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General Introduction



CHAPTER 1

1.1 Measuring Psychological Constructs

Studying psychological constructs, such as personality traits, mental illnesses, or well-
being, is part of many fields in psychology (and, more generally, in the social and
behavioral sciences; e.g., when studying trust in politics or the government). One of the
first things that students in these fields learn is that such constructs are not directly
observable but latent (e.g., it is not possible to hold a ruler on a person’s head and say
that he or she has a well-being level of 10). Therefore, one has to rely on questionnaire
items that are supposed to measure certain constructs (Joreskog & Sorbom, 1979;
McNeish & Wolf, 2020). An essential aspect of assessing psychological constructs is to
evaluate how well the constructs are measured by the items and, thus, whether the items
can be considered valid measures of the constructs. This is often done by means of factor
analysis (Lawley & Maxwell, 1962). In the resulting factor model or “measurement
model” (MM), the factors correspond to the latent constructs and factor loadings indicate
how strongly items are related to the underlying factors (i.e., how well the items measure
the factors). Based on the MM, one can derive construct scores (or “factor scores”) for
each observation in the dataset and use them in subsequent analyses.

To better understand how to interpret a MM, consider the one depicted in Figure
1.1, which corresponds to a questionnaire with the five items “happy”, “cheerful”,
“determined”, “enthusiastic”, and “excited” to assess positive affect (PA) and the four

» o« »n o«

items “upset”, “anxious”, “nervous”, and “jittery” to assess negative affect (NA). The
arrows (representing factor loadings of the items) go from the latent constructs (circles)
to the items (squares), which indicates that PA and NA influence the scores on the items.
For example, if we observe high scores on positive emotions like “happy” or “cheerful”,

we assume that this is due to a high score on the PA construct.

nerv-
ous

enthu-

siastic

it
ious ‘ ‘ Jiftery ‘

cheer- deter-
ful mined

anx- ‘

‘ happy ‘ excited‘ upset ‘ ‘

Figure 1.1. Measurement model underlying the measures of the latent constructs
positive affect (PA) and negative affect (NA).
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GENERAL INTRODUCTION

1.2 Dynamics in Psychological Constructs

Over the last two decades, studying the dynamic process of psychological constructs (and
thus how psychological constructs evolve within persons over time) gained tremendous
popularity, which was facilitated by the steep increase in technological possibilities
(Hamaker & Wichers, 2017). More specifically, instead of collecting cross-sectional data
(consisting of measures for many subjects at a single time-point), researchers collect
intensive longitudinal data (ILD; consisting of many repeated measures, usually in
everyday situations, for a single subject or for multiple subjects; Ryan, 2020). Such data
is easily gathered by means of experience sampling methodology (ESM; Scollon, Kim-
Prieto, & Diener, 2003; van Roekel, Keijsers, & Chung, 2019), in which researchers
administer their questionnaires to many subjects at the same time and over a longer
period of time via smartphone apps at random or event-based time-points. This allows
delving into the dynamics of constructs as they take place (Hamaker, 2012; Molenaar &
Campbell, 2009; Ryan, 2020). Instead of only answering “who” experiences certain
emotions, symptoms, or thoughts, ILD goes beyond this “between-person” approach and
also allows to answer “in which contexts” they occur (i.e., taking on a within-person
approach; Csikszentmihalyi & Larson, 2014; Scollon et al., 2003). Results from ILD are
also clinically relevant, for example for tailoring (depression) treatments to subject-
specific dynamics in (depression) symptoms (van der Krieke et al, 2015) or for
generating personalized life-style advices (Van Roekel et al., 2017).

To clarify the data structure, consider, for instance, that work- and organizational
psychologists ask employees to complete the previously described questionnaire
(measuring PA and NA; Figure 1.1) at three random time-points throughout a workday
over a course of 30 days. The psychologists’ goal is to understand how employees’
affective well-being evolves in different contexts (e.g, during teamwork, during
lunchbreaks with colleagues, during individual work, just before giving a presentation
etc.) and to use the results to create personalized advice for improving general mood,
which, in turn, should improve a productive working environment.

1.3 Measurement Invariance When Studying Dynamics in Psychological
Constructs

Besides coming with new possibilities, ILD data also come with new psychometric
challenges: the measurement quality of the psychological constructs might differ across
subjects and situations. On the one hand, subjects might use different response styles at
different points in time. For example, some subjects could generally be more inclined to
use the extreme values on the measurement scale (Moors, 2003; Morren, Gelissen, &
Vermunt, 2011). Others might start applying such an “extreme response style” once they
are no longer motivated to repeatedly complete the ESM questionnaire. On the other
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CHAPTER 1

hand, the answer to an item might not (only) be affected by the underlying construct, but
(also) by the cultural background of a subject (Van De Schoot, Schmidt, De Beuckelaer,
Lek, & Zondervan-Zwijnenburg, 2015) or the tendency to put items into a different
perspective items after a life changing event (Lommen, van de Schoot, & Engelhard,
2014). Differences and/or changes in response styles and substantive item
interpretations alter the MM differently across subjects and/or time-points. For example,
response styles increase the size of the loadings or come with an additional response style
factor (Billiet & McClendon, 2000; Cheung & Rensvold, 2000). Changes in substantive
item interpretations can in- or decrease the size of the loadings or cause changes in the
configuration of the MM such that an item becomes a measure of a different construct
(Oort, Visser, & Sprangers, 2005), which can go as far as changing the meaning of an entire
construct (Lommen et al., 2014).

For instance, the work- and organizational psychologists in our ILD example
considered the item “excited” a positive emotion. Indeed, this emotion is often used to
expresses eagerness and happiness (Heininga & Kuppens, 2020). However, besides the
positive meaning, “excited” may also be seen as nervousness or agitation (Galinha,
Pereira, & Esteves, 2013; Mackinnon et al,, 1999). The item would then be a measure of
NA rather than PA, which is depicted in Figure 1.2. The item interpretation might not only
differ across employees but also within an employee throughout the day. For instance,
during a lunch break, the employee might be excited in a positive way when talking about
an upcoming family vacation, whereas the employee may be excited in a negative way
prior to giving a presentation. Thus, the employee would switch back and forth between

two MMs.
ha cheer- deter- enthu- excited upset anx- nerv- itte
PPy ful mined siastic P ious ous Jiftery

Figure 1.2. Measurement model underlying the measures of the latent constructs
positive affect (PA) and negative affect (NA) when being “excited” is interpreted as
nervousness or agitation.
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GENERAL INTRODUCTION

If the MM is not the same across subjects and time-points, “measurement
invariance” (Meredith, 1993; Meredith & Teresi, 2006) does not hold. However,
measurement invariance is a key assumption for validly investigating dynamics in
psychological constructs because, if it holds, we know that the same constructs are
measured in the exact same way across subjects and time. If researchers fail to detect
non-invariance of the MM (or if it is simply ignored), inferences about the dynamics in
psychological constructs cannot be trusted (e.g., observing a change in construct means
could also be due to changes in the way the construct is measured; Adolf, Schuurman,
Borkenau, Borsboom, & Dolan, 2014; Guenole & Brown, 2014; Van De Schoot et al., 2015).

Consider, for example, that the true NA score for some employees in our ILD
example is high prior to giving a presentation (say, their true NA score is a 10) and that
the true PA score is low (say, their true PA score is a 3). If the MM in Figure 2.2 is
underlying their responses, the employees would give a high rating on the item “excited”
because their responses are influenced by their high NA. If the context-dependent
interpretation of the item “excited” was ignored, that is, the psychologists would assume
that the MM in Figure 2.1 is still underlying the responses of the employees, the
psychologists would overestimate the PA of the employees because the high item ratings
on “excited” would erroneously be included in their PA scores. In turn, the psychologists
would draw wrong conclusions (e.g., that employees who dislike being in the focus should
be asked to give a presentation more often).

If differences in the underlying MM would be detected, researchers could
safeguard the validity of their conclusions by accounting for non-invariance in their
analyses (Byrne, Shavelson, & Muthén, 1989) or by using only observations for which
invariance holds. In any case, researchers could learn from it for future studies. For
instance, prior to data collection, they could replace or rephrase problematic items
(Galinha et al., 2013), or shorten the questionnaire (which can considerably improve the
data quality; Eisele et al., 2020). Furthermore, during data collection, they could add
additional motivational rewards for participants who are at risk for adopting response
styles. Importantly, revealing differences in the MM can also be interesting in its own
right. For instance, MM changes might indicate the onset of a mental state, such as mania
(Hofmann & Meyer, 2006) or a posttraumatic stress disorder (Lommen et al., 2014).
Additionally, one can learn about substantively interesting interindividual differences in
how an item functions.

For many researchers, it may not come as a surprise that item interpretations and
response styles can be as dynamic as the constructs that the questionnaires purport to
measure. Why is it then that measurement invariance often receives little attention in
ILD? The answer to this question is twofold. First, researchers often simply employ
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CHAPTER 1

established questionnaires (like the Positive and Negative Affect Scale; Watson, Clark, &
Tellegen, 1988 or the Beck Depression Inventory; Beck, Rush, Shaw, & Emery, 1979) for
which measurement invariance has previously been investigated for cross-sectional data
(i.e., for the MM across persons). However, as explained above, the MM can differ across
persons and change within a person depending on context-specific influences.

Second, existing methods to detect measurement invariance in ILD are limited
because they can only test whether or not invariance is violated either across subjects—
thereby assuming invariance across time—or whether it is violated across time—thereby
assuming invariance across subjects (Adolf et al.,, 2014). Furthermore, if measurement
invariance is violated, these methods give no insights into sources of non-invariance (i.e.,
for which subjects/for which time-points the MM varies), making it difficult for
researchers to proceed. More specifically, in order to identify the sources of non-
invariance, researchers have to conduct many pairwise comparisons of the subject- or
time-point-specific MMs because ILD typically contain many observations from more
than just a few subjects (e.g., to identify non-invariance across 100 subjects, one would
have to make 4950 comparisons). Moreover, the invariance tests are confirmatory in that
they assume the pattern of (non-zero) loadings of the MM (i.e., the “configural model”) to
be known in advance. However, this assumption is easily violated, as was shown in our
example where the loading of the item “excited” changed from PA to NA.

Thus, what is actually required is an exploratory approach that detects unknown
heterogeneity in the MM across subjects and time. For instance, if the item “excited”
indeed has two meanings, then there are two MMs and thus two factor models. This can
be conceptualized as persons belonging to one of two latent classes at a certain time-
point. Some persons will always answer according to MM 1, others will always answer
according to MM 2, and yet others will switch between the two MMs (and thus between
the two classes). An efficient tool to detect such unobserved heterogeneity in factor
models in cross-sectional data is mixture factor analysis (Lubke & Muthén, 2005;
McNicholas, 2016), which classifies subjects according to their underlying factor model
into a few latent classes. Each class then has its own MM. However, a methodology that
allows subjects to switch between different classes (i.e.,, MMs) over time is lacking.

1.4 Latent Markov Factor Analysis for Evaluating Measurement (Non-)
Invariance

The main objective of this dissertation is to develop and evaluate a method to trace
measurement non-invariance in ILD in order to help researchers safeguard valid
conclusions about dynamics in psychological constructs and to extend their toolbox for
obtaining substantive insights into the dynamics of underlying MMs. To this end, we
extend mixture factor analysis to accommodate ILD. More specifically, the new method,
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GENERAL INTRODUCTION

called latent Markov factor analysis (LMFA), models changes in the MM by means of a
dynamic latent class or mixture model (known as latent transition or latent Markov
model; LMM; Bartolucci, Farcomeni, & Pennoni, 2015; Visser, Raijmakers, & van der Maas,
2009; Zucchini, MacDonald, & Langrock, 2016) and, thereby, clusters observations into a
few latent “states” (i.e., dynamic latent classes). Furthermore, factor analysis (FA; Lawley
& Maxwell, 1962) within the states reveals the structure of the MM. Note that, to detect
all kinds of MM differences—including the number and nature of factors—exploratory
FA and not the more restrictive confirmatory FA is employed. As a result, LMFA provides
crucial information on how and for which subjects and/or time-points the MM differs.

To clarify how LMFA works, consider the graphical representation in Figure 1.3,
which shows (for simplicity) three transitions between the previously introduced MMs
for a single employee. LMFA would indicate that the employee is in MM-state 1 at the first
ten time-points (i.e, Sq, ..., S0 = 1), then changes to MM-state 2 for the next ten time-
points (S;4, ..., So9 = 2), and then changes back to MM-state 1 for the remaining time-
points (S,4, ..., S3p = 1). By looking at the state memberships, the psychologists can see
which observations are comparable and, by investigating the state-specific MMs, they can
see that the interpretation of the item “excited” changes over time. Based on this
information, the psychologists could, for example, decide to remove this item prior to
creating construct scores (other possibilities to deal with non-invariance will be
described throughout this dissertation).

(Pa) -/Q (ba)
I I 3 P e Y e e P N N N

Figure 1.3. Measurement model underlying the measure of the latent constructs positive
affect (PA) and negative affect (NA); h = happy, ¢ = cheerful, d = determined, en =
enthusiastic, ex = excited, u = upset, a = anxious, n = nervous, j = jittery.

1.5 Outline of the Thesis

In Chapter 2, we introduce and extensively describe the new method LMFA and, thereby,
lay the foundation for the subsequent chapters. Additionally, we relate LMFA to other
methods that could be potentially useful for tracing MM differences or changes in ILD and
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CHAPTER 1

explain why these methods are, nevertheless, not sufficient for this purpose. Moreover,
we show how the model is estimated by means of a full information maximum likelihood
(FIML) estimation in the software Latent GOLD (Vermunt & Magidson, 2016). In an
elaborate simulation study, we demonstrate how LMFA performs in recovering
parameters in favorable and unfavorable conditions (e.g., with regard to differences
between the state-specific MMs and the sample size in terms of the number of subjects
and observations). Based on the results, we present recommendations for empirical
practice. Furthermore, we address the problem of model selection, which is complicated
by LMFA'’s flexibility to detect all kinds of MM differences, even regarding the number of
factors. More specifically, both the number of states and the number of factors per state
are unknown in advance and need to be specified. Therefore, in an additional simulation
study, we evaluate the Bayesian Information Criterion (BIC; Schwarz, 1978) for finding
the best model complexity. Finally, we illustrate the empirical value by means of applying
LMFA to areal ESM dataset containing measures of adults suffering from anhedonia. This
chapter appeared in Structural Equation Modeling: A Multidisciplinary Journal.

In Chapter 3, we extend LMFA to accommodate unequally spaced observations by
means of a so-called “continuous-time” approach (Béckenholt, 2005; Jackson & Sharples,
2002) because the regular “discrete-time” approach (as employed in Chapter 2) assumes
that measurement occasions are equidistant, which is frequently violated in ILD. First,
beeps to complete the questionnaires are typically sent out at random (or event-based)
time-points. Consequently, the intervals between the measurement occasions differ
across subjects and within subjects over time. Second, night intervals are usually longer
than intervals throughout the day. Third, when responding is inconvenient (e.g., while
giving a presentation) participants skip measurement occasions, which leads to missing
data that, in turn, also increase the interval length. When applying LMFA to ILD, it is
important to account for differences in intervals because closely spaced observations are
more strongly associated than more distant observations (i.e., transitioning to another
state is less likely for a 15-minute interval than for a 1-day interval). In a simulation study,
we compare the continuous-time approach to the discrete-time approach in the presence
of unequal intervals. Moreover, we apply the continuous-time model to diary data of
subjects with depressive symptoms and thereby show that LMFA can be applied not only
to modern ILD collected by means of ESM but also to other types of longitudinal data (e.g.,
weekly or end-of-day reports), given that the number of observations is large enough.
This chapter was published in Methodology.

Chapter 4 is concerned with the inclusion of explanatory variables (or
“covariates”) in the LMFA model because, usually, researchers do not only want to know
if measurement invariance holds and how to proceed with their data analysis if
measurement invariance does not hold. They are especially interested to learn what
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GENERAL INTRODUCTION

drives the (between-subject differences in) MM dynamics. For instance, adopting
response styles could depend on the experienced stress while completing a questionnaire
and item interpretation could depend on the general ability to differentiate between
emotions. In order to estimate the LMFA model with covariates, we apply a three-step
approach (Di Mari, Oberski, & Vermunt, 2016; Vermunt, 2010), which circumvents the
cumbersome model and covariate selection procedure that is inherent to the FIML
estimation. The three-step approach splits the estimation into three parts: (1) Evaluating
the MMs while disregarding transitions between the MMs and covariate effects on the
state memberships. (2) Assigning observations to the most likely MM-state. (3) Using
these assignments to estimate the (covariate-specific) transitions between MMs (while
keeping the MMs fixed). We explain that the three-step approach is generally a valid
alternative to the FIML estimation when correcting for uncertainty in the state
assignments of the second step and, in a simulation study, we compare the performance
of this three-step approach to the performance of the FIML estimation in the context of
LMFA. Finally, by means of applying three-step LMFA to a real ESM dataset containing
emotion ratings of young adolescents, we demonstrate how researchers can draw
substantive conclusions about MM differences from including both subject- and situation-
specific covariates. This chapter was accepted for publication in a similar form in
Multivariate Behavioral Research.

In Chapter 5, we address the challenge of dealing with ordinal data. The original
LMFA assumes normally distributed continuous responses. In empirical practice,
however, items are often measured with only a few response categories (e.g., with Likert-
type scales) and the responses can be heavily skewed. Applying LMFA to such data can
lead to inaccurate parameter estimates (Kappenburg -ten Holt, 2014; Rhemtulla,
Brosseau-Liard, & Savalei, 2012; Vermunt & Magidson, 2005). Therefore, we present the
extension latent Markov latent trait analysis (LMLTA), which adequately deals with such
data by replacing the FA model within the states with “latent trait” (or “item response
theory”) model that directly treats the responses as ordinal (Heinen, 1996). We explain
the similarities and differences between the FA model and the latent trait model and
illustrate the extension by means of applying LMLTA to ESM data containing observations
of young adolescents at risk for developing depression. This chapter appeared in
Evaluation & the Health Professions.

In Chapter 6, we present a tutorial for our R package Imfa. We created the R
package to present a free open-source alternative to Latent GOLD for performing LMFA.
More specifically, we employed the continuous-time variant of LMFA by means of the
three-step approach so that researchers can validly analyze their data with unequally-
spaced observations and also easily relate explanatory variables to the state
memberships. In this chapter’s tutorial, we show which steps have to be taken when
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performing the analysis with Imfa by means of a synthetic ESM example dataset, which is
part of the package. Moreover, we provide ideas on how to proceed based on the results
of LMFA. In particular, we discuss possibilities to account for different levels of non-
invariance in subsequent analyses to investigate (between-person differences in) how
within-person dynamics in the latent constructs develop over time. This chapter is
submitted for publication in Behavior Research Methods.

Finally, in the epilogue in Chapter 7, we begin by answering some questions about
LMFA that remain open after the first six chapters of the dissertation. Then, we discuss
limitations of LMFA and outline possible solutions to solve some of these shortcomings
in future research. We conclude by explaining that LMFA is not only a precursor for
making decisions about how to proceed with the data analysis but that the LMFA
framework also has the potential for providing relevant insights into psychological
phenomena, which could possibly be relevant for empirical practice, such as personalized
therapy.
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CHAPTER 2

Abstract

When time-intensive longitudinal data is used to study daily-life dynamics of
psychological constructs (e.g., well-being) within persons over time (e.g., by means of
experience sampling methodology), the measurement model (MM)—indicating which
constructs are measured by which items—can be affected by time- or situation-specific
artefacts (e.g,, response styles, altered item interpretation). If not captured, these changes
might lead to invalid inferences about the constructs. Existing methodology can only test
for a priori hypotheses on MM changes, which are often absent or incomplete. Therefore,
we present the exploratory method “latent Markov factor analysis” (LMFA), wherein a
latent Markov chain captures MM changes by clustering observations per subject into a
few states. Specifically, each state gathers validly comparable observations and state-
specific factor analyses reveal what the MMs look like. LMFA performs well in recovering
parameters under a wide range of simulated conditions and its empirical value is

illustrated with an example.
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2.1 Introduction

Time-intensive longitudinal data for studying daily-life dynamics of psychological
constructs (such as well-being or positive affect) within persons allows to delve into time-
or situation-specific effects (e.g., stress) on the (e.g., emotional) experiences of a large
number of subjects (Larson & Csikszentmihalyi, 2014). The go-to research design to
collect such data is experience sampling methodology (ESM; Scollon et al., 2003).
Participants repeatedly answer questionnaires at randomized or event-based time-
points via smartphone apps, for example, eight times a day over a few weeks.

While the technology for collecting ESM data is readily available, the methodology
to validly analyze this data is lagging behind. This chapter provides an upgrade of the
methodology by presenting a novel method for tracking and diagnosing changes in
measurement models (MMs) over time. The MM is the model underlying a participant’s
answers and indicates which unobservable or latent variables (i.e.,, psychological
constructs) are measured by which items. Traditionally, it is evaluated by factor analysis
(FA; Lawley & Maxwell, 1962), where the factors correspond—ideally—to the
hypothesized constructs. Factor loadings express the degree to which each of the items
measure a factor and thus how strongly an item relates to an underlying factor. In order
to meaningfully compare constructs over time, the MM needs to be invariant across
measurement occasions (Adolf et al., 2014). However, measurement invariance (MI) does
not always hold over time because the MM likely changes over the course of an ESM study.
First, in ESM, the measurement quality is undermined by time- or situation-specific
artefacts such as response styles (RSs; Moors, 2003; Paulhus, 1991). Indeed, participants
fill in their questionnaires repeatedly in various, possibly distracting, situations (e.g.,
during work) or lose motivation to repeatedly answer questions, which may drive the
tendency to, for example, use the extreme response categories only (extreme RS; Moors,
2003; Morren et al., 2011). Second, substantive changes may occur over time in what
questionnaire items are measuring. For example, depending on the context or mental
state, an item may become more important for the measured construct (i.e., loading
increases) or (also) an indicator of another construct (i.e., loads strongly on another
factor) (reprioritization or reconceptualization; Oort et al., 2005). Moreover, the nature
of the measured constructs might change entirely; e.g., when positive and negative affect
factors are replaced by high and low arousal factors (Feldman, 1995). In any case, when
ignoring changes in the MM, changes in the scores will be interpreted as changes in the
psychological constructs, although they are (partly) caused by RSs or changed item
interpretation.

To safeguard validity of their time-intensive longitudinal studies, substantive
researchers need an efficient approach to evaluate which MMs are underlying the data
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and for which time-points they apply, so they can gain insight into which artefacts and
substantive changes are at play and when. Researchers can take these insights into
account when analyzing the data, when setting up future projects or to derive new
substantive findings from the MM changes. To meet this need, we present latent Markov
factor analysis (LMFA)!, which combines two building blocks to model MM changes
within subjects over time: (1) Latent Markov modeling (LMM; Bartolucci, Farcomeni, &
Pennoni, 2014; Collins & Lanza, 2010) clusters time-points into states according to the
MMs and (2) factor analysis (FA; Lawley & Maxwell, 1962) evaluates which MM applies
for each state. Note that LMFA can be applied for single cases, when enough observations
are available for that one subject.

Within the states of LMFA, exploratory factor analysis (EFA) rather than
confirmatory factor analysis (CFA) is used. In CFA, users have to specify which items are
measuring which factors based on a priori hypotheses. This implies that certain item-
factor relations are assumed to be absent and the corresponding factor loadings are set
to zero. Thus, for a large part, CFA already imposes a certain MM and thus limits the
changes in the MM that can be found. In contrast, EFA estimates all factor loadings and,
thus, explores all kinds of (unknown) MM changes, including changes in cross-loadings
(i.e., items loading on more than one factor) or even in the nature and number of factors
(e.g., an additional RS factor). However, if desired, CFA can be used within the states.

An existing method to evaluate whether MI holds over time is longitudinal
structural equation modeling (LSEM; Little, Preacher, Selig, & Card, 2007). However, this
method merely tests whether MI across time-points holds for all individuals
simultaneously, without directly providing insight in for which measurement occasions
invariance is violated and what the alternative MMs look like. In contrast to LMFA, LSEM
provides no clues for understanding or dealing with the non-invariance. Also, it applies
CFA and thus already assumes a certain factor structure, and is therefore too restrictive
to detect many MM differences. A few methods exist that combine FA with LMM and thus
could potentially be useful for identifying violations of MI over time (Asparouhov,
Hamaker, & Muthén, 2017; Song, Xia, & Zhu, 2017; Xia, Tang, & Gou, 2016).2 However,

1 LMFA builds upon Mixture simultaneous factor analysis (MSFA; De Roover, Vermunt, Timmerman, &
Ceulemans, 2017), which captures differences in the factor model between groups. Whereas MSFA typically
models the data of subjects nested within groups, LMFA specifically deals with observations nested within
subjects and it allows subjects to switch between different MMs over time.

2 Note that the overview of existing methods focusses on FA-based methods and thus overlooks switching
principal component analysis (SPCA; De Roover, Timmerman, Van Diest, Onghena, & Ceulemans, 2014),
which is a deterministic method similar to LMFA that can be used to take the first steps towards detecting
MM changes over time, yet only for single-subject data. However, SPCA uses component instead of factor
analysis. Although components and factors are similar (Ogasawara, 2000; Velicer & Jackson, 1990; Velicer,
Peacock, & Jackson, 1982), components do not correspond to latent variables (Borsboom, Mellenbergh, &
van Heerden, 2003) and are thus less ideal for evaluating (changes in) MMs.
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these methods also apply CFA, making them too restrictive to detect all kinds of MM
differences. In contrast, factor-analyzed hidden Markov modeling (FAHMM; Rosti &
Gales, 2002) is similar to LMFA because it combines EFA with LMM, but was developed
merely for accommodating LMM estimation when conditional independence is violated
among many variables, using the state-specific FA to reduce the number of parameters of
the state-specific covariance matrices rather than being the point of interest (Kang &
Thakor, 2012; Rosti & Gales, 2002). Also, FAHMM cannot analyze multiple subjects
simultaneously. Thus, LMFA may be conceived as a multisubject extension of FAHMM,
tailored to tackle measurement non-invariance in ESM data.

The remainder of this chapter is organized as follows: Section 2.2 describes the
multisubject longitudinal data structure, an empirical example, and the LMFA model
specifications and estimation. Section 2.4 presents a simulation study, evaluating the
goodness-of-recovery of states and state-specific MMs under several conditions as well
as model selection. Section 2.5 illustrates LMFA with an application. Section 2.6 concludes
with some points of discussion and directions for future research.

2.2 Methods

2.2.1 Data Structure and Motivating Example

Like in ESM, we assume repeated measures data where observations are nested in
subjects. For each measurement occasion, data on multiple continuous variables are
available. The observed scores are indicated by y;;;, where i = 1, ..., I refers to subjects,
j =1,..,] toitems, and t =1, ..., T to time-points, where the latter may differ across
subjects (i.e.,, T;) but we mostly omit the index i for simplicity of notation. The J X 1
vector i = (Vize, Yizer -» Yige) contains the multivariate responses for subject i at time-
point t and the T x J datasetY; = (¥/1,Vi2', -, ¥ir)' contains data for subject i for all time-
points T.

To clarify the data structure and illustrate the problem of measurement non-
invariance, consider the ESM data of the ‘No Fun No Glory’ study described in more detail
by Van Roekel et al. (2017). In brief, the data contained repeated emotion measures of 69
young adults with persistent anhedonia, which is the diminished pleasure in response to
previously enjoyable experiences and one of the core symptoms of depression (American
Psychiatric Association, 2013; Treadway & Zald, 2011). Over a course of about three
months, every evening, the participants rated on a Visual Analogue Scale, ranging from 0
(“Notatall”) to 100 (“Very much”), how much they had felt each of 18 emotions (listed in
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Table 2.3, which is further described in Section 2.5) in the past six hours.? The number of
repeated measures ranged from 86 to 132 (M = 106.86, SD = 8.21) and resulted in 7373
total observations of which 557 were missing.* After the first month, the participants
randomly received (1) no intervention (n = 22), (2) a personalized lifestyle advice (PLA)
(n =23), or (3) a PLA and a tandem skydive (PLA & SkyD) (n = 24) to potentially reduce
anhedonia. After the second month, all participants chose one of the interventions,
regardless of their first one (no: n = 3; PLA: n = 17; PLA & SkyD: n = 49). In their original
study, Van Roekel et al. (2017) investigated whether the interventions decreased
anhedonia, thereby assuming the two underlying factors “positive affect” (“PA”) and
negative affect (“NA”). However, if the MM changes over the course of participation (e.g.,
due to the interventions) conclusions about changes in PA and NA may be invalid. In
Section 2.5, LMFA is used to trace potential MM changes in this data.

2.3 Latent Markov Factor Analysis

In this section, we introduce LMM (2.3.1) before describing LMFA in more detail (2.3.2).
2.3.1 Latent Markov Modeling

The LMM (also a hidden Markov or latent transition model; Bartolucci et al., 2014; Collins
& Lanza, 2010) captures unobserved heterogeneity or changes over time by means of
latent states. In contrast to standard latent class models (Hagenaars & McCutcheon, 2002;
Lazarsfeld & Henry, 1968), which identify subgroups or so-called latent classes within a
population (e.g., high or low risk for depression), a LMM allows respondents to transition
between latent states over time and, thus, to switch between subgroups (e.g., from a high
risk to a low risk subgroup). Thus, the states may be conceived as dynamic latent classes.
Specifically, the LMM is a probabilistic model where the probability of being in a certain
state at time-point t depends only on the state of the previous time-point t — 1 (first-order
Markov assumption). Furthermore, the responses at time-point t depend only on the state
at time-point t (local independence assumption; Bartolucci, 2006; Vermunt, Langeheine, &
Bockenholt, 1999). The joint probability of observations and states for subject i is then:

3 In total, participants rated their emotions three times a day with fixed 6-hour intervals. In the morning
and midday, they rated their “momentary” emotions and in the evening, they rated their emotions “since
the last measure”. To have comparable and evenly spaced measures, we focused on the evening measures.
4 Missing data will be directly handled in the model estimation by considering only observed values.
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initial state transition response

probabilities T  probabilities T  probabilities
_ o (2.1)
p(Yy,Si)) = p(sin) p(siclsic-1) | [P (yiclsie)
t=2 t=1

where s;; are K X 1 binary variables indicating whether an observation belongs to a state
or not and S; = (S;4, Sip, ---, SiT) 1S the subject-specific state-membership matrix. In the
following, k = 1, ..., K refers to the states and, if s;;;, = 1, subjecti is in state k at time-
point t. Equation 2.1 includes three types of parameters: (1) The initial state probabilities
indicate the probabilities to start in a certain state, p(s;;, = 1), and thus how the subjects
are distributed across the states att = 1. They are often denoted as m;, with ¥X_, m;, =
1, and are gathered in a K X 1 vector m. (2) The transition probabilities indicate the
probabilities of being in a certain state at time-point t conditional on the state att — 1,
p(Sitx|Sit—1,), where I = 1, ..., K. These may be denoted as ay,, with Y.X_; aj, = 1,and are
collected ina K X K transition probability matrix A. The transition probabilities are often
assumed to be homogeneous (i.e., invariant) across time (and subjects). The resulting
sequence of states is called a latent Markov chain (LMC). (3) The response probabilities
indicate the probability of a certain item response given the state at time-point
t, p(yitlsi), which correspond to the multivariate normal density for continuous
responses.

2.3.2 Latent Markov Factor Analysis

In LMFA, a LMM is used to capture the changes in MMs over time and FA (Lawley &
Maxwell, 1962) is applied per state to model the state-specific MMs. The latter is given
by:

Vie = Vi + Ay fip + ey, (2.2)

where A, is a state-specific ] X F¥ loading matrix; f;; is a subject-specific F¥ x 1 vector
of factor scores at time-point t (where F¥ is the state-specific number of factors); vy is a
state-specific J X 1 intercept vector; and e;; is a subject-specific /] X 1 vector of residuals
at time-point t. The distributional assumptions are: f;; ~MVN(0; ¥},) and factor scores
are thus centered around zero and e;;~MVN(0; D,), where D, contains the unique
variances dj; on the diagonal and zeros on the off-diagonal. To partially identify the
model, factor variances in W, are restricted to one and the remaining rotational freedom
is dealt with by means of criteria to optimize the simple structure or between-state
agreement of the factor loadings, such as varimax (Kaiser, 1958), oblimin (Clarkson &
Jennrich, 1988) or generalized Procrustes (Kiers, 1997).
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From Equation 2.2, it is clear that the states may differ in terms of their intercepts
vy, loadings A, unique variances Dy, and/or factor covariances W,. This implies that
LMFA allows to explore all levels of measurement non-invariance at once. This is: (1)
configural invariance (invariant number of factors and pattern of zero loadings), (2) weak
factorial invariance (invariant non-zero factor loadings), (3) strong factorial invariance
(invariant item intercepts), and (4) strict factorial invariance (invariant unique
variances). Conveniently, in any case, the strictest level of invariance applies within each
state (for more details, see Little et al., 2007; Meredith, 1993; Meredith & Teresi, 2006;
Schaie, Maitland, Willis, & Intrieri, 1998). Figure 2.1 illustrates how LMFA captures the
different levels of non-invariance over time based on an example of what might happen
in the empirical data by comparing the state-1 MM respectively to the state-2 and state-
3 MMs, with dashed lines representing parameter changes.

The depicted loadings can be thought of as standardized rotated loadings higher
than, for example, .4 in absolute value (Stevens, 1992). We start by comparing the state
1-MM to the state-2 MM. Here, configural invariance is violated because a third factor
(high arousal; HA) appears, implying that the state-1 items measuring either PA or NA
with loadings 4141, 4151, and 444, measure another construct (i.e, HA) in state 2 (now
with loadings A,4,, 1,5,, and 1,¢,). This also changes the meaning of the other factors into
low arousal PA (LA-PA) and low arousal NA (LA-NA)). Next, we compare the state-1 MM
with the state-3 MM. Firstly, weak factorial invariance is violated here because 4;;;
differs from 23,4 and thus, the items measure PA and NA differently. Secondly, strong
factorial invariance is violated because v;, differs from v,,. Note that, when weak
invariance appears to hold, properly assessing strong invariance would require re-
estimating the model with invariant factor loadings across the states and non-zero state-
specific factor means. Finally, strict factorial invariance is violated because e;; differs
from es;. Usually, strong factorial invariance is said to be sufficient for comparing latent
constructs over time, that is, differences in factor means then correspond to actual
changes in the latent variables.

[tis important to note that the subjects do not have to go through all the states nor
do they have to go through the states in the same order. Relatedly, LMFA does not assume
homogeneous transition probabilities across subjects but allows for subject-specific A;
matrices, implying that some transition probabilities may be zero for a certain subject if
that subject does not go through a particular state. This is because subjects likely differ
in how stable they respond to questionnaires (e.g., some people might switch more
between contexts than others or may be more sensitive to contextual influence or
distractions). The transition process A; is assumed to be time-homogeneous for each
subject, although this is an assumption that might be relaxed in the future.
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To conclude, in LMFA, the states indicate for which time-points the data are
validly comparable (strict MI applies within each state) and by comparing the state-
specific MM parameters one may even evaluate which level of invariance holds for which
(pairs of) states and which specific MM parameters are non-invariant.

