Özçalışkan, 2017). The study by Sekine et al. (2018) showed that
three-year-old children had a tendency toward using their entire body to represent
the protagonist when retelling a story (character viewpoint), and they used a larger
gesture space compared to adults. The adult participants instead performed gestures
from the perspective of an outsider looking in (observer viewpoint), representing and
manipulating the protagonist as a smaller, imaginative object. Even when performing
the same gesture, Jain et al. (2016) observed that children of �ve to nine years old
tend to produce faster and less coordinated motions than adults.

These variations in the way we depict concepts using gestures poses two chal-
lenges when attempting to imbue robots with the ability to understand and produce
these motions. First, the robot-performed gestures are often designed by researchers
using common animation techniques such as key framing. These researchers may
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not necessarily belong to the same demographic as the people that will end up
interacting with the robot, and the robot’s gestures might therefore fail to match the
recipient’s preferred modes of representation (Ortega & Özyürek, 2020), which could
cause miscommunication. Second, a robot with social intelligence should also be
able to recognize gestures performed by others, which are likely to include a number
of variations for the same concept. Therefore, both the production and recognition
of gestures by a robot would bene�t from a data-driven approach, where many exam-
ples of people performing gestures are used to inform the robot’s gesture production
and recognition capabilities. There is a call for more data in the �eld of gesture
studies as well (Ortega & Özyürek, 2020), in order to investigate whether patterns
that we see on a smaller scale, e.g., regarding default modes of representation, can be
generalized to a broader range of concepts or demographics. This ongoing research
into human-performed gestures can be further supported by tools that have recently
been developed to support automatic extraction of features such as size, velocity, and
sub movements from three-dimensional gesture recordings (Pouw & Dixon, 2020;
Trujillo et al., 2019), which enable analysis of gestures on a large scale. In order to
improve the design of robot-performed gestures, and to support further studies into
gesturing behavior, we have set out to collect such a dataset of three-dimensional
recordings of human-performed gestures in a naturalistic setting.

These datasets can be collected in a number of di�erent ways. For example, in
recent work in the �eld of human-robot interaction, gestures were automatically
extracted from natural interactions, such as recordings of TED talks (e.g., Ghosh
et al., 2019; Hua et al., 2019; Shimazu et al., 2018; Yoon et al., 2019). These recordings
were never intended to be used for this purpose, which means that the gestures that
occur are naturalistic, but there is also no control over which (types of) gestures
are performed. As a result, these gestures can be used for generating human-like
co-speech gestures, but are less suitable for studying iconic gestures. The present
work therefore focuses on the use of an elicitation procedure, which involves record-
ing a number of participants as they perform gestures belonging to a prede�ned set
of concepts. These concepts are presented to them one by one, either verbally or
using visual cues. This method has also been used in the �eld of human-computer
interaction, initially for the design of gesture interactions with a touch surface (Wob-
brock et al., 2009), and subsequently for full-body gestures (e.g., Silpasuwanchai
& Ren, 2014), also with children (Connell et al., 2013). The goal in the context of
human-computer interaction is to reach consensus on the gesture that best describes
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a particular action within a computer system (Vatavu, 2019), such as shooting and
reloading a gun in a videogame. Elicitation studies enable the collection of gesture
datasets in a structured manner. It is possible to ask participants to perform examples
of concrete motions (e.g., “claw like a bear”), but a more diverse set with di�erent
modes of representation can be collected by giving participants more general cues
(e.g., “bear”). However, the data resulting from elicitation studies can be relatively
unnaturalistic because participants are prompted to perform these gestures, often in
a controlled setting, and they are aware of the goal and context of the study.

In order to obtain more naturalistic results, Eisenbeiss (2010) suggests the use
of a semi-structured elicitation procedure, where the context is kept as natural as
possible by having participants engage in a “game”, while still providing prompts to
elicit certain responses. One example of a gameful approach is the director-matcher
task. In this task a participant is assigned the role of director and is asked to describe
a complex abstract shape to another participant, the matcher, who has to recreate this
shape without having seen it (Krauss & Weinheimer, 1964). In gesture research, this
method can be used to elicit a combination of speech and spontaneous gestures (e.g.,
Holler & Wilkin, 2011). This task can be considered an unstructured elicitation
procedure, with little control over which exact gestures will be produced. Semi-
structured and game-like approaches appear to be understudied in research. One
example is Bartertown (van den Heuvel, 2015a), where participants engaged in a
science-�ction game in which they were asked to communicate the appearance of
certain primitive shapes to a virtual agent by means of gesturing. The recorded
gestures were then mirrored by the virtual character and the participant was asked to
con�rm whether they were recorded correctly, and to re-do them if needed. Later in
the game, other virtual characters performed gestures that were previously recorded
from di�erent participants and the current participant was asked to label these,
essentially covering both the generation and labelling of data in one sitting.

To our knowledge, the potential use of repair strategieswhen there is a breakdown
in non-verbal communication, both between two humans and between a human
and a robot, has not yet been studied. However, we can �nd inspiration in the
�eld of human-computer interaction, where mid-air (Walter et al., 2013) or touch
gestures (Bragdon et al., 2010; Bragdon et al., 2009) can be used to trigger certain
software commands. In this case, it takes time and multiple attempts for the user to
explore which gestures are available, and to learn how they should be performed in
order to trigger the correct functionality. Bragdon et al. (2009) found that a number
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of participants in their study either did not discover some of the available touch
gestures at all, or they were unable to perform them in the proper way to trigger
the functionality of the interface. This indicates a mismatch between the designer’s
expectations of the gestures that people will perform when interacting with their
software, and the gestures that users actually come up with and the strategies they
use to explore the space of potential gestures. We can apply the same principle to
our studies in human-robot interaction: If we design the robot’s gesture production
and recognition capabilities solely on our own frame of reference, we are bound to
introduce a certain degree of miscommunication. Therefore, it would be better to start
by observing interactions, and then inferring common gesturing and repair strategies
from these observations. Miscommunication can also occur when technology such as
automatic speech recognition or, in our case, gesture recognition is not successful at
recognizing the user’s input correctly, a situation in which users can rely on multiple
modalities for correcting these recognition errors (Suhm et al., 2001).

5.1.2 Existing gesture datasets
Several gesture datasets have been presented in literature, with various goals ranging
from studies into human gesturing behavior, to applications related to arti�cial
intelligence such as gesture recognition and gesture synthesis for virtual agents (e.g.,
Ortega & Özyürek, 2020; Sadeghipour et al., 2012; Vatavu, 2019). These sets di�er
in scale, in terms of the number of concepts included and the number of people
recorded. Furthermore, di�erent sensors were used to record the gestures, including
traditional video cameras, depth sensors such as the Microsoft Kinect, and tracking
devices that were held by or attached to the participants performing the gestures.
These existing datasets can further be categorized by the elicitation procedure that
was used, either (semi-)structured with speci�c cues, or unstructured where all of the
gestures that were produced spontaneously during a broad task were recorded. An
example of the latter approach is EGGNOG (I. Wang et al., 2017), where participants
were given a collaborative task to recreate a structure out of wooden blocks from
a picture. This resulted in a total of eight hours, collected over 360 trials with
40 participants, of naturally occurring gestures along with speech (for a subset
of the trials). Another example is SaGA (Lücking et al., 2010), in which 25 pairs
of participants were asked to perform tasks that involved giving directions and
describing various scenes containing multiple objects. The resulting set contains
recordings of speech and non-verbal behavior from 25 dialogues, including a total of
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almost 5,000 iconic and pointing gestures.

A literature review by Ru�eux et al. (2014) describes 15 datasets that were
compiled speci�cally for developing and evaluating gesture recognition algorithms,
which were collected using a structured elicitation procedure in a controlled setting.
In most of the work discussed in this survey, the gestures do not refer to real-life
objects, instead they are motions that were designed speci�cally to trigger certain
actions during human-computer interactions (e.g., swiping to the right in the air to
trigger the next song to play). Furthermore, participants were often given concrete
prompts that already steered toward a particular aspect of the target concept, thus
already implying a desired mode of representation, such as the aforementioned “claw
like a bear” instead of just “bear”. Only in the 3DIG dataset (Sadeghipour et al., 2012)
participants were given the freedom to choose which representation technique (e.g.,
shape versus action) to use. This transforms the challenge of gesture recognition into
being able to recognize any gesture that represents an object, rather than one speci�c
motion. This form of gesture recognition is more realistic when communicating with
(virtual) agents, where the focus lies on being able to understand which object is
being described, regardless of individual di�erences in preferred gesturing strategy.
In addition to their role in gesture recognition, such extensive and varied datasets can
also be used for research into gesturing behavior in general. The 3DIG set contains
recordings from a total of 29 participants, who were presented with ten primitive
objects and ten complex objects such as house or apple. The aforementioned semi-
structured elicitation procedure Bartertown (van den Heuvel, 2015a) also resulted in a
publicly available dataset (van den Heuvel, 2015b), which includes three-dimensional
gesture recordings of 36 participants each depicting 4 shapes, with 8 di�erent shapes
in total included. A recent example from the �eld of gesture research is the work
by Ortega and Özyürek (2020), where 20 participants were asked to provide silent
gestures for 272 di�erent concepts across �ve semantic domains (manipulable and
nonmanipulable objects, actions with and without objects, and animate entities), and
were also given the freedom to choose their gesturing strategy.

Although the previously discussed datasets were all recorded with adult par-
ticipants, there are datasets that include gestures performed by children as well.
Vatavu (2019) published a set containing 1,312 whole-body gestures in total across
15 di�erent concepts including objects such as �owers as well as actions such as
climbing a ladder or turning around. These gestures were recorded from 30 children
between the age of three and six. Children in this case were given concrete instruc-
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tions on how to represent the concepts, for example to “Draw a �ower in mid-air”.
The Kinder-Gator dataset (Aloba et al., 2018) contains recordings of 58 di�erent
gestures related to the categories warm-up, exercise, mime, and communication,
such as “Motion someone to come here”. These were recorded from ten children
(aged �ve to nine) and ten adults.

Our survey of relatedwork identi�es several gaps in the datasets that are currently
available. In most cases, participants were given concrete prompts for the types of
gestures to perform, which makes these datasets unsuitable for studying individual
di�erences inmodes of representation. In addition, literature has found that gesturing
strategies tend to di�er between children and adults, however the only set from
our survey of related work that includes both children and adults performing the
same gestures is Kinder-Gator (Aloba et al., 2018). A limitation of this elicitation
study is that the number of participants is relatively small (ten children and ten
adults), they were given concrete prompts, and only few of the concepts elicited
iconic gestures where the motion was semantically related to the concept being
depicted. As a result, while this does support studies into quanti�able di�erences
in motion characteristics (e.g., speed, size) between adults and children, it does not
provide the variation needed to investigate di�erences in modes of representation.
Finally, to our knowledge there is no iconic gesture dataset that includes the same
participant performing a second gesture for the same concept, after they realize that
the �rst example is not understood by the confederate. These second attempts would
give insight into repair strategies that people tend to use when miscommunication
occurs.

In our review of related datasets, we also found that generally none of the
materials from the elicitation procedure that were used to collect the data are made
available. This impedes potential future extensions of the datasets. In addition, the
elicitation procedure relies on a human confederate, who has to follow a speci�c
protocol. By having a robot perform this procedure instead, it is possible to replicate
the data collection process in a consistent manner. In the present study, we aim to
address the limitations of currently available iconic gesture datasets in two di�erent
ways: 1) by publishing a dataset that includes recordings from children and adults,
who were free to choose their preferred mode of representation, and who were asked
to perform a second gesture in case miscommunication occurred; 2) by making the
game of charades publicly available, thereby allowing other researchers to further
extend the dataset with di�erent concepts, or in di�erent cultures and contexts. Our
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dataset includes three-dimensional motion capture recordings from a depth camera,
and two-dimensional motion capture data that were extracted from video recordings
post hoc using an algorithm. Both formats have certain advantages and drawbacks,
which will be discussed later in the chapter.

The next sections describe the game of charades with a robot that was used as
elicitation procedure, followed by details regarding the technical implementation,
and a description of the resulting dataset.

5.2 Gesture elicitation procedure
The game of charades was set up at the NEMO science museum in Amsterdam for
two weeks in July and August, 2018, and at all three days of the Lowlands music
festival, which took place on August 17–19, 2018. Visitors to the science museum and
music festival were free to observe the study and, if they were at least �ve years old,
could choose to volunteer as a participant. The study was carried out with approval
from the research ethics committee of the Tilburg School of Humanities and Digital
Sciences at Tilburg University. Participants, or their legal guardian in case they
were younger than 16 years old, had to sign an informed consent form in order to
participate, with which they also agreed that their data could be incorporated into
the dataset. We also obtained verbal assent of all participants, and asked whether
or not their interactions could be recorded on video in order to be able to extract
two-dimensional motion capture data. These video recordings were optional, while
the motion capture recordings from the depth sensor were required in order to
participate.

5.2.1 Participants
A total number of 317 visitors to the science museum participated in the study, and
116 at the music festival. Due to children not �nishing the game, or participants that
took part in a demonstration of the system without wanting to have their data stored,
we had to exclude �ve participants from the science museum. The total number of
participants whose data were included, as well as their demographic information, is
displayed in Table 5.1.

5.2.2 Materials
The experimental set-ups at the science museum and the music festival are shown in
Figure 5.1. The system that was used in the experiment included a SoftBank Robotics
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Table 5.1: Participant information.

NEMO Lowlands Total

Participants 312 116 428
Gender 157 male 49 male 206 male

149 female 67 female 216 female
6 unknown 6 unknown

Age (Y;M) 12;11 28;4 17;2�� = 10;7 �� = 8;8 �� = 12;2
11 unknown 2 unknown 13 unknown

Countries 27 4 28
1 unknown 1 unknown

NAO V5 robot, a Kinect V2 for recording, a Microsoft Surface tablet as the interface
for the participant and a control panel running on a separate laptop or computer for
the experimenter. A Logitech C920 webcam was also included to capture video from
which two-dimensional pose data were extracted after data collection was completed.

Thirty-�ve di�erent concepts were included in the experiment for participants
and the robot to depict. These were picked from the Bank of Standardized Stimuli
(BOSS) containing photographs of a multitude of objects (Brodeur et al., 2014).
Because we expected a substantial part of our participants to be younger children,
we traced and colored the photographs to make them look more cartoon-like (Figure
5.2). The age of acquisition (Kuperman et al., 2012) was used as a guideline when
choosing the concepts to ensure that the youngest participants (�ve years old) would
be familiar with them. The concepts were divided into �ve di�erent categories, with
seven concepts in each category: animals, static objects, tools, musical instruments,

Figure 5.1: Photographs of the set-up at the NEMO science museum (left) and the
Lowlands music festival (right).
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Figure 5.2: Three examples (bus, tortoise, and bridge) of photographs from the BOSS
set and the corresponding traced images that were used in the game of charades —
tortoise was also renamed as turtle.

and means of transportation. These categories were chosen in order to capture a
diverse range of concepts, including both animate and inanimate objects, objects of
varying sizes, and objects that a�ord di�erent types of interactions (e.g., walking
on a bridge, handling a toothbrush). To get a realistic idea of the robot’s gesture
recognition performance, several of the concepts were chosen to be similar to each
other in terms of the default gesture we expected participants to use, such as car
and bus, or xylophone and drum set. Table 5.4 at the end of this chapter contains an
overview of all the included concepts.