2.3.3 Model Estimation

To estimate the LMFA model we aim to find the model parameters 0 (i.e., the initial state
probabilities m, the transition probabilities A;, the intercepts vy, and the factor-analyzed
covariance matrices X, = ApAj + D;) that maximize the loglikelihood function logL. The
logL is derived from Equation 2.1 by summing over all possible state sequences, taking
the logarithm, and considering all the subjects at once:

logL(e|Y>=ilog Z...Zp(sioﬁp(siflsit-l)ﬁp(yﬂsit) . e3)
i=1 SiT t=2 t=1

Si1

Note that the model captures the dependencies only between observations that can be
explained by the states but not the autocorrelations of factors within the states. Because
the logL is complicated by the latent states, non-linear optimization algorithms are
necessary to find the maximum likelihood (ML) solution (e.g., De Roover et al,, 2017;
Myung, 2003). LMFA can be estimated by means of LG syntax (Vermunt & Magidson,
2016; Appendix B).5 Specifically, the ML estimation is performed by an expectation
maximization (EM; Dempster, Laird, & Rubin, 1977) procedure described in Appendix A.
Note that this procedure assumes the number of states K and factors within the states F*
to be known. The most appropriate K and F¥ is determined by comparing competing
models in terms of their fit-complexity balance. To this end, the Bayesian information
criterion (BIC; Schwarz, 1978) can be applied, which proved to be effective for both FA
(Lopes & West, 2004) and LMM (Bartolucci, Farcomeni, et al., 2015). Moreover, it may
happen that the estimation converges to a local instead of a global maximum. To decrease
the probability of finding a local maximum, LG applies a multistart procedure, in which
the initial values are automatically chosen based on the loadings and residual variances
obtained from PCA (Jolliffe, 1986) on the entire dataset. For each state, randomness is
added to get K different sets of initial parameter values (for more details, see De Roover
etal, 2017).

5 A user-friendly graphical interface in LG including a tutorial will be developed in the future.
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2.4 Simulation Study

2.4.1 Problem

To evaluate how well LMFA performs in recovering states and state-specific factor
models, we manipulated seven factors that affect state-separation and thus potentially
the recovery: (a) number of factors, (b) number of states, (c) between-state difference
(consisting of differences in factor loadings and intercepts), (d) unique variance, (e)
frequency of transitions, (f) number of subjects, and (g) number of observations per
subject and state. For the number of factors (a), we expect the performance to be lower
for more factors due to the higher model complexity and the lower level of factor
overdetermination (given a fixed number of variables) (MacCallum, Widaman, Preacher,
& Hong, 2001; MacCallum, Widaman, Zhang, & Hong, 1999; Preacher & MacCallum,
2002). With respect to the number of states (b), a higher number of states also increases
the model complexity and thus, probably, decreases the performance. In case of a Markov
model, the increase in model complexity with additional states is suppressed by the level
of dependency of the states at consecutive time-points, however. Thus, with respect to
(e), we anticipate LMFA to performance worse in case of more frequent state transitions,
and thus lower probabilities of staying in a state, because this implies a lower dependence
on the state of the previous time-point (Carvalho & Lopes, 2007). With respect to (c), we
expectadecrease in performance for more similar factor loadings (De Roover etal., 2017)
and/or intercepts across states. Regarding (d), LMFA is expected to perform better with
a lower unique variance and thus a higher common variance because this increases the
factor overdetermination (Briggs & MacCallum, 2003; Ximenez, 2009; Ximénez, 2006).
Factors (f) and (g) pertain to the within-state sample size (i.e., the amount of information)
per state in terms of number of subjects and observations per subject and state. We
expect a higher performance with increasing information (de Winter, Dodou, & Wieringa,
2009; Steinley & Brusco, 2011). Note that we also tested whether lag-one
autocorrelations of factors harm the performance of LMFA, which was not the case
(Appendix C). In addition, for selected conditions, we evaluated the BIC in terms of the
frequency of correct model selection.

2.4.2 Design and Procedure
We crossed seven factors in a complete factorial design with the following conditions:®

a. number of factors per state F¥ at two levels: 2%, 4%;
b. number of states K at three levels: 2%, 3, 4*;
c. between-state differences at eight levels:

6 The “*” marks the subset of conditions that is included in the evaluation of model selection.
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medium loading difference & no intercept difference,

low loading difference & no intercept difference,
medium loading difference & low intercept difference*,

low loading difference & low intercept difference*,

no loading difference & low intercept difference,
medium loading difference & medium intercept difference*,
low loading difference & medium intercept difference*,
no loading difference & medium intercept difference;

d. unique variance e at two levels: .2 and .4*;
frequency of state transitions at three levels: highly frequent, frequent,
infrequent*;
number of subjects N at three levels: 2, 5%, 10;

g. number of observations per subject and state T;;, at three levels: 50, 100%,
200.

The number of variables ] was fixed to 20. The numbers of factors per state F* was either
2 or 4 (a) and was the same across the states. The two, three or four states (b) differed in
factor loadings and intercepts. The degree of the between-state loading difference (c) was
either medium, low (i.e,, highly similar loadings), or non-existent (i.e., identical loadings
across states). Between the state-specific intercepts, there was either no difference, a
medium difference or a high difference. The combination of no loading difference and no
intercept difference was omitted because this implies no difference in MMs and thus only
one state. Note that the degree of the between-state differences was the same for each
pair of states.

Regarding the factor loadings A of the generating model, for all conditions, a
binary simple structure matrix was used as a common “base” (see Table 2.1). The loading
matrices were representative for the ones commonly found in psychological research (cf,,
the PA and NA structure assumed by the original researchers of the “No Fun No Glory
study”). In these matrices, all variables loaded on one factor only and the variables were
equally divided over the factors. In case of two factors, this implied that each factor had
ten non-zero loadings, whereas, in case of four factors, each factor consisted of five non-
zero loadings. For the “no loading difference” conditions, the simple structure base matrix
was used as Ay in all the states, implying no change in loadings across the states. For the
low and medium loading difference conditions, the base matrix was altered differently
for each state to create the state-specific loading matrices. Thus, no state will have a factor
loading structure equal to the base matrix in Table 2.1. For each state, regardless of the
number of factors, we applied the alteration procedure described below.
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Table 2.1. Factor base loading matrix and derived loading matrices for state 1 and 2

Base Loading Matrix Statel State 2

Factor 1 Factor 2 Factor1 Factor 2 Factor 1 Factor 2
Var.1 1 0 A Ay 1 0
Var.2 1 0 1 0 Aq Az
Var.3 1 0 1 0 1 0
Var.4 1 0 1 0 1 0
Var. 5-10
Var.11 0 1 Ay M 0 1
Var.12 0 1 0 1 Ay A
Var.13 0 1 0 1 0 1
Var.14 0 1 0 1 0 1
Var. 15-20

Note. For the medium loading difference, A; = 0 and A, = 1; for the low loading differences, A; =
v.5and A, = V.5. Entries of Var. 5-10 and 15-20 equal those of Var.4 and Var.14, respectively.
The 4-factor matrices were created by applying the same A; and A, values to other variables
because of fewer loadings per factor.

Whether F¥ = 2 or F¥ = 4, the manipulations were only applied to the first two
factors. Thus, for F¥ = 4, the third and fourth factor are identical across states. For the
medium loading difference conditions, the state-specific loading matrices were created
by shifting one loading from the first factor to the second one and one loading from the
second factor to the first one. This implies that the overdetermination of the factors is
unaffected. For the low loading difference condition, the state-specific loading matrices
were created by adding cross-loadings of V.5 for two variables, that is, one for factor 1
and one for factor 2, and lowering the primary loading accordingly to v.5. This
manipulation preserves both the rowwise and columnwise sum of squares (i.e., the
variables’ common variance and the variance accounted for by each factor). Variables
affected by the loading shifts and added cross-loadings differed across states (see Table
2.1).7

To quantify the similarity of the state-specific loadings per condition, a congruence
coefficient ¢ (Tucker, 1951) was computed per factor for each pair of the loading
matrices.® A ¢ of one indicates proportionally identical factors (as in the no loading
difference conditions). The grand mean ¢, across all state pairs and factors amounted
to .80 for the medium loading difference conditions and .94 for the low loading difference
conditions, regardless of the numbers of states and factors. Finally, the matrices were

7 Note that we use EFA and, thus, the zero loadings are not fixed but freely estimated in LMFA.

8 Tucker’s (1951) congruence coefficient between column vectors x and y is defined as: ¢, = aitd

Vxrx\yry
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rowwise rescaled such that the sum of squares of each row equaled 1 — e, where e was
either .40 and .20 (g).

Intercept differences were induced as follows. For all variables in all states, the
intercept was initially determined to be 5 and kept as such for the no intercept difference
conditions. Two of the intercepts (different ones across the states) were increased from
5 to 5.5 for the low intercept difference conditions and from 5 to 7 for the medium
intercept difference conditions.

Regarding the frequency of state transitions (e), we manipulated three levels that
we considered to be realistic for ESM data. Note that we allowed for between-subject
differences in the transition probabilities by randomly sampling each set of subject-
specific probabilities from a uniform distribution within a specified range of
probabilities. Specifically, the probabilities to stay in a state and to switch to another state
were respectively sampled from U(.73,.77) and U(.01,[ .27 /(K-1)]) in the highly frequent
condition, from U(.83,.87) and U(.01,[ .17/(K-1)]) in the frequent condition and from
U(.93,.97) and U(.01,[ .07/(K-1)]) in the infrequent condition. Then, for each resulting
matrix, we rescaled the off-diagonal elements of each row to sum to 1 minus the diagonal
element of that row, thus maintaining the probabilities to stay in a state and hence also
the frequency of switching. As a results, out of the total number of possible transitions
(i.e., across subjects (i.e, ¥/(T; — 1)) and across all datasets), a switch to another state
occurred for 25% of the possible occasions in the highly frequent condition, for 15% in
the frequent condition and for 5% in the infrequent condition.

Depending on the condition, datasets with the above described characteristics
were simulated for 2, 5 or 10 subjects (f). Note that limiting our study to such low subject
numbers not only confines the computation time but also challenges the method. We
expect performance to improve with additional subjects because this accumulates the
amount of data within the states. Furthermore, the number of observations per subject
and state, Ty, was either 50, 100 or 200 (g) fori = 1,...,]andk = 1,...,K. Thus, the
total number of observations T; per subject depended on (b) and (g). Similarly, the
within-state sample size per state (over subjects) depended on (f) and (g).

For each subject, a LMC was generated indicating in which state subject i was at
each time-point t. The initial state was randomly sampled from a Bernoulli distribution
(for K = 2) or multinomial distribution (for K > 2) with equal initial state probabilities.?

® We had no intention to evaluate the recovery of the initial state probabilities because more than a few
subjects are required to validly estimate the distribution of initial starting states (Vermunt & Magidson,
2016). By sampling the initial state from a Bernoulli/multinomial distribution, some randomness in the
initial states was obtained.
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The remaining LMC was generated by sampling a random sequence of states based on the
subject-specific transition probability matrix (i.e., depending on (e)). Note that whenever
a state was not represented in a sampled LMC—as the small sample sizes occasionally led
to a data matrix wherein a certain state was not represented—we rejected it and sampled
another one so that parameter estimation was possible for all states.

Given this LMC, a subject-specific dataset was generated according to Equation 2.2
assuming orthogonal factors. Firstly, we sampled a factor score vector f;; ~MVN(0;I) of
length F and aresidual vector e;; ~MVN(0; D;) oflength J for each of the Ti observations,
where the diagonal elements of D, are equal to .20 or .40 (g). Subsequently, each vector
of observations y;; was created with the loading matrix A, and vector of intercepts vy
pertaining to the state that subject i was in at time-point ¢, according to the subject-
specific LMC. Finally, the subject-specific datasets Y; were concatenated into one data
matrix Y = (Y{,Y,, ..., Y))' with ¥/ T; rows. Twenty data matrices Y were generated for
each cell of the design. In total, 3 (number of states) X 2 (number of factors) X 8
(between-state difference) X 3 (transition frequency between states) X 3 (number of
subjects) x 3 (number of observations per subject and state) X 2 (unique variance) x 20
(replicates) = 51840 simulated data matrices were generated. The data was generated in
the open-source program R (R Core Team, 2002) and communicated to LG (Vermunt &
Magidson, 2016) for analysis. LG syntaxes (for details and an example, see Appendix B)
were used to analyze the data with the correct number of states and factors per state. The
average time to estimate a model was 85 seconds on an i5 processor with 8GB RAM.
Model selection was evaluated for a subset of the conditions (indicated by “*”) and for
five replications per condition, that is, for 80 datasets. The datasets were analyzed with
LMFA models with the number of states equal to K-1, K, and K + 1 states, and the
number of factors within the states equal to F¥ — 1, F¥, and F¥ + 1 and allowed to differ
between the states, resulting in 19 models when K = 2 and 46 when K = 4.

2.4.3 Results

2.4.3.1 Sensitivity to Local Maxima

The estimation procedure, described in Appendix A, may result in a local maximum
solution, that is, the best solution may have alog L value that is smaller than the one of
the global ML solution. The multistart procedure (described in 2.3.3) increases the chance
to find a global ML solution and, in the simulation study—where the global maximum is
unknown due to violations of FA assumptions, sampling fluctuations and residuals—we
can compare the best solution of the multistart procedure to an approximation (or proxy)
of the global ML solution, which we obtain by providing the model estimation with the
true parameter values as starting values. A solution is then a local maximum for sure
when its logL value is smaller than the one from the proxy. To exclude mere calculation
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precision differences, we only considered negative differences with an absolute value
larger than .001 as a local maximum. Accordingly, a local maximum was found for 947
out of 51840 simulated datasets (1.83%), which mainly occurred when K = 4.

2.4.3.2 Goodness of State Recovery

To investigate the recovery of the state sequence, the Adjusted Rand Index (ARI; Hubert
& Arabie, 1985) was computed. The ARI quantifies the overlap between two partitions
and is insensitive to permutations of the state labels. It takes values from around 0 when
the overlap is at chance level to 1 when partitions are identical. In general, the recovery
of states was moderate to good (Steinley, 2004) with a mean ARI-value of.78 (SD = 0.28).

Except for the number of states, all manipulated factors had a large influence on
the ARI (Table 2.2). In line with our expectations, the recovery improved with a lower
number of factors (b), a greater between-state difference (c), alower frequency of change
(d), a higher number of subjects (e), a higher number of observations per subject and
state (f), and lower unique variances (g). Figure 2.2 shows these effects, yet averaged
across the number of factors for conciseness. A higher total within-state sample size was
especially important for the state recovery in the high unique variance condition when
combined with the low and no loading-difference conditions. In contrast, for alow unique
variance and a medium loading difference between the states, the state recovery already
stabilized at 400 observations. A lower frequency of transitions also further improved
the state recovery, but it is most striking that even the most difficult conditions and
lowest within-state sample size led to a perfect recovery when there was a medium
difference in intercepts between the states.

2.4.3.3 Goodness of Loading Recovery

To examine the goodness of state loading recovery (GOSL), we computed Tucker
congruence coefficients ¢ between the true loading matrices and the estimated loading
matrices and averaged across factors and states:

Tk=127=1 0 (AL AD)

GOSL =
Yie=1 F¥

(2.4)

To deal with the rotational freedom of the factors per state, we rotated the factors prior
to calculating the congruence coefficient.1? Specifically, Procrustes rotation was used to

10 Note that rotation is not yet included in LG, which is why we took the estimated loadings and rotated
them in the open-source program R (R Core Team, 2002).
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rotate the estimated towards the true loading matrices. To account for the permutational
freedom of the state labels, the state permutation that maximizes the GOSL was retained.
The manipulated conditions hardly affected the loading recovery. The overall mean GOSL
was .98 (SD = 0.05), indicating an excellent recovery. There was a positive correlation
between the ARI value and the GOSL (r; = .45,p < 0.001). Note that the loading recovery
was often good despite a bad state recovery because quite similar (to even identical)
loading matrices are mixed up.

Table 2.2. Goodness-of-recovery per type of parameter conditional on the manipulated
factors

Goodness of

State Loading Transition Intercept Unique
Recovery Recovery Matrix Recovery Variance
(ARI) (GosL) Recovery (MAD;y) Recovery
(MADtrans) (MADum'q)
Condition Manipulated
Factors
2 0.76 0.97 0.09 0.12 0.04
States 3 0.79 0.98 0.08 0.12 0.04
4 0.80 0.98 0.06 0.12 0.04
2 0.81 0.98 0.07 0.11 0.03
Factors 4 0.75 0.97 0.09 0.12 0.05
Medium-No 0.69 0.98 0.07 0.09 0.04
Low-No 0.47 0.94 0.16 0.26 0.08
Between- Medium- 0.81 0.98 0.06 0.08 0.03
state- Low
difference Low-Low 0.68 0.96 0.10 0.16 0.05
(Loading No-Low 0.64 0.96 0.12 0.21 0.06
Difference-  Medium- 0.99 1.00 0.04 0.04 0.02
Intercept Medium
Difference)  Low- 0.99 0.99 0.04 0.05 0.02
Medium
No-Medium 0.99 0.99 0.04 0.04 0.02
Highly 0.71 0.97 0.10 0.13 0.04
Transitions Frequent
Frequent 0.77 0.98 0.08 0.12 0.04
Infrequent 0.87 0.98 0.06 0.10 0.04
2 0.70 0.95 0.12 0.23 0.07
Subjects 5 0.81 0.98 0.07 0.09 0.03
10 0.84 1.00 0.05 0.04 0.02
Observations 50 0.70 0.95 0.13 0.21 0.07
per subject 100 0.80 0.98 0.07 0.09 0.04
and state 200 0.84 0.99 0.04 0.05 0.02
Unique 2 0.88 0.99 0.05 0.07 0.02
Variances 4 0.69 0.96 0.11 0.16 0.06

Note. For the between-state difference condition, the combination of no loading difference and no
intercept difference was not included because this would imply that the MM does not differ across
states.
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LATENT MARKOV FACTOR ANALYSIS

2.4.3.4 Goodness of Transition Matrix Recovery

To examine the transition matrix recovery, we calculated the mean absolute difference
(MAD) between the true and estimated matrices (applying the best state permutation
obtained from the loading recovery):

T T 1A — Al

=1 2k=12i= ki Kl

MAD,ygps = 251 2K=1 11(12 : = (2.5)
The transition matrix recovery was good with an average MAD;, ., of .08 (SD = 0.10).
Overall, the effects of the manipulated conditions were rather small (see Table 2.2).

2.4.3.5 Goodness of Intercept Recovery

To evaluate the recovery of the state-specific intercepts, we calculated the MAD between
the true intercepts and the estimated ones.

Ji ~
TR oy Vi — Vg

i (2.6)

MAD;y,, =

The intercept recovery was moderate with an average MAD;,,; of .12 (SD = 0.02). A higher
between-state difference of loadings and intercepts (c), more subjects (e), more
observations per subject and state (f), and a lower unique variance (g) improved the
intercept recovery.

2.4.3.6 Goodness of Unique Variance Recovery

To examine the recovery of the state-specific unique variances, we calculated the MAD
between the true and estimated unique variances.

YK Y 1y — dygl
MADypiq = d K] : (2.7)

The unique variance recovery was good with an average MAD,;;,;4 of .04 (SD = 0.06) and
no notable differences across the manipulated conditions. More prominently, the
MAD,;q is affected by Heywood cases (Van Driel, 1978), which pertain to “improper”
factor solutions with at least one unique variance that is negative or zero. When a
Heywood case occurs, LG fixed the unique variance(s) to a very small number. A Heywood
case is considered to be diagnostic of underdetermined factors and/or insufficient
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sample size (McDonald & Krane, 1979; Rindskopf, 1984a; Van Driel, 1978; Velicer & Fava,
1998). Heywood cases occurred for 5877 of the estimated data matrices (12.19%), where
89% of the Heywood cases indeed occurred in the conditions with the smallest number
of observations per subject and state and/or the smallest number of subjects.

2.4.3.7 Model Selection

For 74 out of the 80 datasets (93%), the correct model was selected, when considering
the converged models only, and for 78 (98%) the correct model was among the three best
models. Five of the six incorrect selections occurred for the datasets with four states and
four factors and low loading differences as well as low intercept differences. Specifically,
one state too few was selected which is explained by the low state separability in these
conditions.!? We conclude that the BIC performs very well with regard to selecting the
most appropriate model complexity for LMFA.

2.4.4 Conclusions & Recommendations

To sum up, LMFA is promising for detecting MM changes over time and for exploring what
the MM differences look like and for which subjects and which time-points the MMs are
comparable. However, the performance of the new method in recovering the correct state
sequence and the correct state-specific MMs largely depends on model characteristics
(i.e., the number of factors, the MM differences between the states, the unique variances,
and the frequency of state transitions), and the within-state sample size. Firstly, larger
MM differences between states benefit the recovery of the states. Especially intercept
differences increased the separability of the states, to the extent that the states were
recovered perfectly even under difficult conditions. Besides intercept differences, less
factors, less frequent transitions between the states and lower unique variances
improved the recovery. Finally, all else equal, the within-state sample size greatly
enhanced the state recovery. In the following we list recommendations for empirical
practice:

e When the above-mentioned model characteristics are unknown (or assumed to
be unfavorable), aim for 2000 to 4000 observations in total (subjects X
observations) to obtain reliable results for 2 to 4 states.

e When favorable model characteristics are assumed—i.e., when between-state
differences are expected to be pronounced (e.g, changes in intercept are

11 Note that, in case there is only one MM underlying the data, model selection would indicate that the one-
state model fits best, which was confirmed by a small simulation study with the same design as the one of
the model selection described in 3.2.. The correct one-state model was correctly chosen for all 10 models
(100 %).

40



LATENT MARKOV FACTOR ANALYSIS

expected), transitions to be infrequent (e.g., measurement occasions are closely
spaced) and unique variances to be low (e.g, using reliable measurement
instruments)—800 to 1600 observations in total (subjects X observations) are
probably enough to obtain reliable results for 2 to 4 states.

e The number of states that can be reliably captured is bound by the total sample
size and, when the sample size does not allow for the “true” number of states to
be estimated, the obtained results will only convey part of the MM differences
present in the data. States that correspond to a few observations only will not be
detected.

¢ Including more subjects in the study might be more feasible than obtaining more
measurements from each participants, but be aware that, in practice, subjects do
not necessarily switch between the same set of MMs. LMFA allows for this
heterogeneity in MMs, since not all subjects need to go through all states.
Nevertheless, it is important to keep this potential heterogeneity in mind since it
would imply that additional subjects increase the number of MMs and thus the
number of states. In that case, the number of observations per subject is essential
for the sample size per state.

e The BIC is a suitable criterion to decide on the best number of states and factors.
However, when differences between the states are subtle, researchers are
advised to consider the three best models and choose one based on
interpretability and stability.

2.5 Application

In order to apply LMFA to the empirical dataset introduced in Section 2.2.1, we first
selected the number of states and factors by comparing the BIC among LMFA models with
one up to three states and one up to three factors per state. Models with four states or
factors in a state failed to converge suggesting sample size limitations or model
misspecification. The model [3 3 2] (i.e., three states with 3, 3, and 2 factors) was selected
as it had the lowest BIC among the converged models and was the most interpretable. To
shed light on the MM differences between the three states, we first looked at the state-
specific intercepts (Figure 2.3). The intercepts are higher for “positive affect” (PA) items
than for “negative affect” (NA) items in all the states. However, the difference between
the PA and NA item scores is most visible in State 3 (hereinafter “pleasure state”),
intermediate in State 2 (hereinafter “neutral state”) and least pronounced in State 1
(hereinafter “displeasure state”).
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Figure 2.3. Intercepts and standard deviations of the 18 items per state (positive (left)
and lower negative emotions (right)).

Second, we investigated the standardized oblimin rotated loadings (Table 2.3). As
a notable similarity, we see that the positive items are collected into (i.e., load strongly
on) a PA factor in all the states, although the strength of the loadings slightly differs
between the states. A striking difference is that the pleasure state has a NA factor,
whereas the neutral and displeasure states both have a “distress” factor with high

» o«

loadings of “upset”, “anxious”, and “nervous”—although they slightly differ in that “calm”
has an additional strong negative loading in the displeasure state, whereas “gloomy” and
“sluggish” load on the distress factor in the neutral state only. The neutral and displeasure
states are further characterized by a third factor. In the neutral state, the third factor
pertains to “serenity” with strong loadings of “calm” and “relaxed”. In the displeasure
state, it is a bipolar “drive” factor indicating that being “determined” (strong negative
loading) is inversely related to feeling “sluggish”, “bored”, and “listless” (strong positive
loadings). This additional drive factor in the displeasure state concurs with theoretical
models of anhedonia (Berridge, Robinson, & Aldridge, 2009; Treadway & Zald, 2011),
which divide anhedonia in three dimensions: consummatory anhedonia (no longer
enjoying pleasurable activities), anticipatory anhedonia (no longer looking forward to
pleasurable activities) and motivational anhedonia (no longer experiencing motivation
to pursue pleasurable activities). The drive factor confirms that motivation is distinct
from general positive affect when individuals are anhedonic. Finally, the state-specific
unique variances are listed in Table 2.3. In general, these are highest in the displeasure
state, indicating more emotion-specific variability than in the other states. This concurs
with research showing that emotional complexity is associated with higher levels of
depression (e.g., Grithn, Lumley, Diehl, & Labouvie-Vief, 2013). In sum, LMFA allowed us
to find substantively meaningful changes in the MM, both in the number and nature of the
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underlying factors. As an important similarity between the states, it is found that PA is
captured in each of the three states.12

To investigate what potentially triggers the latent states, we explored between-
state differences in evening measures on physical discomfort (such as headache) and the
occurrence and importance of positive and negative events. We focus on descriptive
statistics only since hypothesis testing for MM differences is beyond the scope of the
chapter. A question was, for example, “Think about the most unpleasant event you
experienced since the last assessment: how unpleasant was this experience?” The scales
ranged from 0 (“Not at all”) to 100 (“Very much”). Interestingly, when participants were
in the displeasure state, they had experienced more unpleasant (M = 48.64, SD = 24.24)
events than when being in the neutral (M = 32.54, SD = 19.85) or the pleasure state (M =
29.52, SD = 18.65). Similarly, being in the pleasure state was related to the occurrence of
more pleasant events (M = 64.54, SD = 15.48) in comparison to the displeasure (M =
56.02, SD = 20.41) and the neutral state (M = 58.95, SD = 18.03). These findings are in line
with the states’ labels.

Moreover, we inspected how the states related to the interventions (Table 2.4).
Before the intervention (Phase 1), participants were more often in the displeasure or
neutral state than in the pleasure state. After the first intervention (Phase 2), the
participants in the two intervention groups (i.e.,, PLA and PLA & SkyD) were more often
in the pleasure or neutral state than in the displeasure state. After receiving a second
intervention (Phase 3), the distribution across the displeasure and pleasure state stayed
about the same or the occurrence of the pleasure state increased. Participants who did
not receive an intervention after the first month were distributed equally across the
pleasure and displeasure states and were mostly in the neutral state during Phase 2.
Notably, in Phase 3, the state membership for these participants—i.e., after receiving
their first (self-chosen) intervention—changed in that the pleasure state was now also
more frequent than the displeasure state when participants chose PLA & SkyD, while it
was the opposite for those who chose PLA, perhaps because the more depressed and
anhedonic participants were the ones refraining from a SkyD. Looking at the examples of
individual transition plots including the individual transition probabilities (Figure 2.4), it
is apparent that participants switched quite often between states, in each phase of the
study. This is coherent with previous findings that individuals with anhedonia and
depression are often found to experience strong fluctuations in emotional experiences
(Heininga, Van Roekel, Ahles, Oldehinkel, & Mezulis, 2017; van Roekel et al., 2015). Some

12 Note that the NA items were mostly right skewed, warranting caution when drawing substantive
conclusions because violations of the normality assumption have yet to be investigated (see Section 2.6).
For the purpose of illustrating the aim of LMFA, this is not a problem.
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participants switched more often between the states than others, which may pertain to
between-subject differences in general stability and experienced events but also to
differences in how one reacts to the interventions.

Summarized, the interventions appear to have increased the pleasure state
membership and reduced the displeasure state membership, while leaving membership
of the neutral state largely unaffected. It is noteworthy that participants receiving no
intervention after the first month also slightly moved toward a higher pleasure state
membership and a lower displeasure state membership at that point in time. It appears
that daily reflections on ones emotions also relieve anhedonia to a certain degree, which
was already found in an intervention study using ESM in depressed patients (Kramer et
al., 2014). Although these findings are merely exploratory and need to be validated in
future research, we demonstrated that LMFA offers valuable insights to applied
researchers.

2.6 Discussion

In this chapter, we introduced latent Markov factor analysis (LMFA) for modeling
measurement model (MM) changes that are expected to be prevalent in time-intensive
longitudinal data like experience sampling data. In this way, LMFA safeguards
conclusions about changes in the measured constructs. MM changes may pertain to
(potentially interesting) substantive changes or may signal the onset of response styles
(RSs). Between-state differences in intercepts and loadings might suggest an extreme RS,
whereas differences in intercepts only rather suggest an agreeing RS (Cheung &
Rensvold, 2000). When one suspects a RS in a specific state, RS detection and correction
(e.g., adding an agreeing RS factor; Billiet & McClendon, 2000; Watson, 1992) can be
applied to that specific part of the data, rather than to the entire dataset. Moreover, the
subject-specific transition probabilities of LMFA capture, for instance, to what extent
each subject is likely to end up and to stay in an extreme RS state. Even when RSs are hard
to distinguish, the fact that LMFA pinpoints MM changes—and thus the reliable and
comparable parts of the data—is valuable in itself.

In the future, it would be interesting to go beyond the purely exploratory approach
applied in this chapter. On the one hand, hypothesis testing to determine which
parameters significantly differ between the states might be preferred over visually
comparing the state-specific MMs. To this end, LG already provides the researchers with
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CHAPTER 2

Wald-test statistics when the rotational freedom of the state-specific factors is resolved
by a minimal number of restricted loadings (e.g., Geminiani, Ceulemans, & De Roover,
2020). On the other hand, including explanatory variables (i.e., time-constant or time-
varying covariates, such as personality traits or social contexts) in the model would allow
to evaluate whether they significantly predict the state memberships and the transition
probabilities.

Moreover, LMFA assumes normally distributed, continuous variables. Categorical
Likert-scale ratings are frequently used in psychology, however. Although these data can
often be treated as continuous in case of at least five response categories (Dolan, 1994;
Olsson, 1979), the ratings are often skewed, thus violating the assumption of normality.
Additionally, even continuous data, such as our application data, might be skewed.
Therefore, the robustness of the method to such violations should be examined and, if
necessary, possible extensions to deal with non-normality should be considered.

In addition, longitudinal data are often collected in varying time intervals; e.g.,
when testing the long-term influence of interventions on affect by collecting data in
waves. In that case, the transition probabilities can no longer be considered time-
homogeneous and continuous-time modeling is necessary (Crayen, Eid, Lischetzke, &
Vermunt, 2017). Therefore, in future research, we will develop a continuous-time
extension of LMFA.

Moreover, a limitation of the method is the assumption that factor scores are
centered around zero and have a variance of one. When factor scores evolve over time
but the MM stays the same, changes in factor scores would currently be detected as
intercept changes and thus possibly lead to different states according to model selection.
In future work, we will investigate necessary LMFA extensions to explicitly model
changes in factor means within the states, for example, depending on time or another

covariate.

Next to that, we might consider an extension of LMFA using exploratory dynamic
factor analysis (EDFA; Browne, 2001; Zhang, 2006) within the states, which models the
auto- and cross-lagged correlations of the factors at consecutive time-points but comes
with important challenges. Firstly, accurately estimating autocorrelations would require
more measurement occasions per subject per state (Ram, Brose, & Molenaar, 2012),
which may be undesirable. Secondly, in EDFA, factor rotation is more intricate since the
auto- and cross-lagged relations between factors need to be rotated towards specified
target matrices (Browne, 2001; Zhang, 2006), again necessitating the a priori hypotheses
about (changes in) the MM we want to avoid. The LMM in LMFA already partly captures
autocorrelations by the states and uncaptured auto- and cross-lagged correlations will
not necessarily introduce bias in the estimates of the state-specific MMs (Baltagi, 2011).
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Finally, LMFA is a complex model with many assumptions. Therefore,
misspecifications can occur, and tools to locate local misfit are essential. Local fit
measures have been developed for related methods (e.g, bivariate residuals measures
for multilevel data; Nagelkerke, Oberski, & Vermunt, 2016), but they need to be tailored
and extensively evaluated for LMFA.
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measurement model changes across time. Methodology: European journal of Research
Methods for the Behavioral and Social Sciences, 15(Suppl 1), 29-42. doi:10.1027/1614-
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CHAPTER 3

Abstract

Drawing valid inferences about daily or long-term dynamics of psychological constructs
(e.g., depression) requires the measurement model (indicating which constructs are
measured by which items) to be invariant within persons over time. However, it might be
affected by time- or situation-specific artefacts (e.g., response styles) or substantive
changes in item interpretation. To efficiently evaluate longitudinal measurement
invariance, and violations thereof, we proposed Latent Markov factor analysis (LMFA),
which clusters observations based on their measurement model into separate states,
indicating which measures are validly comparable. LMFA is, however, tailored to
“discrete-time” data where measurement intervals are equal, which is often not the case
in longitudinal data. In this chapter, we extend LMFA to accommodate unequally-spaced
intervals. The so-called “continuous-time” (CT) approach considers the measurements as
snapshots of continuously evolving processes. A simulation study compares CT-LMFA
parameter estimation to its discrete-time counterpart and a depression data application
shows the advantages of CT-LMFA.

52



CONTINUOUS-TIME LMFA

3.1 Introduction

Longitudinal studies are important to investigate dynamics of latent (i.e., unobservable)
psychological constructs (e.g., how depression evolves during or after a therapy). The
study design may be, for instance, a traditional daily or weekly diary study or modern
experience sampling methodology (ESM; e.g.,, Scollon et al., 2003), in which subjects may
rate questionnaire items say three times a day at randomized time-points over a course
of several weeks. Regardless of the design, a measurement model (MM), obtained by
factor analysis (FA), indicates to what extent the latent constructs (or “factors”) are
measured by which items, as indicated by the values of “factor loadings”. In order to draw
valid inferences about the measured constructs, it is crucial that the MM is invariant (i.e.,
equal) across time because only then constructs are conceptually similar. However, this
longitudinal measurement invariance (MI) is often not tenable because artefacts such as
response styles (e.g., an agreeing response style leads to higher loadings; Cheung &
Rensvold, 2000), substantive changes in either item interpretation or the number and
nature of the measured constructs (e.g., high and low arousal factors replace positive and
negative affect factors; Feldman, 1995) may affect the MM differently over time. A
confirmatory testing approach is often too restrictive because researchers often have no
or incomplete a priori hypotheses about such discrete MM changes. Therefore,
Vogelsmeier, Vermunt, van Roekel, and De Roover (2019) proposed latent Markov factor
analysis (LMFA), which is an exploratory method that clusters observations of multiple
subjects into a few latent states depending on the underlying MM where each state
gathers validly comparable observations, as will be described in detail in Section 3.2.2.1.