5.2.3 Procedure
After visitors showed an interest in participating in the study, they were presented
with a letter containing general information about the goals of the study, an explana-
tion of the interaction with the robot (i.e., that they would play a game involving
gestures), the nature of the recorded data (with a picture illustrating the output of
the Kinect sensor), and details on the way their data would be collected and managed.
To get an overview of what the game was like, visitors were also free to observe par-
ticipants that were currently playing. After signing the informed consent form, their
participant number was entered into the control panel. If the participant allowed
their video to be recorded, a checkmark was set which enabled the system’s video
recording functionality. Additionally, participants could receive a link to a website
with their own motion capture recordings. If they were interested in receiving this
link, their e-mail address was entered into the control panel. The game was then
started by the researcher by pressing a button on the control panel. The robot stood
up and started “breathing” (shifting its weight from one leg to the other and swaying
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its arms slowly — a built-in feature of the NAO robot) to make it look more active
and alive. It also blinked its eyes every �ve seconds by turning the LEDs o� and
on again. A language choice between Dutch and English was shown on the tablet,
which a�ected the robot’s speech as well as the labels for the items presented on the
tablet.

The participant was invited to stand close to the tablet device so that they could
operate it, and in front of the Kinect camera, which was moved approximately to the
participant’s shoulder height. The researcher then gave a short introduction to the
game, indicating that the robot would only be able to see their upper body motion
and instructing the participant to stand still with their hands pointing down at their
sides when they were done gesturing. After choosing a language, the robot greeted
the participant and explained the basics of the game to them. This was followed by a
practice round, where the robot performed a prerecorded gesture to depict glasses,
and the participant had to guess by selecting the corresponding image out of four
di�erent options (Figure 5.3).

Regardless of whether the participant guessed correctly or incorrectly, the game
then proceeded to the second part of the practice round where the participant was
asked to show a gesture for the object ball. After taking time to think of a way to
depict the ball, the participant triggered a countdown by pressing the start button
on the tablet, after which he or she could start performing the gesture (Figure 5.4).
Participants were instructed to stand still after completing a gesture, which enabled
the system to automatically detect when to stop recording. In a later version of the

Figure 5.3: During the practice round, a participant guesses the gesture for glasses
that the robot had just performed.
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Figure 5.4: Second part of the practice round: The participant performs a gesture for
ball.

system (used at Lowlands), there was also a button for the researchers to manually
stop the recording. After the recording was stored, the robot tried to guess the
gesture, which for this introductory stage was hard-coded to always be the correct
guess regardless of the actual gesture that was performed by the participant.

After guessing the gesture, the robot displayed a top three of candidates for its
guess along with a percentage showing how much con�dence the robot had in that
particular candidate. This step was included to give participants insight into the
robot’s thought process and reasoning behind its guesses. As with the other parts
of the practice rounds, this was �xed and always showed the same three concepts
with the same con�dence values. All of the items used in the practice round were
not part of the 35 concepts that make up the �nal dataset.

The participant then played �ve turns of the actual game, which were identical to
the practice round except now with a selection of 10 out of the 35 included concepts
— 5 to be depicted by the robot, and 5 by the participant. These concepts were chosen
randomly, while ensuring that the number of total recordings across participants
was equally distributed between the 35 concepts. The robot now based the gestures
it performed on recordings from previous participants. In addition, it used a gesture
recognition algorithm to try and identify the gestures performed by participants,
and showed the actual top �ve candidates proposed by the algorithm. If the robot or
participant guessed incorrectly a second attempt took place for the same concept.
In many cases, this meant that the robot chose a di�erent recording to perform
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for the concept. The four answer options on the tablet did not change, therefore
participants had to guess from three items in the second round, because they already
knew that one of the four original items was incorrect. The participants were also
free to change their gesturing strategy for their second attempt (e.g., come up with
a di�erent mode of representation altogether, or repeat their previous gesture but
then bigger or slower), although they were not actively asked to do so. The gesture
recognition algorithm was purposefully implemented, even though it would mean
an unequal number of repair attempts per concept, and per participant. We felt that
it was important to o�er a transparent and fair game experience to the participants,
since we were working in two real-world environments. Furthermore, if participants
would realize that the robot’s guessing performance was controlled by us, they might
not take the experiment seriously anymore, which would have negatively a�ected
the quality of the recorded gestures. Figure 5.5 shows the information displayed on
the tablet at various stages during the game of charades. The interaction with the
robot lasted approximately ten minutes.

5.3 Technical implementation
In this section we present a general overview of the game of charades that was used
as a semi-structured elicitation procedure. Additional details are available with the
publicly available source code2. The implementation consists of several modules that
communicate with each other using a local network connection. A key advantage of
this architecture is that modules that have been developed in di�erent programming

2https://github.com/l2tor/NEMO-Lowlands-charades

Figure 5.5: Screenshots of the tablet screen during the game of charades. Left: the
participant’s turn to perform a gesture for toothbrush; middle: when guessing, the
robot shows its top �ve candidates, of which it will guess the �rst one (in this case
toothbrush), the correct answer is highlighted; right: the robot just performed a
gesture and the participant has to choose the matching item.
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languages can still work together. The current system contains a combination of
C# for Kinect, Javascript for the tablet interaction, and Python to drive the robot.
In addition, each module is freely interchangeable as long as it sends the expected
output to other modules and is able to handle the provided input. This means that
di�erent algorithms such as a better performing gesture recognition approach can
easily be added in the future. In a similar vein, it is possible to support other robots
or virtual agents as well as other recording devices without having to rebuild the
entire system.

The current con�guration uses a SoftBank Robotics NAO V5 robot, which is a
commercially available and widely used humanoid robot. With 25 degrees of freedom
it is more limited than humans in performing gestures. Most notably, it is unable to
move its three �ngers individually, so it is only able to open and close its hand in a
gripping motion. In addition to the robot, the system requires a participant-facing
tablet on which the game itself runs, and a computer where data can be stored and
from which the researcher can control the experiment. We used a Microsoft Surface
tablet for both the participant and the researcher. The human gestures were recorded
using a Microsoft Kinect V2 depth camera, a device that was originally designed as
an input device for the Xbox 360 gaming console but can be connected to a computer
by means of an adapter. This device has since been discontinued but alternatives
are available, including an updated version of the Kinect (Azure) which we aim to
support with future updates to the source code. The robot and the devices for the
participant and researcher were connected to a router via ethernet cables to ensure
a stable connection. In the next two paragraphs we will brie�y discuss the gesture
recognition and production modules, two key components of the system.

5.3.1 Gesture recognition
To ensure that both the robot and the human participant were playing the game
of charades fairly, both parties had to observe a gesture from the other player and
then guess which concept it tried to describe. We therefore decided to implement
an algorithm for the robot’s gesture recognition capabilities. Because one of the
potential use cases for our dataset was to train gesture recognition algorithms, this
also enabled us to verify that the dataset was indeed suitable for this task. Finally,
we could monitor the robot’s gesture recognition performance as it interacted with
people in a real-world setting and added new examples to the dataset.

Motion capture recordings such as the ones obtained from our game of charades
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are complex time series that describe three-dimensional locations of di�erent joints
(e.g., elbows, hands) over time. Therefore, even if two gesture recordings relate to
the same concept and the performer used the same strategy to depict this concept,
di�erences in speed, size of the movement, or the number of times a particular
motion was repeated make it di�cult to identify these similarities between gestures.
A commonly used approach to compensate for these di�erences, particularly in
speed, is dynamic time warping (e.g., Arici et al., 2014), which is able to match similar
gestures even if they are not synchronized and move at di�erent speeds. However,
this method does not di�erentiate between motions that are crucial parts of the
gesture, and the noise that stems from random movement or measurement errors
during the recording of the gesture. It is also not robust to di�erences in participants’
height, distance to the camera, or the size of the gesture, which may cause the joints’
locations between two recordings to be far apart while the overall motion is in fact
quite similar.

In order to distinguish between important movements and noise, and to also
correct for di�erences in location due to the position or height of the participant, a pre-
processing step is performed to identify salient features of the gestures, also known
as primitives (Ramey et al., 2012). We based our approach on the work by Cabrera and
Wachs (2017) by using the in�ection points of the hands’ motion trajectories, combined
with peaks in the hands’ position (Figure 5.6 shows a time series trajectory where
in�ection points and peaks are marked). Research suggests that in�ection points
are important features for humans to remember and reproduce gestures (Cabrera
et al., 2017). To also take into account di�erences between participants’ location and
height and the size of the gesture, instead of the recorded absolute joint positions
we use the positions relative to other joints. For example, we calculate whether the
hand was in front of or behind, and above or below the shoulder. Cabrera and Wachs
(2017) call the resulting sequence of in�ection points and relative locations the gist of
the gesture. One limitation that remains is that the same gesture could be performed
at di�erent positions relative to the body. A gesture for ball performed above the
shoulders would therefore result in a di�erent description than the same gesture
performed in front of the body, below shoulder height.

The former preprocessing steps result in a feature vector describing salient points
in the trajectory of the gesture. This feature vector consists of 14 dimensions that
include the peaks near in�ection points of the motion trajectory of the left hand
relative to the left shoulder, the right hand relative to the right shoulder, the left
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Figure 5.6: In�ection points (green) and peaks (red) of a motion trajectory.

hand relative to the right hand, and the spine at shoulder height relative to bottom
of the spine (to measure bending/hunching). These peaks are all extracted from the
X, Y, and Z trajectory, resulting in 12 dimensions. Each of these dimensions is a
variable length text, which includes the location of the joint relative to the other
joint (this is simpli�ed by dividing the physical space into numbered quadrants),
and whether at the in�ection point the trajectory moved from convex to concave,
from concave to convex, or whether it was a stationary point (+, -, or 0). Depending
on the duration of the gesture and the number of salient points found within the
trajectories of the limbs, one such dimension could contain between 0 and 39 salient
points (� “ 1.95, �� “ 2.47 points). Each salient point is described by 2 characters
of text: a quadrant identi�er, and the type of in�ection point. The last 2 dimensions
of the feature vector are the percentage of the time the left and right hands were
opened.

The next step is to �nd feature vectors of previously recorded gestures that are
similar to that of the newly observed gesture. As a measure of similarity between
gestures, we used the Needleman-Wunsch alignment score (Needleman & Wunsch,
1970), applied to the 12 dimensions of the feature vector separately. The similarity
matrix is included with the published source code of the system. The di�erence in
percentage of time that the hands were open was then subtracted from the similarity
score. This helped the algorithm to distinguish between gestures that look similar
if the hands are not taken into consideration, such as pretending to play the piano
(open hands) and xylophone (closed hands). After calculating the alignment score
between the new gesture and all existing ones in the set, the k-nearest neighbors
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algorithm (Altman, 1992) was used to determine to which concept the gesture was
most likely to belong. This is done by taking the � gestures with the highest alignment
scores, in other words the � recordings in the set that are most similar to the gesture
we are trying to recognize. The value of � was set to

?� {2, where � is the number
of total recordings in the dataset. However, the maximum value of � was set to 8 to
ensure that the algorithm remained computationally feasible. This was determined
empirically while developing the system, so it is possible that this is not yet the
optimal value for �.

From the neighbors, the concept that occurred most often was chosen as the
robot’s guess (majority voting). For example, if the 8 closest matches included 4
recordings belonging to spoon, 3 to comb and 1 to toothbrush then the new gesture
would be classi�ed as spoon, and this is what the robot would then guess. If two
concepts were tied (e.g., both 4 matches), the neighbor with the lowest similarity
score was removed from the set of neighbors, and this process was repeated until
there was one concept that had the largest number of matching neighbors.

All of the robot’s guesses were logged while the system was deployed at the
science museum and the music festival in order to get an overview of the gesture
recognition performance and how this developed as more data were added. For both
events, we initialized the dataset with three recordings for each of the 35 concepts,
performed by one of the researchers. This was the starting point to which the system
automatically started adding new recordings. Figure 5.7 shows the moving average,
with an interval of 100 recognition attempts and exponential smoothing (� “ .1),
of the robot’s gesture recognition performance over time as it gained more data.
Participants who did not want their data included in the analyses have been excluded.
The average recognition rate was 17.7% at the NEMO science museum, and 21.0% at
the Lowlands festival. Chance level is approximately 2.9% — 1/35 for �rst attempts,
and 1/34 for second attempts at guessing. The Lowlands set contains less data because
the system only ran for 3 days at that location, compared to 14 days at NEMO.

5.3.2 Gesture production
The recorded gestures do not contain any visual information, essentially turning the
performer into a stick �gure. This results in a loss of information compared to regular
video recordings: context and facial expressions are missing, and subtle motions
may not have been picked up by the Kinect camera. A further loss of information
occurs when trying to automatically translate these recordings to a robot with
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Figure 5.7: Moving average of the percentage of correct guesses by the robot.

fewer degrees of freedom, less smoothness in its motion, and a smaller reach than a
human. However, if this automatic translation were to work while preserving the
comprehensibility of the gestures, the robot would have the possibility to imitate
human-performed gestures, so that the gestures no longer have to be designed by
hand.

To measure the comprehensibility of the gesture recordings and the impact of
the loss of information resulting from the recording and translation steps, we had
the robot directly use gestures that were previously recorded from other participants.
We used an existing implementation to translate the joint locations as they were
recorded by Kinect into the yaw, pitch, and roll values needed by the robot (Suay &
Chernova, 2011). Because it is not possible for the robot to perform certain motions
as fast as a human can, the recordings were slowed down and then sampled at 300ms
intervals. In addition, there were recordings where the system did not register that
the gesture had ended, and thus also captured noise at the end. Therefore, only a
maximum of ten seconds of the recordings were performed by the robot.

Each recording had a weight assigned to it, which started at 0 and was updated
after the robot had performed this particular recording to a participant. If the
participant guessed the corresponding concept correctly, the system increased the
weight of this gesture. If the participant chose an incorrect answer, the system
decreased the weight. These weights were then used when deciding which recording
to use next. To make it easier for the participant to guess a gesture correctly, the
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robot could perform the recording with the highest assigned weight (the one that
had been guessed correctly most often in the past). On the other hand, the robot
could also avoid the highest scoring example and explore alternatives instead. To get
diverse ratings while still providing participants with a good chance to win, in the
current set-up we implemented a 60% chance that the “best” example would be used
(exploitation), and a 40% chance that any other recording would be performed by the
robot (exploration). Although it would have been possible to ensure that each gesture
would receive an equal number of ratings, we opted for this exploration-exploitation
approach to lower the di�culty for participants to win the game, and to automatically
�lter out incorrect or unclear gestures (noise).

Similar to the automatic gesture recognition performance, it is possible to see
from the log �les how well participants were able to recognize gestures performed
by the robot by measuring how often participants guessed a gesture correctly. Figure
5.8 shows the moving average, with an interval of 100 recognition attempts and
exponential smoothing (� “ .1), of participants’ guessing performance. On average,
participants guessed correctly 41.9% of the time at NEMO, and 50.3% of the time at
Lowlands. Chance level in this case is between 25% (�rst attempt at guessing, four
possible answers) and 33.3% (second attempt at guessing, three possible answers).

Figure 5.8: Moving average of the percentage of correct guesses by participants.
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5.4 Description of the resulting dataset
After deploying the system at the NEMO science museum and the Lowlands music
festival, the resulting data were cleaned and then published on the Open Science
Foundation3 as supplementary materials to this chapter. The dataset includes meta-
data describing the participants’ age, gender, and country of residence, as well as
the three-dimensional gesture recordings from the Microsoft Kinect V2 and the
two-dimensional gesture recordings that were extracted from videos of participants
that gave permission to have them recorded. These recordings are grouped in folders,
one for each of the 35 concepts. Each �lename contains the participant number,
and whether this was a �rst or second attempt at performing the gesture. We have
published the data for each of the two data collection locations separately, although
they can easily be combined into a larger set by merging the folders with each
other as the 35 concepts were the same between locations. The �rst character of the
participant numbers can then still be used to tell entries from the di�erent locations
apart (N = NEMO, L = Lowlands).

Also included in the dataset are log �les of all the sessions, which document the
interactions that occurred (e.g., which exact gestures the robot performed, and all
guessing attempts by the participants and the robot), as well as Python scripts that
can be used to visualize (play back) the recordings.

5.4.1 Three-dimensional recordings
The Kinect V2 depth sensor is able to track the position of 25 di�erent body joints
(e.g., head, hips, hands, feet) at 30 frames per second. For each recording, we stored
the estimated X, Y, and Z position of the 25 joints through time in a comma-separated
(.csv) text �le, with one line for each timestep. The Kinect uses the center of its sensor
as the origin (0, 0, 0), and measures joint positions by their distance in meters from
this origin. This means that the value of X increases as you move to the left of the
sensor (from the perspective of the sensor, facing the participant), Y increases as you
move up from the sensor, and Z increases as you move further away from the sensor.
As a result, what is reported as the right shoulder was in fact the participant’s left
shoulder, as seen from the Kinect sensor. In other words, these recordings will be
mirrored by default when played back. Figure 5.9 shows a frame from three di�erent
recordings for the concept bridge, visualized from the comma-separated �le using
one of the Python scripts included with the dataset. Note that not all participants
3https://osf.io/r59hj/
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were standing far enough away from the sensor for it to be able to capture their
entire body, hence the positions of their lower joints (e.g., knees and feet) could not
be tracked.

Figure 5.9: Three recordings of bridge, showing di�erent ways of depicting this
concept using gesture. From left to right, the focus is on the bridge surface, the
arches, and opening of a drawbridge. The leftmost example is performed by an adult
(24 years old), while the other two examples are by children (9–10 years old).

In addition to the 25 joint positions, the system stored joint orientations (in X, Y,
Z, W), but these appear to be redundant with the joint positions and are therefore not
used in our current implementation. The estimated face orientation — an indication
of where participants were looking — was also added, which has been converted
into pitch, yaw, and roll values. Finally, although the sensor cannot track individual
�ngers, it is able to determine whether the participants’ hands are open (1), closed
(0), or whether this is unknown (-1). This information was also added for each hand
at every timestep, along with a con�dence value indicating how sure the system was
that the hand was in fact opened or closed (Low or High).

The total number of unique three-dimensional recordings is 3,715. Table 5.2
shows how many gestures are in each subset, and how many of the recordings were
�rst or second attempts from the same participant. Table 5.4 at the end of this chapter
provides a more detailed overview of the number of recordings per concept for each
subset.

5.4.2 Two-dimensional recordings
Out of the 428 participants in our study, 367 gave permission to also have their
gestures recorded on video. A Logitech C920 webcam was used, which captured
the gestures at 25 frames per second. After data collection had completed, we �rst
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Table 5.2: Number of three-dimensional gesture recordings per location, divided into
�rst and second attempts.

First attempts Second attempts Total

NEMO 1,512 1,198 2,710
Lowlands 561 444 1,005

Total 2,073 1,642 3,715

corrected the video recordings for the camera’s lens distortion, and then extracted
motion capture data using OpenPose (Cao et al., 2017). This resulted in a similar data
�le to the three-dimensional Kinect recordings, including the positions of 25 body
joints through time, but without depth information (the Z-coordinate). The X and
Y coordinates in this case were measured in pixel locations within the video frame,
which had a resolution of 1280x720 pixels, with the top left corner of the frame as the
origin (0, 0). In these data the left shoulder refers to the participant’s viewpoint, so it
is actually positioned further to the right than the right shoulder (which shows up on
the left side of the video recording). Contrary to the three-dimensional recordings,
these will therefore not be mirrored when played back. In addition to the 25 body
joints OpenPose is able to track 21 keypoints on each hand (i.e., �nger joints), and 70
points describing the outline and features of the face. This approach is therefore able
to extract several details from video that are missing from the three-dimensional
recordings, such as �nger movement or facial expressions. Figure 5.10 shows a
comparison between recordings using Kinect, and the results of running OpenPose
on video recordings of the same gesture. Similar to the three-dimensional recordings,
lower parts of the body such as the feet were often obscured from view and could
thus not be tracked.

Because not all participants (367 out of 428) gave permission to have their gestures
recorded on video, only 3,269 out of the 3,715 gestures could be analyzed using
OpenPose. Table 5.3 shows how these are distributed between the two locations, and
how many �rst and second attempts from the same participant were included. The
number of two-dimensional recordings for each concept is listed in Table 5.5 at the
end of this chapter.
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Figure 5.10: The two-dimensional and three-dimensional versions of three recordings,
highlighting the advantages of having detailed hand and face motion. From left to
right: piano with extended �ngers, performed by a child (5 years old); pig by pushing
the nose upward with the index �nger, performed by an adult (26 years old); stairs
with a walking motion by moving the index and middle �ngers, performed by a child
(10 years old).

5.4.3 Data cleaning
Because the recording of each gesture was started by the participant, and �nished
after the system detected little to no hand movement for a certain amount of time,
each gesture was automatically isolated and stored in the folder belonging to the
right concept, in its own �le, with the �lename including the participant number
and whether it was a �rst or second attempt. We have reviewed all of the recorded
gestures, and identi�ed 34 recordings from NEMO, and 3 from Lowlands in which
no movement resembling an iconic gesture took place. These were removed from
the dataset.

Although the system tried to automatically isolate the gestures, there were
cases where the system prematurely detected the end of a gesture and therefore the
recording was cut short. There are also examples where the system did not manage
to detect the end of the gesture due to too much idle movement by the participant.
Because a certain degree of noise is to be expected once interactions such as these
are deployed in a naturalistic setting, we have not edited the recordings to remove

Table 5.3: Number of two-dimensional gesture recordings per location, divided into
�rst and second attempts.

First attempts Second attempts Total

NEMO 1,284 1,013 2,297
Lowlands 541 431 972

Total 1,825 1,444 3,269
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these extraneous movements. The recordings might also contain participants looking
at, or trying to interact with the tablet device as they double-checked the concept
they were asked to perform, or if they did not realize that the recording had already
started.

The tracked positions of body joints and other features are stored in a raw
format, as provided by the system without any post-processing. This means that
the three-dimensional recordings are currently in a di�erent coordinate system
than the matching two-dimensional versions, as described in the previous sections.
Additionally, the gestures were not normalized to compensate for di�erences in the
participants’ height, or their position relative to the Kinect and camera. Because
the Kinect has a relatively wide angle of view, and because OpenPose is likely to
see human-like shapes in background objects, several recordings contained data
for more than one person. Recordings for which this was the case were analyzed
and any measurements not related to the participant performing the gesture were
removed. Finally, all data were pseudonymized, and identi�able information was
removed (e.g., email addresses from the log �les).

5.5 Conclusion and discussion
In this chapter, we present a large dataset of iconic gesture recordings, collected
in a naturalistic setting at a science museum and a music festival. Contrary to
most existing gesture elicitation procedures, in our set-up participants were free to
choose how they depicted a concept by gesturing, and they were distracted from
the fact that they were being recorded. With this research we aim to contribute
to the �elds of gesture research and human-agent interaction in two ways. First,
we provide a dataset that can be used as a basis for studies into human gesturing
behavior — e.g., preferredmodes of representation, di�erences based on age or culture,
and changes in gesturing strategy after miscommunication occurs — showing the
degree to which variation occurs in human-performed gestures. The dataset can
be used for the design of an agent’s capability to perform human-like gestures, and
to recognize gestures performed by human interlocutors, taking into account this
degree of variation. Second, we introduce the game of charades with a robot as a
semi-structured elicitation procedure, which can be used to collect additional data in
the future. To our knowledge this is the �rst publicly available elicitation method
that employs a gameful interaction to collect gesture recordings.

This gameful elicitation method is able to bring gesture research out of the
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laboratory and closer to real-world settings. However, because the game restricted
participants to only use their upper body, without support from speech, and because
the other player was a robot that was not very good at recognizing the gestures, we
imagine that the currently recorded gestures are more exaggerated (e.g., in terms of
the size of the motions) than co-speech gestures used in everyday human-human
conversation. It would be interesting to develop a variation of the system that is
closer to the original game of charades, in which people are asked to describe an
object, either using gestures or a combination of speech and gestures. In that case,
the data would be less structured, because gestures no longer relate to speci�c cued
objects but instead to object properties (e.g., ‘big’, ‘heavy’), however this would result
in more broadly usable gestures. It would also be interesting to record co-speech
gestures during free-form conversation with a robot, and to see if people change
their gesturing behavior when their conversational partner is a robot instead of
another person. The current dataset, although it contains speci�c gestures for 35
concepts, can be used to study various aspects of general human gesturing behavior
(e.g., repair strategies, variation in preferred modes of representation)4. In addition,
these — arguably relatively expressive — gestures are useful in domains such as
foreign language education, where it is important that their meaning is especially
clear, even without speech. For example, we recently used a number of gestures from
this dataset in an experimental study, in which a NAO robot was used as an English
language tutor for children of 4–6 years old, and the gestures were implemented to
support the children’s learning process (Chapter 6).

It is important to stress that these data were collected in the �eld, and therefore
will contain some degree of noise. There are examples where participants already
started moving before the recording started, or where the system did not detect the
end of the gesture properly and recorded additional movements that were no longer
related to the gestures. These recordings were left as is on purpose, to give a realistic
representation of the situations one could encounter when bringing this type of
technology into the �eld, and to provide data that can be used to build solutions
that can cope with these situations. As a concrete example, at one point during the
experiment a participant was asked to perform a gesture for the concept violin, but
instead showed a gesture that clearly referred to a guitar, another concept from our
4We used the current dataset after publication of this chapter in order to study, using computational
analyses, whether gestures that are semantically related (e.g., bird and airplane) also have similar
kinematics (Pouw et al., 2021). We found that it appears to be possible, at least to some extent, to
derive semantic relatedness from gesture kinematics.
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set. An additional research question that could therefore be answered using the
dataset is how systems can be made intelligent enough to detect these discrepancies
and handle them accordingly, for example by asking for clari�cation and performing
the necessary relabeling autonomously.

To reduce the duration of the interaction we had to limit the number of concepts
that each participant was asked to perform. Therefore, the dataset only contains
recordings of 5 concepts per participant, instead of all 35. It is possible that the
selection of concepts, and the order in which they were presented, has a�ected
the resulting gestures. For example, both car and bus were included in the list. If
participants were �rst presented with the cue for bus, they might only perform
the act of driving, thinking that this was a unique enough description of the bus.
However, if they had previously become aware that car was also included, they might
have added an additional motion describing the shape of the bus, or the act of letting
people board the bus, in addition to the driving motion to distinguish between the
two related concepts.

The participants’ preferred strategy for depicting the concepts using gestures
may have further been a�ected by the images that were used as prompts. For exam-
ple, the image for bridge (shown in Figure 5.2) contained a particular example with
arches, which caused several participants to include an arching shape in their gesture.
However, it is still unclear whether this priming e�ect shows for all of the included
concepts. There could be concepts with a clear default mode of representation (Dar-
gue & Sweller, 2018; Masson-Carro et al., 2017; Ortega & Özyürek, 2016; Ortega &
Özyürek, 2020; van Nispen et al., 2014; van Nispen et al., 2017), which is then not
a�ected by their representation in the images. This can be further investigated with
the data we have available now, by measuring how often speci�c features from the
images come up in the matching gestures.

There are several technical limitations to this method of data collection. The
current version of the system relies on external devices — the Kinect and video
camera — in order to record the gestures. We envision that in the future robots will
have these features embedded, so that gesturing can become a more integral part of
their abilities. This is a necessary step to make robots more inclusive by enabling
them to communicate in situations where the e�ectiveness of spoken language is
compromised, such as noisy environments or when the interlocutor has trouble
understanding speech (e.g., due to being deaf or hard of hearing, or due to aphasia).
In addition, the motion recording quality of the Kinect sensor is worse than that of a
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professional motion capture set-up. However, the portability of the Kinect, and the
fact that it does not require any markers or special clothing made it more suitable to
bring into a naturalistic setting such as the museum and music festival. We felt that
this was also a more realistic representation of what robots of the near future would
be able to do. Finally, we decided not to publish video data from the participants.
Although this would have resulted in a higher level of detail, we thought that this
would also increase the barrier for visitors to the museum and music festival to
engage in the interaction, and might make those that did participate feel more aware
of the fact that they were being recorded.

The recorded gestures were automatically mapped onto the robot, however the
robot is more limited than humans in its ability to perform the gestures. As a result,
it was often not clear to participants to which concept the robot-performed gestures
belonged. We imagine that the performance of virtual agents or more articulate
robots, both with more degrees of freedom, would be better. In future work we aim to
extend the system to include support for these di�erent agents. In addition, it might
be possible to optimize the translation between the recorded gestures and the NAO
robot speci�cally. In the aforementioned study in the �eld of education (Chapter 6),
we applied a hybrid approach where we used recordings from the NEMO-Lowlands
dataset as inspiration for the design of the gestures for a NAO robot, which were
then recreated using key framing techniques (Chapter 6).

In this chapter we have only provided �rst explorations of the dataset. There
are several aspects to the gestures that can be further quanti�ed, pertaining to the
chosen modes of representation, and to the way the motions were executed (e.g., size,
complexity), both within and between di�erent concepts. We expect these aspects
to be in�uenced by factors such as age (Jain et al., 2016; Masson-Carro et al., 2015;
Sekine et al., 2018; Stites & Özçalışkan, 2017), and whether this was a �rst or second
attempt at performing the gesture. In future work we intend to perform a more
in-depth and structured analysis of the data, in order to provide an overview of the
degree of variation that exists within the set. This research can be further supported
by the currently available software tools for (semi-)automatic gesture analysis (Pouw
& Dixon, 2020; Trujillo et al., 2019).

In conclusion, we introduce a dataset of iconic gestures with a number of ele-
ments that set it apart from other currently available datasets: it includes a large
number of recordings, from a diverse group of participants (e.g., children and adults),
where participants were free to choose their gesturing method, and they were asked
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to perform a second attempt if the robot failed to recognize their �rst gesture, to
provide insight into possible repair strategies that people use when non-verbal mis-
communication occurs. Furthermore, the gestures were recorded by means of a
semi-structured, gameful elicitation procedure. As a result, this dataset can be used
for research into human gesturing behavior, and as input for various automated
gesture analysis, recognition, and production algorithms. Finally, we have made the
elicitation method publicly available, so that other researchers can extend the dataset
in a consistent, structured manner.

˚ ˚ ˚
In this chapter, we introduced a dataset of human-performed gestures, which can be
used to (computationally or manually) study human gesturing behavior, and as input
for gesture production and recognition for social robots or virtual agents. Because the
participants were given single word cues, they were free to choose what kind of gesture
they wanted to perform. As a result, the dataset contains di�erent gesture shapes for the
same concept. Children and adults participated in this elicitation study, which enables
us to investigate whether they choose di�erent ways to represent concepts using gesture.

The next chapter describes a conceptual replication of our �rst study (Chapter 3),
but now including animal names as well as words for which the gestures were less
expressive (e.g., ‘bridge’). The gestures are based on recordings from the dataset that
was introduced in the current chapter.
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5.A Overview of three-dimensional recordings

Table 5.4: Number of three-dimensional recordings per concept.