However, an important aspect of longitudinal data neglected in LMFA so far is that
the time lags between two adjacent measurement occasions may vary between and
within subjects. For traditional diary studies, the intervals may differ, for instance,
because intervals during therapy are shorter (e.g, a day or a week) than follow up
intervals after therapy (e.g., six months). Intervals in ESM studies may be unequal
because of the “signal-contingent” sampling scheme, which is the most widely used
scheme to determine when and how often the participants are questioned (de Haan-
Rietdijk, Voelkle, Keijsers, & Hamaker, 2017). That is, random beeps request the
participants to fill in questionnaires with the aim to reduce memory bias and
predictability of the measurements. Additionally, night intervals are usually longer than
the intervals during the day and, in any study design, participants may skip measurement
occasions so that the interval becomes longer.

To accommodate unequally spaced measurement intervals, we extend LMFA in
this chapter, following the trend of various modeling approaches to move away from the
so-called “discrete-time” (DT) modeling approach that assumes equal intervals and
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instead adopt a “continuous-time” (CT) approach that allows for unequal time intervals
(TIs). The CT approach fits the idea that we only capture snapshots of the studied process
(e.g., because the limitation of observing the entire process) but that processes evolve
continually and not only at discrete measurement occasions (Bockenholt, 2005; Crayen
etal, 2017; de Haan-Rietdijk et al., 2017; Voelkle & Oud, 2013). Furthermore, in contrast
to results from DT studies, where parameters are estimated for a specific interval, results
obtained from CT studies are comparable across studies because they are transferable to
any interval of interest (de Haan-Rietdijk et al., 2017; Voelkle & Oud, 2013). Moreover,
analyzing data containing unequal intervals with DT methods possibly leads to wrong
conclusions when not accounting for the exact elapsed time (Driver, Oud, & Voelkle, 2017;
Voelkle & Oud, 2013).

The chapter is organized as follows: Section 3.2 describes the data structure, the
differences between CT- and DT-LMFA, how the DT approach may approximate CT, and
the general model estimation. Section 3.3 presents a simulation study comparing the
performance of CT- and DT-LMFA. Section 3.4 illustrated CT-LMFA with an application.
Section 3.5 discusses how CT-LMFA safeguards further analyses of factor mean changes
when MI cannot be established (e.g., by means of continuous-time structural equation
modelling; ctsem; Driver et al., 2017) and finally ends with future research plans.

3.2 Method

3.2.1 Data Structure

The repeated measures observations (with multiple continuous variables), nested within
subjects are denoted by y;;; (with i = 1, ..., I referring to subjects, j = 1, ..., ] referring to
items, and t =1,...,T to time-points) and are collected in the J X 1 vectors y;; =
Vi1t Yizer - Yipe)'» which themselves are collected in the T Xj data matrix Y; =
(¥i1,¥i2', -, ¥ir)' for subject i. Note that T may differ across subjects but, for simplicity,
we omit the index i in T;.

3.2.2 LMFA

We first give the building blocks of the regular DT-LMFA (3.2.2.1) and then present CT-
LMFA (3.2.2.2).

3.2.21 DT-LMFA

The first building block of LMFA is a latent Markov model (LMM; Bartolucci et al., 2014;
Collins & Lanza, 2010), which is a latent class model that allows subjects to transition
between latent classes (referred to as “states”). These transitions are captured by a latent
“Markov chain”, which follows (a) the “first-order Markov assumption”, saying that the

54



CONTINUOUS-TIME LMFA

probability of being in state k (k = 1, ..., K) at time-point t depends only on the previous
state att — 1 and (b) the “independence assumption”, saying that the responses at time-
point t only depend on the state at this time-point. The probability of starting in a state k
is given by the initial state K X 1 probability vector m with elements m;, = p(s;, = 1),
where s, = 1 refers to state membership k at time-point t and YX_,m, = 1. The
probability of being in a state k at time-point ¢t conditional on the state membership [ (I =
1,..,K) att — 1 is given by the K X K transition probability matrix P with elements
Pic = P(Sex = 1|s¢—1; = 1), where the row sums, Y.x_; py, are equal to 1. In practice, the
transition probabilities depend on the interval length between measurements (e.g., the
probabilities to stay in a state are larger if the interval amounts to an hour than when it
amounts to a day). Note that typically these probabilities, P, are assumed to be constant

over time.

The second building block is the factor analysis (FA; Lawley & Maxwell, 1962)
model, which defines the state-specific MMs. The state-specific factor model is

Yie = Vi + Ay £ + ey, (3-1

with the state-specific J X F; loading matrix A;; the subject-specific F;, X 1 vector of
factor scores f;;~MVN(0; W) at time-point ¢t (where F; is the state-specific number of
factors and W, the state-specific factor (co-)variances); the state-specific J/ X 1 intercept
vector vy ; and the subject-specific /] X 1 vector of residuals e;;~MVN(0; D;) at time-
point t ,where D, contains the unique variances d ; on the diagonal and zeros on the off-
diagonal. Note that, for maximum flexibility regarding possible MM differences occurring
across persons and time-points, LMFA generally employs an exploratory factor analysis
(EFA) approach, that is, without a priori constraints on the factor loadings. If desired,
however, confirmatory FA (CFA) could also be used by imposing zero loadings.

From Equation (3.1) it becomes apparent that the state-specific MMs can differ
regarding their loadings Ay, intercepts v, unique variances Dy, and factor covariances
¥, implying that LMFA explores all levels of measurement non-invariance (described in
detail in, e.g., Meredith, 1993): Configural invariance (equal number of factors and zero
loading pattern), weak factorial invariance (equal loading values), strong factorial
invariance (equal intercepts) and strict factorial invariance (equal unique variances).

To identify the model, factor variances in W, are restricted to one and rotational
freedom is dealt with by means of criteria to optimize simple structure of the factor
loadings (e.g., oblimin; Clarkson & Jennrich, 1988), between-state agreement (e.g.,
generalized Procrustes; Kiers, 1997) or the combination of the two (De Roover &
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Vermunt, 2019). The multivariate normal distribution with the state-specific covariance
matrices ¥, = AyA,' + D, defines the state-specific response densities p(y;ls;),
indicating the likelihood of the J observed item responses at time-point t given the state
membership at t.

Summarized, there are three types of probabilities that together make up the joint
probability density of subject i’s observations and state memberships:

initial state transition response
probabilities T  probabilities T probabilities

P48 = b6 | [pGidse | [pGalsd, (32)
t=1

t=2

where S = (s4,8,,...,87) is the K X T state-membership indicator matrix. Here, the
columns s; = (S¢q, .., S¢x)’, for t =1,...,T, are binary vectors indicating the state
memberships at time-point t (e.g, if K = 3 and a subject is in state 3 at time-point t, then
s; = (0,0,1)". When applying this model in situations in which measurement intervals are
not equal, the encountered transition probabilities will refer to more or less the average
interval length in the dataset concerned. For intervals shorter than the average, the
transition probabilities yield an overestimation of transitions while for intervals longer
than the average, the transition probabilities yield an underestimation.

One solution to account for unequal intervals in the DT approach to a certain
extent is to rescale intervals to a finer unit (e.g., 1 hour) and to round the time-points to
the nearest unit. So-called “phantom variables” (Driver et al., 2017; Rindskopf, 1984b)
containing missing values are inserted for all time-points without observations. Although
this is good approximation if the grid is fine enough, for substantive researchers,
transforming the dataset is burdensome and choices regarding the interval lengths
difficult. Moreover, a high number of iterations of the algorithm described in Section 3.2.3
is required to achieve convergence, causing long computation times (for more
information on this, see Appendix E). Therefore, we only consider the CT approach, which
is a much more natural alternative to account for the unequal TI.

3.2.2.2 CT-LMFA

The CT approach has been extensively discussed in the literature on Markov models (Cox
& Miller, 1965; Kalbfleisch & Lawless, 1985) and latent Markov models (Bdckenholt,
2005; Jackson & Sharples, 2002) and overcomes inaccurate estimation by considering the
length of time, §, spent in each of the states. Specifically, transitions from current state [
to another state k are here defined by probabilities of transitioning from one state to
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another per very small time unit and are called transition intensities or rates q;. These

intensities can be written as:

e = limp(stk =1|s;_5, = 1)
= .

lim 5 (3.3)

The K X K intensity matrix Q contains the transition intensities q;;, for k # [ as off-
diagonal elements and their negative row sums, that is, — Y.; qi, on the diagonals. For
example, for K = 3,

—(q12 + 413) q12 q13
Q= q21 —(qg21 + 4G23) q23 . (3.4)
q31 q32 —(q31 *+ g32)

There are three assumptions underlying the CT latent Markov model: (1) the time
spent in a state is independent of the time spent in a previous state, (2) the transition
intensities q;;, are independent of and thus constant across time13, and (3) the time spent
in a state is exponentially distributed (Bdckenholt, 2005). The matrix of transition
probabilities P can be computed as the matrix exponentiall# of the intensity matrix Q
times the TI § (Cox & Miller, 1965):

P(5) = . (3.5)

Note that the specific structure of Q (with negative row sums on the diagonal) is a
consequence of taking the matrix logarithm of P with its restriction ¥X_, p;, = 1 (Cox &
Miller, 1965). With Equation (3.5), we can compute the transition probabilities for
arbitrary TIs, which is, as mentioned in the introduction (Section 3.1), a distinctive
advantage of the CT approach. Thus, the probabilities change depending on the interval
length between two consecutive observations. How the transition probability matrix P
changes depending on TI § is shown in Figure 3.1 based on an arbitrary intensity matrix

Q.

13 Note that this assumption might be relaxed. For example, one might assume different transition
intensities for night and day intervals or that transition intensities change over time. In these cases, one
may use covariates or specific model approaches (e.g., a model with a Weibull distribution that models the

intensities as a function of time). However, this is beyond the scope of the current chapter.
. . L A® AA | AAA
14 The matrix exponential e®, where A can be any square matrix, is equal to Z“f:o; =I1+A+ > + = +

---, where I is the identity matrix.
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CONTINUOUS-TIME LMFA

As a final remark, note that the joint probability density of subject i’s observations
and state memberships for DT-LMFA in Equation (3.2) also applies to CT-LMFA. The only
difference is that the transition probabilities p(s;|s;_,) depend on the q;;, and the TI § for
subject i at time-point ¢t (with regard to t —1) such that ps, (s¢|s;—1) is a more

appropriate notation.
3.2.3 Estimation

Using syntax, Latent GOLD (LG; Vermunt & Magidson, 2016) can be used to find the
parameters previously described—collectively referred to as @ —that maximize the
loglikelihood function logL. Apart from the transition probability formulation in the DT
approach, where ps,,(S¢|s;—1) = p(S¢|s;—1), the logL formulation is the same for DT-

LMFA and CT-LMFA. The logL for both models is given by:

logL<e|Y>=ilog Z...Zp(su)ll[paﬂ(sgst_l)ﬁp(yusia . (6)
i=1 2 t=1

Si1 SiT t=

which is complicated by the latent states. Therefore, to find the maximum likelihood (ML)
solution, LG utilizes the expectation maximization (EM; Dempster et al., 1977) algorithm,
more specifically the forward-backward algorithm (Baum, Petrie, Soules, & Weiss, 1970),
which is described in detail for DT-LMFA in Vogelsmeier, Vermunt, van Roekel, et al.
(2019). Estimation of the CT-LMFA differs in that the maximization-step (M-step)
requires using a Fisher algorithm not only for updating the state-specific covariance
matrices (Lee & Jennrich, 1979) but also for updating the log transition intensities
(Kalbfleisch & Lawless, 1985). A summary is provided in Appendix D. Note that the
estimation procedure assumes that we know the number of states K and factors within
the states Fj. Since these numbers are only known in simulation studies, a model
selection procedure is required when working with real data. For LMFA, the Bayesian
information criterion (BIC) proved to perform well in terms of selecting the best model
complexity (Vogelsmeier, Vermunt, van Roekel, et al., 2019).

3.3 Simulation Study
3.3.1 Problem

We employed an ESM design with unequal TIs—currently the go-to research design to
study daily-life dynamics—to evaluate how CT-LMFA and standard DT-LMFA differ in
recovering the model parameters. Generally, we expected CT-LMFA to outperform DT-
LMFA, although the performance difference might be small (Crayen et al., 2017). We
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manipulated three types of conditions that previously were shown to influence MM
parameter recovery and state recovery (Vogelsmeier, Vermunt, van Roekel, et al., 2019):
(1) factor overdetermination, (2) state similarity and (3) amount of information available
for estimation. We expect the differences in MM parameter recovery and state recovery
across the two methods to be especially pronounced for (1) a lower factor
overdetermination, (2) a lower state similarity, and (3) a lower amount of information
because the posterior state probabilities are functions of the observed data and the state
memberships at the adjacent time-points (see Appendix D.1). Hence, the estimation
benefits from precisely estimated transition probabilities. These precise estimates are
likely more important for more “difficult” conditions where the state membership is more
difficult to predict based on the observed data.

Based on the simulation study of Vogelsmeier, Vermunt, van Roekel, et al. (2019),
the conditions for (1) factor overdetermination were (a) number of factors (where a
higher number causes lower factor overdetermination for a fixed number of items; e.g.,
Preacher & MacCallum, 2002) and (b) unique variances (where lower unique variances
increase common variance and therefore also factor overdetermination; e.g., Briggs &
MacCallum, 2003). The conditions for (2) state similarity were (c) between-state loading
similarity and (d) between-state intercept difference. The conditions for (3) amount of
information—with (e) sample size, N, (f) number of days of participation, D, and (g)
number of observations per day, T,,—were based on a typical ESM design.

Note that Tg,, determines the amount of DT violation (i.e, to what degree the
intervals differ from the average day interval) as well as the transition probabilities. A
higher Ty,, implies smaller DT violations and fewer transitions to other states at two
consecutive observations as will be described in Section 3.3.2. Performance differences
regarding the transition parameter recovery are expected to be especially pronounced
for a lower T4, and thus for higher DT violations and higher transition probabilities to
other states, where the latter leads to lower dependence of states at two consecutive
time-points, making the estimation more difficult (Vogelsmeier, Vermunt, van Roekel, et
al,, 2019).

3.3.2 Design and Procedure
We crossed seven factors with the following conditions in a complete factorial design:

a. number of factors per state F;, = F at two levels: 2, 4;

b. unique variance e at two levels: .2, .4;
between-state loading difference at two levels: medium loading difference
and low loading difference;
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d. between-state intercept difference at two levels: no intercept difference,
low intercept difference;

e. sample size N at two levels: 35, 75;

f. the number of days D at two levels: 7, 30;

g. the measurements per subject and day Ty, at three levels: 3, 6, 9;

resulting in 2 (@) x2(b) x2(c)x2(d)x2(e)x2(f)x3(g =192 conditions. The
number of items ] was fixed to 20 and the number of states K was fixed to 3.

The loading differences between the states (c) was either medium or low. For both
conditions, we started with a common base loading matrix, Ag,s., which was a binary
simple structure where all items loaded on only one factor and all factors were measured
by the same amount of items (i.e., 10 for F = 2 and 5 for F = 4). To clarify this, consider
Aggse for the example of F = 2:

’

~¢1 111 1111110000U0O0UO0UO0TO0O0
AB‘“e‘(00000000001111111111) (37)

To induce loading differences between the states, we altered the base matrices differently
for each state. Specifically, for the medium between-state loading difference condition,
we shifted respectively one loading from the first factor to the second and one from the
second to the first for both for F = 2 and F = 4, so that, for F = 4, only the first two
factors differed across states. Items for which the loadings were shifted differed across
states. This manipulation did not affect the overdeterminaton of the factors, which was
therefore the same across states. Thus, for the example of F = 2, the loading matrices for
the first two (of the three) states were

A (Al111111111)\2000000000)'
t"™ % 00000O0OO0OOO0ORAXK 111111111

(3.8)
A_(l)\l1111111107\200000000)'
2"\ox 0000000O0OT1H2 11111111

with A; = 0 and A, = 1. The low between-state loading difference condition differed
from the just described one only in that, instead of shifting loadings, we added one cross-

loading of V.5 to the first and one to the second factor for different items across states,
thereby also lowering the primary loadings to v.5. Thus, the entries in A; and A, in

Equation (3.8) were A, = v.5and A, = V.5 for this condition. Finally, we rescaled the
loading matrices rowwise so that the sum of squares per row was 1 — e, where e was
either .40 or .20.
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To have a measure of between-state loading matrix similarity, we computed the

grand mean, @meqn, of Tucker’s (1951) congruence coefficient (defined by ¢y, =
xry
XYy

1 indicating proportionally identical factors. For the medium loading difference

where x and y refer to columns of a matrix) across each pair of factors, with ¢ =

condition, @eqn across all states and factors was .8 and for the low loading difference
condition .94, regardless of the number of factors.

For creating between state intercept differences (d), we first created a base
intercept vector consisting of fixed values of 5:

Vpagse=(5 5 55 5 5 555 55555555 55 5 (39)

For the no intercept difference condition, we used vg,q, for each state. For the low
intercept difference condition, we increased two intercepts to 5.5 for different items
across the states. This resulted in the following two intercept vectors for the first and the
second state.

v,=(55 55 55 55 5555555055505 55 5)
(3.10)
v,=( 5 55 55 55 5555055505555 5 5 5)

Datasets were generated for either 35 or 75 subjects, N, (e). The number of days,
D, for simulated participation was either 7 or 30 (f) and the number of measures per day
(h), Tgay, was 3, 6, or 9. The total number of observations T for one data matrix was
therefore, N X Tyq, X D. Factors (f) and (g) also determined the sampling schedule. The
day lasted from 9 am and to 9 pm so that days and nights were on average twelve hours
long. Depending on whether Tyq, was 3, 6 or 9, the general intervals between
measurement occasions during the day were ngeneraz =12/(Tgqy — 1) and thus 6, 2.4 or
1.5 hours, while the night intervals were not directly affected by T4,,,. To obtain a CT
sampling scheme with randomness typical for ESM studies, we allowed for a uniform

random deviation around the fixed time-points with a maximum of plus and minus 30
percent of the DT TIs (e.g., for Tgq, = 3, we calculated the product of the general TI and

the percentage of violation, 6 X 0.3, which is 1.8, and therefore, we sample the deviation
from the uniform distribution Unif (—1.8,1.8)). This explains why the DT violation is
bigger for a smaller Ty,

Finally, the transition intensities in Q were fixed across all conditions, subjects,
and time. To determine Q, we considered transition probabilities P realistic for short TIs
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and determined them for the intermediate Tg,, = 6 condition and thus for an interval of
2.4 hours. That means, 2.4 hours pertains to one unit and therefore, all other intervals
will be scaled to this unit interval. From the chosen probabilities

.950 .025 .025
P=|.025 .950 .025|, (3.11)

.025 .025 .950

Q was derived by taking the matrix logarithm:15

-05 .03 .03
Q=(.03 -05 .03 | (3.12)

.03 .03 -.05

Because of the design, the transition probabilities across measurement occasions will be
larger for Ty, = 3, where intervals §;; are longer, and smaller for Ty,, =9, where

intervals are shorter.

In the open-source program R (R Core Team, 2020) for each subject, we sampled
Tgqy X D time-points as previously described (see Section 3.3.2). Subsequently, we
sampled a random initial state from a multinomial distribution with equal probabilities
and, based on the subject-specific TIs, generated a random CT latent Markov chain (LMC)
containing state memberships for each subject. According to the LMCs, we generated N
data matrices Y; with the state-specific factor model of Equation (3.1), assuming
orthogonal factors, and concatenated the Y;’s into one dataset Y = Y{, Y5, ..., Y/)". In total,
20 replicates of the 192 conditions and thus 3840 datasets were generated.

3.3.3 Results

Performances were evaluated based on 3831 out of 3840 datasets that converged at the
first try in both analyses (99.7 % analyses converged in CT-LMFA and all converged in
DT-LMFA).16

15 Note that the rows do not sum to zero only because of rounding in this representation.

16 Note that it may also happen that the estimation results in a locally maximum likelihood (ML) solution,
implying that the local ML solution has a smaller log L value than the global ML solution. Note that the latter
is unknown but, in the simulation study, an approximation (“proxy”) can be obtained by using the
population parameters as starting values and comparing the multistart solution to the proxy solution:
When log Liitistare < 108 Lproxi (i-€., by .001 to exclude minor calculation differences), we considered the
solution as local maximum. In the converging ML solutions, a local maximum was found for only 0.55 % of
the datasets analyzed with CT-LMFA and for 0.47 % of the datasets analyzed with DT-LMFA.
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3.3.3.1 Performance Measures

First, the state recovery was examined with the Adjusted Rand Index (ARI) between the
true and the estimated state MC’s. The ARl is insensitive to state label permutations and
ranges from around O (i.e., overlap is at chance) to 1 (i.e., perfect overlap). Second, to
obtain the differences in the goodness of state loading recovery (GOSL), we averaged the
Tucker congruence coefficient between the true and the estimated loading matrices
across factors and states:

YK E_ (AL AL

3.13
Sy (3:19)

GOSL =

We used Procrustes rotation (Kiers, 1997) to rotate state-specific loadings IA\i to A£.17
This solves the label switching of the factors within that state. To account for differences
in state labels, we retained the permutation that maximized ¢ (Af , T\,’Z). Third, for all other
parameters (i.e., transition parameters, intercepts, unique variances, and initial state
probabilities), we computed the mean absolute difference (MAD) between the true and
the estimated parameters.1® Note that, for the transition and initial state parameters, we
considered the state permutation that was found to maximize the loading recovery.
Furthermore, the transition parameters are probabilities for DT but intensities for CT. In
order to make deviations from the population parameters as comparable as possible, we
transformed the intensities from the CT analyses to probabilities for the 1-unit TI of 2.4.
Moreover, the “true” parameter in DT-LMFA to evaluate the MAD,,.,,, is based on the
average population TI.

3.3.3.2 Goodness of Parameter Recovery

As can be seen from the “average” results in Table 3.1, CT-LMFA was slightly superior to
DT-LMFA regarding the general state and transition probability recovery but still very
comparable regarding MM parameter recovery. Moreover, contrary to our expectations,
the difference in MM and state recovery across the two analyses were not affected by
most of the manipulated conditions, probably because the transition probabilities were
overall very well estimated. Only lower levels of T4, considerably increased the

17 We conducted the rotation in R, since factor rotation was just added to LG after the study was conducted.
18 Note that the MAD,,;; may be affected by Heywood cases pertaining to improper factor solutions where
at least one unique variance is zero or negative (e.g., Van Driel, 1978). Heywood cases did not occur in any
of the analyses and are therefore not further discussed.
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performance difference between CT- and DT-LMFA, which was in line with our
expectations.

3.3.4 Conclusion and Recommendations

To sum up, there was a striking similarity in recovering parameters under a wide range
of conditions across the CT- and DT-LMFA. Nevertheless, it was shown that CT-LMFA
leads to the best state recovery and, furthermore, provides researchers with valid
transition probabilities for any TI of interest and should therefore be the preferred
method. Furthermore, although we demonstrated the robustness of DT-LMFA in
recovering the correct MMs for a typical ESM design where the degree of DT violation is
rather small, we cannot generalize the findings purporting that DT-LMFA is an adequate
substitute for datasets with large DT violations.

3.4 Application

In the following, we apply CT-LMFA to longitudinal data of the National Institute of
Mental Health (NIMH) Treatment of Depression Collaborative Research Program
(TDCRP; Elkin et al., 1989) to evaluate MM changes over time. In brief, the data consisted
of repeated depression measures of 122 subjects with a major depression disorder. By
means of the 20-item Beck Depression Inventory (BDI; Beck et al., 1979; items listed in
Table 3.2), depression was assessed on a 4-point scale before treatment, during
treatment (i.e.,, weekly and additionally after 4, 8 and 12 weeks), at termination, and at
follow ups after 6, 12, and 18 months. The total number of observations was 1700 with
an average of 14.24 per subject (ranging from 1 to 30). Intervals between the
observations varied tremendously from very small (e.g., a day when the weekly and the
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4-week questionnaire were completed on two consecutive days) to very large (e.g., a year
when certain follow ups were skipped).1?

To begin with the data analysis, model selection with the BIC (comparing
converged solutions of one to three states and one to three factors per state) indicated
that the best fitting model was a two state model with three factors in the first state and
two factors in the second state.29 Hence, configural invariance is clearly violated. In order
to shed light on the state-specific MMs, we investigated the standardized oblimin rotated
loadings (Table 3.2). Considering the standardized loadings of higher than .3 in absolute
value (e.g., Hair, Anderson, Tatham, & Black, 2014), state 1 is characterized by three
factors pertaining to (1) “despair”—with strong loadings of, for example, “mood”,
“pessimism”, and “lack of satisfaction”—, (2) “self-image”—with strong loadings of, for
example, “guilty feeling”, “self-hate”, and “self-accusation”—, and (3) “cognition/body”—
with strong loadings of, for example, “irritability”, “sleep disturbance”, and “fatigability”.
In state 2, all items beside “sense of punishment”, “self-punitive wishes” and “loss of
appetite”, which all have no variation and thus no loadings at all, mainly load on one
factor, therefore pertaining to (1) “depression”. Only “indecisiveness” and “work
inhibition” have considerable loadings on the other factor as well, which may pertain to
(2) “cognition”. Moreover, intercepts and unique variances are higher in the first than in
the second state.

Next, we look at the estimated transition intensity matrix Q = (_6012 ;0021),
from which we can calculate P for any interval of interest, for example, for one week

.89 .11\ .. .43 .57 .43 .57
Pyeer = (.08 .92),51)( month Py syeqr = ( 42 58) and ayear Pygq = ( 43 57) ,

showing how transitions become more likely up to a certain point in time. Looking at the
estimated initial state probabilities m= (.9 .1) and Figure 3.2, which shows the
transitions between states over time for six exemplary persons in the sample, it becomes
apparent that patients have a high probability of starting in state 1 with the trend of
moving towards state 2. Combined with knowing what the MMs look like, we conclude
that, over time, patients obtained a more unified concept of depression (high loadings on
only one factor), improved assessing their degree of symptoms by means of the BDI
(lower unique variances), and perceived less symptoms (lower intercepts) than at the
beginning of their therapy. This broadly confirms previous research of Fokkema, Smits,
Kelderman, and Cuijpers (2013) who compared the screening and termination MMs of
this dataset with CFA and found that the participants obtained a more concrete idea of
their depression, perhaps because therapists explain the concept of depression during

19 Note that some additional information about choices made regarding the data is provided in Appendix G.
20 The syntax for the final model can be found in Appendix F.
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sessions so that patients learn about their illness, which may influence patients’ concepts
of depression and how they evaluate their symptoms. However, due to the pure
exploratory nature of this study, drawing substantive conclusions would require more
research, such as a replication study.

3.5 Discussion

In this chapter, we introduced continuous-time- (CT-) latent Markov factor analysis
(LMFA)—which models measurement model (MM) changes in time-intensive
longitudinal data with unequal measurement intervals—and compared the method to the
regular discrete-time- (DT-)LMFA. Although the recovery of states was only slightly
superior in CT-LMFA, we demonstrated why the method should be favored: CT-LMFA has
a natural match with the assumption that processes evolve at irregular time intervals
(TIs) and transition intensities can be transformed to DT transition probabilities for
arbitrary TIs. This allows researchers to compare transition probabilities within and
across studies, leading to more freedom in interpreting time-intensive longitudinal data.

CT-LMFA is a valuable first data-analysis step because, by pinpointing changes in
the MM, it safeguards valid results when further investigating factor mean changes (e.g.,
by means of ctsem; Driver et al,, 2017). For example, the structure of the MM in one state
might indicate the presence of a response style. Researchers may then continue with the
“reliable” part of the data only (i.e., the measures in the state without the response style)
or choose to correct for the response style in the corresponding part of the data. If only,
say, two item loadings are invariant across states, researchers may decide to remove
these items and to continue with the entire dataset. CT-LMFA may also indicate that there
are unobserved groups of subjects that mostly stay in one state. In that case, a mixture
CT- structural equation modeling analysis with latent subpopulations could be a suitable
next step.

In the future, one would ideally use hypothesis tests to trace significant differences
across the states. This will be possible by means of Wald tests once rotational freedom is
dealt with in the estimation procedure so that proper standard errors are obtained. To
solve the rotation problem for multiple groups simultaneously, De Roover and Vermunt
(2019) recently developed a “multigroup factor rotation”, which rotates group-specific
loadings both to simple structure and between-group agreement. The next step is to tailor
this promising method to the states in CT-LMFA and, thereby, to enable hypothesis
testing.
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Three-Step Latent Markov Factor Analysis

for Evaluating Covariate Effects

This chapter is accepted for publication in a similar form in Multivariate Behavioral
Research as Vogelsmeier, L. V. D. E,, Vermunt, ]. K, Biilow, A., & De Roover, K. (in press)
Evaluating covariate effects on ESM measurement model changes with latent Markov factor
analysis: A three-step approach.



CHAPTER 4

Abstract

Invariance of the measurement model (MM) between subjects and within subjects over
time is a prerequisite for drawing valid inferences when studying dynamics of
psychological factors in intensive longitudinal data. To conveniently evaluate this
invariance, latent Markov factor analysis (LMFA) was proposed. LMFA combines a latent
Markov model with mixture factor analysis: The Markov model captures changes in MMs
over time by clustering subjects’ observations into a few states and state-specific factor
analyses reveal what the MMs look like. However, to estimate the model, Vogelsmeier,
Vermunt, van Roekel, et al. (2019) introduced a one-step (full information maximum
likelihood; FIML) approach that is counterintuitive for applied researchers and entails
cumbersome model selection procedures in the presence of many covariates. In this
chapter, we simplify the complex LMFA estimation and facilitate the exploration of
covariate effects on state memberships by splitting the estimation in three intuitive steps:
(1) obtain states with mixture factor analysis while treating repeated measures as
independent, (2) assign observations to the states, and (3) use these states in a discrete-
or continuous-time latent Markov model taking into account classification errors. A real
data example demonstrates the empirical value.
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4.1 Introduction

New methods such as experience sampling methodology (ESM; Scollon et al,, 2003)
enable the assessment of psychological constructs or “factors” (e.g., depression) in daily
life by repeatedly questioning multiple participants via smartphone apps, for example,
nine times a day for one week. Such intensive longitudinal studies (say with more than
50 measurement occasions) are often conducted to analyze dynamics in factor means.
For instance, researchers investigated how emotional dynamics relate to subjects’ mental
health (Myin-Germeys et al., 2018) or tailored interventions to subject’s daily experience
of negative affect (Van Roekel et al., 2017). For drawing valid inferences about the
dynamics, it is crucial that the measurement model (MM) is invariant (i.e.,, constant)
between and within persons over time. The MM indicates which factors are measured
and how these factors are measured by items, which is expressed by means of “factor
loadings”. In case of continuous data, the MM is obtained with factor analysis (FA). If the
MM is invariant, the factors are conceptually equal across subjects and time-points and
therefore comparable. However, the MM might be affected by subject- or time-point-
specific response styles or substantive changes in item interpretation. As a result, the
MMs might differ between subjects (e.g., the item interpretation might depend on
subjects’ psychopathology) but the MM might also differ within one subject (e.g., the
response style of choosing only the extreme categories might depend on situational
motivation to complete the questionnaire). If invariance stays undetected, inferences
may be invalid. For example, a mean score change in negative affect might be at least
partly due to changes in item interpretations.

To conveniently evaluate (violations of) invariance of intensive longitudinal data
for multiple subjects simultaneously, latent Markov factor analysis (LMFA; Vogelsmeier,
Vermunt, van Roekel, et al.,, 2019; Vogelsmeier, Vermunt, Boing-Messing, & De Roover,
2019) was proposed, which combines a discrete- or continuous-time latent Markov
model with mixture factor analysis.2! As will be described in more detail in Section 4.2.3,
the Markov model clusters subject- and time-point-specific observations according to
their underlying MM into dynamic latent MM classes or “states”, which implies that
subjects can transition between latent states and thus between MMs over time. State-
specific factor analyses reveal which MM applies to each state. Observations that belong
to the same state are invariant. Observations that belong to different states are non-
invariant, for instance, with regard to the number or nature of the underlying factors or
the size of factor loadings. Note that some subjects might stay in one state, which implies

21 Note that it is also possible to apply LMFA to a single subject if the number of observations was large
enough. For guidelines on the required number of observations, see Vogelsmeier, Vermunt, van Roekel, et
al. (2019).
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within-person invariance (i.e., over time). Other subjects may transition (more or less
frequently) between different MMs, which implies within-person non-invariance.
Moreover, comparing state memberships across subjects provides information about
between-person (non-)invariance.

The aim of assessing non-invariance patterns is usually twofold. On the one hand,
detecting non-invariance is important for deciding how to proceed with the data analysis.
For example, if the invariance violation is strong, one may decide to conduct factor-mean
analyses with observations from one state only. If only a few MM parameters differ across
states (i.e., “partial invariance” holds; Byrne et al., 1989), one may decide to investigate
dynamics in the factor means but let the corresponding MM parameters differ across
states. More specifically, if discrete (i.e., abrupt) changes are of interest, one could
continue with LMFA by adding factor means to the model and constraining invariant
parameters to be equal across states. The state memberships would then (also) capture
discrete changes in factor means (this is further explained in Section 4.2.3.1).22 If
continuous (i.e., smooth) changes are of interest, researchers could opt for a latent
growth model (Muthén, 2002) with state-specific parameters.

On the other hand, researchers would typically like to include explanatory
variables (in the following referred to as “covariates”) that can possibly explain MM
changes so they can learn about these substantively interesting aspects of their data. As
an example, when studying adolescents’ affective well-being in daily life, the situational
context (e.g., being with friends versus being with parents) might lead to different MMs
in that some items may be more relevant for measuring affect in one over the other
context. For instance, “being excited” might be more related to the positive affect factor
when being with friends whereas “being content” might be more related to positive affect
when being with parents.

Exploring the relations between covariates and state memberships is theoretically
possible by adding different (sets of) covariates to the “structural model” (SM). Note that
the SM generally refers to the causal relationships between latent variables (and/or
exogenous variables) or between latent variables at consecutive measurement occasions.
Specifically, in LMFA, the SM refers to the transitions between states and thus between
MMs. However, with the currently implemented full information maximum likelihood
(FIML) approach, that estimates all parameters (i.e., from the MM and the SM) at the same
time, exploring covariate effects is cumbersome. LMFA is an exploratory method, which
entails that researchers have to select the best model in terms of number of latent states

22 This analysis would be comparable to the factor-mean modeling approach that was proposed by
Bartolucci and Solis-Trapala (2010).
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and number of factors within the states. To this end, one needs to estimate a large number
of plausible models and compare them with the Bayesian information criterion
(Vogelsmeier, Vermunt, van Roekel, et al, 2019) or an alternative model selection
criterion. For example, comparing models with 1 — 3 states and 1 — 3 factors per state
would already result in 19 models that have to be estimated by the researchers. Model
selection with covariates is even more cumbersome because the whole model (i.e., the
MMs and the SM) would have to be re-estimated for every set of covariates. Especially in
exploratory studies, where researcher might want to add or remove covariates until only
significant covariates are left, the model selection procedure quickly becomes unfeasible
(e.g, if there are only three different sets of covariates for the 19 different model
complexities, this would already result in 19 X 3 = 57 models).