Concept NEMO Lowlands Total

Airplane 74 25 99
Bed 80 32 112
Bird 72 27 99
Boat 74 29 103
Book 74 28 102
Bridge 78 32 110
Bus 76 30 106
Car 77 27 104
Castle 75 32 107
Chair 78 32 110
Comb 78 27 105
Cow 76 26 102
Crocodile 81 29 110
Cup 76 30 106
Drum set 75 34 109
Fish 83 25 108
Guitar 76 25 101
Helicopter 75 25 100
Horse 78 30 108
Lamp 71 26 97
Motorcycle 81 30 111
Pencil 85 31 116
Piano 78 29 107
Pig 75 29 104
Scissors 78 29 107
Spoon 80 29 109
Stairs 84 29 113
Table 79 31 110
Toothbrush 75 28 103
Tortoise 77 29 106
Train 74 25 99
Triangle 81 33 114
Trumpet 76 28 104
Violin 78 27 105
Xylophone 82 27 109

Total 2,710 1,005 3,715
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5.B Overview of two-dimensional recordings

Table 5.5: Number of two-dimensional recordings per concept.

Concept NEMO Lowlands Total

Airplane 57 27 84
Bed 61 32 93
Bird 68 25 93
Boat 67 29 96
Book 62 30 92
Bridge 73 32 105
Bus 65 30 95
Car 74 27 101
Castle 66 31 97
Chair 63 30 93
Comb 59 27 86
Cow 65 20 85
Crocodile 75 29 104
Cup 65 27 92
Drum set 63 32 95
Fish 72 25 97
Guitar 72 21 93
Helicopter 60 23 83
Horse 70 30 100
Lamp 58 24 82
Motorcycle 69 28 97
Pencil 76 31 107
Piano 60 29 89
Pig 68 29 97
Scissors 58 27 85
Spoon 66 29 95
Stairs 77 26 103
Table 60 28 88
Toothbrush 65 28 93
Tortoise 65 29 94
Train 63 25 88
Triangle 71 33 104
Trumpet 58 28 86
Violin 62 26 88
Xylophone 64 25 89

Total 2,297 972 3,269

201









6.1. INTRODUCTION

6.1 Introduction

Manual gestures (Kendon, 2004) are an essential part of our everyday communication
with other people: we produce them naturally to support our thinking process, and
use them to avoid miscommunication (Hostetter, 2011). Speci�cally iconic gestures
— a subset of gestures where the movements are meaningfully linked to the concept
that is referred to (McNeill, 1992) — are known to be a valuable support mechanism in
education, resulting in improved learning outcomes and higher levels of engagement
from the student with the educational process (Kelly et al., 2008; Valenzeno et al., 2003;
Wake�eld et al., 2018). The present work focuses on the domain of second language
(L2) learning, where gestures have been shown to contribute to increased vocabulary
acquisition (Hald et al., 2016; Macedonia et al., 2011; Tellier, 2008). They enable
“grounding” of new knowledge in existing sensorimotor experiences (Barsalou, 2008).
For example, when teaching students about the word ball in a second language, by
accompanying this unknown word with an iconic gesture depicting the underlying
concept of a ball (e.g., by molding its shape or by bouncing an imaginary ball) we
provide additional sca�olding to create a link between the new form (the L2 word)
and the learner’s existing knowledge of its corresponding meaning.

With an increasing research interest into using robots in contexts where they
are expected to interact socially with humans, such as education (Belpaeme et al.,
2018) and speci�cally second language learning (Kanero et al., 2018b; van den Berghe
et al., 2019), a number of groups have started exploring whether gestures result in
similar positive e�ects when they are being performed by a robot instead of a human.
A survey comparing robots to virtual agents indicates the robot’s ability to move
and perform gestures in the physical world to be one of its key advantages over
screen-based alternatives (Li, 2015). Observed e�ects of a robot’s use of gestures
include increased memorization of story details by the listener (Bremner et al., 2011;
Huang & Mutlu, 2013), better human-robot collaborative task performance (Breazeal
et al., 2005), and higher levels of engagement with the robot (Bremner et al., 2011;
Gielniak & Thomaz, 2012; Sidner et al., 2005). Furthermore, a robot that gestures is
generally perceived more positively (Aly & Tapus, 2013; Asselborn et al., 2017; Salem
et al., 2013a), especially when its motions are exaggerated and cartoon-like (Gielniak
& Thomaz, 2012).

However, applications of robots that gesture in an educational context, and
speci�cally in (second) language learning, remain underresearched. One example
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can be found in �rst language learning with adults, where participants that inter-
acted with a robot that used iconic gestures had better learning outcomes than
those that did not receive support from the robot’s gestures (van Dijk et al., 2013).
We recently conducted two studies in second language learning, both with young
children as participants, with mixed results. A �rst exploration showed increased
vocabulary retention over time, as well as higher levels of engagement with the robot
for children that received additional support from the robot in the form of iconic
gestures compared to children that were not presented with gestures (Chapter 3).
Our second study, although similar in design, did not see such an e�ect on learning
outcomes (Vogt et al., 2019). The two studies di�ered in their duration (number of
sessions) and the vocabulary that was taught. The �rst study consisted of only one
session, and taught six animal names while the second study was longitudinal (seven
sessions) and contained a larger set of more abstract target words (e.g., more and
above), potentially leading to a lower degree of iconicity in the gestures. In view
of these con�icting �ndings, we set out to test the e�ects of gestures in a single
lesson of second language learning with a robot, but using a more diverse set of
target words. This part of the current study is a conceptual replication (Zwaan et al.,
2018) of our previous work (Chapter 3) as it includes two of the same experimental
conditions from the original study — one where the robot uses iconic gestures, and
one where the robot does not use any gestures — although with di�erent target
words and several improvements to the measurements. It is important to highlight
that the design of robot gestures in earlier studies often only relied on the intuitions
of the researchers. Here, instead of de�ning and designing gestures ourselves, we
looked at existing sources to see how humans depict the words. We expected to �nd
results that match those found in the original study, leading to the following two
hypotheses:

H1 Children will learn more target words in a second language (H1a) and remem-
ber them better (H1b) when a robot produces iconic gestures for the target
words than when the robot does not produce such gestures.

H2 Children are more engaged when interacting with a robot that produces iconic
gestures for the target words than with a robot that does not produce such
gestures.

When we gesture, we choose which aspect of a concept to describe with our
movements, and which strategy — or mode of representation (Müller, 2014) — we use
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to depict it: do we focus on shape, such as the roundness of a ball, or rather the act
of throwing or shooting a ball? Although people generally have default strategies,
there is still a degree of individual variation in how we produce gestures (Masson-
Carro et al., 2017; Ortega & Özyürek, 2016; van Nispen et al., 2014; van Nispen et al.,
2017). This variation can partly be explained by cultural di�erences (Kita, 2009),
as well as age (Masson-Carro et al., 2015; Sekine et al., 2018; Stites & Özçalışkan,
2017). Children tend to maintain a smaller symbolic distance to the concept they are
describing, which means they will often use a larger gesture space (body parts or the
full body), while adults tend to take the “outsider looking in” perspective, and use
only their hands to represent objects or characters (Sekine et al., 2018). For example,
when depicting a pencil children are more likely to raise their hands above their head
in a pointy shape, representing the pencil with their entire body, compared to adults
who generally use their hands to display the act of writing, or outline the shape of a
pencil.

How we represent concepts in gesture might also be related to what Piaget and
Cook (1952) de�ned as schemata, mental representations describing the objects and
concepts we know, and any past experiences or actions related to these objects.
For example, our schema of a toothbrush could include some of its typical visual
features, as well as the act of brushing our teeth. As we develop and experience more
aspects of a particular concept, our schema of this concept becomes more elaborate.
A related framework is variation theory, which states that the object of learning
(e.g., in our case the concepts to which we want to link L2 words) may be perceived
di�erently between people, where one learner might focus on di�erent aspects than
another (Marton & Booth, 2013). This theory suggests to add variation to learning
examples, thus highlighting multiple features of the object of learning. Both theories
identify a certain amount of pre-existing knowledge in the learner — which varies
between individuals, and grows with experience — to which new features can be
added (Hanfstingl et al., 2019). This, combined with the fact that we use di�erent
strategies for producing gestures, raises the question whether we also have di�erent
preferences and skills when it comes to understanding and integrating gestures.

There appears to be no existing research that looked into possible bene�ts of
using variation in gestures to support learning. However, there have been studies in
the context of second language learning where variations were introduced in the
number of di�erent speakers (Barcroft & Sommers, 2005), reporting better learning
outcomes compared to the use of a single speaker. Another study varied the images
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that were used to support second language learning (Sommers & Barcroft, 2013).
Contrary to what was found with variations in speech, this had an adverse e�ect
on the number of newly acquired vocabulary items compared to repeating the same
image. The researchers suggest that this may have been caused by shifting the focus
from the form (the L2 word and how it is pronounced — the new knowledge that is
being taught) to the existing meaning assigned to it by the learner (represented by
the image). In the present study we have kept both speech and supporting imagery
constant throughout the interaction, while variation is added to the additional gesture
modality.

Based on the aforementioned theories, we hypothesize that variation in the
robot’s gestures results in a greater chance that the gestures align with existing
salient features of the underlying concept that are already part of the learner’s
schemata. Furthermore, by presenting several di�erent features the learner might
create a stronger link between the word and the underlying concept, rather than
merely linking words to speci�c stimuli. Existing research also indicates that children
are more engaged when interacting with robots that show less repetitive behav-
ior (Tanaka et al., 2007). We therefore hypothesize:

H3 Children will learn more target words in a second language (H3a) and remem-
ber them better (H3b) when a robot produces a di�erent iconic gesture every
time a particular target word is presented than when the robot produces the
same iconic gesture every time a target word is presented.

H4 Children are more engaged when interacting with a robot that produces a
di�erent iconic gesture every time a particular target word is presented than
with a robot that produces the same iconic gesture every time a target word is
presented.

Because the ability to interpret gestures grows with age (Novack et al., 2015;
Stan�eld et al., 2014), we also explore whether di�erences in age within our partici-
pant group have a�ected their learning outcomes or engagement. The present study
adds to existing research in the �eld of human-robot interaction and gesture studies
by verifying whether the previously observed positive e�ects of gestures persist
when the concepts that are taught are more diverse. Furthermore, we investigate
whether the previously unresearched addition of variation in a robot’s repertoire
of gestures further increases these e�ects. We also propose several improvements

208



6.2. DESIGN OF THE INTERACTION

to the process of measuring learning outcomes and engagement, with the goal of
improving the reliability of our �ndings. Our hypotheses and planned statistical
analyses were preregistered1, and all of the source code and materials needed to
replicate this study are made publicly available2.

6.2 Design of the interaction
We used the one-on-one tutoring interaction from our previous study (Chapter 3),
in which a child and a SoftBank Robotics NAO robot together played a simpli�ed
version of the game I spy with my little eye, which is described in more detail below.
Two minor changes were made to the original source code. First, the target words
were changed to include a more diverse set of objects: bridge, horse, pencil, spoon,
stairs, and turtle. Second, we implemented the additional experimental condition
in which the robot used a di�erent gesture every time a target word was presented.
The �ve available gestures for each concept were randomized for each participant,
so that no order e�ects could occur. We now brie�y explain the process of designing
and validating the gestures, and the workings of the educational game that was used.

6.2.1 Gestures
In order to ensure that only gestures that participants were likely to recognize were
used, all of the robot’s depictions were based on an existing dataset of recordings
from humans producing silent gestures in the context of a game of charades with a
robot (Chapter 5). We based our choice of target words on the availability of varied
examples within this dataset, while ensuring that they covered a diverse range of
categories (e.g., tools, static objects, animate objects). We also took into account
the age of acquisition (Kuperman et al., 2012) for the words, so that the children in
our study should know them in their �rst language. Although the dataset includes
three-dimensional Kinect recordings, directly mapping those onto the NAO robot
resulted in noisy and unclear gestures. We therefore recreated them by de�ning key
frames using the Choregraphe software that is distributed with the NAO robot (Pot
et al., 2009), while staying true to the recorded gestures as much as possible. This
is a common work�ow for creating robot motion that was also used in the original
study (Chapter 3), but now based on examples of people performing the gestures
rather than the researchers’ frame of reference. Out of the 30 gestures that were

1https://aspredicted.org/wj24k.pdf
2https://github.com/l2tor/animalexperiment/tree/variation
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implemented, 16 were based on recordings frommale performers and 14 from females.
Nineteen gestures were recorded from primary school-aged children (6–12 years
old), another 10 by adults (20–62 years old), and 1 by a teenager (15 years old).

After recreating the gestures, we video recorded the robot as it performed them
and evaluated their clarity by means of an online questionnaire. A total of 19
participants (10 male and 9 female, ���� “ 38 years, �� “ 15 years) was recruited
through convenience sampling. They were shown a video of a gesture and were
asked to select the matching concept out of all six included in the study, to investigate
whether the gestures were unique enough within the set of six target words. Out
of the 30 gestures, 8 scored poorly (< 60% accuracy), 9 scored moderately (60–70%),
and 13 scored strongly (> 70%). Based on these �ndings and additional qualitative
feedback, 14 of the gestures were revised to more closely match the human-performed
examples from the dataset. Figure 6.1 shows the �ve variations for the target word
turtle. For the experimental condition where the robot did not vary its gestures, we
implemented the example that scored highest in the questionnaire (the middle image
in Figure 6.1 for turtle).

6.2.2 Language learning game
To train the six target words in the L2 (English), the child and the robot engaged in a
simpli�ed version of the game I spy with my little eye. The set-up of the experiment
included the robot, and a tablet on which the child was able to select answers (see
Figure 6.2). During the training the child sat at a table on which the tablet was placed
at a slightly tilted angle. The robot was standing opposite the child and was put
in breathing mode, meaning that it moved its head and arms around slightly and

Figure 6.1: We investigated whether a robot can use iconic gestures to support its
teaching activities, and if it helps to add variation to these gestures. These are the
gesture variations for turtle. Videos available at https://tiu.nu/hri20-gestures.
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Figure 6.2: The set-up of the experiment at one of the schools.

shifted its weight between its legs in order to appear more lifelike.

The robot started by greeting the child with his/her name and then explaining
the game, after which the child was asked to indicate whether he or she understood
the instructions by touching either a green or red smiley face on the tablet. If the
child did not understand the concept of the game, a researcher stepped in to provide
further explanation. The game then started with two practice rounds, which were
always for the target word horse — one in the �rst language, or L1, Dutch and one in
the L2, English — followed by 30 rounds of the game. Each round started with the
robot calling out a target word: “Ik zie ik zie wat jij niet ziet, en het is een... horse” (“I
spy with my little eye a... horse”). Three images then appeared on the tablet screen:
the correct answer, along with two randomly chosen distractor images (Figure 6.3).
Three images were shown to ensure that the di�culty level while children were
still learning was lower than during the post-tests (with six images). The robot
provided feedback in response to the child’s answer, in which the L2 target word was
mentioned again but without any gestures. If the child selected the wrong image, a
“repair round” took place where the robot spied the same word once more, but now
only the correct image and one distractor image — the previously given answer —
were shown.

During the 30 rounds, each of the six target words was presented �ve times in
total, but their order was randomized. In the experimental condition with repeated
gestures, the same gesture was used for all �ve times each target word was presented.
In the condition with variation in gestures, the target word in every round was
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Figure 6.3: Children provided answers on a tablet screen.

accompanied by a di�erent gesture for that word, but for repair rounds the same
gesture from the main round was used. The condition without gestures was identical
to the others, but no gestures were used at all. After �nishing all 30 rounds, the robot
said goodbye to the child. The researcher had a control panel where the child’s name
was entered, which was used by the robot to personalize the introduction. After
pressing a Start button, the robot operated fully autonomously, but the interaction
could be paused at any time by the researcher if a break was needed. Autonomous
behavior was possible by minimizing the complexity of the interactions — the robot
did not “listen” to the child, answers to its questions were given through the tablet
device.

6.3 Methodology
In order to investigate whether the robot’s use of iconic gestures resulted in increased
learning outcomes and higher levels of learner engagement compared to a robot that
does not use such gestures, and to see whether variation in gestures increases learning
outcomes and engagement more than repeating the same gesture, we conducted
an experiment with the following three experimental conditions: (1) No gestures,
where no iconic gestures were included at all; (2) Repeated gestures, where the robot
used the same gesture every time a target word came up in the game; (3) Varied
gestures, where the robot used �ve di�erent gestures — a new one for every time a
target word came up in the game. Other than these di�erences in the robot’s use of
gestures, the experimental conditions were identical, and all children engaged in the
same previously described language learning game.
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Table 6.1: Demographic information of study participants.

Experimental condition N Age (Y;M) ˘ SD (M) Boys/girls

No gestures 33 5;3 ˘9 51% / 49%
Repeated gestures 32 5;2 ˘9 56% / 44%
Varied gestures 29 5;4 ˘8 41% / 59%

Total 94 5;3 ˘9 50% / 50%

6.3.1 Participants
A total number of 116 children, recruited from two di�erent primary schools in the
Netherlands participated in the study. However, 22 participants had to be excluded
due to technical or procedural issues (� “ 12), bilingualism (� “ 3), English pre-test
scores that were too high (more than four out of six correct, � “ 3), and missing
results due to drop-out (� “ 4). As a result, the data of 94 children were included
in our analyses. The participants were pseudo-randomly assigned to one of the
three conditions with a balanced distribution of age and gender (see Table 6.1 for
demographic information). The study was approved by the research ethics committee
of Tilburg University. Informed consent was given by the parents of the children
prior to their participation.

6.3.2 Pre-test and post-tests
Children’s vocabulary knowledge was measured at di�erent times by means of a
test, where images for all six target words were presented on a laptop screen (Figure
6.4). A voice recording then asked the child to identify the matching image for a
particular target word: “Waar zie je een... [word]?” (“Where do you see a... [word]?”).
To reduce bias due to random guessing, in the L2 version each target word was
tested three times, yielding a total of 18 test items. To ensure that the test also
measured generalizable knowledge, such that the L2 words were not simply linked
to the images as they came up in the training session with the robot but rather to
the underlying concepts, each of the three times a di�erent image was used: either
the same image from training, a photorealistic version, or a line drawing. A target
word was scored as correct if the child managed to identify it correctly in at least
two out of the three rounds, resulting in a �nal score of 0–6. In the L1 version of the
test each target word was tested only once to save time, and because we assumed
that children already knew all of the words in their �rst language.
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Figure 6.4: “Game” used to test children’s word knowledge.

6.3.3 Procedure
Group introduction
Based on our previous experience working with children and robots, as well as
reports from other studies (Fridin, 2014; Vogt et al., 2017a), we organized a group
introduction to help the children feel at ease with the robot. This was done for
entire classrooms at the same time, with the teacher also present. In this session the
researchers introduced the robot and demonstrated some of its features. Children
were then allowed to shake hands with the robot and put it to bed. The introduction
took approximately 15 minutes.

Pre-test
To measure the pre-existing knowledge of the target words in the L1 and L2, each
child was retrieved from the classroom and was asked to complete the test on the
laptop, as previously described in Section 6.3.2. The pre-tests were planned on the
same day as the group introduction or shortly thereafter, without the robot present.
The tests took approximately 10 minutes and included additional questions related
to the children’s perception of the robot which are not further analysed here (and
were not part of the preregistered analyses).

Training and immediate post-test
The actual training session was scheduled at least one day after the pre-test. The
child was retrieved from the classroom and brought to the experiment room. This
session consisted of three parts. First, the child was invited to complete a short
“game” on the laptop, where each of the six target words was introduced three times
(“Look, this is a [word]. Do you see the [word]? Click on the [word].”), while the
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corresponding image was shown on the screen. This was done to familiarize the child
with the target words, so that they had some prior knowledge before practicing with
the robot. The child was then invited to go sit at the table with the tablet and robot,
and play the game of I spy with my little eye for 30 rounds as described previously.
After completing the interaction with the robot, children were asked once more to
sit down at the laptop and complete the English post-test. The total duration of this
session was 25–45 minutes, depending on experimental condition — gestures slowed
down the training — and on the number of repair rounds needed. The researcher
was always present during the session, although he or she was instructed to act busy
to avoid having the child turn to them for task-related feedback.

Delayed post-test
Between one and two weeks after the training session with the robot, each child
was retrieved from the classroom once more for a delayed post-test. This test was
identical to the immediate post-test administered after the child’s interaction with
the robot, and lasted approximately three minutes.

6.3.4 Analyses
In linewith the preregistration andwith the original study, we have conducted a series
of ANOVAs with di�erence scores between the post-tests and pre-test. However,
after submitting the preregistration we realized that a single mixed ANOVAwould be
more optimal, since it reduces the risk of type I errors by minimizing the amount of
statistical analyses required. For consistency, we present the results of both analyses.
Engagementwas annotated by extracting two video clips from each child’s interaction
with the robot, one from the 4th and one from the 24th round of training. Each clip
lasted two minutes and was annotated for two di�erent measures of engagement:
task engagement and social engagement with the robot. The ratings were based on
a coding scheme that was recently developed3, which resulted in a score for each
type of engagement on a nine-point scale (1–9). Note that engagement is considered
as a measure of how actively the child was involved with the robot or the task, not
whether this was positive (constructive) or negative (destructive) involvement. The
Pearson correlation between task and robot engagement was .60 (� † .001).

In comparison to our previous analysis of engagement (Chapter 3) we aimed to
improve robustness by increasing the length of each clip (two minutes rather than

3https://github.com/l2tor/codingscheme
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�ve seconds), by rating engagement across two distinct dimensions rather than a
single all-encompassing measurement, and by using coding schemes upon which to
base these ratings. Instead of distributing an online questionnaire, the ratings were
now performed by one of the researchers. To test the reliability of our measures,
50 video clips (taken from 25 di�erent sessions) were annotated by a second rater
who did not participate in the original data collection and was not familiar with the
speci�cs of the experimental conditions. The intraclass correlation (ICC) estimates
and their 95% con�dence intervals were calculated using SPSS version 24 based on a
single rater, consistency, two-way random e�ects model. This resulted in a 95% CI
of [.45, .78] for task engagement (considered poor–good, cf. Koo & Li, 2016), and a
95% CI of [.55, .83] for robot engagement (moderate–good). Based on this ICC we
proceeded with the ratings of a single rater in our analyses.

6.4 Results
6.4.1 Preregistered analyses
Learning outcomes
Figure 6.5 shows the mean scores on the three tests per condition, indicating a similar
increase in vocabulary knowledge over time between conditions.

A 3 (experimental condition) ˆ 3 (test time) mixed ANOVA was used to evaluate
children’s learning outcomes, with scores on the test tasks (0–6) as dependent variable,
experimental condition as between-subjects independent variable, and time (pre-
test, immediate post-test, and delayed post-test) as within-subjects independent
variable. The analysis showed a signi�cant e�ect of time, �p2, 182q “ 45.70, � †.001, �2� “ .33, indicating that children learned L2 vocabulary from their interactions
with the robot regardless of condition. Pairwise comparisons using Bonferroni
correction show a signi�cant di�erence between the immediate post-test and the
pre-test, ���� “ 1.10, � † .001, and between the delayed post-test and the pre-test,���� “ 1.41, � † .001. However, there was no signi�cant di�erence between the
delayed post-test and the immediate post-test, ���� “ 0.30, � “ .09. There was no
main e�ect of condition, �p2, 91q “ 0.38, � “ .68, and no signi�cant interaction
between experimental condition and time, �p4, 182q “ 1.58, � “ .18, indicating that
the robot’s use of gestures — either repeated or varied — did not a�ect learning
outcomes4.
4For consistency with the preregistration and the analyses in the original study, we also performed
a combination of t-tests and separate ANOVAs on di�erence scores. The results are identical to the
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Figure 6.5: Mean test scores as a function of experimental condition
(** � † .001). T0 = pre-test, T1 = immediate post-test, T2 = delayed post-test. Chance
level (horizontal line) was 0.44. The error bars are the 95% CI.

Engagement
Figure 6.6 visualizes task engagement (left) and social engagement with the robot
(right), measured at rounds 4 and 24. A clear drop between rounds 4 and 24 can be
observed for both types of engagement. Although task engagement levels are similar
between conditions, children in the experimental condition without gestures are less
engaged with the robot than those in both gesture conditions.

To evaluate whether the robot’s use of gestures a�ected children’s engagement,
we conducted a 3 (experimental condition) ˆ 2 (time) mixed MANOVA with the
task and robot engagement ratings as dependent variables, time (round 4 and round
24) as within-subjects independent variable and experimental condition as between-
subjects independent variable. This shows a signi�cant e�ect of time, Wilk’s � “.30, �p2, 90q “ 107.76, � † .001, �2� “ .71, indicating a drop in engagement between

mixed ANOVA approach (a signi�cant e�ect of time but not condition), with the exception of the
di�erence between the delayed post-test and immediate post-test scores, which now also reached
signi�cance.
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Figure 6.6: Task (left) and robot (right) engagement ratings for rounds 4 and 24, by
condition (** � † .001). The error bars are the 95% CI.

rounds 4 and 24. This e�ect was found for task engagement, �p1, 91q “ 132.26, � †.001, �2� “ .59, and for robot engagement, �p1, 91q “ 134.79, � † .001, �2� “ .60.
The analysis also showed a main e�ect of experimental condition, Wilk’s � “.60, �p4, 180q “ 13.20, � † .001, �2� “ .23, indicating di�erences in average en-

gagement throughout the interaction. This di�erence was only signi�cant for
robot engagement, �p2, 91q “ 25.9, � † .001, �2� “ .36, and not for task engage-
ment, �p2, 91q “ 1.88, � “ .16. A post-hoc analysis using Bonferroni correction
showed that average robot engagement was signi�cantly higher in the repeated
gestures condition (���� “ 1.82, � † .001), as well as in the varied gestures con-
dition (���� “ 1.93, � † .001), compared to the condition without gestures. The
di�erence between the varied and repeated gesture conditions was not signi�cant
(���� “ 0.06, � “ 1.0). The interaction between time and condition was not signi�-
cant, Wilk’s � “ .90, �p4, 180q “ 2.32, � “ .06, showing no e�ect of the robot’s use
of gestures on the change in engagement over time.

6.4.2 Exploratory Analysis of Age
Existing literature indicates that our ability to recognize and understand gestures
grows with age (Novack et al., 2015; Stan�eld et al., 2014). Additionally, we intuitively
observed variations in how children of di�erent ages interacted with the robot.
Figure 6.7 shows a linear �t to children’s di�erence scores on the immediate (left)
and delayed (right) post-tests, indicating that age a�ected children’s performance,
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especially in both experimental conditions where the robot used gestures. We
ran the same mixed ANOVA with test scores as dependent variable, and time and
condition as independent variables, now adding children’s age in months at the
time of the experiment as a covariate. This showed a signi�cant main e�ect of age,�p1, 90q “ 19.30, � † .001, �2� “ .18. The interaction between age and time was
also signi�cant, �p2, 180q “ 10.59, � † .001, �2� “ .11, indicating that older children
that participated in the study learned signi�cantly more from the interaction than
younger children. To further explore whether this e�ect of age was in�uenced by
the robot’s use of gestures, we split our data by experimental condition and ran the
same analysis. This showed a signi�cant interaction e�ect of age and time within
the repeated gestures condition, �p2, 60q “ 7.83, � “ .001, �2� “ .21, and within the
varied gestures condition, �p2, 54q “ 7.87, � “ .001, �2� “ .23, but not within the
condition without gestures, �p2, 62q “ 0.74, � “ .48.

To investigate whether age also in�uenced children’s levels of engagement, we
ran the previously described mixed MANOVA with both measures of engagement as
dependent variables, adding age as a covariate. This showed a main e�ect of age,
Wilk’s � “ .91, �p2, 89q “ 4.41, � “ .02, �2� “ .09. This e�ect was only signi�cant
for task engagement, �p1, 90q “ 5.29, � “ .02, �2� “ .06, where the older children in
the experiment showed higher task engagement than the younger children. There
was no main e�ect for robot engagement, �p1, 90q “ .002, � “ .97, and no signi�cant
interaction e�ect between age and time, Wilk’s � “ .97, �p2, 89q “ 1.18, � “ .31.
6.5 Discussion
This chapter describes a study that investigated the potential bene�ts of a robot’s use
of gestures in second language tutoring. We compared between a robot that repeated
the same gesture for each concept, one that varied its gesture repertoire, and one that
did not use gestures at all, and we measured how this a�ected children’s learning
outcomes and engagement with the task and with the robot. The contribution of
this work is twofold. First, it is a conceptual replication of a previous study (Chapter
3) with a shift toward a more diverse set of target words. Our goal was to verify
whether our previous �ndings persist, especially in light of con�icting �ndings
regarding robot-performed gestures in other studies (e.g., Vogt et al., 2019; Chapter
4). Several steps have been taken to improve the reliability and reproducibility of
the study. These include various changes to the measures such as testing each
target word multiple times, and the use of a coding scheme for rating children’s
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Figure 6.7: Linear �t to the di�erence scores on the immediate (left) and delayed
(right) post-tests compared to the pre-test per condition, relative to children’s age.

engagement. Second, despite the assumed importance of variation for educational
purposes (Marton & Booth, 2013; Piaget & Cook, 1952) we did not �nd any existing
research in this direction. Therefore we added an experimental condition where the
robot introduced variation by performing di�erent gestures for each concept. Our
results show that a single tutoring session with the robot helped children acquire new
L2 vocabulary, and retain this knowledge over time. Children on average learned 1.10
new words on the immediate post-test, and 1.41 on the delayed post-test — similar
results to those in the original study (Chapter 3). This may not seem like a substantial
increase, however these were young children and the results were obtained after a
single training session of approximately 15 minutes. Other word learning studies
with robots have shown similar results (Belpaeme et al., 2018; van den Berghe et al.,
2019).

Contrary to the original study we did not �nd support for our �rst hypothesis
that children would learn and remember more words when the robot used gestures
than when the robot did not use gestures. This could be caused by the fact that we
introduced more diverse and potentially more complex target words in the current
work compared to the animal names in the original study, with perhaps less iconic
gestures as a result. Because the overall number of words learned is similar across
both studies, we can assume that the English words themselves were not necessarily

220



6.5. DISCUSSION

more di�cult to learn. The di�erence therefore appears to be in the gestures, where
children found it harder to understand the gestures in the current study. It would
be interesting to further investigate which exact characteristics of the gestures are
responsible for these di�culties with their interpretation.