To avoid the model selection problem with covariates in any latent class analysis
(the latent Markov model is a specific variant thereof), researchers sometimes first select
the MM (or MMs if they differ across latent classes) without including the covariates to
the SM. Once the choice about the complexity of the MM has been made, researchers
include the covariates in the SM and re-estimate the whole model (i.e,, only 19 + 3 = 21
models have to be estimated). However, this is problematic because, in the FIML
approach, both parts of the model, the MM and the SM, are estimated at the same time so
that specifications of the SM may also influence the MM. Thus, including covariates can
redefine the states and even impact the optimal number of states or factors (Bakk, Tekle,
& Vermunt, 2013; Nylund-Gibson, Grimm, Quirk, & Furlong, 2014).

A better strategy that considerably simplifies the estimation is the so-called
“three-step” (“3S”) approach, which decomposes the estimation into three manageable
pieces. More specifically, the steps for a latent Markov model are as follows: step 1: obtain
state-specific MMs by conducting mixture factor analysis on the repeated measures data
while disregarding the dependency of these observations; step 2: assign the observations
to the states (and thus the MMs) based on posterior state probabilities; step 3: pass the
state-specific MMs to a latent Markov model in order to estimate the probabilities to
transition between the states (the three steps will be elaborated in Section 4.2.5).
Although the MMs are also estimated first without considering the SM with its covariates
(step 1), the MMs are kept fixed when adding the covariates to the SM (step 3).

Next to facilitating the inclusion of covariates, the step-wise approach is also more
intuitive because it ensures that the states—and thus the formation of the MMs—are free
from covariate influences. This is required if latent classes (in our case latent states)
should exclusively capture heterogeneity in the MMs (Bakk et al., 2013; Nylund-Gibson
etal.,, 2014). Moreover, the step-wise approach better corresponds with how researchers
prefer to approach their analyses (Bakk et al., 2013; Devlieger, Mayer, & Rosseel, 2016;

75




CHAPTER 4

Vermunt, 2010). That is, they rather see the investigation of the SM (i.e., in our case the
transitions between states and the influence of covariates) as a final step that comes after
investigating what the MMs look like. Because of the separate steps, the analyses could
even be distributed across researchers such that one researcher carries out the first step
to obtain the different underlying MMs. A second researcher could take the results and
continue with the analyses of the transitions between the MMs. If everything has to be
done in one step, it may quickly become overwhelming. Thus, applied researchers are
used to and typically prefer such step-wise approaches and perceive simultaneous “one-
step approaches” as counterintuitive and more difficult to interpret (Vermunt, 2010).
Especially for complex analyses such as LMFA, offering step-wise approaches can
therefore help to reach applied researchers and motivate them to apply the new method.

When splitting the estimation of latent class models in general—and latent
Markov models in particular—into the estimation of the MM(s) and the SM, estimates of
the SM would be biased, however. In order to prevent this bias, the estimation procedure
has to take into account the classification error that results from classifying observations
into classes or states because classification is never perfect. To this end, Bolck, Croon, and
Hagenaars (2004) proposed the “BCH” method in which the classification error is used to
reweight the data prior to conducting logistic regressions to predict class membership.
Moreover, Vermunt (2010) developed an alternative, more flexible, maximum likelihood
correction (“ML” method) in which the estimation of the latent class model in the third
step explicitly incorporates the classification error. More recently, the ML approach (or
an extension thereof) was applied to the 3S estimation of latent Markov models (e.g.,
Asparouhov & Muthén, 2014a; Bartolucci, Montanari, & Pandolfi, 2015; Di Mari et al,,
2016; Nylund-Gibson et al., 2014) and showed to be a trustworthy alternative to the one-
step FIML approach.

The aims of the current study are (1) to tailor the ML correction method to LMFA
(in the following referred to as 3S-LMFA) to provide a more accessible alternative to the
FIML estimation (in the following referred to as FIML-LMFA) that is more convenient to
use (especially with covariates) and easier to interpret for applied researchers and (2) to
evaluate whether 3S-LMFA approaches the good performance of FIML-LMFA in terms of
state and parameter recovery. Note that both, FIML-LMFA as well as 3S-LMFA, can be
estimated by means of Latent GOLD (LG) syntax (Vermunt & Magidson, 2016), which is
also used for the current study.

The remainder of this chapter is structured as follows: In Section 4.2, we first
describe the data structure, provide a motivating example, outline the general LMFA
model, and explain the steps of 3S-LMFA. In Section 4.3, by means of a simulation study,
we evaluate the performance of 3S-LMFA and compare it to the performance of FIML-
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LMFA. Section 4.4 illustrates the empirical value of 3S-LMFA by means of a real-data
application. In Section 4.5, we discuss limitations of 3S-LMFA and directions for future
research.

4.2 Method

In the following, we first describe the data structure, the LMFA model, and the FIML
estimation before we explain the three steps of the 3S estimation in detail.

4.2.1 Data Structure

We assume ESM data with repeated measures observations (with multiple continuous
variables) that are nested within subjects and are denoted by y;;; (where i =1, ...,1
refers to subjects, j = 1, ..., ] refers to items, and t = 1, ..., T to time-points). Note that T
may differ across subjects but we omit the index i in T; for simplicity. The y;;; are
collected in the 1 X J vectors y;; = (ym, ...,yi]t) that themselves are collected in the

T x J data matrices Y; = (¥, .-, Vir) -
4.2.2 Motivating Example

In order to motivate the use of LMFA in general and the 3S approach in particular,
consider the following ESM data that was collected within the larger ADAPT project
(Keijsers, Boele, & Biilow, 2017).23 Dutch adolescents (N = 27; Mage = 15.8; 67% girls)
received five questionnaires a day for 13 consecutive days via the “Ethica Data” mobile
app (Ethica Data Services Inc, 2018), resulting in a maximum of 65 potential
measurement occasions per participant. In total, the 27 participants completed 1168
questionnaires (compliance rate 67%). During each ESM questionnaire the participants
indicated their current affect with the Dutch version of the Positive and Negative Affect
Schedule for Children (PANAS-C-NL; Ebesutani et al., 2012; Keijsers, Boele, & Biilow,
2019; Watson et al., 1988), where five items indicated positive affect and another five
items indicated negative affect (all items are displayed in Table 4.4). All affect items were
measured on a Visual Analog Scale (VAS) from 0 (notatall) to 100 (very much). The visual
display of the items in the app can be found in Appendix K.4. Next to the affect
questionnaire, adolescents also completed questionnaires to assess time-varying
covariates (e.g., participants’ current company) at each measurement occasion.
Furthermore, before the ESM study, participants completed a baseline questionnaire
about time-constant covariates (e.g., on emotion clarity and emotion differentiation
capability). A typical next step of substantive or applied researchers would be to
investigate changes in positive and negative affect over time. However, if response styles

23 Materials can be found at https://osf.io/svyau.

77




CHAPTER 4

or item interpretation differ across time-points and/or subjects, the MM is not invariant
within and between subjects and conclusions about dynamics in affect may be invalid.
LMFA can be used to trace MM differences between subjects and MM changes over time.
More specifically, there are two main research questions that can be answered using
LMFA:

1. Which MMs underlie which parts of the data and how do the MMs differ?
2. Are the MMs related to time-varying and/or time-constant covariates?

For answering only the first question, FIML-LMFA can be used. However, if researcher
also want to answer the second question, the model selection including covariates would
be too cumbersome with FIML-LMFA and 3S-LMFA is indispensable. In Section 4.4, we
answer both research questions using 3S-LMFA.

4.2.3 Latent Markov Factor Analysis

LMFA consists of two parts. First, the measurement part concerns the state-specific
response variable distributions that, in the case of LMFA, consist of the MMs for the
constructs, which are defined by a mixture of factor models. Second, the structural part
concerns the discrete latent process that is either defined by a “discrete-time” latent
Markov model (Bartolucci et al., 2014; Bartolucci, Farcomeni, et al., 2015; Collins & Lanza,
2010; Zucchini et al., 2016), which assumes equal time intervals, or by a “continuous-
time” latent Markov model (Bockenholt, 2005; Jackson & Sharples, 2002), which allows
time intervals to differ. Additionally, it is possible to include covariates to the SM. Figure
4.1 depicts the relations between the parameters from the SM and zooms in on the
relation between the states from the SM and the state-specific MMs by means of an
artificial example. The different parts including the notation will be described next.

4.2.3.1 Measurement Part

The measurement part shows how the state memberships define the responses. Thereby,
it is important to note that the responses at time-point t, y;;, depend only on the latent
state k (k = 1, ..., K) at that time-point and the responses are thus independent of the
responses at other time-points given that state (“independence assumption”), which is
alsoillustrated in Figure 4.1. In LMFA, the factor model depends on the state membership
of subject i at time-point ¢t (denoted by s;;;, = 1) as follows:

[VielSick = 1] = Vi + A fip + €44 (4.1)

In this equation, Ay is the state-specific /] X F; loading matrix (where Fj is the state-
specific number of factors); f;; ~ MVN(0,W,) is the subject-specific F,, X 1 vector of
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factor scores at time-point t (where W, is the state-specific factor covariance matrix); vy
is the state-specific J X 1 intercept vector; and e;; ~ MVN(0,D,;) the subject-specific
J X 1vector of residuals at time-point t (with D, containing the unique variances dy; on
the diagonal and zeros on the off-diagonal). Thus, the state-specific response densities,
p(Vitlsier = 1), are defined by state-specific multivariate normal distributions with
means v, and covariance matrices X, = AxAj, + D;. To obtain the state-specific factor
models, LMFA employs exploratory factor analysis within the states in order to retain
maximal flexibility regarding the differences in MMs that can be traced. In contrast to
confirmatory factor analysis, exploratory factor analysis puts no a priori constraints on
the factor loadings. However, if desired, confirmatory factor analysis can also be used.

Zj1 Zj Z;T
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Figure 4.1. Artificial example of the relations between the structural model parameters
(top panel) and a zoomed in state-specific measurement model (bottom panel) in the full
information maximum likelihood LMFA. Note that the state-specific measurement
models may differ regarding all parameters, including the number of factors and the
values of the loadings (4;5), intercepts (vi;), and unique errors (e;).

From Equation (4.1) we can see that the state-specific MMs may differ with regard
to their loadings Ay, intercepts v,, unique variances Dy, and factor (co)variances ¥y,
implying that LMFA explores all levels of measurement non-invariance, that is, configural
invariance (invariant number of factors and pattern of zero loadings), weak factorial
invariance (invariant loading values), strong factorial invariance (invariant intercepts),
and strict factorial invariance (invariant unique variances) (for more details see, e.g.,
Meredith, 1993). For identification purposes, the factor variances are equal to one in all
the states and rotational freedom is dealt with by means of criteria to optimize simple

79




CHAPTER 4

structure and/or the between-state agreement of the factor loadings (e.g., Kiers, 1997;
Clarkson & Jennrich, 1988; De Roover & Vermunt, 2019).

It is important to note that restricting the factors to have a mean of zero and a
variance of one has the consequence that changes in factor means and variances may be
captured as changes in the intercepts and loadings (i.e., if an additional state is selected
for such a change). Therefore, when all intercepts that pertain to the same factor are
higher or lower in one state compared to the other, it might be a sign that the factor means
rather than separate intercepts differ across these states. Similarly, if all loadings of the
same factor are likewise larger or smaller (i.e., the scaling is affected), it might be a sign
that factor variances rather than the separate loadings differ across states. However,
when the number of factors differs across states, it does not make sense to disentangle
loading differences from factor-variance differences and, as long as weak invariance is
violated, it does not make sense to disentangle intercept differences from factor-mean
differences. In contrast, if the loadings and intercepts are (atleast partially) invariant, one
could go ahead with an adjusted LMFA—that means, with equality restrictions on the MM
parameters and including state-specific factor variances and means—and capture
discrete changes in factor variances and means over time, as was already mentioned in
the introduction (Section 4.1).

Furthermore, LMFA currently assumes that factors have no auto- and cross-lagged
correlations at consecutive time-points. By means of a dynamic factor analysis, it would
be possible to incorporate such autocorrelations, but factor rotation would be more
intricate as auto- and cross-lagged relations have to be rotated towards a priori specified
target matrices (Browne, 2001; Zhang, 2006). This would require a priori hypotheses
about MM changes that are often not present or incomplete and that are thus undesired
in exploratory studies. In addition, one would require more measurement occasions per
subject (Ram et al.,, 2012), which is often unfeasible. In order to investigate whether
ignoring autocorrelations in the data would pose problems for LMFA, Vogelsmeier,
Vermunt, van Roekel, et al. (2019) conducted a simulation study using the FIML
estimation and showed that the state and parameter recovery of the MMs were largely
unaffected. Note, however, that ignoring dependency in the data leads to an
underestimation of standard errors (SEs) of the MM parameters. This is only relevant
when using hypothesis tests to trace significant differences in the MMs across states,
which is possible by means of Wald tests using De Roover and Vermunt (2019)’s recently
developed “multigroup factor rotation”.2* One would then have to correct for the

24 The method solves the rotation problem for multiple groups simultaneously by rotating group-specific
factor loadings to simple structure and between-group agreement with user-defined weights on these two
aspects of the rotation.
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dependency in the data (e.g., with the “primary sampling unit” identifier in LG; Vermunt
& Magidson, 2016). Otherwise, invariance of parameters would be rejected too easily.
However, the hypothesis tests are outside the scope of this chapter.

4.2.3.2 Structural Part

Alatent Markov model generalizes a latent class model—the statistical method to identify
subgroups with a similar set of indicator values—because subjects can transition
between classes in a latent Markov model, while subjects remain in the same classes in a
latent class model. The classes in a latent Markov model are therefore referred to as
“states”. For an extensive description of latent Markov models, see, for example,
Bartolucci, Farcomeni, et al. (2015) and Zucchini et al. (2016). In brief, transitions
between the states are captured by a latent “Markov chain” defined by the probabilities
to startin a state k at time-point t = 1 (“initial state probabilities”) and the probability of
being in a state k at time-point t > 1 conditional on the occupied statel (I =1, ...,K) at
t —1 (“transition probabilities”). Note that, according to the first-order Markov
assumption, the probability of being in a certain state k at time-point ¢t depends only on
the state at t — 1. The initial state probabilities are given by the K X 1 probability vector
m, which contains the elements m, = p(sy, = 1) with s, referring to the state
membership k at time-point t (e.g., if a subject is in state 1 at time-point 1, then s;; = 1
and sy, = ‘- = sy = 0). These binary variables are in turn collected in the membership
vectors S;; = (Sitq, - Sitx) ', fort = 1, ..., T, which are in turn collected in the K X T state
membership matrix S = (s;4, S;2, ..., S;7). The transition probabilities are collected in the
K X K matrix P, which contains the elements p;; = p(s¢ = 1|s¢—1; = 1). Note that the
rows indicate the state that a person comes from and the columns determine the state
where the person transitions to. Hence, the diagonal elements represent the probabilities
to stay in a state and the off-diagonal elements the probabilities to transition to another
state. Therefore, diagonal values close or equal to 1 indicate stable state memberships
and thus within-person invariance. It applies that the sum of the initial state probabilities,

YK _, my, and the row sums of the transition probabilities, YX_, px, equal 1.

In the discrete-time latent Markov model, the time intervals between observations
are assumed to be equal. This assumption is often not tenable in empirical data. For
instance, the questionnaires in ESM are usually send out at random moments and
participants may skip certain measurement occasions, which automatically increases the
distance between two subsequent observations. To accommodate such data, a
continuous-time latent Markov model can be employed, which allows for differing
intervals across time-points and subjects by considering the length of time spent in a
state, 6. In the following, we provide a brief summary. The interested reader is referred
to Bockenholt (2005) and Jackson and Sharples (2002) for general information about
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continuous-time latent Markov model and to Vogelsmeier, Vermunt, Boing-Messing, et al.
(2019) for more specific information on continuous-time-LMFA. In brief, transitioning
from the origin state [ to destination state k is defined by the “intensities” (or rates)
qix (collected inthe K X K intensity matrix Q) that replace the transition probabilities py;
and can be seen as probabilities to transition between states per very small time unit:

(4.2)

_ limp(stk =1ls;5,=1)
Que = §-0 1) ’

for all k # [ (thus, for the off-diagonal elements in the intensity matrix Q). The diagonal
elements are equal to the negative row sums (i.e., — Yx+; qux; Cox & Miller, 1965). The
transition probabilities for any interval of interest can be computed by taking the matrix
exponential of Q X §. Note that larger time intervals § increase the probability to
transition to a different state. In turn, Q can be obtained by taking the matrix logarithm
of P.25

In the following, we expand the structural part by including U subject and possibly
time-point specific covariates z;;,, (collected in the U X 1 vectors z;;) such that they affect
the initial and transition probabilities.2é Note that the measurement part is assumed to
be not (directly) affected by the covariates, which can also be seen in Figure 4.1. Also note
that the parameters of the structural part are typically modelled using a logit model (for
initial and transition probabilities) or via a log-linear model (for transition intensities) in
order to prevent parameter space restrictions, which is also what LG does. The covariates
enter the model through these parameterizations. For the initial state probabilities, we
use the parameterization

p(sik = 1|241) ,
_— = ﬁ + B Zit—1, 4.3

p(si1 = 11zi1) ok et (+3)
with k = 2, ..., K and k = 1 as the reference category. The coefficients Sy are the initial
state intercepts and B}, = Bre,zi1,» "'*[”k,zl-w)’ are the initial state slopes, which quantify

25 Note that the Q matrix with the particular structure on the off-diagonals follows naturally from taking
the matrix logarithm of the P matrix with its restriction YX_; p;. = 1.

26 Note that the only difference between time-varying and time-constant covariates is that the former may
take different values within a subject (i.e., in the dataset, the covariate scores may differ across rows) and
the latter has the same value within a subject (i.e., in the dataset, the covariate scores are repeated/identical
across rows).
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the effect of the covariates on the initial state memberships. In discrete-time-LMFA, the
multinomial logistic model for the transition probabilities is

P(Sice = UsSit—10 = 1,2¢)
p(siet = Usig—11 = 1, 24¢)

= Yo + YirZit (4.4)

with k # [. Thus, the logit is modeled by comparing the transition from state [ to state k
with the probability of staying in state [. The coefficients y,;, are the transition intercepts
and yix = (Vik,zyr -+ Yikzyy) @re the transition slopes, which quantify the effect of the
covariates on transitioning to another state. In continuous-time-LMFA, we use a log-
linear model for the transition intensities (for k # [):

log que = Yo + YikZic- (4.5)

Finally, the joint distribution of observations and states, given the covariates, is

p(Y:, Si1Z) = p(Yirs oo Vir Sias 0 Sir | Zins o) Zir)

r r (4.6)
= p(sulz) | [pauGsielsinzo | [p@alsi.
t=2 t=1

Note that the &; in ps,, (S;¢|Si;—1, Z;¢) refers to the transition probabilities’ dependency on
the subject- and time-point-specific time interval in continuous-time-LMFA. The term
reduces to p(s;;|Sir—1, Z;r) in discrete-time-LMFA.

4.2.4 FIML Estimation of Latent Markov Factor Analysis (FIML-LMFA)

In order to obtain the maximum likelihood (ML) parameter estimates with the FIML
estimation, the following loglikelihood function has to be maximized:

I
logLrn, = ) log| ) ) p(¥iSilZ) | (47)
i=1

Si1 SiT

with p(Y;, S;|Z;) as given in Equation (4.6). The ML estimates can be obtained by means
of the forward-backward algorithm (Baum et al., 1970), which is an efficient version of
the expectation maximization (EM; Dempster et al., 1977) algorithm and is also utilized
by LG to find the ML solution. Within the maximization-step, a Fisher algorithm is used to
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update the state-specific covariance matrices defined by the factor models (Jennrich &
Sampson, 1976) and, in case of continuous-time-LMFA, also to update the log-transition
intensities. For a summary of the algorithms (including information about the
convergence criteria and the utilized multistart procedure), see Vogelsmeier, Vermunt,
van Roekel, et al. (2019) for discrete-time-LMFA and Vogelsmeier, Vermunt, Bding-
Messing, et al. (2019) for continuous-time-LMFA.

It is important to note that we assume the number of states (K) and factors per
state (Fy ) to be known when estimating the models. However, in real data, the best model
in terms of the number of states and factors has to be evaluated. The Bayesian
information criterion (BIC) performs well in selecting the best model in FIML-LMFA
although the final decision regarding the optimal model should also take interpretability
into account (Vogelsmeier, Vermunt, van Roekel, et al, 2019). When also including
covariates, every model under comparison (i.e., with all possible combinations of K and
F}) has to be re-estimated every time a covariate is added or removed from the model
because, using FIML estimation, the best model may change depending on the included
covariates. For instance, when researchers want to obtain the best subset of U = 3
covariate candidates, they would have to estimate 2 = 8 times the number of models
that is already under comparison. When all models are estimated, one may use the BIC
and interpretability to choose the final model. Thus, the model selection quickly becomes
overwhelming and even unfeasible when exploring relations between state memberships
and many covariates.

4.2.5 Three-Step Estimation of Latent Markov Factor Analysis (3S-LMFA)

In contrast to FIML-LMFA, 3S-LMFA decomposes the maximization problem for
estimating the MMs and the SM into smaller parts. First, the state-specific MMs are
estimated (step 1). Second, the observations are assigned to the MMs (i.e., classified to
the states) and “classification errors” are calculated (step 2). Finally, the SM is estimated
using the state-assignments while correcting for the classification errors (step 3). In the
following, we explain the three steps in detail.

4.2.5.1 Step 1: Estimation of the State-Specific Measurement Models

The first step as illustrated in Figure 4.2 involves estimating the state-specific MMs
underlying the data by means of mixture factor analysis (McLachlan & Peel, 2000;
McNicholas, 2016). The structural part (including the covariates) can be validly ignored
because, in LMFA, the observations at a given time-point ¢, y;;, are assumed to be
conditionally independent of the state at time-point t — 1, s;;; = 1, and the covariates at
time-point t, z;;, given the state membership at time-point t, s;;;, = 1 (see Figure 4.1). For
the estimation, all repeated observations are treated as “independent” such that
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respectively, say, 100 observations for each of 100 subjects results in 10000 independent
observations. The model parameters of interest are the state proportions p(s;;;, = 1) and
the state-specific response probabilities p(¥isk|Siek = 1) = MVN (Vier|Vie, A A + Dy).
The mixture factor analysis model is therefore

PO = ) Plsise = D PGrcelsio = 1 (48)
k=1

and the loglikelihood function is

log p(yic)- (4.9)

M'ﬂ

1
i=1

logLsrgpr = Z

..,
1l
[

In LG, the posterior state probabilities and the state-specific factor models are estimated
with an EM algorithm with Fisher scoring (Lee & Jennrich, 1979) in the maximization-
step.2’

Vi Yiz Yir

Figure 4.2. Step 1: Estimating the measurement model by performing mixture factor
analysis.

As already discussed in the introduction (Section 4.1), in this step, one also selects
the optimal number of states K and factors per state Fj, without having to be concerned
about the covariates. Although the BIC is also a commonly used model selection criterion
for mixture factor analysis (McNicholas, 2016), the CHull (Ceulemans & Kiers, 2006)
method—which also balances model complexity and fit—proved to outperform the BIC
in mixture factor analysis, especially when considering the three best models (Bulteel,
Wilderjans, Tuerlinckx, & Ceulemans, 2013). Based on their results, we suggest to use the

27 Alternatively, one may also use another EM algorithm in the maximization-step (e.g., McNicholas, 2016).
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CHull method, potentially combined with the BIC, to select the three best models and
compare them in terms of interpretability.

4.2.5.2 Step 2: Classification of Observations and Calculation of the Classification
Error

Once the state-specific MMs have been estimated, in the second step, we allocate each
observation to one of the K states (see Figure 4.3). Therefore, we create a new variable
Wit = Wiz, -, Wir)', that, similar to s;;, represents the assignments of the observations
to the estimated MMs from step 1. These predicted state memberships are based on the
estimated posterior state probabilities p(s;y = 1]Y;;) from step 1, which can be
expressed using Bayes’ theorem as

(it = Do (yielSier = 1)
P(¥ie)
_ (i = Do (yielsier = 1)
Y= PGiter = DpWielSicrr = 1)

(it = 1lyie) =
(4.10)

Vi Yiz Yir

Wiq W2 Wir

Figure 4.3. Step 2: Assigning states and calculating the classification error.

Thus, all observations y;; belong to each of the K states with a certain probability
p(Sitk = 1]y;¢). There are two common rules?8 on how to proceed with these posterior
state probabilities with regard to the final state assignments. First, “proportional
assignment” assigns a state according to the posterior probabilities such that
PWig = 1lyit) = p(siex = 1|yi), which leads to a “soft” partitioning. Second, “modal
assignment” allocates the weight p(w;, = 1|y;;) = 1 for the state k with the largest
posterior state probability in s;; and a zero weight for all others states. Note that we will
focus on modal assignment because proportional assignment is unfeasible with a large

28 Note that also other assignment rules such as random assignment (Goodman, 2007) can be found in the
literature but they are less commonly used for the three-step approaches and are therefore not further
discussed.
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number of time-points per subject, which would involve separate weights for all KT
possible combinations of states in case of classification uncertainty (Di Mari et al., 2016).

Regardless of the assignment rule, classification error is inherent to any
assignment procedure because the largest posterior probability is usually not equal to 1.
We have to account for this error because, if not accounted for, the error attenuates
relationships between variables. On the one hand, this attenuation will lead to an
underestimation of the relation among true states s;; at two consecutive time-points and,
thus, an overestimation of the transition probabilities away from a state (Vermunt et al.,
1999). On the other hand, estimating the relationship between the estimated
memberships w;; and covariates z;; —instead of using the true states s;; —causes
underestimation of the covariate effects (Di Mari et al,, 2016). Hence, a correction for
attenuation of relationships due to classification error is necessary.

In order to calculate the classification error so that we can account for it in step 3,
we have to obtain the probability of a certain state assignment w;;,,, = 1 conditional on
the true state s;;, = 1, pP(Wyem = 1|S;e = 1), for all k,m = 1, ..., K. These probabilities
are collected in the K X K “classification error probability matrix”. They are computed as

fp(Witm = 1y dp@i)r(Sier = 1Yie) dyic

p(Sier = 1) (+11)

PWigm = 1lsje = 1) =

For the derivation, see the Appendix H.1. To solve this equation, p(y;;) can be validly
substituted by its empirical distribution (Di Mari et al., 2016; Vermunt, 2010), resulting

in

1
T Zi=1 2t=1 P Witm = 11yi)P(Siex = 1|Yit). (4.12)
p(sir = 1)

PWigm = 1sje = 1) =

Note that another option to solve the integral would be to use Monte Carlo simulation.
The larger the probabilities for m = k (corresponding to the diagonal elements of the
classification error probability matrix), the better the classification and, thus, the smaller
the classification error. Note that classification error is strongly related to separation
between the states (i.e., how well the latent states are predicted by Y = (Y;, Y3, ..., Y));
Bakk et al,, 2013; Vermunt, 2010). To qualify the separation in any LC analysis, an
entropy-based (pseudo) R-squared measure, Rﬁntmpy, is commonly used (Lukociené,
Varriale, & Vermunt, 2010; Vermunt & Magidson, 2016; Wedel & Kamakura, 1998). The
Rgnm,py value defines the relative improvement of predicting the state membership
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when using the observations y;; compared to predicting the state membership without
yit- Values range from zero (prediction is no better than chance) to one (perfect
prediction). State separation (and hence classification error) depends on various factors.
For example, it increases with a lower number of states, higher factor overdetermination
(which is higher in case of less factors, more variables, or lower unique variances), and
lower between-state similarity (determined by larger differences in the state-specific
MMs). The RZntyopy values for the different settings in our simulation study will be

reported below in Section 4.3.2.
4.2.5.3 Step 3: Estimation of the Structural Model

In the final step, we estimate the SM (i.e., the Markov model with covariates), which is
illustrated in Figure 4.4. The key to correct for the classification error obtained in step 2
is to show the relationship between the estimated state memberships conditional on the
covariates, p(W;|Z;), and the true state memberships conditional on the covariates,
p(Si|Z;), where W; = (W1, Wip, ..., Wir), Z; = (Zi1, Ziz, -, Zir) and S; = (Si1, Siz, -, Sir)
(Di Mari et al, 2016). Therefore, we consider the joint probability p(W;, Y;, S;, Z;) and
solve for p(W;|Z;) (see Appendix H.2), which results in

T T
p(Wi|Zy) = Z Z p(si1lzi) 1—[ p(SielSie—1,Zit) l_[ p(Wit|Sit). (4.13)
Sit t=2 t=1

Si1

It can be seen that Equation (4.13) resembles the FIML-LMFA model from
Equation (4.6), marginalized over S; and with different response probabilities. It is in fact
a latent Markov model with the state assignments from W; as single indicators with K
categories replacing the observed item responses Y;. This demonstrates that Y; is no
longer needed in step 3 if we have the classification error probabilities p(w;;|s;;). The
response probabilities are fixed to the classification error probabilities and thus do not
have to be estimated. Hence, the focus of the latent Markov model changes. Instead of
accounting for unobserved heterogeneity of the MMs (as in FIML-LMFA), the latent
Markov model accounts for error in the estimated state assignments W;.
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Zi1 Ziy Zir

K
~i

Wiq Wi, Wit

Figure 4.4. Step 3: Estimating the structural model by means of a latent Markov model
with single indicators wy,.

In order to estimate the SM, the following loglikelihood function has to be

maximized:

I
logLsrgps = Z log(p(W;|Z))). (4.14)

i=1

The estimation, just as in the regular FIML-LMFA, is done by means of the forward-
backward algorithm.2? However, the classification error probabilities are utilized as fixed
response probabilities, such that only the (covariate-specific) transition and initial-state
probabilities need to be estimated. Note that the state-assignments W; are treated as the
manifest (i.e., observed) indicators (that contain error) of the “true” (error-free) latent
states S;, which are inferred through the forward-backward algorithm and used to
determine the parameters of the SM. Differences between W; and S; become less likely
for well-separated states with small classification error.

Finally, as already discussed in the introduction (Section 4.1), in the third step, one
evaluates which covariates significantly relate to the transition and/or initial state
probabilities. Instead of selecting the best subset of covariates by means of an
information criterion as in the FIML approach, one may start with a model including all
covariate candidates or none of them and use Wald (or likelihood ratio) tests to decide
which covariates can be removed from or added to the model one by one (e.g., using
forward or backward elimination). Note that, as in any statistical model, there are
advantages and disadvantages with regard to such data-driven covariate selection

29 Note that the third step of 3S-LMFA can be fastened by combining the EM estimation with a Newton-
Raphson algorithm which is extensively described in De Roover et al. (2017).
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procedures (for a review, see Heinze, Wallisch, & Dunkler, 2018). When in doubt, one may
conduct sensitivity analyses comparing the results from different approaches. When
having strong a priori hypotheses about covariates, one may also consider a more theory-
driven approach.

4.3 Simulation Study

4.3.1 Problem

The aim of the simulation study was to evaluate the performance of 3S-LMFA and to see
if it approaches the performance of FIML-LMFA. The specific targeted measures were
recovery of the states (i.e., the classification), the MM parameters, and the parameters
and SEs of the SM consisting of the Markov model with covariate effects. First, parameter
and state recovery have previously been shown to be positively influenced by an
increasing amount of information (in terms of sample size) and by higher state-
separation (i.e., a better distinction between the states; Bakk et al., 2013; Di Mari et al,,
2016; Vermunt, 2010). The more information is available and the more separable the
states are, the more accurate the mixture factor analysis can estimate the MM parameters
in step 1 and the more accurate the estimation of the SM in step 3.

Second, SEs are possibly slightly underestimated because the error probabilities
PWitm = 1|sizx = 1) are assumed to be known in step 3 although they are actually
estimated parameters of the mixture factor analysis in step 1. When the SEs are
underestimated, the Wald statistic to test covariate effects would lead to wrong
conclusions regarding the statistical significance of covariates. If this underestimation is
present, it will likely vanish with large state separation and amount of information (Di
Mari et al, 2016; Vermunt, 2010). In the simulation study, we evaluate whether
underestimation is present and from what point on state separation and amount of
information are sufficient to obtain trustworthy SE values.

Third, the Rgnm,py and thus the state separation is higher for FIML-LMFA than for
the initial state separation in the first step of 3S-LMFA because the former has additional
information from the SM (i.e., the covariates and the states occupied at adjacent time-
points) while the latter has information only from the MMs in step 1. Therefore, the
recovery of the state memberships is expected to be better for FIML-LMFA. We expect
this difference in recovery to decrease when the state memberships are updated in step
3 (i.e, when the SM is also included). However, the degree to which the state membership
recovery in 3S-LMFA approaches the recovery in FIML has to be demonstrated in the
simulation study.
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Note that the evaluation of the model selection procedures in step 1 (i.e., finding
the best number of states, K, and factors per state, F;, by means of the BIC and the CHull)
and step 3 (i.e., selecting the correct covariates by means of Wald tests, e.g., with
backward elimination) is beyond the scope of this chapter and will be used only in the
application. As described in Section 4.2.5.1, the BIC and the CHull have already been
extensively evaluated for mixture factor analysis. Furthermore, when the simulation
study shows that the covariate parameters and their SEs are estimated correctly, we
believe that the Wald tests will also correctly identify the significant covariates. However,
in Section 4.5, we will discuss the possibility of inaccurate model selection under the
violation of the conditional independence assumption.

We manipulated the two key factors: (1) state-separation3? (this includes (a)
between-state loading differences and (b) intercept differences) and (2) amount of
information (this includes (c) number of subjects and (d) number of participation days
per subject). Note that, for selected conditions, we also investigated whether 3S-LMFA
might be more affected by ignoring autocorrelation than FIML-LMFA (see Appendix 1.1)
and whether varying the strength of the covariate effects and the distribution of the
covariates across observations or subjects impacted the estimation procedures
differently (see Appendix 1.2), which was not the case.