Older children in our study did appear to understand and bene�t from the robot’s
gestures, while younger children did not. Although literature indicates that children
learn how to make sense of iconic gestures at a slightly younger age than the age
of participants in our study (Novack et al., 2015; Stan�eld et al., 2014), the ability to
interpret gestures could be reduced when the interaction involves a robot instead of
a human, and when it is mediated by a tablet device. The robot’s gestures appear
to have a detrimental e�ect when they are not understood, which may have been
caused by distraction, confusion, and the additional cognitive load from attempts to
observe and make sense of these gestures. These �ndings underline the importance
of properly designing the robot’s gestures. Previous research often included gestures
that were designed by the researchers, but in this work we based the design on a
dataset with recordings of mostly children performing gestures (Chapter 5). The
clarity of the robot’s gestures was evaluated with 19 judges, and the consistency
of the ratings showed that this sample size was su�cient. However, the process of
designing gestures could be further improved in two ways. First, it would be better
to evaluate the gestures with children from the same age group that participated in
our study instead of adults. However, we believe that a task to judge the meaning of
gestures is di�cult for children this young, so this should perhaps be done in the form
of a guessing game. Second, based on the ratings we made several improvements
to the gestures, but these were not evaluated. We are con�dent that these changes
resulted in better gestures since they now align more with the original human-
performed examples, but in future work we would take a more iterative approach
and conduct multiple evaluations.

Our second hypothesis stated that children would be more engaged with a robot
that produces iconic gestures, than with one that does not produce gestures. This
hypothesis �nds partial support in a higher average robot engagement, however
no signi�cant e�ects on task engagement are found. These �ndings are consistent
with literature on the e�ects of robot gestures on engagement (Bremner et al., 2011;
Gielniak and Thomaz, 2012; Sidner et al., 2005; Chapter 3). We conjecture that the
main reason for higher robot engagement is that the robot displayed more bodily
movements in the gesture conditions, which can cause the robot to be perceived as
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more friendly and human-like (Asselborn et al., 2017), resulting in a higher level of
engagement with the robot as children enjoyed the interaction more. Engagement
with the task was in�uenced by age, however this does not seem to relate to the
robot’s use of gestures.

By introducing variation in the robot’s gestures, and thereby highlighting di�er-
ent features of the object of learning (cf. Marton & Booth, 2013), we aimed to provide
greater support to the learning process compared to using repeated gestures. We
also expected this variation in the robot’s behavior to further increase children’s
engagement with the robot (cf. Tanaka et al., 2007). However, we did not �nd support
for hypotheses H3 and H4 which stated that the robot’s use of varied gestures would
lead to better learning outcomes and higher levels of engagement than repeated
gestures. This does not align with existing �ndings in literature regarding positive
e�ects of speaker variation (Barcroft & Sommers, 2005), nor detrimental e�ects of
image variation (Sommers & Barcroft, 2013). Moreover, with multiple gestures for the
same concept it is more di�cult to measure what the contribution of each individual
gesture was to children’s learning outcomes and engagement. We believe more
research is needed to further investigate possible di�erences between variation and
repetition of gestures. The current study consisted of a single tutoring session and
therefore did not investigate any potential long-term e�ects that variation in gestures
might have. Furthermore, di�erent results could be observed for older children or
adults, and the use of varied gestures could have a�ected other factors that were not
measured in the current study, such as perception of the robot (e.g., human-likeness,
intelligence, character) or overall enjoyment. With younger participants it remains a
challenge to investigate these aspects of a robot’s appearance and behavior.

6.6 Conclusion
This chapter documents a study that was conducted to investigate whether a robot’s
use of iconic gestures a�ects learning outcomes and learners’ engagement. Further-
more, a robot that varied its gesture repertoire for a particular concept was compared
with one that always repeated the same gesture. The results of the study show that
there are advantages to having a robot perform gestures when teaching children L2
vocabulary, in the form of higher engagement and— for the older children in the study
— increased learning gain, although no additional bene�ts were found for varied
gestures. Based on existing literature into robot-performed gestures (e.g., Bremner
et al., 2011; Huang & Mutlu, 2013; Li, 2015; van Dijk et al., 2013) we have reason to
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believe that our �ndings generalize to di�erent target groups, educational domains,
and robotic platforms, and we imagine that robots in the future will become capable
of performing increasingly more human-like motions. The design of the interaction,
the gestures, and the study itself are documented in this chapter to serve as a basis
for future research. We envision two main avenues for future work: (1) the design of
the robot’s gestures, and how this a�ects their comprehensibility for di�erent ages,
and (2) a further exploration of variation in gestures: does it have di�erent e�ects on
older learners, and does it change the way the robot and the interaction are perceived?

˚ ˚ ˚
In the current chapter, we further investigated the mixed results found in the two previous
studies (Chapters 3 and 4). We took the relatively simple game that was used in the
�rst study, but included concepts with less expressive gestures, similarly to the second
study. The results showed no signi�cant e�ect of the robot’s use of iconic gestures on
learning outcomes. However, older children in the study again bene�ted more from the
robot’s use of iconic gestures than younger children did. These results further support
the theory that within the age range of our participants (4–6 years old), there appears
to be a point at which children learn to (better) make use of the robot’s iconic gestures.
In addition, children on average showed higher levels of engagement with the robot,
but not with the task, when the robot used iconic gestures, compared to when it did not
perform gestures.

This chapter also serves as a �rst exploration of introducing variation in the robot’s
gesturing behavior. We designed �ve di�erent gestures for each concept, that were
pseudorandomly performed by the robot. Introducing variation did not appear to have
any bene�ts, but there were also no drawbacks, in terms of learning outcomes and levels
of engagement, compared to having only one gesture for each concept. More research is
needed to investigate the e�ects of variation on long-term engagement, and on the way
the robot is perceived by the children interacting with it.
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7.1. ANSWERING THE RESEARCH QUESTIONS

The ability to use hand gestures can be considered a de�ning property of social
robots, and an important way to leverage their physical embodiment and presence.
Furthermore, in human gesture studies it has been shown that a teacher’s use of
gestures can support students’ learning process, by bringing their attention to the
object of learning, by helping them understand what is communicated verbally and,
in second language learning, by ‘grounding’ unknownwords in known non-linguistic
knowledge or experiences. These two premises — gestures as de�ning property of
social robots, and the pivotal role of gestures in education — are the starting point
for this thesis, and have led to the main research question: What are the e�ects of
robot-performed gestures in the context of second language tutoring with children, and
how are these in�uenced by the design decisions regarding the robot’s gesture production
process?

In the work that is presented in this thesis, we have addressed the research
question using three di�erent methods. Firstly, by means of a systematic review of
existing literature on robot-performed gestures, we have surveyed the state of the
art regarding a social robot’s gesture production process, and created an overview
of the e�ects of robot-performed gestures in various domains, including education.
Secondly, we conducted three experimental studies at primary schools in the Nether-
lands, where children of 4–6 years old were taught English vocabulary using a social
robot, and studied the e�ects of the robot’s use of iconic gestures to support its
tutoring e�orts. Finally, using a semi-structured elicitation procedure in the form
of a game of charades with a robot, we have collected and published a dataset of
human-performed gestures, to capture natural variation that may occur when di�er-
ent people perform gestures for a number of concepts. This dataset can be used to
inform the design of the robot’s gestures, but also for gesture research in general.

The main research question was divided into eight subquestions, each of which
is addressed in one or several of the chapters included in this thesis. In the following
sections, we will answer these eight subquestions, discuss the relevance and implica-
tions of the results, present the limitations and avenues for future work, and answer
the main research question in the general conclusion.

7.1 Answering the research questions
How can we best design and implement robot-performed iconic gestures?
(RQ1)
We investigated di�erent ways to design and implement robot-performed gestures
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in our literature review in Chapter 2, and while setting up the studies described in
Chapters 3, 4, and 6. In addition, the dataset from Chapter 5 can be used as input
for designing the robot’s iconic gestures. However, it is challenging to provide a
conclusive answer to RQ1, as the best approach is likely to be context-dependent. For
example, a manual approach, allowing more control over the robot’s behavior, may
be best suited for experimental research, where consistency between participants
is important. However, if the robot needs to be able to engage in unconstrained,
free-form dialog, a more scalable solution (e.g., automatic generation) would be
desirable. Furthermore, recent developments in automatic approaches to gesture
generation (e.g., synthesis) show promising results, so these approaches may see
more use in the future.

In our review of existing literature (Chapter 2), we described how the design as
well as the implementation, or planning, of the robot’s gestures can be done either
manually or automatically. Manual approaches o�er more control over what the
gestures will look like, and over the robot’s gesturing behavior as a whole (e.g.,
gesture selection, frequency of gesturing). Automatic gesture design and planning
(i.e., by demonstration, or gesture synthesis) on the other hand, is less labor intensive
and generally results in gesturing behavior that is perceived as more natural and
‘vivid’ (e.g, Shimazu et al., 2018). The level of control that is o�ered by manual
approaches provides more predictable and constrained interactions, which is why
the majority of the experimental studies covered in the literature review, as well as
our own studies from Chapters 3, 4, and 6 had manually designed gestures. Chapters
3 and 4 had fully scripted gesturing behavior, while in the study described in Chapter
6 we added variation by having the robot pseudorandomly perform �ve di�erent
gestures for the same concept.

Manually designed gestures can still be inspired by recordings of human-performed
examples. This option was �rst explored in Chapter 4 based on an elicitation study,
and then in Chapter 6 based on the dataset collected in Chapter 5. Although we did
not make a direct comparison between di�erent approaches to the design and plan-
ning of the robot’s gestures, we assume that basing the design on human-performed
examples, ideally from the same demographic as the one the robot will end up inter-
acting with (in our case children), will lead to gestures that are more easily understood
by the student, and subsequently should result in better learning outcomes.

Our literature review further indicated that the design of the robot’s gestures
can a�ect the way the robot is perceived, for example in terms of its human-likeness
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or level of enthusiasm. This is likely determined by the interplay between a robot’s
physical appearance and its (gesturing) behavior, although future research is needed
to verify how these two factors together shape the way the robot is perceived.

A limitation of the majority of existing research on robot-performed gestures
is that only few papers document their chosen design approach, and the compre-
hensibility of the gestures is rarely evaluated. It therefore remains an outstanding
question what the best approach to designing the robot’s gestures is, and this likely
depends on the context in which the gestures are to be used. In our experimental
studies, we did evaluate the comprehensibility of the gestures, but this was done
only once. For future work, we recommend a process of iterative evaluation and
re�nement of the gestures, with participants from the intended target demographic,
until the gestures reach their intended goal (e.g., in terms of comprehensibility, or
conveying a certain personality or mood). We also urge the research �eld to explore
ways of automating this evaluation process, or to come up with tools that can help
structure human evaluations.

What are the observed bene�ts of robot-performed iconic gestures in hu-
man-robot interaction, and in robot-supported education in particular, ac-
cording to existing literature? (RQ2)
Our survey of existing literature (Chapter 2) showed that robot-performed gestures
can potentially serve various communicative purposes (e.g., stimulate perspective
taking), in�uence the way the robot is perceived by others (e.g., as more human-like
or likeable), increase levels of engagement with the robot, improve performance on
joint tasks, and support interactees with special needs.

The literature study uncovered only limited research regarding the e�ects of a
robot’s use of (iconic) gestures in education. Studies that did focus on education
showed mixed results, where math task performance did not increase (Groechel et al.,
2019), and students only bene�ted from gestures in a learning-by-teaching task if
they were already pro�cient at the task themselves; the gestures may have had a
distracting e�ect on students that were not as pro�cient at the task (Yadollahi et al.,
2018).

Several studies, one of which was in the �eld of education (De Carolis et al.,
2019), indicate that gestures can stimulate engagement. Increased levels of engage-
ment might lead to better learning outcomes, since students pay more attention to,
and spend more time with the educational content. Engagement is also said to be
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indicative of a student’s motivation and willingness to learn (Blumenfeld et al., 2005).
One aspect that was not previously explored in the context of education is mirroring,
or reenactment of the robot’s gestures, although human gesture studies indicate that
this may lead to a stronger contribution to learning, compared to merely observing
the gestures (e.g., Tellier, 2005).

In our answer to RQ1, we stated that the design of the gestures can shape
the way the robot is perceived. This can be bene�cial to education, as a robot
that is seen as more human-like and social, and that is liked by the student, can
result in long-term engagement and relationship formation (e.g., de Graaf, 2016; van
Straten et al., 2020). This, in turn, may lead children to want to keep learning with
the robot for prolonged periods of time. However, it is also important to keep in
mind the ethical considerations related to the use of social robots, especially when
we tend to perceive these robots as human-like agents (Darling, 2017; de Graaf,
2016). In addition, basing the robots’ appearance and behavior on what we know
from human-human communication might prevent us from taking advantage of
the ‘superpowers’ that robots could potentially o�er (Dörrenbächer et al., 2020), for
example by incorporating task-relevant sound e�ects (such as animal sounds when
learning animal names), or by designing gestures that are di�erent, perhaps more
expressive, than those that people are physically capable of performing.

According to existing literature discussed in Chapter 2, a social robot’s gestures
are generally understood, although not always as well as human-performed versions.
There are a number of individual di�erences that in�uence people’s ability to interpret
the robot’s gestures: how good people are at understanding human-performed
gestures, their familiarity with robots, and their age (i.e., older children are better at
interpreting gestures than younger children, and adults are better than children and
elderly). Integration with other modalities, such as eye gaze or facial expressions,
can improve the e�ectiveness and clarity of the gestures. At the same time, a robot
that is too lively in its social behavior can also become a distraction from the task at
hand (e.g., Bourguet et al., 2020b; Kennedy et al., 2015).

Does a robot that uses iconic gestures to support its second language tutoring
e�orts result in better learning outcomes than one that does not use iconic
gestures? (RQ3)
To address the need for more empirical research regarding a social robot’s use of
iconic gestures in education, within the L2TOR project we have conducted three
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studies in which a NAO robot was used to teach English vocabulary to children of
4–6 years old. In these studies, which are presented in Chapters 3, 4, and 6, we used
a between-subjects design to compare between a group of children that interacted
with a robot that used iconic gestures as it was training English words with them,
and a group that interacted with a robot that did not use these gestures. The study
described in Chapter 6 included an additional experimental condition where the robot
performed �ve di�erent gestures for the same concept. We found that a robot’s use
of iconic gestures can improve learning outcomes. However, in the study described
in Chapter 3 performance only increased on a delayed test, and not on an immediate
test. In addition, in the studies presented in Chapters 4 and 6, only older children
appeared to bene�t from the robot’s gestures.

In Chapter 3, where the robot taught the names of six animals by engaging
in a game of I spy with my little eye, we found that children in the experimental
condition with iconic gestures retained more English words, as measured with a
delayed post-test that was administered after at least one week, compared to children
who did not receive gestures. It is possible that the lack of immediate learning gain
is due to the consolidation e�ect, where children need time (and sleep) to process
newly learned words (Axelsson et al., 2016). This is consistent with gesture studies,
where the bene�cial e�ects of gestures have been observed on a delayed, but not on
an immediate post-test (e.g., McGregor et al., 2009). Consequently, it is recommended
to include a delayed post-test in all studies that involve a learning task, as it might be
more indicative of a child’s actual learning outcomes than an immediate post-test.

Chapter 4, combined with Vogt et al. (2019), documents a long-term study of
seven sessions, that included a diverse set of 34 English words, a more complex
narrative-based interaction, and several di�erent types of tasks for the child to
complete together with the robot (e.g., repeating English words, enacting motion
verbs). This study showed no signi�cant e�ect of the robot’s use of iconic gestures on
students’ learning outcomes. To investigate whether this was due to the complexity
of the words and gestures or the tutoring interaction as a whole (e.g., regarding the
large number of repetitions of the gestures in Chapter 4 compared to Chapter 3),
in Chapter 6 we conducted a conceptual replication of the game of I spy with my
little eye (Chapter 3), with a number of more abstract, complex English words and
several improvements to the measurement instruments. In this study, we also found
no signi�cant e�ect of the use of iconic gestures on children’s learning outcomes.
However, on average the same number of words was learned by the children between
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the two studies (Chapters 3 and 6), indicating that the di�culty level of the words
themselves was similar. We therefore postulate that the e�ectiveness of the robot’s
gestures might depend on the types of words that are taught (i.e., how abstract they
are), and the iconicity of the matching gestures for these words. In addition, we
found that age — one of the individual di�erences a�ecting the ability to interpret
the robot’s gestures mentioned in our answer to RQ2 — played a role, where older
children in the studies from Chapters 4 and 6 bene�ted more from the robot’s use of
iconic gestures, compared to younger children. This factor is further discussed in
our answer to RQ5.

Are children more engaged with a robot that uses iconic gestures, compared
to with one that does not use gestures? (RQ4)
The e�ect of the robot’s use of iconic gestures on engagement was studied in Chap-
ters 3 and 6, the two studies consisting of a single session. In Chapter 3 we used
an online rating study where participants were asked to provide a single rating,
while in Chapter 6 engagement was annotated by the researchers using a coding
scheme that distinguished between two engagement types: engagement with the
(educational) task, and social engagement with the robot. Both studies showed a
drop in engagement levels toward the end of the session, which is to be expected as
children tend to get bored during a (repetitive) interaction. However, in both studies
children showed a higher average engagement level throughout the session when
the robot used iconic gestures, compared to when it did not use gestures. When
distinguishing between engagement with the task and with the robot (Chapter 6), we
observed that the robot’s use of iconic gestures only resulted in signi�cantly higher
levels of engagement with the robot, and not with the task. This could be explained
by the fact that the robot draws more attention to itself because it is moving its arms
and body, resulting in more cognitive engagement. Because gestures can change the
way the robot is perceived by the students (i.e., as more human-like and friendly; see
our answers to RQ1 and RQ2), a�ective or emotional engagement could potentially
be increased as well.

What are potential factors that in�uence the e�ect of robot-performed iconic
gestures on second language learning outcomes? (RQ5)
Based on the mixed �ndings related to RQ3, we investigated to what extent four
di�erent factors had an in�uence on the e�ectiveness of the robot’s use of iconic
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gestures to support its tutoring e�orts. These factors were identi�ed from gesture
studies, and several of them emerged from our literature review (Chapter 2) as well.
They include (1) the comprehensibility of the robot’s gestures, (2) the age of the
student, (3) the types of concepts that the gestures belonged to (e.g., prepositions
versus motion verbs), and (4) spontaneous reenactment of the robot’s gestures by the
student. All four factors were investigated in Chapter 4, and age was further explored
in Chapters 3 and 6. The other factors could not be studied in Chapters 3 and 6,
because of the limited number of six English words included in these single-session
studies, and because virtually no spontaneous reenactment took place. We found
that age signi�cantly in�uenced the e�ectiveness of the robot’s use of iconic gestures,
while no such e�ects were found for gesture comprehensibility, types of concepts, or
spontaneous reenactment.

Age was found to play a signi�cant role in two studies, the long-term study in
Chapter 4 and the single session study in Chapter 6. These studies included children
of approximately 5–6 years old, and 4–6 years old respectively. Older children in
these studies showed better learning outcomes compared to younger children, but
this only applied to the condition in which the robot used iconic gestures. It therefore
seems as though younger children were unable to make use of the robot’s iconic
gestures to sca�old their learning process. This e�ect of age was not found in the
�rst study, that is presented in Chapter 3.

We have four possible explanations for age not having an e�ect in the �rst study.
First, children learned animal names, for which the gestures might have been more
iconic and engaging than the concepts included in the later experiments. These
gestures could have been easier for younger children to interpret. Second, we made
several (albeit small) improvements to the measurement instruments before using
them in the studies described in Chapters 4 and 6. In Chapter 4, we observe an
e�ect of age in a translation task, which was not included in the studies described in
Chapters 3 and 6. In Chapter 6, we improved the comprehension task from Chapter
3 by adding multiple rounds with di�erent images (the same image from practicing
with the robot, a photorealistic image, and a line drawing), and by using the L1
to introduce the questions (e.g., ‘Where do you see a... [word in L2]’), instead of
naming the L2 word in isolation. Third, the sample size of the study in Chapter 3
was relatively small. Finally, the inclusion of an adaptive tutoring system may have
a�ected the di�culty level of the tasks in such a way that younger children had more
cognitive e�ort available to make use of the robot’s iconic gestures, compared to the
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other studies that did not include an adaptive system.
While age appears to in�uence learning outcomes, at least in two of the three

studies, Chapter 3 shows no e�ect of age on overall engagement. In Chapter 6, we
do see a signi�cant e�ect of age on task engagement, but not on social engagement
with the robot. It therefore seems that the robot’s use of gestures appeals equally to
children of all ages. The increase in task engagement for older children might be due
to the fact that older children tend to have a longer attention span, allowing them to
focus on the educational task for a longer time. However, because the e�ect of age
on learning outcomes only applies to the experimental condition where the robot
used iconic gestures, there does not appear to be a clear link between higher levels
of task engagement and better learning outcomes.

The other factors — comprehensibility of the gestures, di�erences between types
of concepts, and spontaneous reenactment — did not appear to a�ect children’s
learning gain in the long-term study (Chapter 4). However, since the study was not
originally set up with the aim to investigate these factors, and children on average
did not know a lot of English words at the end of the experiment, we cannot draw
�rm conclusions from these data alone. We did observe that children performed well
on counting words, which many of them knew before the experiment, even though
the gestures for these words were hard to understand. This leads us to believe that
unclear gestures at least do not appear to have a detrimental e�ect on children’s
pre-existing knowledge. Furthermore, for older children that participated in the
study, the robot’s use of iconic gestures particularly helped them learn measurement
words (e.g., small), and potentially also operations (e.g., add), although a �oor e�ect
was observed for the latter category.

An interesting aspect, that was also mentioned in our answer to RQ2, is sponta-
neous reenactment of the robot’s gestures. This rarely happened during the single
session studies with I spy with my little eye, while 70% of the children participating
in the long-term study reenacted at least one of the robot’s gestures during the �rst
lesson. There could be a number of reasons why reenactment was more common in
this study, related to the design of the robot’s gestures, the physical positioning of
the robot, or the implementation of the overarching tutoring interaction (e.g., having
to repeat words after the robot). Literature in gesture studies (e.g., de Nooijer et al.,
2013; Repetto et al., 2017) and embodied cognition (e.g., Glenberg & Gallese, 2012;
Hostetter & Alibali, 2008) suggests that enactment could have a bene�cial e�ect on
students’ learning outcomes, although no such e�ect was found in our study. In
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future work, we aim to uncover which design decisions can elicit reenactment of the
robot’s gestures by the student, and whether we can tap into the bene�cial e�ects
that are observed in the reenactment of human-performed gestures.

Additional analyses on the same data used in Chapter 4 further showed that
children’s selective attention and their language skills —measured by their knowledge
of �rst language vocabulary and phonological memory— had an in�uence onwhether
they could bene�t from the robot’s gestures (van den Berghe et al., 2021b). Children
with better selective attention performed better in the condition with iconic gestures
than in the one without iconic gestures, perhaps because they had the attention and
e�ort available to interpret the gestures, while still keeping track of the educational
tasks. The study by van den Berghe et al. (2021b) also found that children with larger
L1 vocabularies and better phonological memory performed better in the condition
without iconic gestures than the condition with iconic gestures. This indicates that
gestures can be particularly helpful for students that have relatively poor language
skills, which has also been observed in human teaching scenarios (Rowe et al., 2013).

How can we collect naturalistic human-performed examples of iconic ges-
tures, and use these as input for designing a robot’s gestures? (RQ6) In
Chapter 5, we presented a dataset of human gestures, performed by a diverse group
of children and adults, collected using a game of charades with a social robot as
a semi-structured elicitation procedure. Our aim with this dataset was two-fold:
the recorded gestures can be used as input for a robot’s gesture production and
recognition processes, and for studies into human gesturing behavior (e.g., focusing
on default modes of representation, or di�erences in gesturing between children and
adults). The source code for the game of charades is made publicly available, so that
the dataset can easily be extended by other researchers, for example to include new
concepts, or to collect data in di�erent (cultural) environments. Since its release, the
dataset has successfully been used in gesture studies, and to inform the design of a
robot’s gestures.

The dataset of human-performed gestures has been used to study whether se-
mantically similar concepts, such as bird and airplane, also share kinematic simi-
larity (Pouw et al., 2021). This turned out to be the case, which not only provides
further insight into human gesturing behavior, but it can also help robots or virtual
agents produce a relevant, related gesture for a concept if no gesture was designed
speci�cally for that concept (e.g., performing ‘airplane’ for the concept ‘bird’ if there
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is no gesture for ‘bird’ available). At the same time, the relation between gesture form
and meaning could potentially be leveraged by gesture recognition algorithms, to
detect higher level concepts (e.g., ‘means of transportation’) from gestures belonging
to concrete implementations (e.g., ‘car’), on which they were not explicitly trained.

We also planned to use recorded gestures from our dataset for our �nal study,
presented in Chapter 6, by incorporating them in a second language tutoring scenario.
However, we realized that mapping the recordings directly onto the robot resulted in
a substantial loss of information, such that the meaning of the gestures was di�cult
to infer. Therefore, we manually recreated the gestures based on examples from
the dataset (as suggested in our answer to RQ1). These gestures were evaluated
using an online questionnaire, and gestures that scored low on comprehensibility
were revised. By basing the gestures on examples from the dataset, a number of
which were performed by children, we believe that they matched better with the
preferred gesture forms of children participating in our study, compared to designing
the gestures from the researchers’ frame of reference. However, we have not yet
made a direct comparison between these di�erent approaches to the design of the
robot’s gestures. It is also worth noting that the dataset that was used in this case
consisted of pantomime (silent) gestures, while researchers such as McNeill, 1992
have argued that gesture and speech should be understood (and therefore, perhaps,
also recorded) together as an integrated system.

Do gestures contributemore to learning performancewhenmultiple gestures
are used for the same concept, highlighting di�erent salient features of this
concept, compared to a single gesture for each concept? (RQ7)
Research in gesture studies (e.g., Ortega & Özyürek, 2016), and the recordings in
our dataset from Chapter 5 show that there is variation in how people produce
gestures for a particular concept. This might be caused by di�erences in mental
representations of objects and concepts (cf. Piaget & Cook, 1952). We therefore
postulate that, in education, variation in the cues that support the learning process,
focusing on di�erent aspects of the object of learning, might lead to increased learning
outcomes. This �nds further support in variation theory (Marton & Booth, 2013).
In Chapter 6, we therefore set out to investigate whether varation in the robot’s
gesturing behavior has an e�ect on children’s learning outcomes. This was done by
means of a study with three experimental conditions: no gestures, repeated gestures
(one for each concept), or varied gestures (�ve for each concept). Children again
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played the game of I spy with my little eye with the robot, in a single session.
The results showed no signi�cant di�erence in learning outcomes between the

conditions. However, the same e�ect of age that was presented in our answer to
RQ5 for the repeated gestures condition was observed for the condition with varied
gestures: Older children in the study on average learned more words than younger
children, but only for the two conditions with repeated and varied iconic gestures.

Does variation in the robot’s gesture repertoire result in higher levels of
engagement with the robot or the task, compared to a single gesture for each
concept? (RQ8)
Based on existing literature (e.g., Tanaka et al., 2007), we assumed that children
would feel more engaged with a robot that shows more variation in its behavior. In
Chapter 6, we found that varied gestures had the same e�ect as repeated gestures on
engagement, where the average level of engagement with the robot was higher for
both conditions with gestures, compared to the condition without gestures, but no
signi�cant di�erence was found between repeated and varied gestures. There was
no e�ect of varied or repeated gestures on task engagement.

To summarize the answers to RQ7 and RQ8, the results of the study presented
in Chapter 6 do not point toward any bene�ts of the robot’s use of varied gestures
in the context of education, compared to repeating the same gesture. However,
there are also no apparent drawbacks to including a number of di�erent gestures. It
might be the case that a robot that varies its behavior is perceived more positively
than one that shows repetitive behavior, particularly if the student is to engage in
multiple sessions with the robot. Future long-term studies are needed to further
investigate these e�ects. Because there is little research focusing on the role of
various forms of variation in educational settings, it might be worthwhile to take a
step back and investigate this topic with human-performed gestures, before studying
this in the context of human-robot interaction. In addition, studies could involve
older children or adults, as they are more capable of re�ecting upon and verbalizing
their experiences, which will provide qualitative data on how variation is perceived
by people interacting with the robot.

7.2 Implications and recommendations
Our contribution to research into the role of robot-performed gestures in education
is three-fold. We have provided (1) a comprehensive overview of the state of the art
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in robot-performed gestures, (2) empirical �ndings regarding the e�ects of robot-
performed iconic gestures in the context of second language tutoring with children,
and (3) a dataset of human-performed gestures.

In our review of existing literature in the broader domain of robot-performed
gestures (beyond iconic gestures for education), presented in Chapter 2, we have
provided an overview of the state of the art in the �eld, and concluded with a list
of ten outstanding questions and four methodological suggestions. These form our
concrete recommendations for studying the role of robot-performed gestures in
human-robot interactions, and can serve as guidelines for future research.

Chapters 3, 4, and 6 present the �rst studies into the e�ects of robot-performed
iconic gestures in the context of second language tutoring. In doing so, we have
elaborately described the process of designing the tutoring interactions and the
robot’s gestures, and the systems and gestures that were developed have been made
publicly available to support future work in this emerging �eld of research.

Our �ndings indicate that iconic gestures can be considered a way for robots to
make use of their physical presence, and as part of their socially intelligent behavior.
In second language learning, we found that the robot’s use of iconic gestures can help
with communicating the educational content, resulting in better learning outcomes,
as well as facilitating interest, which led to higher levels of engagement with the
robot. This can be considered an indication of a greater likelihood of, and tendency
toward building a lasting relationship with a robot that uses gestures.

The main factor in�uencing the success of the robot’s iconic gestures appears to
be the students’ age: we found that older children in our study (of approximately
5.5–6 years old) were able to learn more with help from the robot’s iconic gestures,
while younger children did not seem to bene�t from them. This knowledge can be
used to inform the design of robot tutoring interactions, and particularly the robot’s
iconic gestures, in the future.

Variation in the robot’s gestures has previously been underresearched, and was
�rst explored in Chapter 6 of this thesis. Although we did not observe any bene�ts
of varied gestures compared to repeated gestures, this remains an interesting topic
for future studies from the perspectives of education, gesture studies, and social
robotics alike. Robots can prove to be useful tools in these future studies, because
their behavior can be made consistent across participants, and studies can easily be
replicated. This is also why we used a robot confederate in the gesture elicitation
study (Chapter 5).
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Finally, in Chapter 5 we introduced a dataset of recorded gestures, performed by
a large and diverse group of participants in our gameful elicitation study, which has
been made publicly available. It can easily be extended to include more concepts or
more recordings. The gesture recordings are relevant for gesture research, and they
can be used as input for the gesture production and recognition processes of virtual
agents and robots.