4.3.2 Design and Procedure

The conditions were the following:

a. between-state loading differences at two levels:
State-separation medium loading differences, low loading differences;
b. between-state intercept differences at two levels:
no intercept differences, low intercept differences;
Amount of {c. number of Subjects N at four levels: 30, 50, 70, 90;
information d. number of days D at two levels: 7, 30;

This design resulted in 2 X 2 X 4 X 2 = 32 conditions. For the population model, we used
an ESM setup—with number of subjects, N, days, D, and observations per day, T;q,—that
is often found in practice (e.g., van Roekel et al, 2019; Van Roekel et al, 2017).
Furthermore, we used unequal time intervals that are typical for ESM studies and,
therefore, employed continuous-time-LMFA. Thereby, the following values were used as
constants: number of items J = 20, unique variances e = .2, number of states K = 3,

30 Note that there are many possibilities to manipulate state-separation as previously stated (e.g., number
of factors and states and factor overdetermination). For feasibility of the simulation study, we only chose
the two types of between-state differences.
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number of factors F, = F = 2, and number of observations per day T4, = 9. The latter
also determined the ESM sampling scheme (comparable to Vogelsmeier, Vermunt, Béing-
Messing, et al., 2019): Imposing that a sampling day lasts from 9 am to 9 pm, both day and
night intervals were on average 12 hours long. The Ty,, = 9 measurement occasions
during the day lead to intervals of 1.5 hours if the measurement-occasions were fixed.
However, for random variations, we let observations deviate from these fixed time-points
by means of a uniform distribution with a maximum of plus and minus 30 percent of the
fixed 1.5 hour intervals. Thus, the deviations were drawn from Unif(—0.3 X 1.5,0.3 X
1.5).

To determine the SM, the initial state parameters were chosen to lead to equal
probabilities of starting in a state (By, = Byz = 0). The transition intercept parameters
were specified to be realistic for a short unit interval of 1.5 hours with high probabilities
to stay in a state.31 More specifically, the intercept parameters were yg12 = Y913 = Yo21 =
Y023 = Y031 = Yo32 = —3.65 which would correspond to the following transition
probability matrix if no covariates were present:

.950 .025 .025
Piay =(.025 .950 .025 | (4.15)

.025 .05 .950

To alter the transition probabilities, we used one time-varying dichotomous
covariate (z;;;), which changed in value after 3 days for D = 7 or after 15 days for D =
30, and one time-constant dichotomous covariate (z;, = z;;) that was randomly
assigned to the subjects with equal probabilities. Both covariates had values equal to
—0.5 or 0.5. A higher value for z;;; lowered the probabilities of transitioning to and
staying in state 1 and 3 while increasing the probabilities of transitioning to and staying
in state 2. For instance, this time-varying covariate could represent an intervention that
increased the probability to move to and stay in a “healthy state”. The corresponding
slope parameters were V12,2, = V32,250 = 1 and Y13,zies = V21,2401 = V23,2500 — V31,2i01 —
—0.5. Furthermore, a higher value for z;, increased the probability to transition away
from the origin state, leading to a less stable Markov chain. For instance, this stable
variable could be a trait-like general stability in response behavior that influences all
probabilities to transition away from the state at the previous time-point. The
corresponding slope parameters were Vi3,,, = Vi3z,, = V21,zi, = V23210 = V312 =

V32,2, = 0-5. The four resulting possibilities for the transition probability matrices were

311.5 hours pertains to one unit and the other intervals are scaled to this unit interval.
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1963 .012 .025
P =—5z1p=—5 = | -025 .950 .025 |,

.940 .019 .041)
.025 .012 .963

Pm“=ﬂ5mn;5==<041 919 .041
041 .019 .940
(4.16)
.952 .032 .015
Pmn:Ezu2=,5==(015 .969 .015)

.923 .052 .025)
.015 .032 .952

P, - 5z,=5= (.025 .951 .025
.025 .052 .923

Note that the covariate effects appear to be rather small but they increase for larger
intervals than the unit interval.

Regarding the state separation, we used the same conditions as in previous
simulation studies evaluating LMFA (Vogelsmeier, Vermunt, Bding-Messing, et al., 2019;
Vogelsmeier, Vermunt, van Roekel, et al., 2019). More specifically, we generated data with
state-specific MMs as defined in Equation (4.1), assuming orthogonal factors (i.e.,
fi: ~MVN(0,I)). To induce the between-state loading differences, we started with a
common base matrix in both states:

00 0 0 0O
111111

_ o
- o
= o
- o
v\
—~
S
[y
~
—

111111111
000 O0O0O0OO0OTU OO

(=3

Apgse = (

which shows a binary simple structure that is often found in empirical studies (e.g.,
consider a typical positive vs. negative affect structure that may also underlie the data in
the motivating example described in Section 4.2.2). For the medium loading difference
condition, respectively one loading was shifted from the first factor to the second and one
from the second to the first (for different items across states). Through this manipulation,
the overdeterminaton of the factors was not affected and thus equal across states. For
example, the first two of three loading matrices were

1o
AZ‘(O A

o
o
o
o
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o
— o
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— o
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— o
— o
— o
o
— o
o
v‘

with A; = 0 and A, = 1. Similarly, for the low between-state loading difference condition
one cross-loading of V.5 was added to the first and second factor (for different items
across states), which also lowered the primary loadings to v.5. Specifically, in the

example in Equation (4.18), the entries in A; and A, were A; = V.5 and A, = . 5. Finally,
row-wise rescaling of the loading matrices leads to a sum of squares of 1 — e per row.

93




CHAPTER 4

The between-state loading matrix similarity was computed by means of the grand mean,

@Pmean, of Tucker’'s (1951) congruence coefficient (i.e., @y, = with x and y

xry
Varxyry’
referring to matrix columns) that was computed for each pair of factors (note that ¢ = 1
means proportionally identical factors). The @4, across all states and factors was

respectively .80 and .94 for the medium and low loading difference condition.

For the intercepts, we used the following base vector with fixed values of 5:
Vggse=(5 5 5 55 5 5555555555555 5), (419

which was used as such in all states for the no intercept difference condition. To induce
low intercept differences across states, we altered two intercepts to 5.5 (different items
across the states). For example, for the first two states, the vectors were

v=(5.5 55555 5555055055055 55 5 5 5),
(4.20)
v,=(G 5 55 55 55 5555550550555 5 5 5).

The combination of the between-state loading difference and intercept difference
conditions lead to four different state-separation conditions. To quantify the general
state-separation in both analyses based on the population values, we calculated the four
Rgntmpy values for step 1 of 3S-LMFA where information is only obtained from the MM
and for FIML-LMFA where information is retrieved from both the MM and the SM
including the two covariates.32 For FIML-LMFA, starting from the smallest RZ,,¢yopy, the
resulting values amounted to .90 for the low loading difference/no intercept difference
condition, to .94 for the medium loading difference/no intercept difference condition, to
.96 for the low loading difference/low intercept difference condition, and to .97 for the
medium loading difference/low intercept difference condition. For the same conditions
in the first step of 3S-LMFA, these values were respectively equal to .52, .65, .76, and .82.
Thus, as expected, state-separation is initially lower in 3S-LMFA than in FIML-LMFA,
showing the importance for 3S-LMFA to include the information from the SM in step 3.33

32 The population RZn.py Value for a specific choice of population parameters and number of
measurement occasions was obtained using Monte Carlo simulation. For this purpose we used the ‘Monte
Carlo simulation study’ option in LG with one random draw of the time intervals and covariate patterns
and with the parameters fixed to their population values.

33 Note that it is always good to check the Rgmmpy after step 1 that is automatically provided in LG because
for a very small state-separation, say, with a value much lower than 0.5, it might be better to conduct a
FIML-LMFA with additional state-separation information from the SM (including covariates). This is
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For each condition, we generated 100 datasets in R (R Core Team, 2020) according
to the described population models and analyzed them in LG. Note that only one syntax
file is required for FIML-LMFA but two files are necessary for 3S-LMFA. First, one syntax
file is required to run step 1 and 2. Thereby, the posterior state assignments and the
classification error probability matrix are saved and, subsequently, they are loaded in the
second syntax file that is required for step 3.

4.3.3 Results

In the following, we evaluate the performance of 3S-LMFA and compare it to the results
of FIML-LMFA based on the replications that converged in both steps of the 3S method as
well as in the FIML method. Results that did not converge were re-estimated once and
were excluded if convergence still failed. After re-estimation, 3180 out of 3200 datasets
converged in 3S- and FIML-LMFA (all datasets converged in step 1 and step 3 of 3S-LMFA
and 3180 in FIML-LMFA). Non-convergence in FIML was almost exclusively present for
the smallest amount of information condition (i.e., N = 30 and D = 7) and was caused by
reaching the maximum number of EM iterations without convergence. Furthermore, we
re-estimated the replications of converged results that showed unrealistically large SEs
due to boundary values for any of the estimated initial state and transition parameters
(i.e., with an SE > 10, such as 100, 400 or 1000) because including such cases would
falsify the results. This was only the case for 56 datasets in the third step of 3S-LMFA
where re-estimation did not help. As a result, 3124 datasets were included in the
performance analyses reported below.34

4.3.3.1 Goodness of State Recovery

The recovery of the states was assessed by means of the Rand Index (RI) as well as the
Adjusted Rand Index (ARI; Hubert & Arabie, 1985). Both indices evaluate the overlap
between two sets of elements while being insensitive to permutations of element labels
(in our case state labels). The indices in the RI range from 0 (no overlap between any of
the pairs) to 1 (perfect overlap) and the ARI takes values from around 0 (overlap is not
better than chance) to 1 (perfect overlap). As expected, the state-recovery was rather
poor after the first step of 3S-LMFA because of the low Rgnm,py values here (Rl = .83,

because in that case, the actual differences between the states might be even lower than the estimated ones.
This would lead to an underestimation of the classification error (Vermunt, 2010). However, such low
values are unlikely to be found in practice.

34 Note that we also investigated whether the solutions converged to local maxima (i.e., that they had
smaller logL values than the global maximum likelihood (ML) solution. Although the latter is unknown, we
can obtain an approximation (“proxy”) in simulation studies by estimating the models with the population
parameters as starting values. When logL, .. < 108L,...;, the solution is considered a local maximum. This
was no issue in FIML-LMFA and the first step of 3S-LMFA and only occurred for 3 datasets in the third step
of 3S-LMFA.

proxi?
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SDg; = .06, ARI = .61, SDyg; = .14). However, the overall recovery in 3S-LMFA was
excellent (Steinley, 2004; RI = .94, SDg; = .03, ARl = .87, SD4z; = .06) and almost as
high as in FIML-LMFA (RI = .97, SDg; = .01, ARI = .94, SD4g; = .03). Moreover, only the
state-separation influenced the state recovery in that larger separation increased
recovery (Table 4.1), indicating that already the minimum sample size of 30 (N) X
7 (D) x9 (Tday) = 1890 was sufficient to estimate K = 3 states (and thus about 630
observations per state), which is largely in line with previous results showing that about
500 observations per state are sufficient for similar settings and that a higher amount of
information in terms of sample size and observations per subject does not aid recovery
once this threshold is reached (Vogelsmeier, Vermunt, van Roekel, et al., 2019).

4.3.3.2 Goodness of MM Parameter Recovery
4.3.3.2.1 Goodness of Loading Recovery

We computed a goodness of state loading recovery (GOSL) as the average Tucker
congruence coefficient between the true and the estimated loading matrices:

SK L S (AL R (4.21)

GOSL = )
K xXF

where A£ corresponds to the state- and factor-specific loadings. By using Procrustes
rotation35 (Kiers, 1997) in order to rotate the estimated state-specific loading matrices
A, to the true ones A, we solved the label switching of the factor labels within the states.
Furthermore, to handle the label switching of the states, we retained the state
permutation that maximized the GOSL value. Overall, the loading recovery was very good
in 3S-LMFA (GOSL = 1; SD = 0) and was the same for FIML-LMFA. Note that loading
recovery can be good despite a bad state recovery because the loading matrices are very
similar across states.

4.3.3.2.2 Goodness of Intercept Recovery and Unique Variance Recovery

To examine the recovery of the intercepts and the unique variances, we calculated the
mean absolute difference (MAD) between the true and the estimated parameters. The
overall intercept recovery in 3S-LMFA was very good (MAD;,,; =0.02; SD = 0.01) and did
not differ from the recovery in FIML-LMFA. The same applied to the unique variance
recovery (MADypnigue =0.01; SD = 0.00). Moreover, only the amount of information had

35 Note that the rotation was done in R. Although rotation in LG was already possible for known groups, the
issue with switching state labels has to be resolved to provide LG with the correct state-specific target
matrices before rotation can be applied to unknown groups such as the states.
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a marginal effect on the two types of recovery in that the largest number of subjects (N =
90) and a higher number of participation days (D = 30) slightly improved the recovery
in both analyses (Table 4.1).3¢

4.3.3.3 Goodness of SM Parameter Recovery
4.3.3.3.1 Goodness of Transition and Initial State Parameter Recovery

To evaluate the recovery of the transition and initial state parameters, we calculated the
average bias and the average Root-Mean-Square-Error (RMSE) for the individual
parameters of the four parameter types (i.e., initial state and transition intercept
parameters and the two slope parameters for the covariates; Table 4.2). As can be seen,
the bias in 3S-LMFA is generally very small (i.e., between -0.02 and 0.01) and in line with
FIML-LMFA. However, the RMSE is generally higher in 3S-LMFA (e.g, RMSE = 0.39 for
the first initial state intercept parameter in 3S-LMFA versus RMSE = 0.36 for the same
parameter in FIML-LMFA). This is because using the step-wise procedure implies some
loss of information. Moreover, Table 4.3 illustrates the effects of the manipulated factors
for the four different parameter types, yet, averaged across the individual parameters for
the sake of brevity and illustrative purposes. The manipulated factors had an influence
on the bias and the RMSE in 3S-LMFA that were similar to the effects on the measures in
FIML-LMFA. More specifically, a higher amount of information generally decreased the
bias, while a larger state-separation only marginally decreased the bias for some of the
individual parameters. Furthermore, a higher state-separation as well as a higher amount
of information decreased the RMSE.

36 The unique variance recovery may be affected by Heywood cases (i.e., improper factor solutions with at
least one unique variance being negative or equal to zero, possibly caused by insufficient amount of
information or underdetermined factors; Van Driel, 1978). However, this was not the case in any of the
analyses.
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THREE-STEP LMFA

4.3.3.3.2 Goodness of Covariates’ SE Recovery

To examine the SE recovery, we compared the average estimated SE for all 100
replications within a condition with the SD of the parameter estimates across these
replications and calculated the SE/SD ratios for the individual parameters for the four
parameter types (Table 4.2). The ratios are generally slightly lower than 1 in 3S-LMFA
with values ranging from 0.95 to 1.02, indicating that the SEs are slightly underestimated.
However, this is similar in FIML-LMFA, yet with values ranging from 0.97 to 1.02.
Moreover, the manipulated factors had no clear impact on the recovery in neither of the
analyses as the four parameter types were influenced differently by a higher state-
separation and higher amount of information.

4.3.3.4 Computation Time

Exploring the computation time of all replications in the two analyses, we found that, with
178.01 seconds, FIML-LMFA took on average more than twice as much time as 3S-LMFA,
where the total computation time was 82.42 seconds (45.37 seconds for step 1 and 37.05
seconds for step 3). It should be noted that we used 25 random start sets with an EM
tolerance of 1e-005 in FIML-LMFA and step 1 and 3 of 3S-LMFA. However, one set and a
criterion of 0.01 is probably enough in the third step of 3S-LMFA because local maxima
are very unlikely when the measurement part is fixed. Adjusting the values accordingly
makes the computation even faster.

4.3.3.5 Conclusion

Summarized, the parameter and SE recovery in 3S-LMFA approached the recovery in
FIML-LMFA, making the 3S procedure a promising fast alternative when the inclusion of
covariates is of interest and hence the FIML estimation is likely unfeasible. Although a
small information loss in terms of higher RMSE values for the parameters of the SM and
a slightly worse state-recovery in 3S-LMFA could be observed, the general parameter
recovery in 3S-LMFA was on average as good as in FIML-LMFA and furthermore much
faster.

4.4 Application

To illustrate the empirical value of the 3S-LMFA approach we applied it to the ESM data
introduced in Section 4.2.2. Note that this application is only meant to illustrate the
possibilities of the new methodology, and since the hypotheses were not preregistered,
we consider these analyses exploratory.37 As previously described, we investigated

37 Note that the NA items were generally right-skewed. Since the consequences of violating the normality
assumption have yet to be investigated, one should be particularly cautious with drawing substantial
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which MMs underlie which part of the data and how the MMs differ (step 1), and whether
the MMs are related to covariates (step 3). From all covariates offered in the dataset, we
included only five covariates that we thought were plausible to influence MM
differences/changes and were of interest for this application. Because emotional
experiences may vary depending on situational influences (Dejonckheere, Mestdagh, et
al,, 2019), and adolescents spend most of their time with parents and friends (Larson,
1983; van Roekel, Scholte, Engels, Goossens, & Verhagen, 2014), we chose the following
three time-varying covariates for the social context: (1) being alone (nominal), (2) being
with a friend (nominal), and (3) being with a parent (nominal). From the baseline
measurement, we chose the following two time-constant covariates: (1) emotion clarity
deficit measured with the Emotion Clarity Questionnaire (ECQ; Flynn & Rudolph, 2010)
on a Likert scale from 1 (totally disagree) to 5 (totally agree) (e.g., “I often have a hard
time understanding how I feel.”) and (2) differentiation of emotional experience assessed
via a subscale of the Range and Differentiation of Emotional Experience Scale (RDEES;
Kang & Shaver, 2004) on a Likert scale from 1 (totally disagree) to 7 (totally agree) (e.g.,
“I am aware that each emotion has a completely different meaning.”). These baseline
questionnaires can be found in Appendix K.2 and K.3.38

In step 1, we investigate which MMs underlie the data by performing mixture
factor analysis including the model selection procedure. Given the relatively small
number of observations (T; X I = 1168) and items (J = 10), we only considered models
with 1 — 3 states and 1 — 3 factors per state. The best fitting model according to the CHull
method was a two-state model with two factors in the first state and one factor in the
second state (“[2 1]”). We provide more information about the selection procedure in
Appendix K.1. The state separation was very high (R2ntropy = 0.98). About 60 percent of
the observations were classified into state 1 and 40 percent into state 2. We will inspect
the differences between the MMs step by step, starting with (1) the loadings, followed by
(2) the intercepts and (3) proportions of unique variances, which are all given in Table
4.4. First, looking at the standardized (and in state 1 obliquely rotated) loadings, we can
see that state 1 is characterized by two independent positive affect (PA) and negative
affect (NA) factors that are hardly correlated (r = 0.07), indicating that adolescents in
this state differentiate positive and negative emotional experiences. In contrast, the
dimensions seem to collapse in state 2, which is characterized by a single (“bipolar”)
dimension “PA versus NA”. Moreover, it is noticeable that the item “miserable” has a high
loading in state 2 but not in state 1. Finally, the rather low loadings of the negative

conclusions (Vogelsmeier, Vermunt, van Roekel, etal.,, 2019). This is, however, not a problem for illustrating
the purpose of 3S-LMFA.

38 Note that three subjects in the ESM study did not have any baseline measures for an unspecified reason.
For such cases, LG automatically imputes the average scale score.
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emotions indicate that their relation to the general score on the latent factor is weaker
than is the case for the positive emotions.

Second, the intercepts in state 1 are rather high for the positive emotions and very
low for the negative emotions. In state 2, the intercepts for the positive emotions are
somewhat lower and the intercepts for the negative emotions somewhat higher. Note
that, as explained in Section 4.2.3.1, intercept differences pertaining to all items that are
strongly related to a certain factor are probably due to differences in the factor means.

Third, investigating the proportions of unique variances, it appears that two of the
positive emotions “proud” and “lively” have something unique that cannot be explained
by the PA dimension/end of the scale in neither of the two states. Comparing them with
the other positive emotions, one can imagine that their scores at least partly depend on
specific encountered events (e.g., “proud” may be elicited by achievements and “lively” is
more likely to occur during high-energy activities). Moreover, “miserable” has a large
unique variance in state 1 and therefore, also considering the low loading, is hardly
related to the other emotions. It could be that the item is not always suited to assess affect
in adolescents as it is an emotion that is likely triggered by rather extreme situations that
might not have been encountered for adolescents in the ESM study. Finally, the negative
emotions in state 2 have higher unique variances than in state 1, indicating that there is
less covariance between them and that there is no large covariance with the positive
emotions.

There is a theoretical debate about whether positive and negative affect are two
independent factors (Watson & Tellegen, 1985) or two bipolar ends of the same factor
(Russell, 1980). However, our results suggest that both theoretical perspectives can be
true at different points in time within one individual. In the first state, adolescents are
capable of differentiating positive and negative emotional experiences (“independent
state”). In contrast, the factor structure in the second state may be a result of adolescents’
simplistic representation of either having “positive” or “negative” emotions (“bipolar
state”). These findings are in line with recent research, which suggests that both
theoretical perspectives can be true, dependent on person specific factors (e.g.,
Dejonckheere, Kalokerinos, Bastian, & Kuppens, 2019) or situation specific factors (e.g.,
Dejonckheere, Mestdagh, et al,, 2019). Regarding the intercept differences, we conclude
that being in a rather good mood is related to the independent state and being in a rather
unpleasant mood is related to the bipolar state. This is in line with research indicating
that the bipolar state is more common in individuals with depression (Dejonckheere et
al,, 2018) and who are stressed (Dejonckheere, Mestdagh, et al., 2019; Zautra, Berkhof, &
Nicolson, 2002).
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In order to better understand what triggers the different states, we investigated
the influence of the five covariates. First, based on the posterior probabilities of the
observations to belong to the state-specific MMs, we obtained the modal state
membership and the classification errors (Step 2). Given the high state separation, the
classification errors were very small:

.9968 .0032)_

pwielsi) = (5080 9920 (4.22)

Therefore, correction for classification error is hardly necessary, which generally cannot
be foreseen before conducting the step-1 analysis. The modal state assignments were
subsequently used as indicators in order to estimate the Markov model with covariates
on the transition probabilities (step 3).3° By means of stepwise backward selection with
the five covariates, we eliminated the least significant covariate at each step until only
covariates were left that met the criterion of @ < 0.05. The final model contained the two
time-constant covariates from the baseline measure and the time-varying covariate being
with a parent. Note that, due to the low classification errors, the final state memberships
(i.e., 60% in state 1 and 40% in state 2) did not change after step 1. In Table 4.5, we
present the parameters of the SM (including the Wald-test statistics). To see the covariate
effect more easily, we also present the transition probabilities for a two-hour-interval,
which was the most frequently encountered interval length in the data. We calculated
them respectively for the highest and lowest score on one covariate while setting the
value of the other covariates to their average value in the sample (averages are given in
the notes of Table 4.5). Note that the effect of being with a parent was so small that we do
not further discuss it. Regarding the time-constant covariates (emotion clarity deficit and
differentiation of emotional experience), we can see that adolescents with high emotion
clarity deficit have a slightly higher probability to stay in or transition to the bipolar state
(i.e., are more likely to be in that state) compared to adolescents with a low emotion
clarity deficit, who are equally likely to be in either of the states. Moreover, adolescents
with a high differentiation of emotional experiences have a slightly higher probability to
stay in or transition to the differentiated state than adolescents with a low differentiation
of emotional experiences, who are equally likely to be in either of the states.

From the individual transition plots of the adolescents (see Figure 4.5 for six
representative examples), we can clearly see between-person differences (that are
apparently partly related to clarity and differentiation of emotions). For instance, some

39 Note that we did not add covariates to the initial state probabilities as the number of subjects was rather
small.
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adolescents are mainly in the independent state (row 1) and others are mainly in the
bipolar state (row 2). However, we can also see some adolescents with frequent
transitions between the states (right picture in row 3) and some adolescents with
transitions after a certain amount of completed questionnaires (left picture row 3). These
transitions indicate that there are likely time-varying within-person variables that
influence the transitions but that we are not aware of. Therefore, in the future, it would
be interesting if applied researchers would include time-varying covariates in their ESM
studies (e.g., stress Dejonckheere, Mestdagh, et al., 2019; Zautra et al., 2002) that could
potentially influence within-person changes between a bipolar and an independent
representation of one’s emotional state. To conclude, LMFA indicated that configural
invariance was violated across states and that some subjects transitioned between the
two states frequently over time while others were mainly in one of the two states.
Therefore, the questionnaire data is not validly comparable across all subjects and time-
points.

4.5 Discussion

In this chapter, we tailored Vermunt’s (2010) maximum likelihood (ML) three-step (3S)
procedure to latent Markov factor analysis (LMFA)—a method to explore measurement
model (MM) changes over time—and showed that the resulting 3S estimation of LMFA
(3S-LMFA) is a promising alternative to the original full information maximum likelihood
(FIML) estimation of LMFA (FIML-LMFA): 3S-LMFA performs almost as good as FIML-
LMFA, is more accessible and intuitive for applied researchers, and facilitates estimation
when researchers want to explore the influence of different (sets of) covariates on
transitions between MMs.

It is important to note that the work in this chapter is one of the first to apply a 3S
approach with a continuous-time Markov model to time-intensive longitudinal data,
which is data that becomes increasingly popular in different fields with diverse data
characteristics. On top of that, the flexible step-wise nature of 3S-LMFA can be used to
easily extend the method. Specifically, it is easy to adjust the method to the data and
research questions at hand by exchanging the first step (i.e., the mixture factor analysis),
which makes it applicable to a wide range of data. For example, one may consider
extending item response theory models for longitudinal categorical data. If it is not possible
to estimate the first step in Latent GOLD (LG), one can also estimate the first step in a
different program and only communicate the results to LG to continue with the second
and third step. The same will soon be possible in the open-source program R as we are
working on a package that takes estimated state probabilities from any step 1 model
(estimated in R or another program) as input, calculates modal state assignments and the
classification errors, and links it to an existing package that can estimate single indicator
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(continuous-time) Markov models with fixed response probabilities. Although
adaptations of the MMs are also possible in FIML-LMFA4, it is much more difficult in
practice since a specific part of the estimation procedure would have to be adapted (i.e.,
inside the LG software), which is not possible for applied researchers but only for the
software programmer.

A limitation of the current chapter is that we did not examine the performance of
3S- and FIML-LMFA under violation of the conditional independence assumption and
assumed the covariates to influence only the parameters in the structural model (SM),
that is, the transitions in the Markov model, and not the factors or the observed variables
directly. This assumption might be violated (e.g., being with friends might be related to
higher positive affect) and might lead to extracting a wrong number of states and
inaccurate parameter estimates (Kim & Wang, 2017; Kim, Vermunt, Bakk, Jaki, & Van
Horn, 2016; Masyn, 2017; Nylund-Gibson & Masyn, 2016). As in any other mixture model
approach with covariates, the problem of model misspecifications is inherent to both the
FIML and the 3S estimation and should be extensively studied in the specific context of
LMFA. With regard to extracting the correct number of states, it can be expected that 3S-
LMFA performs better than FIML-LMFA when the effects of the covariates on the latent
state memberships are included and direct effects of these covariates—for example, on
the response variables—are falsely omitted. In the first analysis step of 3S-LMFA, the
MMs are formed while disregarding the covariates. Therefore, the covariates do not affect
the state enumeration. This is different in FIML-LMFA where covariates may affect the
state enumeration. Specifically, if the local independence assumption is violated, FIML-
LMFA would require too many states to counter the local independence violation and
achieve a good model fit (Kim & Wang, 2017; Nylund-Gibson & Masyn, 2016). However,
inaccurate covariate estimates could occur with both estimation approaches
(Asparouhov & Muthén, 2014a; Kim et al,, 2016; Masyn, 2017). Therefore, it is important
to develop diagnostic tools to detect misspecification (e.g., by means of residual statistics)
and to account for it, possibly by including the respective covariates with direct effects
on the response variables in step 1 of the analysis and by using covariate-specific
classification-error adjustments in step 3 (Vermunt & Magidson, 2020). However,
tailoring these methods to LMFA is beyond the scope of this chapter.
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CHAPTER 5

Abstract

Drawing inferences about dynamics of psychological constructs from intensive
longitudinal data requires the measurement model (MM)—indicating how items relate
to constructs—to be invariant across subjects and time-points. When assessing subjects
in their daily life, however, there may be multiple MMs, for instance, because subjects
differ in their item interpretation or because the response style of (some) subjects
changes over time. The recently proposed “latent Markov factor analysis” (LMFA)
evaluates (violations of) measurement invariance by classifying observations into latent
“states” according to the MM underlying these observations such that MMs differ between
states but are invariant within one state. However, LMFA is limited to normally
distributed continuous data and estimates may be inaccurate when applying the method
to ordinal data (e.g, from Likert items) with skewed responses or few response
categories. To enable researchers and health professionals with ordinal data to evaluate
measurement invariance, we present “latent Markov latent trait analysis” (LMLTA),
which builds upon LMFA but treats responses as ordinal. Our application shows
differences in MMs of adolescents’ affective well-being in different social contexts,
highlighting the importance of studying measurement invariance for drawing accurate
inferences for psychological science and practice and for further understanding dynamics
of psychological constructs.
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5.1 Introduction

Intensive longitudinal data (ILD; e.g., Hamaker & Wichers, 2017) allow one to investigate
the dynamics over time of latent (i.e., unobservable) psychological constructs. By
frequently gathering data (say at more than 50 measurement occasions) of multiple
subjects, new insights regarding subject-specific dynamics can be obtained, which have
clinical implications. For instance, studies are being conducted on dynamics in emotions
and behaviors related to mental health (e.g., Myin-Germeys et al., 2018; Snippe et al.,
2016), and ILD can also be used to tailor interventions to the subject’s real-time dynamics
of negative affect (van Roekel et al, 2017). Such data is efficiently gathered by means of
experience sampling methodology (ESM; Scollon et al, 2003), in which subjects
repeatedly rate questionnaire items over several weeks, say five times a day, at
randomized time-points. The recent steep increase in such datasets (e.g., Hamaker &
Wichers, 2017; van Roekel et al.,, 2019) is related to novel technologies to efficiently
gather these data with the use of smartphone apps. Hence, there is an urgent need to also
develop novel analytical methods.

In order to draw valid inferences about the measured constructs, either for
scientific or clinical purposes, it is crucial that the measurement model (MM) is invariant
(i.e., constant) across time and subjects (i.e., having within- and between-person
invariance). The MM indicates to what extent the latent constructs (or “factors”) are
measured by which items, as indicated by the “factor loadings”. For continuous data, the
MM is obtained by factor analysis (FA; Lawley & Maxwell, 1962). If measurement
invariance (MI) holds, the constructs are conceptually equal and thus comparable across
subjects and over time. Often, MI is not tenable because response styles, substantive
changes in item interpretation, or changes in the nature of the measured construct may
affect the MM. That is, people may differ from each other in their MMs, for instance,
depending on psychopathology, but one subject may also differ over time in its own MM,
for instance, depending on the social context in which the questionnaire is filled in. When
the non-invariance patterns are undetected or ignored, they cause a potential threat to
valid inferences using standard methods for comparing factor means across time and
subjects. For instance, changes in subjects’ overall emotional well-being may be (partly)
due to changes in how subjects interpret the items. Changes in the MM are also important
phenomena in their own right. For instance, detecting MM changes is crucial for valid
decisions about treatment allocation over time and such changes may even signal the
onset of a mental episode. Consider, for example, a psychologist who measures positive
affect (PA) and negative affect (NA) in patients with a bipolar disorder. Patients in manic
episodes often encounter high arousal PA, such as feeling energetic or excited, together
with high arousal NA, such as being irritated or distracted (American Psychiatric
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Association, 2013). This might result in a MM with one bipolar “arousal” factor
contrasting “low” versus “high” arousal. When patients encounter depressive episodes,
PA is generally lower and NA at least somewhat higher (Hamaker, Grasman, & Kamphuis,
2010), which might correspond to a MM with two separate PA and NA affect factors or
one bipolar “valence of affect” factor. Assessing MI thus allows for more accurate
conclusions, but may also open up novel possibilities of early detection of subtle changes
in daily functioning.

In order to assess for whom and when a MM applies, Vogelsmeier, Vermunt, van
Roekel, et al. (2019) developed a novel method called latent Markov factor analysis
(LMFA) for tracking and diagnosing MM changes for continuous responses in ILD. LMFA
combines a latent Markov model (LMM; Bartolucci et al., 2014; Collins & Lanza, 2010)
with mixture FA (McLachlan & Peel, 2000; McNicholas, 2016): The LMM clusters subject-
and time-point-specific observations into a few dynamic latent classes or “states”
according to the MMs underlying these observations and mixture FA evaluates which MM
applies for each state. Thus, every state pertains to a different MM and the MM is invariant
within one state. Note that not all MMs may apply to each subject. Some subjects may
constantly stay in one state while others may transition between different states. By
investigating the state memberships, one can see which subjects and measurements are
comparable regarding their underlying MM. Investigating the state-specific MMs offers
insights into the underlying dynamics and it also helps researchers make decisions about
subsequent analyses. For example, when at least “partial” invariance holds across states
(i.e., only a few MM parameters differ; Byrne et al., 1989), researchers could study
discrete changes in factor means by repeating the LMLTA analysis, restricting invariant
MM parameters to be equal across states, and adding factor means to the model.

The new method has raised awareness of possible MM changes in ILD among
fundamental and applied researchers who are now eager to evaluate which MM applies
to which subject at which time-point (Horstmann & Ziegler, 2020). However, an
important limitation of LMFA is the assumption of having normally distributed
continuous item responses. This assumption is often violated in ILD. Although continuous
items are sometimes used (e.g.,, participants are asked to give their answer by sliding on
the Visual Analog Scale from 0 (“not at all”) to 100 (“very much”), many studies use
multiple Likert items with 5 to 7 categories for their assessment. Even though it has been
shown that items with 5 or more categories might be treated as continuous (Dolan, 1994),
it becomes problematic if the item response distributions are heavily skewed (e.g., when
most responses have a 0 score, which is quite common with less frequent thoughts,
emotions, or behaviors). FA is not robust against strong deviations from normality and,
therefore, may yield inaccurately estimated parameters (Kappenburg -ten Holt, 2014;
Rhemtulla et al, 2012; Vermunt & Magidson, 2005). Note that the same problem
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generally applies to studies that use ordinal items with less than 5 categories, although
this is less common in ILD data. If the normal approximation is clearly incorrect, a better
alternative is to treat the items as ordinal and to specify the probability of responding in
a certain category by means of “item response theory” or “latent trait” (LT) models, where
“trait” refers to a latent construct in the psychometric literature (Vermunt & Magidson,
2016).

The aim of this chapter is to combine the strength of LT models to adequately deal
with ordinal data with the strengths of LMFA to trace complex measurement non-
invariance patterns in the data. The novel and much-needed latent Markov latent trait
analysis (LMLTA) for ordinal data is obtained by replacing the mixture FA by a mixture
multidimensional version of Muraki’s (1992) “generalized partial credit model” (GPCM)
that treats the responses as ordinal. Section 5.2 describes LMLTA and how it compares to
LMFA. Section 5.3 illustrates the empirical value of LMLTA to detect MM changes in
ordinal data on adolescents’ well-being in different social contexts. Finally, Section 5.4
concludes with some points of discussion and future directions of research.