7.3 Limitations and future work
To ensure that the studies conducted within the context of this thesis and the L2TOR
project remained feasible, and to minimize the in�uence of confounding variables,
several concessions had to be made. At the same time, these provide avenues for
future work. We have identi�ed �ve limitations, which we will brie�y discuss below.

Use of the NAO robot
All of the studies discussed in this thesis used the same social robot, the SoftBank
Robotics NAO V5. We chose to use this robot because of its (relative) availability and
a�ordability, and because we expected that its appearance would appeal to younger
children. Its popularity in research on social robots ensures that our �ndings can
be positioned within the broader research �eld. At the same time, the use of only
one type of robot can be seen as a limitation, as the literature review (Chapter 2)
indicated that the robot’s appearance could also in�uence the e�ectiveness of the
robot’s gestures. In addition, the gestures in our studies were designed speci�cally
for the NAO robot. Other robots may have di�erent motor degrees of freedom,
and di�erent features (e.g., �ve �ngers instead of three), which will have an impact
on their gesturing behavior. In future work, we therefore recommend to compare
between di�erent robot platforms, to verify whether our results generalize to other
robots. This is also proposed as a methodological suggestion at the end of Chapter 2,
to ensure external validity of studies on robot-performed gestures.

Technical limitations
While developing the intelligent tutoring system, we encountered a number of
technical limitations, particularly related to the robot’s sensing capabilities (e.g.,
detecting physical objects, automatic speech recognition). To work around these
limitations, we decided to introduce a tablet device on which the educational content
was presented, and limited the amount of verbal interaction with the robot. The
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addition of a tablet device may have increased cognitive load for the students, as they
had to split their attention between the tablet and the robot. This, in turn, may have
made it more challenging for children to make use of the robot’s gestures. The fact
that children with better selective attention performed better in the experimental
condition with iconic gestures compared to the condition without iconic gestures
further supports this point (van den Berghe et al., 2021b). Children might have more
cognitive e�ort to spend on observing the robot and its gestures if simple physical
objects, or no objects at all, would have been used. In the future, we therefore intend
to study interactions that involve only the child and the robot.

Outstanding questions regarding robot-performed gestures
A further limitation is that we were not able to address all of the ten outstanding
questions, presented in our literature review (Chapter 2), in the current thesis. This
is because some of the outstanding questions rely on future developments (i.e., in
sensor technology and AI), because of the aforementioned limitation of only using
the NAO robot, or because we had to limit the scope of our research, to keep the focus
on second language learning. However, we did contribute to six of the outstanding
questions (1, 2, 4, 5, 7, and 8), as discussed at the end of Chapter 2. The source code
and materials of our studies can be used to continue our line of research. We look
forward to discussing these outstanding questions and our contributions with other
researchers in the �eld.

Research with young children
Our research focused on second language tutoring for relatively young children, of
4–6 years old — the age group attending the �rst two years of primary school in
the Netherlands. This age was chosen because children’s academic success is said
to depend on early instruction of language skills (Ho�, 2013; Nikolov & Djigunović,
2006), and because mastering a foreign language is considered a useful skill for their
future (European Commission, 2012).

There are a number of challenges when conducting research with young children.
For example, it can be di�cult for them to re�ect upon and verbalize their experiences
in a detailed, qualitative manner (Markopoulos et al., 2008). As a result, we had to
rely on adults to, for example, rate the clarity of the gestures or the engagement
levels of the children. We also observed large individual di�erences in our studies
with children, which may limit the generalizability of the �ndings, particularly in
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our �rst study (Chapter 3) that had a relatively small sample. In addition, children
in general did not learn many new words in our studies, making it more di�cult to
study the in�uence of various factors, such as the robot’s use of gestures, on these
learning outcomes. The e�ect of age, that was observed within this age group, may
no longer be a factor if we were to focus on older children or adults. In future work
we aim to broaden the age group of our participants, to get additional qualitative and
�ne-grained insights regarding the use of social robots as second language tutors.

Focus on second language vocabulary
Existing research in human gesture studies indicates that iconic gestures can be
bene�cial to education, particularly in the domain of second language learning (e.g.,
Repetto et al., 2017; Tellier, 2008). This is potentially due to the ‘grounding’ e�ect,
where gestures can be used to link new linguistic concepts to familiar non-linguistic
knowledge and experiences (Barsalou, 2008). Because we focused solely on second
language learning, it is possible that our �ndings do not generalize to other educa-
tional domains. However, research with social robots in related �elds does show
promising results (e.g., Bremner et al., 2011; Huang & Mutlu, 2013; van Dijk et al.,
2013).

In addition, our focus with this work was on vocabulary training, but there are
several other aspects of language learning where robots could o�er support, such
as practicing with having conversations in a second language. People might be less
anxious when talking to a robot in a second language, compared to talking with
another person (Alemi et al., 2015). Therefore, we postulate that robots could have
additional bene�ts for aspects of language learning other than vocabulary training.
However, because we designed the interaction for young children that had little to
no pre-existing vocabulary knowledge, and to ensure that the interaction would be
the same for all children, we decided to limit the content of the tutoring system to
short vocabulary terms for the present studies.

7.4 The future of robots in education
The goal of the L2TOR project, and by extension of the work that was conducted in
the context of this thesis, was to create an intelligent tutoring system to help children
learn a second language together with a social robot. Ideally, by the end of the project
there would be a system that was ready to be handed over to schools, to be used in
practice. While the �rst part of this plan worked — children successfully learned
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English words by engaging in the tutoring interaction — the second part turned
out to be more challenging than expected. Because of various technical limitations,
and because a certain amount of technical knowledge is still required to program
the robot and to generate new content, we were unable to deliver a plug-and-play
solution that was ready to be handed over to schools, that could easily be extended
with new content by teachers, and that could take full advantage of the potential
that social robots have to o�er.

This experience within our project appears to echo the general sentiment about
social robotics, where it is said that we have entered a social robotics winter (Henschel
et al., 2020). This refers to the disillusionment that follows a period of (over)in�ated
expectations. The Gartner hype cycle (Fenn & Raskino, 2008) describes a similar
development over time for various emerging technologies, such as social robots.
According to the hype cycle, all technologies go through a process of having in-
�ated expectations, after which a phase of enlightenment brings us to a plateau
of productivity, at which point we understand what a technology can and cannot
do for us. According to Gartner, the expectations surrounding ‘smart robots’ were
still estimated to be on the rise in 2020, with 5–10 years to go before the plateau of
productivity would be reached1.

Since all new technologies appear to follow the same pattern, although at di�erent
paces, we believe there is a lot we can learn from other tools that have previously
been used to innovate education, such as tablet devices. This includes, for example,
making robots more a�ordable and accessible to a wider audience. This audience
should include teachers, educational publishers, parents, and the students themselves.
They should be given the tools to create additional content for their robots, so that as
a society we can together explore the role that robots can and should take up in our
lives. It is likely that this role will be similar to that of a tablet: as a tool to support
teaching, but certainly not replace teachers, with the added bene�t of having a social
and physical presence in the context of the student.

My personal vision of the ideal social robot in education is one that is a�ordable,
open source, and tailored to the individual. Similar to the NAO robot, it has the
appearance of a toy with human-like features. However, it has a smaller form factor,
so that it can sit on the student’s desk and be carried around in a backpack. The
robot can support the student in all educational activities, at school and at home. By

1https://web.archive.org/web/20210813185706/https://www.gartner.com/smarterwithgartner/2-meg
atrends-dominate-the-gartner-hype-cycle-for-arti�cial-intelligence-2020/
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tracking the student’s progress across di�erent subjects, it is able to provide guidance
on a metacognitive level (e.g., regarding learning strategies), it can keep track of
the student’s schedule, and indicate when it is time to take a break from studying.
In other words, it becomes a personal companion to the individual student. There
are two concerns, however, that I would urge to explore before making this vision a
reality. First, there are ethical implications to consider. For example, how does giving
a robot to children a�ect their (social) development? How would children respond if
their companion robot, that they may have built a relationship with, breaks down
or has a bug? Second, it might be di�cult for a small form factor robot to perform
gestures that are elaborate enough to provide the bene�ts that we observed with the
NAO robot in our studies, or to be able to use sign language to communicate.

7.5 General conclusion
The aim of this thesis was to investigate the e�ects of a social robot’s use of iconic
gestures to support its second language tutoring e�orts with children of 4–6 years old.
We addressed the following research question: What are the e�ects of robot-performed
gestures in the context of second language tutoring with children, and how are these
in�uenced by the design decisions regarding the robot’s gesture production process?

Our studies showed that a robot’s use of iconic gestures while teaching children
a second language can result in better learning outcomes. For gestures that were less
iconic, this only applied to older children in our samples (of approximately 5.5–6
years old). Children also tend to be more engaged with a robot that uses gestures,
compared to one that does not gesture. Throughout the di�erent studies we have
re�ected upon, and made improvements to, the process of designing and evaluating
the robot’s gestures.

In our review of existing literature, we found that design decisions regarding the
robot’s gesture production process, such as making sure the gestures are congruent
with what is communicated verbally, do appear to in�uence the e�ectiveness of the
robot’s gestures. In our studies, we have based the gestures on human-performed
examples, included variation in the robot’s gesturing behavior, and observed sponta-
neous reenactment of the robot’s gestures. None of these factors appeared to have
an e�ect on children’s learning outcomes, although future research is needed to be
able to draw �rm conclusions. Our dataset of collected human-performed gestures
can be used to identify other factors, such as di�erences between adults and children,
that may inform the design of robot-performed gestures in the future.
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CHAPTER 7. GENERAL DISCUSSION

At the start of our project, expectations of what social robots could do — in
education and otherwise — ran high. Over the last few years, we have sometimes
observed signs of disillusionment that may imply that we are entering a social
robotics winter, where the capabilities of robots that people currently interact with
do not meet the expectations that were set out when social robots �rst became
available, and that are implied by their human-like appearance. However, we believe
that social robots have a lot to o�er in education, especially if we follow the path of
accessibility, availability, and openness: making sure that everyone is able to own,
and create content for the social robots of the future. While the hype surrounding
social robots may be winding down, a more realistic image of what these robots
can and cannot do for us will take shape. With the studies presented in this thesis,
we aim to provide a realistic account of current developments in social robotics for
education, and the role that gestures could play in supporting educational tasks, to
help complete this image.

We expect that the process of introducing robots to schools and to our lives may
follow a similar trajectory to that of other technologies that preceded them, such as
computers and tablets. However, compared to other tools that are currently used in
education, social robots can have the added bene�t of being present, as social beings,
in our physical environment. We have observed that their ability to use gestures can
improve children’s learning outcomes, although more research is needed to explore
the design space of robot-performed gestures, in order to optimally make use of
their contribution to a social robot’s tutoring e�orts. With this vision for the future
of (gesturing) robots in education, we believe that we can leave the social robotics
winter behind us, and enter a blossoming social robotics spring.
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Summary

In recent years we have seen a number of technological innovations in (primary
school) classrooms. It is important to explore the role that technology can play in
this context, because classroom sizes are increasing and, as a result, it is becoming
increasingly more challenging for teachers to accommodate their students’ individual
needs. Social robots could be considered the next iteration of technology that could
potentially support — but certainly not replace — teachers, for example by o�ering
individual tutoring sessions to students. Compared to existing technologies that
are already frequently being used in education, such as tablet devices, robots have
the added bene�t of being physically present in the context where learning takes
place. This allows them to also connect with the learner socially, for example by
using natural speech to talk, and by using non-verbal modes of communication such
as hand gestures. This social component is known to play an important role when
learning from other people, therefore we set out to investigate whether this also
applies to educational interactions between children and a robot. In this thesis we
focus speci�cally on the use of hand gestures, which can be considered a de�ning
property of social robots, to support second language learning.

The research presented in this thesis was conducted as part of the L2TOR project,
in which we studied whether the SoftBank Robotics NAO robot could successfully be
used to teach second language vocabulary to children of 4–6 years old. Research has
shown that learning a second language, especially at an early age, provides several
bene�ts for the future, for example in terms of career prospects. We developed
a number of tutoring interactions, consisting of the robot and the child together
playing games or going through scenarios on a tablet device. These interactions were
put to the test in several experiments at primary schools in the Netherlands, where
children tried to learn English vocabulary with the robot. We measured whether
the robot was indeed capable of helping children learn second language vocabulary,
whether the children were engaged with the educational task and with the robot,
and how they perceived the robot (e.g., as more of a human or more of a ‘thing’).
This thesis investigates the role of the robot’s use of hand gestures in improving
language learning performance and engagement.

In Chapter 2, we provide an overview of the state of research into robot-
performed gestures. We focus on social (human-looking) robots, but we do examine
a number of domains other than education where these robots are being used, such
as the hospitality industry and healthcare. Our overview shows that gestures can be
used to change the way the robot is perceived (e.g., its personality or mood), they can
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result in more engagement with and enjoyment of the interaction, they can improve
performance on human-robot collaborative tasks (including educational tasks), and
they can support the robot’s interactions with people with special needs, such as
autistic children. We have further identi�ed a number of outstanding questions in
the �eld of robot-performed gesture research that can help pave the way for future
research, such as a need for more studies into mirroring or reenactment of the robot’s
gestures. Several of these outstanding questions are addressed in the later chapters
of this thesis.

Chapters 3, 4, and 6 describe three experimental studies that were conducted to
investigate whether robot-performed gestures can indeed result in greater learning
outcomes, in terms of more English vocabulary words learned, as well as greater
levels of engagement (in Chapters 3 and 6). Chapter 4 describes a longitudinal study
consisting of seven sessions with the robot, while Chapters 3 and 6 were single-
session studies. All three studies con�rm that gestures can be used to facilitate second
language vocabulary learning, although we found that this particularly applied to
the older children in our studies (those that were approximately six years old).
Furthermore, the robot’s use of gestures was shown to result in higher levels of
engagement, particularly with the robot.

In Chapter 5 we introduce a dataset of human-performed gestures, that was
collected by having the robot play a game of charades with visitors to the NEMO
science museum in Amsterdam, and the Lowlands music festival in Biddinghuizen.
We observed, in line with existing gesture research, that people tend to vary in the
types of gestures they perform for certain concepts. For example, a pencil can be
depicted by ‘becoming’ the pencil and raising one’s hands in a pointy shape above
the head, or by depicting the act of writing or drawing something on a piece of
paper. The gesture recordings that were collected can be used as guidelines to design
gestures for a robot or virtual agent, making use of what we have learned from
human gesturing behavior. Because we observed variation in gesturing behavior
by people that participated in our data collection study, in Chapter 6 we had the
robot vary its gesturing behavior as well. However, we but did not �nd an e�ect on
children’s learning outcomes or levels of engagement. More research is needed to
further explore the e�ects of gesture variation, as this has also not yet been studied
in human-human communication settings. We are particularly interested to see
how variation may a�ect long-term engagement across multiple interactions with
the robot, as well as the way the robot is perceived — two important aspects of
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human-robot interaction that were not included in the current study.

Implications and conclusion
We have studied the potential of using social robots as second language tutors for
children, and speci�cally focused on the role that the robot’s use of hand gestures
could play. We found that social robots are able to support second language vocabu-
lary training, and that particularly the older children in our studies (of approximately
six years old) further bene�ted from the robot’s use of hand gestures. The robot’s
use of gestures also resulted in higher levels of engagement, which could potentially
maintain children’s interest in the robot for a longer period of time. This thesis
thereby furthers our understanding of how robots can contribute to second language
tutoring, and how to make use of their physical presence in the context where learn-
ing takes place by means of hand gestures. The source code of our experiments, as
well as the dataset of recorded gestures from Chapter 5, have been made publicly
available to support future research.
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