5.2 Method

5.2.1 Data Structure

In LMLTA, we assume intensive longitudinal observations that are nested within subjects
and we assume multiple Likert and, therefore, ordinal items with response categories
ranging, for instance, from 1 = “strongly disagree” to 5 = “strongly agree”. The latter
differs from LMFA, where the items are assumed to be continuous variables. The
observations are denoted by y;;; with i =1,...,I referring to subjects, j =1,...,J
referring to items, and t = 1, ..., T referring to time-points. Furthermore, g =1, ...,G
refers to the item categories and the number of categories G is assumed to be constant
across items. Finally, the number of time-points T typically differs across subjects but, for
simplicity, we mostly omit the index i in T;. The observations are collected in the 1 X J
vectors y;; = (Yi1e, ---» Yije) that are collected in the T X J subject-specific data matrices
Y; = (¥4, -, ¥ir)"- The data matrices are concatenated in the dataset Y = (Yj, ..., ¥;)' with

Y T; rows.
5.2.2 Latent Markov Latent Trait Analysis

In LMLTA, just as in LMFA, a LMM specifies transitions between discrete latent states
(e.g, manic and depressive state) characterized by state-specific MMs (e.g., state 1
contains one arousal factor and state 2 two affect factors). A LMM is basically a latent
class model (Lazarsfeld & Henry, 1968) and thus a method to find unobserved classes of
observations with comparable response patterns. A LMM allows subjects to transition
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between latent classes over time, which is why the classes are called “states”. To get more
insight into what possibly predicts state memberships, one may explore the relation
between the state memberships and time-varying or time-constant explanatory variables
or “covariates”. For instance, sleep quality and disruptions in the daily routine may
increase the probability to transition to a manic state (Hamaker et al., 2010). The state-
specific MMs are latent variable models that indicate which latent constructs are
measured by which items and to what extent. The choice for the type of latent variable
model directly follows from the assumed item response distribution: An LT model for
ordinal data is used in LMLTA and a FA model for continuous data is used in LMFA.

The parameters in LMLTA can be estimated with the same approaches as in LMFA,
using Latent GOLD (LG; Vermunt & Magidson, 2016) syntax. The first approach is a one-
step full information maximum likelihood (FIML) estimation (Vogelsmeier, Vermunt, van
Roekel, et al., 2019) and the second approach is a three-step (3S) procedure that splits
the estimation of the LMM and the state-specific MMs (Vogelsmeier, Vermunt, Biilow, &
De Roover, 2020). The latter approach has advantages, especially regarding model
selection with covariates. In the following, we first describe the LMM and then introduce
the particular LT model applied in this chapter and compare it to the FA model in LMFA.
Thereafter, we discuss the two possible estimation procedures and the advantages of the
3S estimation.

5.2.2.1 Latent Markov Model

The LMM is a probabilistic model with two assumptions (e.g.,, Bartolucci et al., 2014;
Collins & Lanza, 2010): (1) The probability of being in state k (with k = 1, ..., K) at time-
point t depends only on the state membership at the previous time-point ¢ — 1 and not
on any other state memberships (first-order Markov assumption) and (2) the responses
y;¢ at time-point t depend only on the state membership at this time-point (local
independence assumption). The sequence of states is called a latent Markov chain (LMC).
Figure 5.1a illustrates a LMC for a single subject: The K X 1 vectors s;; = (S;t1, ) Siti)’
contain the binary indicators s;; that are equal to 1 for state k and equal to O for all other
states. They determine the state membership at time-point ¢t. The U X 1 vectors z;; =
(Zit1, > Zizy)' contain the covariate values z;,,, with u = 1, ..., U referring to the subject-
and possibly time-point-specific covariates influencing the state memberships. In Figure
5.1a, state 1 (e.g., the manic state) applies to time-points 1-29 and 55-56, while state 2
(e.g., the depressive state) applies to time-points 30-54.
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A LMM is characterized by the “initial state”, “transition”, and “response”
probabilities. Together, the parameters form the joint distribution of the observations
and states. This is:

p(Y, Si|Z) = p(Yir, o Vir Sias o Sir | Zins o) Zir)

initial state transition response
probabilities T probabilities T probabilities (51)
= p(si1lzi) | |p8ti(sitlsit—1'zit)| | p(¥iclsic)
t=2 t=1

for subject i. The initial state and transition probabilities may depend on subject- and
time-point-specific covariates z;; but, in the following, we will omit an index z for
simplicity. The initial state probabilities in Equation (5.1) define the probabilities to start
in state k at time-point t = 1 and are collected in a K X 1 probability vector m with
elements 1, = p(six = 1]|2i;) and Y¥_; m, = 1. In LG, the initial state probabilities are
modeled via a logit model as this prevents parameter range restrictions and the
covariates also enter through this parameterization as:

p(Sitk = 1z41)

log———MM—
gp(siu = 1]z;)

= Pox + BkZit=1 (5.2)

for k = 2, ..., K and with k = 1 as the reference category. Here, the initial state intercepts
are denoted by S, and the initial state slopes that quantify the effect of the covariates on
the initial state memberships are captured by the vectors B, = (Biz,,,r = Brzipy)

Transition probabilities are the probabilities to be in state k at time-pointt > 1
conditional on state [ (I =1,...,K) at t — 1. In a discrete-time- (DT-)LMM, intervals
between measurements, §;;, are assumed to be equal. A continuous-time- (CT-)LMM
(Bockenholt, 2005; Jackson & Sharples, 2002; Vogelsmeier, Vermunt, Boing-Messing, et
al,, 2019) allows the intervals to differ across time-points and subjects, which is often
more realistic in ESM studies and therefore applied throughout the rest of this chapter.
The transition probabilities ps,, i = Ds,;(Sier = 11Sic—11 = 1,2;) are collected in the
K X K matrix Ps, , where the row sums of P, YK . Ps,, ik are equal to 1. In a DT-LMM, a

multinomial logistic model is used for the transition probabilities:

(i = USit—11 = 1,2)

log
(it = Usic—10 = 1,24¢)

= You + YirZic (5:3)
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with k # [, yoy as transition intercepts, and vy = (Vikz;y,0 - Vikzyyy) @S Slopes that
quantify the covariate effects on transitioning to another state compared to staying in a
state. In Figure 5.1b, we show how to read a transition probability matrix. The diagonal
elements indicate that the probability of staying in state 1 is higher than of staying in state
2. If state 1 is the manic and state 2 the depressive state, we would conclude that the
manic state is more persistent for this person.

In the CT-LMM, the transition probabilities themselves are a function of the
interval §;; and the “transition intensity matrix” Q. The K X K matrix Q contains the
transition intensities (or rates) q; that define the transitions from the origin state [ to
the destination state k per very small time unit. For all off-diagonal elements in the matrix
Q (i.e., k # 1) the intensities are:

qu = lim p(Sitre = Usit—51 = 1,2t)
Ik = -

4
lim 5 (54)

The diagonal elements are equal to — Y. qi (Cox & Miller, 1965). The transition
probabilities Ps,; are obtained by taking the matrix exponential of Q X 8. This implies
that the probability to transition to another state at two consecutive measurement
occasions (i.e., k # l) becomes increasingly more likely for larger intervals. As can be seen
from Equation (5.4), one may also regress the transition intensities on covariates z;, to
better understand what may cause the transitions to or away from a state. In the CT-LMM,
LG uses a log-linear model for the transition intensities and the covariates are included
as follows (again for k # [):

log que = Yo + YikZic- (5.5)

Hence, covariates to predict any of the parameters (i.e., initial state and transition
probabilities or intensities) are included by means of regression, as is usually done in
LMMs (e.g., Bartolucci et al., 2014; Vermunt et al., 1999; Visser et al., 2009).

Instead of using only observed covariates in any of the parameters, one may also
use a time-constant or time-varying latent categorical variable that classifies subjects
according to their transition pattern or initial state probabilities into latent classes
(Crayen et al, 2017; Vermunt, Tran, & Magidson, 2008). This “mixture (CT-)LMM”
captures the most relevant between-subject differences in the transition process. The
number of latent classes can be based on theory and interpretability or selected using
information criteria, such as the Bayesian information criterion (BIC, Schwarz, 1978) or
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the convex hull (CHull; Ceulemans & Kiers, 2006) method. An example is shown in the
application (Section 5.3).

Finally, the response probabilities p(y;:|si:x = 1) indicate the probability for a
certain response pattern at time-point t, given the state membership at that time-point,
sitk = 1. These response probabilities depend on the state-specific MMs described next.

5.2.2.2 Measurement Model

The MMs determine how the responses y;.; are defined by the state memberships s;;;, =
1. To this end, a latent variable model with state-specific parameters is used in both LMFA
and LMLTA. For both methods, it holds that: (1) the responses y;;; are indicators of
underlying latent factors f;;, (2) the factors are considered to be normally distributed
continuous variables, (3) the responses y;;; are independent given the latent factors, and
(4) covariates are only indirectly related to the observed responses via the latent states.
As explained before, LMFA and LMLTA differ in the type of latent variable model that is
used. In LMFA, the continuous responses y;;; are defined by state-specific linear FA

models with parameters that may differ across the latent states. For a single item j this is
given by (e.g., McLachlan & Peel, 2000):

Ry

E(yijelfir, Sir = 1) = Z Ajrk frie + Vjks (5.6)

r=1

where Ry is the state-specific number of factors, r = 1, ..., R, indicates a state-specific
factor, A is a state-specific loading of item j on factor 7, f;r = (fi;¢, ..., fric)' are subject-
and time-point-specific factor scores with f;;~MVN(0,®,) (note that possible
restrictions of ®; will be discussed further below), and vy indicates a state-specific

intercept for item j.

In LMLTA, the ordinal responses y;j. are defined by state-specific LT models. It is
important to note that there are several LT models that could be used to model Likert-
type data (Andrich, 1978; Muraki, 1992; Samejima, 1969). The GPCM (Muraki, 1992) is a
relatively flexible and unrestrictive model (Tijmstra, Bolsinova, & Jeon, 2018) and is
therefore considered in this study. More specifically, we use the multidimensional
version of the GPCM (e.g., Johnson & Bolt, 2010) and, in order to allow for parameter
differences across states, we employ a mixture variant (for previous work on mixture LT
models see, e.g., Bolt, Cohen, & Wollack, 2001; Cohen & Bolt, 2005; Rost, 1990; Smit,
Kelderman, & van der Flier, 2000). In contrast to the state-specific FA models in LMFA,
the state-specific GPCMs used in LMLTA do not consist of a set of linear models but of a

120



LMLTA

set of adjacent-category (i.e., (g,g + 1)) ordinal logit models. More specifically, using as
much as possible the same notation as before, the logarithm of the odds of responding in
category g + 1 instead of responding in category g for item j, given the factor scores f;;
and the state membership s;;;, = 1 for subject i at time-point ¢, has the following linear
form:

Rg

r(yi; =1y, s, =1 Z .

log( ( ijtg+1 itr itk ) — Ajrk frit +ngk' (5.7)
Pijyg = Ui, s =1) ) &2

forl < g < G — 1, withy;;; = g indicating that this response to item j is in category g.
Again, A; is the state-specific loading of item j on factor r. The v/, are the G —
1 intercepts for each of the adjacent-category log-odds. The logistic model for the
probability of response g equals:

exp (X159 X Ajricfrie + Vigi)
L .
Yg=1exp (TrEy 9" X Aricfrie + Vigie)

P(Vije = glfie, i = 1) = (5.8)

As shown, the loadings are multiplied with the category number and the intercepts are
now Vjgi, with ZS=1 Vjgk = 0. The relation between the two sets of intercepts is that

* = —_— .
Vigk = Vig+1k ~ Vjgk-

When comparing Equation (5.6) and Equation (5.7), the loading parameters for
the FA model and the GPCM are clearly conceptually similar. In both cases, they indicate
how strongly an item j measures a latent factor f,;; in state k (Kankaras, Vermunt, &
Moors, 2011). In contrast, the intercepts are not directly comparable across the two
models. In the FA model, there is only one intercept per item and state, vj;, because the
responses are treated continuous. For the ordinal responses in the GPCM, there are G —

1 free intercept parameters per state, V.

As in LMFA, the state-specific joint response probabilities for LMLTA at time-point
t are obtained by marginalizing over the latent factors. Moreover, the J item responses
are assumed to be conditionally independent given the latent factors and the state
membership. Therefore, the response probabilities are (e.g., Johnson & Bolt, 2010):
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J
p(Vitlsi = 1) = f ---fp(fit; 0, @) np(yijt = glfi, Siee = 1) dfy; (5.9)
j=1

with p(yit]- = glfit, Sier = 1) as in Equation (5.8) and p(f;;0,®,) denoting the
probability density function of the multivariate normal distribution with a mean vector
of zero’s and covariance matrices ®.

To enable the exploration of all kinds of MM changes, including the number and
nature of the factors, an exploratory model is used in both methods. In contrast to a
confirmatory model—in which certain factor loadings are assumed to be absent and
therefore, set to zero—an exploratory model estimates all loadings.4® However, both
models are unidentified without further constraints. To partially identify the models and
set a scale to the R, factors, one may restrict the factor means to zero and the factor
(co)variances ®;, to equal an identity matrix, which implies normalized and uncorrelated
factors. Alternatively, it is possible to freely estimate the covariance matrix of the factors
and instead fix one loading for each of the R, factors to 1 and one extra loading per
estimated correlation to 0 (e.g., for a state with R, = 2, two loadings would be fixed to 1
and one loading would be fixed to 0). Remaining rotational freedom in the FA model can
be dealt with by means of rotation criteria that optimize the simple structure and/or
between-state-agreement of the factor loadings (Clarkson & Jennrich, 1988; De Roover &
Vermunt, 2019; Kiers, 1997). The identification of the GPCM is more intricate: Despite the
model being identified by the constraints imposed so far, one might obtain strongly
related parameter estimates and large standard errors. In order to prevent this so-called
“empirical underidentification”, R, — 1 (additional) loadings of different items have to be
fixed to 0 in each state (Skrondal & Rabe-Hesketh, 2011).41

As becomes apparent from Equation (5.6) and Equation (5.7), in either model, the
state-specific MMs can differ in terms of the number of factors, the loadings, the
intercepts, and the factor covariance matrices. However, there is an important difference
between the two methods. In LMFA, states may also differ regarding unique variances,
say y,;, which is variance that is not accounted for by the latent factors. This is possible
because the error term in a FA model is assumed to be normally distributed, that is,
e;je~N(0, wkj). In contrast, in the GPCM, the variance of the error is not a free parameter

but fixed to the value of the variance of the standard logistic distribution, m?/3, and

40 If desired, however, a confirmatory model may also be used in both LMFA and LMLTA.
41 Note that these constraints could also be used to solve rotational freedom in the FA model (Vermunt &
Magidson, 2016).
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hence, in LMLTA, also equal across states. Note that, in the GPCM, fixing the error variance
is necessary to identify the model (Long, 1997).42 Although it might be possible to account
for error variance heterogeneity by tailoring “scale adjustment” methods (Magidson &
Vermunt, 2007) to LMLTA, this is beyond the scope of this chapter.

Besides this difference, MI analyses with FA and LT models are similar as their
primary concern is to detect parameter differences. However, different words may be
used to describe (non-)invariance. When using a LT model, researchers typically specify
the lack of invariance, which is called “differential item functioning” (DIF). More
specifically, “uniform DIF” is present when only intercepts differ, in our case across latent
states, and “non-uniform DIF” is present when loadings differ across states, whether
intercepts are equal or not (Bauer, 2017). In contrast, when using a FA model, researchers
typically specify which level of invariance has been reached, starting from an invariant
number of factors and pattern of zero loadings, followed by invariant loadings, intercepts,
and finally unique variances (Meredith, 1993). In the next paragraph, we will describe
how to obtain the estimates that are used to investigate the level of invariance in LMLTA.

5.2.2.3 Maximum Likelihood Estimation

The parameters in LMLTA are obtained with maximum likelihood (ML) estimation. One
may choose between (1) the one-step FIML estimation and (2) the 3S estimation, just as
is the case for LMFA. However, estimating the LMLTA model with either approach is
computationally more complex than estimating the LMFA model. Therefore, LMLTA is
limited regarding the number of factors that can be estimated (i.e., including more than 3
factors is usually unfeasible; see Appendix L.1 for detailed explanations). First, for the
FIML estimation (Vogelsmeier, Vermunt, van Roekel, et al, 2019), the following
loglikelihood function, derived from the joint distribution in Equation (5.1), has to be
maximized:

1
logLF,ML=Zlog Z...Zp(Yi,SdZi) . (5.10)
i=1 SiT

Si1

In LG, the ML estimates are obtained with the forward-backward algorithm (Baum et al.,
1970), which is an efficient version of the expectation maximization algorithm (Dempster

42 Note that this is generally a limitation, also in other LT models, and it is often ignored. However, it is
important to understand that possible differences in error variances across states will be captured as
loading and intercept differences (Long, 1997). For instance, when in one state the error variance is two
times larger than in the other state, the loadings and intercepts in that state will be v/2 times smaller than
in the other state.

123




CHAPTER 5

etal., 1977), tailored to LMMs. Additionally, in the maximization-step, a Fisher algorithm
is used to update the log-intensities and a combination of the expectation maximization
and the Newton-Raphson algorithm (De Roover et al., 2017) is used to update the state-
specific MM parameters.

Second, the 3S estimation (Vogelsmeier et al., 2020) builds upon Vermunt's (2010)
ML method and decomposes the estimation into three steps. First, in step 1, the state-
specific MMs are obtained with a mixture GPCM while treating repeated measures y;; as
independent. This entails that the relations between the latent states s;; at consecutive
measurement occasions (i.e, the transitions) and the relations between the state
memberships and covariates z;; are disregarded. This is valid because observations at
one time-point are only indirectly related to covariates and to observations at other time-
points, that is, via the latent states. This can also be seen from the graphical
representation in Figure 5.1a.43 The mixture GPCM is estimated with a combination of the
expectation maximization and Newton-Raphson algorithms. Then, in step 2, observations
are assigned to the state-specific MMs based on the most likely state membership and the
corresponding classification error is calculated. Finally, in step 3, the CT-LMM with
covariates is estimated using the state assignments from the previous step as indicators
(thus fixing the MMs) while correcting for classification error inherent to the state
assignments from step 2. At this point, one may also include a latent class variable to
capture differences in transition patterns. The (mixture) CT-LMM model is estimated
with a combination of the forward-backward and Newton-Raphson algorithms.
Summarized, the steps are:

1. Estimating state-specific MMs (disregarding the dependence of the
observations).

2. Assigning observations to the states (depending on the most likely state
membership).

3. Estimating the (mixture) CT-LMM with fixed MMs (correcting for step 2’s

classification error).

The 3S estimation is almost as good as the FIML estimation in terms of parameter
estimation. Only the state recovery is slightly worse and the standard errors can be

43 [t is important to note, however, that the standard errors of the parameters would be underestimated
without applying a correction because observations are nested and thus dependent within subjects. This is
only necessary when relying on hypothesis tests to determine which parameters differ significantly
between the states (the possibility to use such tests will be described below). By providing LG with a
“primary sampling unit” (PSU) identifier, the estimation takes into account that observations may come
from the same sampling unit, that is, the subject (Vermunt & Magidson, 2016).
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slightly overestimated (Vogelsmeier et al., 2020).44 Apart from that, the 3S approach
comes with several advantages. First, step-wise procedures are more intuitive for
researchers who use complex methods such as LMLTA or LMFA to analyze their data
because it is in line with how they prefer to conduct their analyses (Vermunt, 2010). That
is, they see the investigation of the different MMs underlying their data as a first step and
the investigation of subject’s transitions between the MMs over time as well as the
exploration of possible covariate effects as a next step.

Second, LMLTA (like LMFA) is an exploratory method, which entails that the best
number of states k and factors per states R, has to be determined. To this end, a large
number of (plausible) models has to be estimated and compared by means of
loglikelihood-based criteria that consider fit and parsimony. The evaluation of model
selection criteria in LMLTA is beyond the scope of this chapter but, based on previous
findings for related methods (Bulteel et al., 2013; Vogelsmeier, Vermunt, van Roekel, et
al,, 2019), we suggest to use the BIC in combination with the CHull and compare the three
best models in terms of interpretability. Note that CHull balances fit and parsimony
without making distributional assumptions and, thus, may perform better for some
empirical datasets. In the FIML estimation, the number of models to be compared grows
fast. For example, there are 9 models when comparing models with 1 — 3 statesand 1 - 2
factors per state. When adding different (sets of) covariates to the CT-LMM, the 9 models
have to be re-estimated for every set of covariates (e.g, 9 X 5 = 45 models for five
different sets).*5 This problem is circumvented in the 3S estimation because the MMs and
the CT-LMM are estimated separately. This implies that the model selection can be
conducted in the first step, without being concerned about the covariates. Covariates (and
latent classes) for the transition probabilities are added when estimating the CT-LMM.46
As a result, there would only be 9 + 5 = 14 models for five sets of covariates. Note that
LG provides Wald tests (Agresti, 1990) that can be used to evaluate whether the
covariates are significantly related to the transition or initial state parameters and to
determine which MM parameters differ between the states. For the latter, one may also
use visual inspection.

44 Note that another limitation concerns the possible violation of the first-order Markov assumption (i.e.,
that the state membership at time-point t is not only influenced by the state membership at t — 1 but also,
e.g., by the occupied state at t — 2; see Section 5.2.2). Only the FIML approach could capture such a
dependency. However, with regard to other violated assumptions (e.g., covariates having direct effects on
indicators), the FIML approach would suffer more from bias than the 3S approach but discussing the
consequences is beyond the scope of this chapter (for a description of the problems and solutions, see
Vermunt & Magidson, 2020).

45 Note that the number of models grows even faster when also exploring different numbers of latent
classes.

4 The MMs are kept fixed (thus, are not re-estimated) once the covariates are included to the CT-LMM.
Otherwise, the optimal model complexity in terms of factors and states could change (Di Mari et al., 2016).
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Third, the FIML estimation takes several hours for each model while the 3S
estimation is usually done in less than 30 minutes. This makes the FIML estimation less
desirable, or even unfeasible, when researchers want to explore several covariate effects
on MM changes. For all these reasons, we employ the 3S estimation in this study (for
details, see Appendix L.2).

5.3 Application

5.3.1 Data

The data stem from a larger “Grumpy or Depressed?” study, which aimed to assess
whether daily mood profiles (i.e., variability in affect) would predict the risk for
depression in adolescents in the long run as recent work has indicated that the short-
term dynamics could be linked to long-term psychopathology (e.g., Maciejewski et al.,
2019; for a description of the study, see, e.g., de Haan-Rietdijk et al., 2017; Janssen,
Elzinga, Verkuil, Hillegers, & Keijsers, 2020; van Roekel et al., 2019). Briefly, during three
7-day measurement bursts or “waves” (with approximately 3-month intervals in
between), 250 Dutch adolescents (12 to 16 years old) completed up to eight
questionnaires per day at random moments (median interval: 2.25 hours).47 Out of the
250 adolescents, 164 participated in all three waves, 38 in two of the waves and 48 in one
of the waves. In total, the adolescents completed 14,432 questionnaires.

5.3.2 Measures

For each assessment, adolescents indicated the degree to which 12 affect items applied
to them (see Table 5.1) using 7-point Likert items (ranging from 1 = “not feeling the
emotion” to 7 = “definitely feeling the emotion”). The items covered both PA and NA. The
NA items were especially heavily right-skewed. Thus, LMLTA is particularly suited to
investigate MM changes. The adolescents also indicated their current social interactions,
resulting in the three “social context” covariates “being with friends” (“fri”), “being at
school/with classmates” (“cm”), and “being with family” (“fam”), with0 =”"no” and 1 =
"yes”. At the beginning of every ESM wave (i.e., three times), the adolescents completed
the Dutch version of the Children’s Depression Inventory (CDI-I; Kovacs, 1992;
Timbremont, Braet, & Roelofs, 2008) to screen for (sub)clinical depression (“dep”). The
27 items refer to symptoms during the last two weeks scored on three levels representing

47 Note that the researcher studied affect dynamics at multiple time scales because affect can change within
hours, days, and weeks; Houben, Van Den Noortgate, & Kuppens, 2015). This measurement burst design
(Nesselroade, 1991) enabled the combination of different time scales (i.e., daily fluctuations in affect and
long-term change in depression), while minimizing the burden for the participants. Furthermore, random
measurement occasions facilitated capturing the continuously evolving daily dynamics in affect,
minimizing effects of anticipated beeps and structural day routines on the assessment of affect (van Roekel
etal, 2019).
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low severity (0), medium severity (1), and high severity (2); for instance, “I get sad from
time to time”, “I get sad often”, and “I'm always sad.” Applying CDI-I cut-off scores
(Kovacs, 1992; Timbremont et al., 2008), adolescents with a total score under 12 were
categorized as “no depression” (89%) and all others as “(sub-)clinical depression” (11%).

The dataset contains several covariates but, in this study, we focused on the social
context and depression as we found these variables particularly interesting to relate to
possible MM changes: Emotional experiences may vary depending on the social context.
For instance, adolescents may experience elevated positive mood when being among
friends, whereas they may be somewhat more irritable and unhappy in the company of
their parents, and more demotivated at school (Kendall et al.,, 2014; Soenens, Deci, &
Vansteenkiste, 2017; van Roekel et al, 2013). For some adolescents, mood may be
context-independent. Firstly, some adolescents could be in an overall positive mood
regardless of the social context (Dietvorst et al., 2021). Secondly, adolescents with a
depression and those at risk for developing a depression may be rather stable in their
emotions in that they often feel unhappy and irritable in any social context (Dietvorst et
al,, 2021; Kendall etal., 2014; Silk et al,, 2011). Therefore, for some adolescents, we expect
a particular state membership to be more likely in one social context than in another, but
also that adolescents differ in their state membership stability, for example, based on
their depression level.

5.3.3 Description of the Applied Mixture CT-LMLTA Model

We will examine the context-dependency of state memberships by regressing the
transition intensities (as defined in Equation (5.5)) on the social context covariates when
estimating the CT-LMM (in step 3 of the estimation). To capture potential between-
adolescent differences in stability, we will include a latent class variable that
automatically classifies the adolescents based on their transition patterns, making the
model a mixture CT-LMM as briefly introduced in Section 5.2.2. To see how many
different patterns there are, we will compare models with 1-3 classes in terms of their fit
by means of the BIC and CHull. Note that adolescents are allowed to transition to another
class at the beginning of each wave—because subjects may change in their transition
patterns over time (possibly related to their wave-specific depression scores)—such that
the latent class variable is, strictly speaking, another state variable modeled via a DT-
LMM (note that a DT model makes sense here as the intervals between the waves are
approximately the same for all adolescents). To prevent confusion with the MM state, we
will just refer to this latent variable as “class”, with ¢;4, = 1 referring to being in a
particular class v (with v=1,...,V ) in a particular wave d (with d =1,2,3). To
investigate whether experiencing depression affects the class membership, the initial
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class and transition probabilities of the classes will be regressed on depression.48

Moreover, we will evaluate the relation between the social context and the state

memberships and investigate whether these relations depend on the class membership.

For V > 1 and with v = 1 as reference category for the class, the specification of the
transition intensities of the states (for k # 1) is:

4 14

log qix = Yo + z YiewCitv + ) Yk famp(faMie X Ciry)

v=2 v=1

(5.11)

v v
+ Z Vlk,cm,v(cmit X Citv) + Z ylk,fri,v(friit X Citv)-
v=1 v=1

The specification of the initial class (for v = 2, ..., V) and the transition probabilities for
the classes (for v # b with b = 1, ..., V) are given by:

p(Ci1y = 1ldep;y)

= Pov + dep;y and
p(cin1 = 1ldepi) Bov + Bvgepdepia

(5.12)
P(Ciav = 1Cia—1,p = 1,dep;q)
p(ciap = Lcig—1p = 1,depiq)

=Yopw + ybv,depdepid!

respectively. Note that this application is meant to illustrate the empirical value of tracing
MM changes with LMLTA. No hypotheses were preregistered and all analyses are
exploratory so that interesting findings should be validated in future research before
drawing any conclusions.

5.3.4 Obtaining and Investigating the Results of the Mixture CT-LMLTA Model

Below, we follow the three consecutive steps of the 3S estimation described in Section
5.2.2.

48 Note that some adolescents (17 in wave 1, 26 in wave 2, and 18 in wave 3) missed out on the CDI-I
questionnaire, but did participate in the ESM study, and therefore had no depression score in a given wave.
For adolescents who had atleast one score in any wave, we imputed their average total score and calculated
the scale scores according to the cut-off values. For the other cases (i.e.,, 9 in wave 1, 1 in wave 2, and none
in wave 3), LG automatically uses the average effect for predicting the initial class and transition
probabilities.
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CHAPTER 5

5.3.4.1 Step 1 & 2: Estimating state-specific MMs & assigning observations to the
states

5.3.4.1.1 Model Selection

To select the best fitting model, we conducted the mixture GPCM analysis for models with
1 - 3 states and 1 - 2 factors per state (i.e, 9 models*?). Considering 1 to 2 factors not
only preserves computational feasibility but also makes sense for affect questionnaires
as PA and NA are often found as primary affect dimensions that may collapse into one
bipolar factor if the emotions are strongly negatively related (Dejonckheere et al., 2018;
Vogelsmeier et al.,, 2020). We selected the model with two states and two factors in each
state because it was the best according to the BIC and among the two best models
according to the CHull (for model selection details, see Appendix L.3; for the syntax of the
selected model, see Appendix L.5). Forty-two percent of the observations belonged to MM
1 and 58% to MM 2.

5.3.4.1.2 Results and Interpretation

To examine the between-state MM differences, we first looked at the state-specific
loadings in Table 5.1. Note that we modeled the covariance matrices in both states. To set
the factor scales, we set the loadings of the items “happy” on factor 1 and “unhappy” on
factor 2 equal to 1 in both states. To eliminate rotational freedom, we set the remaining
loadings of the same items equal to zero. This has led to a well-interpretable simple
structure. State 1 is characterized by separate PA and NA factors that correlated
negatively (r = —.55) among observations in the same state. This means that adolescents
distinguish somewhat between PA and NA, but that adolescents who score high on PA
tend to score low on NA and vice versa. In contrast, in state 2, the three low arousal PA
(LA-PA) emotions collapse with the NA emotions into one bipolar factor whereas the
three high arousal PA (HA-PA) emotions make out the second factor. However, the factors
have an even larger negative correlation than in state 1 (r = —.84). This implies that
adolescents in state 2 distinguish more between LA-PA and HA-PA than they do between
(LA-)PA and NA. Note that strong negative correlations between PA and NA are common
in assessments that take place within small time-periods and in questionnaires that
contain items with semantic antonyms such as "happy" and "unhappy" or "sad"
(Dejonckheere et al., 2018).50

49 The 9 models are [2 2 2],[221],[211],[111],[22],[21],[11],[2], and [1]. The notation means, for
instance, that model [2 1 1] has three states with 2, 1, and 1 factors in each state, respectively.

50 One might wonder if the loading pattern emerged only because of our chosen identification constraints.
Therefore, for the same model, we also investigated a solution without correlations between the latent
factors, with variances set to 1, and with the loadings of the item “irritated” set to 0 for the first factor in
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Next, we investigated the between-state differences in the mean item scores.
These scores are directly related to the state- and category-specific intercepts (which are
given in Table L.2 in Appendix L), but the item means are easier to interpret. They are
calculated as Zgzlg X p(yitj =glfi = 0,5 = 1) and thus a function of the logistic
model for the probability of giving a response g as defined in Equation (5.8) with the
factor scores f;; set equal to 0 = (0,0)’. As can be seen from Table 5.1, the means of the
PA items are higher than the means of the NA items in both states. However, the PA means
are lower in state 1 than in state 2. Thus, adolescents who distinguish more between LA-
PA and HA-PA report a slightly better mood.

5.3.4.2 Step 3: Estimating the Mixture CT-LMM with Fixed MMs

Since each adolescent may have a different MM at different measurement occasions, we
examined adolescents’ transitions from one state to another. Additionally, as motivated
above, we investigated (1) whether adolescents differed in their state- (and thus MM-)
membership by classifying the adolescents based on their transition patterns (i.e.,
transitions between states from one measurement occasion to the next) into latent
classes that could differ across the three waves, (2) whether the wave-specific covariate
depression had an influence on this class membership, and (3) whether the time-varying
social context covariates (family, classmates, and friends) affected the transitions
between the states and whether these effects differ across classes. To this end, we
estimated the mixture CT-LMM with the state assignments from step 2 of our analysis as
indicators while accounting for the inherent classification errors. Note that the correction
was hardly necessary as the classification errors were very small due to a high state
separation (with Rgmm,,y = .86)51, which means that most observations were assigned

to a state with a high certainty in step 2 of the analysis.

5.3.4.2.1 Model Selection

We first estimated the “full” model as summarized in Equation (5.11) and (5.12) for 1-3
classes (i.e., with all possible covariates as just described). In the 2- and 3-class solutions,
the effects of depression on the initial class (8, 4¢p) and on the transition probabilities for
the classes (¥, q4ep) Were non-significant. Hence, the class membership was unaffected
by the level of depression. Furthermore, the effects of being with family (v fam») and

classmates (¥ m) On the transitions between the states significantly differed across

both states. The results can be found in Appendix L.4. Again, the solution shows that the three HA-PA
emotions in state 2 stand out from the other emotions. Thus, we are confident about this finding.
51 The Rgmmpy value defines how much the state-membership prediction improves when using the
observations y;; compared to when the state membership is predicted without them. The values range
from zero, where the prediction is no better than chance, to one, where the prediction is perfect.
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classes, whereas the effect of being with friends (v fri») did not significantly differ
across classes. However, being with friends in itself had a significant effect on the
transitions between the states (i.e., there was an effect but it did not differ across classes).
Therefore, we re-estimated the 2- and 3-class models while omitting depression and the
conditional effect of being with friends but including a class-independent effect of being
with friends (i.e., ¥y fr;)- Comparing all full and “reduced” models, the reduced 3-class
model had the best fit according to the BIC and was among the best three models
according to the CHull (for model selection details, see Appendix L.6; for the syntax of the
full and reduced 3-class models, see Appendix L.5).52

5.3.4.2.2 Results and Interpretation

Table 5.2 shows the parameters of the final model. First, we looked at the three classes
that captured differences in adolescents’ between-state transitions. To this end, we
computed the probabilities for the median interval (2.25 h) and mean covariate values:>3

= 0.86 0.14 = 0.58 0.42 = 1 0
;;ta%es = (0'44 0.56)’ ;Italztes = (015 085)' ;]ta?t,es = (0 1)' (5'13)

Class 1 and 2 each include 25% of the adolescents, whereas 50% were assigned to class
3. As can be seen from the relatively large values in column 1 of P;L,,, adolescents in
class 1 had a higher probability to transition to and stay in state 1 (i.e., PA vs. NA), whereas
adolescents in class 2 had a higher probability to transition to and stay in state 2 (HA-PA
vs. LA-PA/NA), which can be seen from the relatively large values in column 2 of P}Z2,..
Thus, 25% of the adolescents are mostly in state 1 and 25% are mostly in state 2. In class
3, transitions to another class were highly unlikely since the (rounded) off-diagonal
elements are equal to zero in PYZ3,., implying that adolescents in this class largely
showed within-person invariance. Over the three waves with 3-month intervals, more
adolescents transitioned to the stable class 3, as can be seen from the third column of the
matrix containing the probabilities to transition between classes from one wave to

another:

52 Note that we also explored whether using the total depression scores instead of the dichotomous cut-off
scores would change the results, which was not the case.
53 As previously described, Figure 5.1 shows how to read a transition probability matrix. In Appendix L.7,
we provide R code for calculating the transition probability matrix from the parameter estimates in Table
5.2 for any class, covariate, and time interval of interest.
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069 0.09 021
Passes = | 012 059 0.29 |. (5.14)

0.06 0.05 0.88

Thus, over the three waves, adolescents developed a more stable assessment of their
feelings. Perhaps their repeated answers to the questionnaire helped them to develop
emotional awareness.

Considering the most prominent results (i.e, p < 0.01) of the social context
covariates, we can see that the two class-dependent covariates (being with family and
with classmates) had no effect in the stable class 3. In class 1 and 2, being with family
decreased the probability of moving to state 1 (¥;=2k=1,famv=1 = —0.63;
Vi=2,k=1,famy=2 = —1.12). This implies that the probability to be in state 2 increased.
Thus, when being with family (compared to not being with family), adolescents
distinguish more between LA-PA and HA-PA and less between (LA-)PA and NA. One can
imagine that HA-PA and LA-PA can emerge as separate factors. For example, while
watching Netflix with the family, adolescents might feel “content” or “relaxed” but not
“excited”.

For adolescents in class 1, being with classmates decreased both the probability of
moving to state 2 and moving to state 1 (P;=1 k=2 cmv=1 = —2.62; ¥1=2 k=1,cmv=1 = —1.30)
such that state memberships became more stable. It is plausible that schools provide a
relatively structured and therefore stable environment, which affects adolescents’
emotional well-being less strongly than the more volatile experiences of being with
family and friends.

In all three classes, being with friends (compared to not being with friends)
decreased the probability of moving to state 2 (¥,=1 =2 = —0.63).5* The same was
found for adolescents being with classmates in class 2 (¥,=1 k=2,cmvy=2 = —0.75). This
implies that, for them, the probability to be in state 1 increased and thus that adolescents
tended to distinguish more between PA and NA. One possible explanation is that social
support of friends is very important for adolescents (Bokhorst, Sumter, & Westenberg,
2010), so that adolescents who are "unhappy", for instance, because they failed a test,
may still feel "content” when they are among their friends (and possibly classmates).
Although one would expect to find an elevated mood when adolescents are with their
friends (Kendall et al., 2014; van Roekel et al., 2013), the PA in this state is slightly lower

54 Note that there is only one effect because the relation between being with friends and the state
membership was not conditional on the classes in the final model.
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than in state 2, perhaps because adolescents visit their friends more often when feeling
bad and/or are more likely to discuss negative emotions with friends than with, for
instance, family.

Table 5.2. Parameter estimates for the mixture CT-LMM in step 3 of LMLTA

Parameter Estimate SE z P Wald df
value  value value
DT-LMM for Classes
" - 0.19 0.22 0.90 0.37 1212 2 <0.01
Initial Class §§Z=§ 0.60 019 322 <0.01
Yob=1,v=2 -2.02 054 -3.75 <0.01 1036 6 <0.01
. Yob=1,v=3 -1.18 033 -3.62 <0.01
IanfeI;ig;Tsl Vobezvet 162 049 -334 <001
Yob=2,v=3 -0.70 0.30 -2.35 0.02
Yob=3,v=1 -2.61 043 -6.04 <0.01
Yob=3,v=2 -2.86 0.47 -6.06 <0.01
CT-LMM for States
Initial State Bz 002 013 017 086 003 1 086
Transition Yoi=1k=2 -0.55 0.20 -2.69 <0.01 2319 2 <0.01
Intercepts Yoi=2.k=1 -0.08 0.20 -0.40 0.69
Yi=1k=2v=2 0.00 0.25 -0.01 0.99 588.60 4 <0.01
Vi=1,k=2,v=3 -7.21 038 -19.16 <0.01
Effect of Class Yiez etz 471 027  -632 <001
Yi=2,k=1,v=3 -8.74 0.60 -14.55 <0.01
Yi=1k=2famv=1 -0.48 0.22 -2.17 0.03 4049 6 <0.01
Vit k=2, famv=2 010 020 -051 061
Effect of Vie1k=2 famv=3 -1.11 055  -2.02  0.04
Family x Class Yi=2,k=1,famv=1 -0.63 0.22 -2.81 <0.01
Viez k=1, famv=2 4112 026 -422 <0.01
Vie2k=1famv=3 227 147 -154  0.12
Yi=1k=2,cmv=1 -2.62 0.39 -6.77 <0.01 11330 6 <0.01
Effect of Vietk=2,cmp=2 -0.75 025 -3.04 <0.01
c1aes§tn?ates y Vit kez.cmp=3 270 187 -145 015
Class Vie2k=1,cmp=1 -1.30 026 -4.94 <0.01
Vie2k=t,cmp=2 051 025 207 0.04
Yicok=1omp=3 -096 084 -114  0.25
Effect of Yi=1,k=2fri -0.63 0.16 -3.92 <0.01 1696 2 <0.01
Friends Vieoket fri 039 017 -236  0.02

Note. DT = discrete-time, CT = continuous-time, LMM = Latent Markov Model, Family (fam) refers
to being with family, Classmates (cm) refers to being at school/with classmates, Friends (f7i)
refers to being with friends, v refers to a class in wave d, b refers to a class in wave d — 1,k
refers to a state at time-point ¢, and [ refers to a state at time-point t — 1. The overall Wald test
for the differences in parameters between the classes for Family x Class was Wald (4) = 18.29,
p < 0.01. For Classmates X Class the Wald test was Wald (4) = 27.86,p < 0.01. The covariate
effects on the state transitions can be understood as follows: negative estimates imply that the
log intensities and therefore also the transition probabilities decrease (e.g., the estimate
Vi=2,k=1,famp=2 = —1.12 means that the probability of transitioning from state [ = 2 to state k =
1 for a subject in class v = 2 is lower when the subject is with family compared to when the
subject is not with family). The estimates can also be used to calculate the transition probabilities
for any class, covariate value and time interval of interest. An example showing how to calculate
the parameters in R is provided in Appendix L.7.
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5.3.4.3 Summary of the LMLTA Findings

We conclude that (1) two MMs were underlying adolescents’ responses: in state 1 (42%
of all observations), adolescents distinguished mainly between PA and NA and had a
slightly worse mood than in state 2 (58% of all observations), where adolescent
distinguished more between LA-PA (e.g., content) and HA-PA (e.g., excited) than they did
between (LA-)PA and NA; (2) three state-transition patterns were found, implying that
adolescents indeed differed in the stability of their emotional experience: in class 1,
adolescents frequently transitioned between the states with a high probability to be in
state 1; in class 2 they frequently transitioned but were more likely to be in state 2, and
in class 3, they mainly stayed in one of the two states; (3) depression did not influence
the class membership and thus the transition pattern; (4) for the unstable classes 1 and
2, being with family increased the probability to be in state 1; (5) for class 1, being with
classmates increased the probability of staying in either state; (6) for all classes, being
with friends—and for class 2, being with classmates—increased the probability to be in
state 1. Our results show that researchers can obtain valuable insights from investigating
MM changes and that it is important to consider the possibility that changes in positive
or negative affect (e.g., evaluated by means of investigating changes in sum scores) could
come from variability in the underlying MMs. Therefore, the novel method LMLTA (or
LMFA) can improve the emerging trend of studying emotional dynamics as predictors of
future well-being and psychopathology. In the future, it would be interesting to study the
MMs and transition patterns in a larger group of adolescents with (different levels of)
depression and to include other covariates that may explain differences in transition
patterns and state-membership probabilities. For example, stress can cause a simplified
representation of emotions (Dejonckheere, Mestdagh, et al., 2019), which can lead to very
high correlations between emotions.

5.4 Discussion

In recent years, the awareness of potential measurement model (MM) changes in
intensive longitudinal data—and the associated comparability problems—increased
among substantive researchers and they are keen to evaluate such changes with new
methods like latent Markov factor analysis (LMFA) (Horstmann & Ziegler, 2020).
Understanding subject- and context-dependent MMs in more detail may benefit future
studies on daily life dynamics and also have clinical implications, for instance, when MMs
can be related to the onset of psychopathology. However, up to now, only researchers
whose data contained (approximately) normally distributed continuous items could
benefit from LMFA, whereas intensive longitudinal data often contain ordinal item
responses with few categories or skewed distributions. In this chapter, we combined the
strength of LMFA to evaluate MM changes over time with the strength of latent trait (LT)
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models accommodate ordinal data in the new latent Markov latent trait analysis
(LMLTA).

We showed that LMFA and LMLTA are similar as they both capture discrete
changes or differences in subjects’ underlying MM and thus in how latent constructs are
measured by observed item responses. The difference lies in the type of latent variable
model that is used to specify the relations between the latent constructs and observed
variables, which directly follows from the assumed distribution of the observed item
responses. Whereas the factor analysis (FA) model in LMFA assumes normally
distributed continuous item responses, the generalized partial credit model (GPCM) in
LMLTA assumes ordinal responses. The GPCM differs from the FA model in that (1) it has
one intercept per item category and not one per item, (2) error variances cannot be freely
estimated as they need to be fixed for identification, (3) rotation is only possible by means
of setting identifying constraints, and (4) the number of constructs that can be included
in the model is limited due to the computationally more complex estimation. This implies
that, in LMLTA, more parameters have to be estimated, error variances are assumed to
be identical across states, and the model specification is less flexible than in LMFA. For
these reasons, we believe that LMFA should be the preferred method if the items are
approximately normal and are measured with at least five categories (Dolan, 1994). The
robustness of LMFA against violations of normality has never been evaluated, however.
In the future, it would therefore be important to formulate more concrete guidelines on
the basis of a simulation study that is tailored to intensive longitudinal data and that
provides information on the robustness of LMFA, for instance, in terms of sample size and
number of measurement occasions, degree of skewness, and number of item response
categories. In the meantime, researchers should be cautious and, in case of doubt, opt for
LMLTA and compare its results to those of LMFA.

By investigating differences in discrete MM changes over time in relation to
covariates, LMLTA is a valuable step towards validly studying psychological dynamics.
Additionally, as briefly described in the introduction (Section 5.1), the results of LMLTA
may also help researchers decide on subsequent analyses. When invariance is clearly
untenable, further evaluating dynamics with an approach that builds upon the invariance
framework is simply not appropriate. However, observations for which invariance holds
can be used to study dynamics in latent processes with standard analyses (e.g., growth
models, Muthén, 2002, or dynamic structural equation modeling, Asparouhov et al,,
2017), without results being influenced by differences in the underlying MMs. Moreover,
if partial invariance holds across states, one may also continue with latent process
analyses either by removing items with non-invariant parameters or by allowing for
state- (or subject- and time-point-) specific parameters. Finally, we would like to
highlight that there is no gold standard yet in how to analyze intensive longitudinal data
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and the latent variable framework that LMLTA is based on is only one possibility. There
are various other reasonable frameworks for analyzing the data (e.g, network
psychometrics; Epskamp, 2020; Marsman et al., 2018) and decisions about the data
analysis can considerably impact, for example, clinical recommendations (Bastiaansen,
Kunkels, et al., 2020). Therefore, in the future, it would be desirable to compare

perspectives about psychological phenomena from various modeling approaches.
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Tutorial for the R Package Imfa

This chapter is submitted to Behavior Research Methods as Vogelsmeier, L. V. D. E,,
Vermunt, J. K, & De Roover, K. How to explore within-person and between-person
measurement model differences in intensive longitudinal data with the R package Imfa.
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Abstract

Intensive longitudinal data (ILD) have become popular for studying within-person
dynamics in psychological constructs (or between-person differences therein). Prior to
investigating what the dynamics look like, it is important to examine whether the
measurement model (MM) is the same across subjects and time and, thus, whether the
measured constructs have the same meaning. If the MM differs (e.g., because of changes
in item interpretation or response styles), observations cannot be validly compared.
Exploring differences in the MM for ILD can be done with latent Markov factor analysis
(LMFA), which classifies observations based on the underlying MM (for many subjects
and time-points simultaneously) and thus shows which observations are comparable.
However, the complexity of the method or the fact that no open-source software for LMFA
existed until now may have hindered researchers from applying the method in practice.
In this chapter, we introduce the new user-friendly software package Imfa, which allows
researchers to perform the analysis in the freely available software R. We provide a step-
by-step tutorial for the Imfa package so that researchers can easily investigate MM

differences in their own ILD.
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6.1 Introduction

In recent years, researchers have shown an increased interest in intensive longitudinal
data (ILD) for studying dynamics of psychological latent constructs (or “factors”), such as
depression or affective well-being, for many subjects over a longer period of time. The
ILD are commonly obtained by means of experience sampling methodology (ESM; Scollon
etal,, 2003) where many subjects repeatedly complete small questionnaires—containing
items intended to measures the latent factors—at random (or event-based) time-points,
several times a day for several days or weeks via a smartphone app. State-of-the-art
analyses to model dynamics in psychological factors for many subjects over time range
from basic random effect models (for studying individual differences in the dynamics or
average levels of the measured factors; Hamaker, Ceulemans, Grasman, & Tuerlinckx,
2015; Myin-Germeys et al., 2018), over multilevel autoregressive models (for studying
individual differences in lagged relationships between measured factors; e.g., Bringmann
et al, 2013), to dynamic structural equation modeling (DSEM) that, in addition to the
methods just mentioned, also allow for the estimation of more complex models (e.g.,
models containing multiple outcome variables; McNeish & Hamaker, 2020).

While the technology to gather ILD and approaches to analyze dynamics in the
measured constructs are readily available, an important point of concern of many
researchers before they start their analyses is whether the latent factors actually have
the same meaning across subjects and time-points and, thus, whether observations are
comparable. For this, the measurement model (MM) needs to be invariant across
observations, that is, measurement invariance (MI) must hold. The MM indicates which
factors are measured by which indicators and, for continuous item responses, is
traditionally obtained with factor analysis (FA; Lawley & Maxwell, 1962). In the resulting
MM (or “FA model”), factor loadings indicate the extent to which items measure the
factors and item intercepts indicate the expected item scores when scores on the factors
are equal to zero. If the loadings, the intercepts, or the number of factors differ within or
across subjects, Ml is violated and factors cannot be meaningfully compared (Adolf et al.,
2014). However, invariance within and between subjects is easily violated because of
differences and changes in response styles (Moors, 2003; Paulhus, 1991) or item
interpretations (Oort et al., 2005). Thus, the MM may be different across subjects but also
change within a person over time.

To clarify possible non-invariance of MMs, consider the following example. A
research team conducts an ESM study to investigate between-subject differences
regarding dynamics in affective well-being of employees in the travel sector during the
Covid-19 pandemic. On the one hand, the underlying MM may differ across employees
because people generally differ in their ability to label emotions in a granular way
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(Barrett, Gross, Christensen, & Benvenuto, 2001; Erbas, Kalokerinos, Kuppens, van
Halem, & Ceulemans, 2020; Kashdan, Barrett, & McKnight, 2015). The “high
differentiators” differentiate more between specific emotions, such as feeling content or
happy, than the “low differentiators”, who focus more on the valence of a feeling and, thus,
whether an emotion is positive or negative (Barrett, 1998; Erbas, Ceulemans, Koval, &
Kuppens, 2015). A result could be that several factors underlie the responses of the high
differentiators (say, four factors pertaining to high- and low-arousal positive and
negative affect) while only one factor underlies the responses of the low differentiators
(say, a bipolar “valence of affect” factor). On the other hand, the MM may change within
some employees over time. For instance, employees who are normally high
differentiators may also switch to a MM with a single “valence of affect” factor when being
exposed to a stressful situation (e.g., learning about government restrictions extending
temporary part-time work) because stress triggers a valence focus (Erbas et al., 2018).
Because the low differentiators respond according to a single valence of affect factor,
regardless of experienced stress, the same MM would be underlying their responses
during the entire participation.

Undetected measurement non-invariance is a threat to valid inferences from ILD
analyses. Therefore, detecting non-invariance is crucial. Until recently, researchers could
only test whether the MM is invariant across (groups of) subjects and/or time-points (e.g.,
by means of traditional MI tests that are, for example, available in the R package lavaan;
Rosseel, 2012). However, if the results indicate that invariance is untenable, researcher
cannot automatically identify for which subjects or time-points the MMs differ and what
the different MMs look like without conducting pairwise comparisons of subject- or time-
point specific MM parameters. This quickly becomes unfeasible for ILD that usually
contain many observations from many subjects. Furthermore, it is only possible to
investigate non-invariance across subjects (assuming invariance over time) or to
investigate invariance over time (assuming invariance across subjects) and not to
investigate both at the same time. These problems were solved by Vogelsmeier, Vermunt,
van Roekel, et al. (2019), who developed latent Markov factor analysis (LMFA), which
allows researchers to conveniently explore all kinds of MM differences, both across
subjects and time. LMFA is a mixture modeling approach that combines a latent Markov
model (LMM; Bartolucci et al., 2014; Collins & Lanza, 2010) with mixture FA (McLachlan
& Peel, 2000; McNicholas, 2016): First, the LMM clusters observations according to their
underlying MM into dynamic latent states. Note that the latent states are equivalent to
latent classes in a latent class analysis or mixture model but are called states in a LMM
because subjects can transition between latent classes over time. Second, for each state,
FA reveals what the underlying MM looks like. Summarized, LMFA classifies observations
into different states that pertain to different MMs and invariance holds for observations
in the same state but is violated for observations in different states. Researchers can then
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decide how to continue with their data analysis (e.g., retaining observations from one
state or removing non-invariant items; see Section 6.4 for a more elaborate discussion on
this). Researchers can also learn from subjects’ transitions between MMs by including
time-varying or time-constant covariates as predictors of the state memberships (e.g.,
“stress” could be included when analyzing the changes in the MM in our employee
example).

Although more and more researchers are eager to explore MI in their ILD
(Horstmann & Ziegler, 2020), many researchers are still unfamiliar with LMFA, how it is
applied, or how results must be interpreted. Furthermore, until now, LMFA was only
available in the commercial software Latent GOLD (Vermunt & Magidson, 2016) and,
thus, not all researchers had access to the novel method. The latter has now changed with
the release of the package Imfa (Vogelsmeier & De Roover, 2021) that allows researchers
to perform all necessary steps in the open-source software R (R Core Team, 2020). The
aim of this chapter is to provide a tutorial for the Imfa package that guides users through
the different steps of performing the analysis and interpreting the results with the goal
to increase researchers’ confidence and ease in using LMFA. This can also indirectly
improve research of applied or substantive researchers. The tutorial is targeted at an
audience that has a basic understanding of R but not necessarily of the LMFA model.

The remainder of this chapter is organized as follows: First, in Section 6.2, we
describe the data structure, introduce an example dataset, recap the LMFA method, and
describe how it is estimated in Imfa. Then, in Section 6.3, we guide the reader through the
different analysis steps by means of annotated R code. Next, in Section 6.4, we describe
how to proceed with ILD analyses based on the results of LMFA and, finally, in Section
6.5, conclude with a discussion about current limitations and possible future extensions
of Imfa.

6.2 Method
6.2.1 Data Structure

We assume typical ILD and, thus, repeated measures data containing several continuous
and normally distributedSs variables that were assessed for multiple subjects at multiple

measurement occasions and which measure one or more latent factors. In addition to

55 Note that one may also investigate ordinal data as long as the data has more than a few response
categories (say at least five; Dolan, 1994) and the distribution across the categories is approximately
normal. However, the influence on the parameter estimation has not yet been investigated for LMFA in
particular and results should be therefore interpreted with caution. Highly skewed responses with only a
few response categories may lead to convergence problems and local optima (for a description of local
optima, see Section 6.3.2.3). For such data, the LMFA extension to categorical data should be used, that is,
latent Markov latent trait analysis (Vogelsmeier, Vermunt, Keijsers, & De Roover, 2021).
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these variables, the data may contain time-constant or time-varying explanatory
variables (i.e., covariates), which may be dichotomous, ordinal, or continuous and which
may explain transitions between the underlying MMs. For the mathematical notation of
the data structure, see Appendix N.1. To clarify the data structure, consider the following
example dataset that will be used throughout this tutorial.

6.2.2 Constructed Data Example

The data is a synthetic dataset that was inspired by a real ESM dataset, which was used
in Vogelsmeier, Vermunt, van Roekel, et al. (2019) to illustrate how to explore MM
changes by means of a LMFA without covariates. Every evening for about three months,
multiple subjects (suffering from anhedonia, one of the core symptoms of depression;
Van Roekel et al, 2017) reported their affect and the unpleasantness of the most
unpleasant event they experienced since the previous measurement occasion (in the
following just “negative event”). Affect was measured by means of ten positive affect (PA)
and eight negative affect (NA) items (see LMFA output box 1) and a single item was used
to assess the negative event. All items were assessed on a Visual Analogue Scale ranging
from 0 = “Not at all” to 100 = “Very much”. Moreover, after the first month, subjects were
randomly assigned to receive an intervention to reduce anhedonia or not.56 The results
of LMFA indicated that most subjects transitioned between three MMs that differed with
regard to the number and nature of the factors. Descriptive statistics showed that there
was a relation between the states and the two covariates “had an intervention” and
“negative event”.

For the tutorial in this chapter, we created a dataset with MMs similar to the ones
found in the real data application (yet, somewhat adjusted and simplified) and with the
two time-varying covariates “had an intervention” (coded as 1 = “yes” and 0 = “no”) and
“negative event” having an effect on the transitions between the states. The dataset
contains data for 100 subjects with a mean of 47.76 observations and an SD of 6.56,
resulting in a total number of observation equal to 4776. The intervals between
measurement occasions differ within and across subjects with an average length of 1.22
days and an SD of 1.02. The negative event scores differ within and across subjects with
a mean of 49.65 and an SD of 15.11. Of all subjects, 50 receive no intervention and 50
receive one intervention after approximately 1/3 of their total participation duration.
The dataset will be used throughout the article to ease understanding of the method and
the steps of the tutorial.

56 The intervention was either a personalized lifestyle advice or the advice in combination with a skydive.
For simplicity in this tutorial, we do not distinguish between different types of interventions.
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6.2.3 Latent Markov Factor Analysis (LMFA)

LMFA consists of two building blocks. The first one pertains to the state-specific MMs and,
thus, a FA model for each state that indicates which constructs are measured by which
items. Note that the state-specific FA assumes continuous item responses (or responses
that can be treated as such, say, with five or more categories; Dolan, Oort, Stoel, &
Wicherts, 2009). It is possible to use a latent variable model for items with categorical
item responses (Vogelsmeier et al,, 2021) but this option is not included in the Imfa
package. The second building block is the LMM that models the transitions between MMs
over time (Bartolucci, Farcomeni, et al., 2015; Zucchini et al., 2016). Note that there are
two types of LMMs. First, the discrete-time- (DT-)LMM (Bartolucci, Farcomeni, et al,,
2015; Zucchini et al., 2016) assumes the intervals between time-points to be equal across
subjects and time. In contrast, the continuous-time- (CT-)LMM (Bdckenholt, 2005;
Jackson & Sharples, 2002) accommodates unequally-spaced observations, which is
usually more realistic in ILD (e.g., due to random beeps or skipped measurement
occasions). However, the CT-LMM also works for equal intervals. In fact, estimating a CT-
LMM with equal intervals is similar to estimating a DT-LMM but the parameter
interpretation differs (Vermunt & Magidson, 2016), which will be clarified in Section
6.2.3.2. The Imfa package uses CT-LMM because it is more generally applicable.

LMFA can be estimated with a full information maximum likelihood (FIML)
estimation (Vogelsmeier, Vermunt, van Roekel, et al.,, 2019) or with a three-step (3S)
estimation (Vogelsmeier et al., 2020). The latter breaks down the estimation of LMFA into
three steps, which makes the analysis faster and more convenient for the investigation of
covariate effects. Therefore, Imfa uses the 3S estimation. For a detailed discussion about
the estimation procedures, we refer to Vogelsmeier et al. (2020).

In the next section, we explain and illustrate the method using LMFA results for
our example data. Note that the true number of states and factors (i.e., like in the data
generating model) was applied. Of course, the number of states and factors and the
relevant covariates are not known in empirical practice. The required model selection
and covariate selection procedures are explained in Section 6.3.2. In the following, we
first explain the state-specific MMs (i.e., the FA models; Section 6.2.3.1). Then, we
describe the (covariate-specific) transition model (i.e, the CT-LMM; Section 6.2.3.2).
Next, we summarize the finding of applying LMFA to our example data (Section 6.2.3.3).
Thereafter, we explain the 3S estimation (Section 6.2.4).

6.2.3.1 The State-Specific Measurement Models

In LMFA, the MMs are determined by state-specific FA models, which consist of three
types of parameters. Depending on which parameters differ across states, different levels
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of MI are violated. In this section, we first explain the parameters of the FA model, the
different levels of (non-)invariance, and the exploratory FA that is used to obtain the
parameter estimates. Thereafter, we demonstrate potential non-invariance of the FA
models across states with our example data.

6.2.3.1.1 State-Specific FA Models and (Non-)Invariance Across States

The first type of parameters are the factor loadings, which determine the item-factor
relations and, hence, the degree to which an item measures a factor or, stated differently,
to what extent an item is predicted by the underlying factor. Thus, items with stronger
loadings are better measures of a factor than items with lower loadings. Second, item
intercepts are the expected scores for an item when the factor scores are equal to zero.
Third, the items’ unique variances indicate the variance of an item that is unique to the
item and, hence, that is not explained by the factors (for the mathematical notation and
the technical details, see Appendix N.2.2). The three types of parameters can take on
different values across states and inform us about violations of four different levels of MI
(Meredith, 1993). These levels are configural invariance (invariance of the number of
factors and the pattern of non-zero loadings), weak invariance (invariance of the non-
zero loadings), strong invariance (invariance of the intercepts), and strict invariance
(invariance of the unique variances). It is important to note that strict invariance is
assumed to hold within each state, since the states capture differences in loadings,
intercepts, and unique variances.

For obtaining the state-specific MMs, LMFA uses exploratory FA (EFA) and not
confirmatory FA (CFA). CFA is too restrictive because it imposes a priori assumptions
about the presence or absence of item-factor relations by setting certain loadings equal
to zero. Thus, CFA cannot detect MM differences pertaining to the configural model, such
as the number and nature of the underlying factors in our previous employee example. In
contrast, EFA detects all types of loading differences, including configural non-
invariances like differences in cross-loadings. Note, however, that the EFA model is not
identified without setting constraints. Firstly, one needs to set the scale of the factors. To
this end, Imfa sets the factor (co-)variances equal to an identity matrix (with dimensions
equal to the state-specific number of factors), which means that factors are initially
uncorrelated. This initial solution is usually not well interpretable because many items
may have high loadings on more than one factor (i.e., there is no “simple structure”;
Thurstone, 1947). In order to achieve a more interpretable solution, Imfa applies a
rotation of the factors for each state. An oblique rotation (i.e., one that allows factors to
be correlated) results in the best simple structure and is usually more valid for
psychological constructs (Clarkson & Jennrich, 1988; De Roover & Vermunt, 2019; Kiers,
1997). Finally, the factor means are set equal to zero per state. This implies that the state-
specific intercepts are in fact state-specific item means.
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6.2.3.1.2 State-Specific FA Models for the Example Data

To illustrate possible measurement non-invariance across states, consider the state-
specific MMs resulting from LMFA with three states and three, two, and three factors (“[3
2 3]”) of the synthetic dataset described in Section 6.2.2. The results are displayed in
LMFA output box 1.57

LMFA output box 1

## Estimation converged after 168.67 seconds and 40 iterations.

#H#

## LL = -353166.81

#H#

## Number of states: 3

#H#

## Number of factors: [3 2 3]

##

I e L L L L L L L L L E L L

##

## Obliquely rotated standardized loadings:

#H#

## S1F1 S1F2 S1F3 S2F1 S2F2 S3F1 S3F2 S3F3
## Interested 0.66 0.04 0.00 0.68 0.01 0.57 -0.01 0.02
## Joyful 0.60 0.02 0.02 0.65 -0.01 0.88 0.01 0.06
## Determined 0.37 0.03 -0.55 0.61 0.00 0.84 0.02 -0.01
## Calm 0.37 -0.58 -0.01 0.59 0.00 0.18 -0.15 0.82
## Lively 0.63 0.03 0.03 0.65 0.00 0.88 -0.01 0.01
## Enthusiastic ©.65 -0.01 0.02 0.64 0.00 0.89 0.02 0.00
## Relaxed 0.64 0.02 0.00 0.64 0.01 0.16 -0.14 0.85
## Cheerful 0.63 0.07 0.01 0.63 -0.01 0.91 0.01 0.02
## Content 0.61 0.00 0.03 0.67 0.02 0.93 0.02 0.01
## Energetic 0.64 -0.01 0.00 0.63 -0.01 0.90 0.05 -0.01
## Upset 0.09 0.62 -0.01 0.00 0.53 0.03 0.83 -0.03
## Gloomy -0.24 ©.39 0.44 -0.01 .53 0.02 0.82 -0.01
## Sluggish 0.07 -0.01 0.73 -0.01 0.50 0.29 0.34 0.77
## Anxious 0.09 0.70 -0.02 0.00 0.52 0.05 0.79 -0.01
## Bored 0.07 -0.01 0.74 -0.01 0.52 0.04 0.47 -0.04
## Irritated 0.06 0.51 -0.05 0.01 0.58 0.04 0.85 -0.02
## Nervous 0.08 0.73 -0.04 0.00 0.51 0.03 0.74 0.01
## Listless 0.06 -0.05 0.73 0.01 0.54 0.02 0.46 -0.03
##

#H#

e e e e L e e e e L e R

#H#

## Factor correlations after oblique rotation:

#H#

## S1

## F1 F2 F3

## F1 1.00 -0.08 -0.24

## F2 -0.08 1.00 0.07

## F3 -0.24 0.07 1.00

#H#

## S2

57 Note that, for clarity, loadings with absolute values larger than .3 are printed in boldface in this tutorial.

However, the normal output in R does not include any boldface loadings.
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H#i F1 F2

## F1 1.00 -0.37

## F2 -0.37 1.00

H#i

## S3

H#i F1 F2 F3
## F1 1.00 -0.04 0.23
## F2 -0.04 1.00 0.02
## F3 0.23 0.02 1.00

Fit

#H#
e L e L
#H#

## Intercepts:

H#i#

#it S1 S2 S3
## Interested 49.24 61.46 51.98
## Joyful 48.92 61.12 49.95
## Determined 46.60 61.20 50.35
## Calm 46.25 61.14 54.76
## Lively 49.29 60.85 50.57
## Enthusiastic 48.99 61.16 50.24
## Relaxed 49.00 61.12 54.90
## Cheerful 49.03 61.02 50.42
## Content 49.39 60.84 49.98
## Energetic 49.35 60.90 50.41
## Upset 44.12 26.54 36.42
## Gloomy 45.88 27.09 35.93
## Sluggish 44.95 26.54 33.26
## Anxious 45.81 26.48 35.83
## Bored 44.98 26.75 29.94
## Irritated 43.48 26.69 35.66
## Nervous 46.39 26.50 35.94
## Listless 45.35 26.84 29.67
#H#

e G L E L
##

## Unique variances:

##

## S1 S2 S3
## Interested 273.26 53.37 96.43
## Joyful 273.82 48.67 92.81
## Determined 261.88 49.93 92.70
## Calm 265.99 51.75 99.17
## Lively 286.09 48.20 104.04
## Enthusiastic 257.06 50.09 107.07
## Relaxed 270.54 49.55 99.75
## Cheerful 284.69 50.47 83.05
## Content 271.52 41.15 92.38
## Energetic 271.12 53.24 95.55
## Upset 278.71 46.13 92.89
## Gloomy 256.03 46.46 73.85
## Sluggish 245.57 51.70 82.24
## Anxious 276.61 45.65 87.14
## Bored 253.52 47.69 103.11
## Irritated 267.30 44.56 84.99
## Nervous 261.57 49.30 86.21
## Listless 269.07 47.29 92.10

148



Imfa TUTORIAL

Intercepts. We first look at the intercepts because, for this data example, it allows
us to give labels to the states that can be used throughout the interpretation of the other
parameters. Specifically, we see that, in all three states, the positive emotions (i.e.,
“interested”, “joyful”, “determined”, etc.) are larger than the negative emotions (i.e,
“upset”, “gloomy”, “sluggish”, etc.). However, the states differ regarding their overall
positive and negative emotions. More specifically, the positive emotions are lowest in
state 1 and the negative emotions are highest in state 1, followed by state 3 and then state
2. Therefore, in the following, we label the first state the “displeasure” state, the second

one the “pleasure” state, and the third one the “neutral” state.

Loadings. Next, we inspect the loadings. Note that the default output displays
standardized>8 obliquely rotated factor loadings.5° The reason is that unstandardized
values can be difficult to interpret as they often exceed an absolute value of 1 (especially
when a large rating scale is used like in our example dataset; Section 6.2.2) and, hence,
rules of thumb to evaluate which items have strong loadings on a factor cannot be applied.
In contrast, for standardized loadings, rules of thumb are available (e.g., loadings with an
absolute value larger than or equal to 0.3 can be seen as considerable, which is also the
threshold used in our example).

Looking at the loadings, we see that, in all states, the first factors correspond to a
positive affect (PA) factor containing loadings of most or all positive emotion items.
However, in the displeasure state (i.e. state 1), the loadings of the items “determined”
and “calm” are somewhat lower and, in the neutral state (i.e., state 3), the loadings “calm”
and “relaxed” are even lower than the chosen threshold. Furthermore, the second factors
are, broadly speaking, negative emotion factors but with even more prominent
differences across states (especially between the displeasure and the pleasure state; i.e.,
state 1 and state 2). While the pleasure state has a clear negative affect (NA) factor with
high loadings of all negative emotions, the displeasure state has a bipolar “distress” factor
with loadings of the high arousal negative emotions and a reversed loading of the item
“calm”. The second factor in the neutral state (i.e., state 3) lies in between the factors of
the pleasure and displeasure states in that it has considerable loadings of all the items
but relatively low loadings of the low arousal emotions “sluggish”, “bored”, and “listless”.
The most striking difference is that the displeasure state (i.e., state 1) contains a third
bipolar “drive” factor, whereas the neutral state (i.e., state 3) contains a third “serenity”
factor. More specifically, the drive factor (or rather lack-of-drive factor) has high loadings

» o«

of the low arousal negative emotions “gloomy”, “sluggish”, “bored” and “listless” and a

58 More specifically, they are standardized by means of the standard deviations of the item scores across all
states.
59 If desired, however, the user can also request unstandardized and unrotated loadings.

149




CHAPTER 6

reversed loading of the item “determined”. The serenity factor has high loadings of the
low arousal emotions “calm”, “relaxed”, and “sluggish”. In conclusion, when subjects are
in the displeasure or neutral state, they have a more differentiated representation of their
emotions than when they are in the pleasure state. The drive factor in the displeasure
state is especially interesting because it is in line with research showing that drive differs
from general PA when persons are anhedonic (Berridge et al., 2009; Treadway & Zald,
2011). Moreover, it is noticeable that the loadings in the neutral state (i.e., state 3) are
generally higher than the loadings in the other states. Thus, considering the overall item
variances, the item-factor relations are strongest in the neutral state. Note that overall
larger loadings may also be a result of larger factor variances as a consequence of
constraining the factor variances to 1 (Section 6.2.3.1).

In addition to the loadings, it is interesting to also inspect the factor correlations
that result from the oblique rotations—which are not part of the MM. First, in the
displeasure state (i.e., state 1), we see a small negative correlation between PA and the
lack-of-drive factor (i.e., factors 1 and 3). In the neutral state (i.e,, state 3), we see a small
positive correlation between PA and the serenity factor (i.e., factors 1 and 3). In the
pleasure state (i.e., state 2), PA and NA (i.e., factors 1 and 2) are moderately negatively
correlated. All other correlations are close to zero, indicating that the other factors are
rather independent of each other.

Unique variances. Finally, looking at the unique variances, we see that they are
largest in the displeasure state (i.e., state 1), followed by the neutral and the pleasure
state (i.e., state 3 and 2). The large emotion-specific variability in the displeasure state is
in line with findings that depression and emotional complexity are related (Griihn et al.,
2013).

6.2.3.2 The Transition Model

After examining the MMs, the next step is to investigate what the transitions between the
MMs look like by means of the CT-LMM. As previously stated, the CT-LMM is a latent class
model that allows subjects to transition between latent states over time. Specifically, we
will inspect the probability to start in a state at the first time-point (i.e., “initial state
probabilities”) and the probabilities of transitioning to other states from one time-point
to the next (i.e., “transition probabilities”). In this section, we first explain the initial state
parameters and show what they look like for our example data. Then we describe the
transition parameters and show the corresponding results for our example.

6.2.3.2.1 Initial State Parameters

The initial state probabilities pertain to the probability to start in a certain state at the
first time-point. The probabilities sum to one and are stored in a vector with the number
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of elements being equal to the number of states. For example, the vector m =
(.42 .34 .24) shows that the probability of starting in state 1 is equal to .42, the
probability of starting in state 2 is . 34, and the probability of starting in state 3 is . 24. In
Imfa, logit models are used to model the initial state probabilities (similar as in logistic
regression; Agresti, 1990). The inherent logit values (or “log-odds”) indicate the relative
chance to start in a state compared to a reference state (in Imfa, this is state 1). Note that
a separate logit model is required for all states but the reference state. These logit values
do not have to be interpreted because the initial state probabilities can be calculated from
these logit models (see Appendix N.2.1).60

Finally, the initial state parameters may be related to covariates, which could be,
for instance, scores on a baseline questionnaire (e.g., a depression score or a score for the
general ability to differentiate between emotions). Note, however, that including
covariates on the initial state parameters only makes sense if the dataset contains data of
more than a few subjects.6! Otherwise, there is not enough information to investigate the
covariate effects. The covariates are related to the initial state parameters by means of
regression and they affect the logits and not the probabilities directly (for details, see
Appendix N.2.1). However, in order to see what effect the covariates have on the initial
state probabilities, one can convert logits into probabilities for different covariate values
and compare them. For example, for a categorical covariate with two categories, one
could compare the initial state probabilities for both categories. For continuous
covariates, one could compare the initial state probabilities corresponding to the sample
mean plus the standard deviation of the covariate to the probabilities corresponding to
the sample mean minus the standard deviation (or compare probabilities for different
quantiles of the covariate) while setting other covariates equal to their (sample) means.

6.2.3.2.2 Initial State Parameters for the Example Data

To illustrate the interpretation, consider the results of a LMFA without covariates on the
initial state parameters. The results are presented in LMFA output box 2.

LMFA output box 2

## Model estimation:

#H#

## Estimation converged after 1159.95 seconds.

##

## LL = -3712.4847

##

2 e R L L L
##

60 Note that Imfa users do not have to calculate any probabilities themselves as the package provides them.
61 For an estimate of the required sample size, users may consult guidelines for multinomial logistic
regression (e.g,, de Jong etal.,, 2019).
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## Wald tests:

##

#it Wald df p-value

## intervention 213.3821 6 (2]

## negativeEvent 55.7629 6 0

#H#
e e e e e e
#H#

## Parameter estimates:

H##

#it coef s.e. z-value p-value
## initial state parameters 2 -0.1864 0.2408 -0.7741 0.4389
## initial state parameters 3 -0.5479 0.2949 -1.8577 0.0632
## transition parameters 1|2 -1.1725 0.3207 -3.6555 0.0003
## transition parameters 1|3 -1.5951 0.4235 -3.7661 ©.0002
## transition parameters 2|1 -1.6011 0.4260 -3.7588 0.0002
## transition parameters 2|3 -0.4188 ©.4183 -1.0013 0.3167
## transition parameters 3|1 -0.5761 ©.2975 -1.9368 0.0528
## transition parameters 3|2 -1.3186 ©.7413 -1.7788 0.0753
## intervention 1|2 0.6000 0.1786 3.3604 0.0008
## intervention 1|3 0.3228 0.2565 1.2582 0.2083
## intervention 2|1 -0.9528 0.2624 -3.6308 0.0003
## intervention 2|3 -0.4081 0.2474 -1.6497 0.0990
## intervention 3|1 -1.0119 0.1809 -5.5946 ©0.0000
## intervention 3|2 0.4767 0.4931 0.9668 0.3336
## negativeEvent 1|2 -0.0194 0.0057 -3.3903 0.0007
## negativeEvent 1|3 -0.0096 0.0081 -1.1931 0.2328
## negativeEvent 2|1 0.0153 0.0091 1.6812 0.0927
## negativeEvent 2|3 -0.0071 0.0079 -0.9001 0.3681
## negativeEvent 3|1 0.0104 0.0060 1.7364 0.0825
## negativeEvent 3|2 -0.0142 0.0132 -1.0753 0.2823
##

## Note: For the initial state parameters, state 1 is the
## reference category. The transition intensity parameters
## are sorted by rows of the transition matrix and the

## staying rates serve as references.

##

2 e e
##

## Probabilities:

4t

## 1. Initial state probabilities:

St

## (no covariates defined)

#H#

#H# S1 S2 S3

## 0.4153 0.3446 0.2401

it

## 2. Transition probabilities:

4t

## interval length: 1

## intervention score: 0.4139

## negativeEvent score: 49.6505

#H#

#H# S1 S2 S3

## S1 0.7923 0.1032 0.1046

## S2 0.2542 0.5388 0.2070

## S3 0.3909 0.1073 0.5019

#H#
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i

## Note: The probabilities are calculated for covariate scores
## equal to the sample means (and a unit time interval). Use
## the function probabilities() to calculate initial state and
## transition probabilities for any covariate score (and

## interval) of interest.

##

2 e T
#H#

## State proportions:

##

##t S1 S2 S3

## 0.5517 0.2567 0.1916

For now, we focus only on the parts “Parameter estimates” and “Initial state
probabilities”, starting with the former. The “coef” and “s.e.” columns indicate the
point estimates and standard errors, respectively. The “z-value” and “p-value” columns
show the corresponding z-statistic and p-values. Since no covariates were included for
the initial state parameters, there are only two “initial state parameters”. These
parameters always correspond to the logit values for covariate scores being equal to zero.
In case of covariate effects, they would be shown below the initial state parameters. As
previously described, it is more convenient to interpret the corresponding initial state
probabilities. More specifically, in order to obtain a good impression of what the
probabilities look like for the average person, it makes most sense to inspect the initial
state probabilities for covariates being equal to the sample means. These probabilities
can be found in the “Initial state probabilities” part further below in LMFA output
box 2. Of course, if no covariates are defined (as in our model), the probabilities do not
depend on the values of a covariate. The probabilities indicate that starting in the
displeasure state was most likely, followed by the pleasure state and the neutral state.

6.2.3.2.3 Transition Parameters

The transition probabilities are stored in a matrix with dimensions equal to the number
of states and the elements within a row of the transition probability matrix sum to one
(Bartolucci, Farcomeni, et al., 2015; Zucchini et al.,, 2016). In order to clarify how to read

a transition probability matrix, consider the following matrix:
<P11 =.66 pi;;=.18 pi3
P=

16
P21 = .20 D22 49 P23 .31). (61)
p31 =.32 p32 =.17 p33 = 51

The rows indicate the state memberships at the previous time-point and the columns
indicate the state memberships at the current time-point. This implies that the values on
the diagonal specify the probabilities to stay in a state and the off-diagonal elements refer
to the probabilities to transition to another state. For example, the first row of the matrix
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shows that the probability to stay in state 1 is equal to .66 and the probabilities to
transition from state 1 to state 2 and from state 1 to state 3 are equal to .18 and . 16,
respectively.

As described before, the transition probabilities depend on the interval between
two consecutive measurement occasions. The larger the interval, the larger the
probabilities to transition to another state. To accommodate the interval length, LMFA
(using CT-LMM) does not estimate the transition probabilities directly. Instead,
transition intensities (or “rates”; i.e., transition probabilities per very small time unit)é2
are estimated and the transition probabilities are computed based on the transition
intensities and the intervals (Bockenholt, 2005; Jackson & Sharples, 2002). 63 The
transition intensities are also captured in a matrix with dimensions equal to the number
of states. However, intensities are only estimated for the transitions away from the origin
state and, hence, for the off-diagonal entries. The diagonal entries are equal to the sum of
the off-diagonal transition intensities, which implies that rows sum to zero (Cox & Miller,
1965). For example, consider the matrix that corresponds to the transition probabilities
in Equation (6.1):

421 = .20 —q21 — q23 = —.86 423 = .66
q31 = .56 q3» = .28 —q31 — g3, = —.84

—Qq12 — q13 = —.51 G12 = .31 G13 = .20
Q= (6.2)

The rate to transition from state 1 to state 2 is q;, = .31 and the rate to transition from
state 1 to state 3 is q;3 = .20. Larger rates are related to larger transition probabilities
away from a state.

The transition intensities are modeled by means of a log-linear model such that
the parameters are not intensities but log intensities (thus, the parameterization differs
from the logit parameterization of the initial state parameters). For example, the
estimates for the log intensities corresponding to intensities for the first row in Equation
(6.2) are log(q;2 = .31) = —1.17 and log(q,3 = .20) = —1.60. Intensities can be obtained
from the log intensities by exponentiation (e.g., e %% = .20).

Finally, like the initial state parameters, the transition parameters may be related
to covariates, which may be either time-constant, such as scores from baseline

62 For readers familiar with survival models, note that the intensities are actually equivalent to hazard rates
(Cox & Miller, 1965; Kalbfleisch & Lawless, 1985; Kleinbaum & Klein, 2012).

63 More specifically, the probabilities are equal to the matrix exponential of the product of the intensities
and the interval (see Appendix N.2.1).
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questionnaires, or time-varying®4, such as the negative event scores and the intervention
that some subjects receive during their participation in our example data. The covariates
are related to the transition parameters by means of regression (as is the case for the
initial state parameters; for details, see Appendix N.2.1). Because the parameters of the
transition model are log intensities, the regression effects have to be exponentiated to
obtain the effects of the covariates on the transition intensities. However, it is more
convenient to interpret the covariate effects on the transition probabilities. To this end,
one can convert the intensities into probabilities for a certain interval length and different
covariate values and compare them (as for the initial state probabilities).

6.2.3.2.4 Transition Parameters for the Example Data

To illustrate the interpretation of the transition parameters, consider again the LMFA
results for our data, which are presented in LMFA output box 2. Note that we included
the two covariates “had an intervention” and “negative event” on the transition
parameters. This time, we focus on the parts “Parameter estimates” and “Transition
probabilities”. The “transition parameters” in the “Parameter estimates” part
correspond to the log intensities for covariate scores being equal to zero. However, for
better interpretability, we inspect the corresponding transition probabilities for a unit
time interval for the average person in the sample and, thus, for covariate scores being
equal to their sample means. These probabilities are displayed in the “Transition
probabilities” partin LMFA output box 2. We can see that the sample mean for “had an
intervention” is equal to .41 and the sample mean for “negative event” is equal to 49.65.
The probabilities indicate that the probabilities to transition to another state are
generally lower than to stay in a state, especially when staying in the displeasure state
(i.e., state 1). The transition probabilities from the displeasure state (i.e., state 1) to the
pleasure and the neutral state (i.e., state 2 and 3) are approximately equal. The transition
probability from the pleasure state (i.e., state 2) to the neutral state (i.e., state 3) is smaller
than from the pleasure to the displeasure state (i.e., state 1). Finally, the transition
probabilities from the neutral state (i.e., state 3) to the displeasure state (i.e., state 1) are
larger than to the pleasure state (i.e., state 2).

Next, we investigate the covariate effects on the transition probability matrix (for
a unit interval). To this end, we make two comparisons. First, we keep the “negative

64 Note that, for time-varying covariates, the score at time-point t is used to predict the transition
probabilities from time-point t — 1 to time-point t. This makes most sense for LMFA because MMs are
typically triggered by momentary circumstances (e.g. social interactions). Even when assuming temporal
precedence (e.g, the effect of perceiving a negative event prior to time-point t), questionnaires are usually
designed in a way that they ask subjects about such covariates at the current time-point (e.g., “Please rate
the unpleasantness of the most unpleasant event you have experienced since the previous measurement
occasion”).
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event” score equal to the sample mean and compare the probabilities for both categories
of “had an intervention”. The probabilities pertaining to the “no intervention
observations” are shown in LMFA output box 3.

LMFA output box 3

## 1. Initial state probabilities:
#H#

## (no covariates defined)

##

## S1 S2 S3

## 0.42 0.34 0.24

#H#

## 2. Transition probabilities:
##

## interval length: 1

## intervention score: @

## negativeEvent score: 49.65

H#i

H#it S1 Ss2 S3
## S1 0.84 0.07 0.08
## S2 0.37 0.44 0.19
## S3 0.54 0.08 0.39

The probabilities for the “intervention observations” are displayed in LMFA output box
4.

LMFA output box 4

## 1. Initial state probabilities:
#H#

## (no covariates defined)

4t

## S1 S2 S3

## 0.42 0.34 0.24

#H#

## 2. Transition probabilities:
it

## interval length: 1

## intervention score: 1

## negativeEvent score: 49.65
##

4t S1 S2 S3

## S1 0.71 0.16 0.13

## S2 0.14 0.66 0.20

## S3 0.23 0.15 0.61

Comparing the transition probabilities, we see that having had an intervention is related
to relatively smaller probabilities to transitioning to and staying in the displeasure state
(i.e., state 1).

Second, we compare the transition probabilities for the sample mean of “negative
event” minus the standard deviation (i.e.,, 34.54) to the transition probabilities for the
sample mean of the covariate plus the standard deviation (i.e., 64.76), thereby keeping
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the “had an intervention” score equal to the sample mean. The probabilities for a
“negative event” score of 34.54 are displayed in LMFA output box 5.

LMFA output box 5

## 1. Initial state probabilities:
#H#

## (no covariates defined)

##

## S1 S2 S3

## 0.42 0.34 0.24

H#Hi

## 2. Transition probabilities:
##

## interval length: 1

## intervention score: 0.41

## negativeEvent score: 34.54
##

## S1 S2 S3

## S1 0.74 0.14 0.13

## S2 0.21 0.55 0.24

## S3 0.33 0.13 0.53

The probabilities for a “negative event” score of 64.76 are shown in LMFA output box 6.

LMFA output box 6

## 1. Initial state probabilities:
##

## (no covariates defined)

##

gt S1 S2 S3

## 0.42 0.34 0.24

iz

## 2. Transition probabilities:
##

## interval length: 1

## intervention score: 0.41

## negativeEvent score: 64.76
##

## S1 S2 S3

## S1 0.84 0.08 0.09

## S2 0.31 0.51 0.18

## S3 0.45 0.08 0.46

Comparing the probabilities, we see that higher scores on “negative event” are related to
larger probabilities of transitioning to and staying in the displeasure state (i.e., state 1).

6.2.3.3 Summary of the LMFA Findings for our Example Data

Summarized, based on the finding of LMFA, we conclude the following. First, the number
and nature of the factors changed, which implies that configural invariance is violated for
our example data. Second, subjects transitioned rather frequently between the states.
However, transitioning to and staying in the displeasure state (i.e., state 1) was most
likely, especially when experiencing negative events. However, the probabilities for
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transitioning to and staying in the neutral or pleasure state (i.e., state 3 and state 2)

increased after receiving an intervention.
6.2.4 Estimation

In Imfa, the maximum likelihood (ML) parameter estimates are obtained by means of the
3S estimation (Vogelsmeier et al., 2020), which builds on Vermunt’s (2010) ML method
and its extension for DT-LMM by Di Mari et al. (2016). The 3S estimation separates the
estimation of the state-specific MMs and the CT-LMM as follows:

1. The state-specific MMs are estimated while disregarding the transitions between the
latent states at consecutive measurement occasions and the covariate effects on
these transitions.

2. Each observation is assigned to the state with the highest state-membership
probability, that is, “modal state assignment” is applied.®> Furthermore, the inherent
classification uncertainty is calculated. Note that there is always uncertainty unless
all observations are assigned to a state with a probability of 1.

3. The MMs (i.e., the factor parameters) are kept fixed and the state assignments from
step 2 are used as single indicators for the estimation of the CT-LMM (with
covariates), while correcting for step 2’s assignment uncertainty. This correction is
necessary to prevent underestimation of the relations between the states (i.e., the
transition probabilities) and the covariate effects. Also note that the final state
assignments will slightly differ from the step 2 state assignments (for details, see
Appendix N.4 and N.5). Usually, the assignments improve because the step 3
estimation benefits from additional information from the transition model (with
covariates) to classify the observations (Vogelsmeier et al., 2020).

For technical details about the steps, their likelihood functions, and the algorithms to
maximize them, see Appendix N.3-N.5.

6.3 How to Conduct LMFA with the Imfa Package

In the following, we guide the readers through the different steps of conducting LMFA in
the package Imfa. These steps are based on the three estimation steps described in
Section 6.2.4: step 1 is investigating the MMs, step 2 is obtaining the state assignments
and classification errors, and step 3 is investigating the transition model. Note that we
introduce an additional step 0, which pertains to checking the data requirements prior to

65 Note that it is theoretically also possible to use a “proportional assignment”, which assigns the state
memberships according to the posterior state-membership probabilities. However, the proportional
assignment is unfeasible for data that contain a large number of measurement occasions for many subjects
(Di Mari et al,, 2016) and, thus, for ILD.
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performing LMFA. Furthermore, as mentioned in Section 6.2.3, the best model complexity
in terms of the number of states and factors is not known in advance and has to be
evaluated in step 1. Additionally, depending on the subsequent analyses to investigate
dynamics in psychological construct, researchers require factor scores corresponding to
the state-specific MMs. Therefore, step 1 is divided into selecting the number of states
and factors (step 1a), interpreting the MMs (step 1b), and attaching factor scores to the
dataset (step 1c). Moreover, one has to decide which covariates should be included in the
final transition model. Therefore, step 3 is divided into selecting covariates (step 3a) and
interpreting the transition model and updating the final state assignments (step 3b).
Figure 6.1 provides a summary of the steps with references to the required Imfa
functions.®® In the following, we describe the steps and functions by means of our
example data introduced in Section 6.2.2. To follow the steps of this tutorial, the Imfa
package and the example data have to be loaded into R. Before using the package for the
first time, it has to be installed once, which can be done using the following command:

install.packages("devtools")
library("devtools")
install_github("LeonieVm/1lmfa@o.1.0")
library("Imfa™)

Note that the package devtools is required to install packages from the GitHub repository.
The dataset used in this tutorial can be loaded into the R environment with the command:

data("ESM")

66 Note that the package consists of only six functions in total (next to the general summary() and plot()
functions). An overview of these functions is provided in Appendix M.
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Step 0: Checking data requirements

* use along data format for the data (e.g., called “ESM”)
* remove empty records (i.e., skipped measurement occasions) from the data
* remove (or impute) records with partly missing observations

Step 1: Investigating measurement models

Step 1a: Selecting the number of states and factors

* runstepl()withthe modelselection option and store the results (e.g., into the object “modelselection”)

* inspect the models using summary (modelselection)and rerunnon-converged models using step1()
without the model selection option

* choose best model(s) based on the BIC and CHull using plot(modelselection)and
chull_lmfa(modelselection)

* store the best model(s) (e.g., into the object “measurementmodel”)

Step 1b: Interpreting the measurement models

* use summary(measurementmodel ) to obtain the measurement model parameters from the chosen model(s)
* investigate state-specific (obliquely rotated and standardized) loadings

* investigate state-specific intercepts

* investigate state-specific unique variances

Step 1c: Attach factor scores to the dataset
« store the outcome of factorscores_lmfa(ESM, measurementmodel )into a new dataset

Step 2: Obtaining state assignments & classification errors

* runstep2()to calculate classification errors, posterior state-membership probabilities, and modal state
assignments and store the results (e.g., into the object “classification”)

* obtain the results with summary(classification)

* if desired, attach posterior state-membership probabilities and the modal state assignments to the dataset
by storing classification$datainto a new dataset

Step 3: Investigating transition model

Step 3a: Selecting the covariates for the transition model

* runstep3() using the posterior state-membership probabilities of the classificationobject from
step2()and all covariates of interest and store the results (e.g., into the object “transitionmodel™)

* inspect Wald test results with summary (transitionmodel) and look at the p-values to decide which
covariates should be included in the final transition model

Step 3b: Interpreting the transition model & updating state assignments

* use summary(transitionmodel) to obtain the transition model parameters and probabilities for covariates
being equal to their sample means

* use probabilities(transitionmodel) toobtain initial state and transition probabilities for any covariate
value (and interval length) of interest

* if desired, attach posterior state-membership probabilities and the modal state assignments to the dataset
by storing transitionmodel$datainto a new dataset

Figure 6.1. Summary of the three steps to conduct latent Markov factor analysis with
Imfa.
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6.3.1 Step 0: Checking Data Requirements

The first step is to check the data requirements with regard to the format (Section 6.3.1.1)
and missing values (Section 6.3.1.2).

6.3.1.1 Data Format

In line with the assumed data structure, the data has to be in long format, that is, with
rows equal to the number of total observations. Furthermore, next to the columns with
the indicators of the latent factors (in our case, "Interested", "Joyful",
"Determined”,...) and possibly covariates (in our case, "intervention",
"negativeEvent"), the data must contain a column with the subject identification
numbers (in our case, "id"). Moreover, if observations should not be treated as
equidistant, a column must be specified with the time intervals between two consecutive
observations (in our case, "deltaT"). Regarding the latter, a proper unit should be used.
For instance, if there is approximately only one observation per day, the unit “days” is
appropriate (e.g., with an interval of 1.42 days representing an interval of one day and 10
hours). If there are several observations per day, say nine, “hours” is an appropriate unit.
With “minutes” or “seconds” as unit, the intervals for these examples would take large
values that likely lead to numerical problems when estimating the model.6” Furthermore,
measurement occasions within subjects must be ordered by time (i.e., intervals must not
be negative). Additionally, for obtaining valid results, intervals for consecutive
observations within a subject must not be equal to zero. Zero and negative intervals may
occur from technical errors during data collection and should be removed (otherwise, an
error message is displayed).

6.3.1.2 Missing Data

The data should only include the records for the measurement occasions at which the
subjects completed the questionnaires because the CT-LMM automatically accounts for
differences in the intervals, including skipped measurement occasions. Note that,
depending on the data collection software, it may happen that a subject started a
questionnaire but did not finish it such that some indicators or covariates contain missing
values. These cases must be imputed (e.g., by means of the mice package in R; van Buuren
& Groothuis-Oudshoorn, 2011) or removed before running Imfa (otherwise, an error
message is displayed).

67 The reason is that the value of the transition intensities (for covariate scores being equal to zero) are
directly related to the size of the unit (note that the model fit is not influenced by the unit, however). More
specifically, the larger the size of the unit, the smaller the intensities and the more likely numerical
problems occur.
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6.3.2 Step 1a: Selecting the Number of States and Factors

When estimating a LMFA model, the number of underlying states and factors per state
has to be specified. However, in an exploratory approach like LMFA, the best model
complexity is not known in advance and has to be determined by estimating a number of
plausible models and comparing their results in terms of fit and parsimony. To this end,
one can use criteria that balance the loglikelihood and number of parameters, such as the
Bayesian information criterion (BIC; Schwarz, 1978) and the convex hull (CHull;
Ceulemans & Kiers, 2006) method (Bulteel et al., 2013; Vogelsmeier, Vermunt, van
Roekel, et al,, 2019). In the following, we first describe the two criteria (Section 6.3.2.1).
Then, we explain how to decide what range of states and factors to include in the model
selection procedure (Section 6.3.2.2). Thereafter, we describe how to increase the chance
of finding the “global” maximum and how to assess convergence of the estimation
procedure (Section 6.3.2.3). Finally, we show how to perform the model selection with
Imfa (Section 6.3.2.4).

6.3.2.1 BIC and CHull

First, the BIC considers model fit and model complexity of the model by penalizing models
with more parameters (see Appendix N.6.2). Second, the CHull is a generalized scree test
(Bulteel et al., 2013; Ceulemans & Kiers, 2006) that automatically identifies models at the
higher boundary of the “convex hull” (or CHull) in a “loglikelihood vs. number of
parameters” plot (Cattell, 1966) and that chooses the best model by finding the point (or
“elbow”) in this scree plot (or CHull plot) at which improvement in fit levels off when
adding additional parameters to the model. Detecting this elbow is done by means of
comparing “scree ratios” (see Appendix N.6.3) for all models on the upper boundary and
the model with the largest ratio is chosen. In this way, the CHull also balances complexity

and parsimony.

Both the BIC and the CHull offer valuable information about which model should
be selected. However, for many real datasets, it is possible that the BIC keeps increasing
when adding additional states and/or factors to the model (Bauer, 2007; McNeish &
Harring, 2017). Then, investigating the relative improvement in the loglikelihood value
by means of the CHull is especially important. Additionally, the CHull does not make
distributional assumptions and may therefore perform better for many empirical
datasets. The CHull method, however, has two drawbacks that should be accounted for.
First, the least and the most complex models at the higher boundary of the CHull cannot
be chosen because no scree ratios can be computed (see Bulteel et al., 2013). Therefore,
it is always advisable to also inspect the CHull plot visually (e.g., the most complex model
might still fit considerably better than the preceding model on the hull). The Imfa package
will remind the user of this by displaying a note. Second, for some cases, it is possible that
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the scree ratio is artificially inflated, even though the more complex model does not add
much in terms of the fit. Specifically, when adding additional parameters hardly increases
the fit anymore, both the numerator and denominator of the scree test ratio (Appendix
N.6.3) approach zero, which results in a very large scree test ratio although the hull is
pretty much a straight and horizontal line at that point (for a detailed explanation, see
Wilderjans, Ceulemans, & Meers, 2013). The Imfa package displays a note if there are
signs of artificial inflation. When the note is displayed, the user should inspect the CHull
plot visually and also consider the next best model(s). Finally, it is best practice to look at
the results of competing models and take the interpretability into account.

6.3.2.2 Range of States and Factors

For the model selection, one must decide on the range of states and factors to be
considered. Regarding the former, one may start with a few states (say, 1-3). If models
with three states barely improve model fit (i.e., according to the BIC and CHull) or if the
estimation of three states already causes estimation problems, there is no point in adding
more states. Otherwise, one may increase the number of states. Moreover, the maximum
number of states is restricted by the number of observations (i.e., one should have at least
1000 observations for each state; Vogelsmeier, Vermunt, van Roekel, et al., 2019). For
instance, for our example dataset (with 4776 observations), we should not include more
than four states. In order to decide on the number of factors, one should think about
theoretically plausible factor structures and consider that each factor should ideally be
measured by at least three items. Otherwise, the factors may not be well measured or
“determined”, which may cause convergence problems, Heywood cases (Van Driel, 1978)
or less reliable parameter estimates. For example, if the data consist of six indicators, of
which three are intended to measure PA and three are intended to measure NA, no more
than two factors should be included. Additionally, similarly to the number of states, one
should begin with a small number of factors and examine the increase in fit and
convergence problems for the most complex factor structure.

6.3.2.3 Increasing the Chance to Find the Global Maximum and Assessing
Convergence

For estimating the state-specific FA models, the algorithm searches for the maximum of
the loglikelihood function (Appendix N.3), that is, the solution with the largest
loglikelihood value. However, it is possible that the solution is not a “global” maximum
but a “local” one. To clarify this, consider the loglikelihood function as a landscape with
multiple hills. Each hill has its own local maximum (i.e., the top) but only one hill is the
highest and thus has the global maximum. To start searching for a global or local
maximum, the algorithm requires initial parameter values. Different start values may
lead to finding different (local) maxima (comparable to searching for the highest hill
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starting from different locations in the landscape). Therefore, it is essential for the
algorithm to use multiple start sets with different initial values and, in the end, provide
the solution with the best loglikelihood value (Appendix N.3.5). Users should choose at
least 25 start sets but the larger the number of start sets, the more likely it is to obtain
the solution pertaining to the global maximum.

Moreover, it is possible that the model estimation does not converge at all. This
means that the algorithm did not find a (local or global) maximum in a pre-specified
number of maximum iterations (Appendix N.3). Especially for more complex models, it is
possible that the algorithm requires more iterations to achieve convergence. However, it
could also be a sign that the model is not suited for the data at hand (e.g,, too many
factors). The user may decide to re-estimate corresponding models once, allowing for
more iterations, before continuing with the model selection procedure. The Imfa package
displays this advice as a reminder.

6.3.2.4 Model Selection with Imfa

In order to select the “best” model among the models with different numbers of states
and factors, we have to use Imfa’s step1() function. In the following, we compare models
with one to four states and two to three factors per state (i.e., 14 models in total). Note
that the order of factors does not matter because they result in the same fit and estimates.
For instance, model [3 3 2] is the same as model [3 2 3] and model [2 3 3]. In the Imfa
package, the permutation of the states of the estimated models is always determined
based on the size of the states, starting with the largest. The function can be used as
follows (because the estimations start from random state-membership assignments (see
Appendix N.3.5), we set a seed for reproducibility):

set.seed(1000)
modelselection <- stepl(data = ESM,
indicators = c(

"Interested”,
"Joyful",
"Determined”,
"Calm",
"Lively",
"Enthusiastic”,
"Relaxed",
"Cheerful",
"Content",
"Energetic",
"Upset",
"Gloomy",
"Sluggish",
"Anxious",
"Bored",
"Irritated",
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"Nervous",

"Listless"),
modelselection = TRUE,
n_state_range = 1:4,
n_fact_range = 2:3,
n_starts = 25,
max_iterations = 1000)

There are five mandatory arguments that we have to specify. First, we have to provide
the data via the data argument (in our case, ESM). Second, via the indicators argument,
we specify the variable names of the indicators in the same order as they appear in the
data. These are c("Interested”, "Joyful", "Determined",...). Third, we indicate
that we want to perform model selection via the argument modelselection (i.e,
modelselection = TRUE). Fourth and fifth, we determine the range of states and factors
that should be included in the model selection with n_state_range = 1:4 and
n_fact_range = 2:3.Additionally, we could change the default values for the number of
start sets and the number of maximum iterations after which the estimation terminates
regardless of whether convergence has been reached or not, but we simply use the default
values n_starts = 25and max_iterations = 1000.68

When the estimation is terminated, we obtain the model-selection results as
follows:

summary(modelselection)

Note that the model selection for our example data took about 3 hours. In order to follow
the next tutorial steps in R, readers can simply load the model selection object with the
command: data("modelselection"). The outputis displayed in LMFA output box 7.

LMFA output box 7

#H# LL BIC convergence n_par
## [323] -353166.8 708485.3 1 254
## [333] -353149.0 708602.3 1 272
## [3322] -353071.7 708913.6 1 327
## [3233] -353065.6 709053.8 1 345
## [3333] -353016.6 709108.4 0 363
## [3222] -353316.0 709249.7 1 309
## [322] -353855.3 709709.8 1 236
## [33] -354421.0 710375.3 1 181
## [2222] -353962.6 710390.5 1 291
## [32] -355010.3 711401.4 1 163
## [222] -354986.3 711819.4 1 218
#H# [22] -356377.4 713983.1 1 145
## [3] -361759.6 724281.6 1 90

68 Note that the function contains additional arguments related to the estimation procedure for which
default values are provided. These values may be changed by the user if desired. For an explanation of the
additional arguments, see Appendix M.1 and the function documentation, which can be called with ?step1.
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## [2] -363744.0 728098.0 1 72
H#it

## Note: When re-estimating models that did not converge, the
H#it number of maximum iterations should be increased.

The first column (i.e.,, “LL”) pertains to the loglikelihood value. The second column (i.e.,
“BIC") shows the value of the BIC. The third column (i.e., “convergence”) indicates
whether the model estimation converged (with 1 = “convergence” and 0 = “non-
convergence”). The fourth column (i.e., “n_par”) shows the total number of parameters.?
The models are ordered by the value of the BIC, starting with the lowest value and thus
the model with the best fit according to this criterion.

Before continuing with the model selection, we check if models have to be re-
estimated due to non-convergence. Indeed, the estimation of model [3 3 3 3] did not
converge. For estimating single models, we use the step1() function but without model
selection (i.e., with modelselection = FALSE). The code to estimate model [3 3 3 3] is:

set.seed(1000)
model3333 <- stepl(data = ESM,

indicators = c(
"Interested",
"Joyful",
"Determined”,
"Calm",
"Lively",
"Enthusiastic",
"Relaxed",
"Cheerful",
"Content",
"Energetic"”,
"Upset",
"Gloomy",
"Sluggish",
"Anxious",
"Bored",
"Irritated”,
"Nervous",
"Listless"),

modelselection = FALSE,

n_state = 4,

n_fact = c(3,3,3,3),

n_starts = 25,

max_iterations = 2000)

69 Note that the number of parameters are equal to the sum of the state-specific intercepts, unique
variances, and loadings and the state proportions minus 1 (minus 1 because one state is treated as a
reference state; see Appendix N.6.1).

166



Imfa TUTORIAL

When modelselection = FALSE, itis mandatory to provide a single number of states via

the argument n_state (i.e, n_state =

4) and a vector with state-specific numbers of

factors via the argument n_fact (i.e, n_fact = c(3,3,3,3)). As previously described,

when re-estimating models that did initially not converge, it is wise to increase the

number of maximum iterations. Therefore, we set max_iterations =

replace the old by the new models, the following command can be used:

modelselection$ [3333]  <- model3333

2000. In order to

However, the model did not converge (it might simply not be suitable for the data) and,

therefore, we continue with the original model selection object.

From the summary in LMFA output box 7, we can already see that the best model

according to the BIC is model [3 2 3] and, thus, the true model. For an easier inspection

of the results, we also plot the BIC of the converged models against the number of free

parameters. The plot is readily available by running the following command:

plot(modelselection)

The output is shown in LMFA output box 8.

LMFA output box 8
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The model corresponding to the lowest BIC value is indicated by a red dot. Note that, for

our example, the BIC does not keep increasing for more complex models. Therefore, we

would consider it relatively save to choose the model with the lowest BIC value. However,
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in order to support our choice, we also investigate the results of the CHull method for the
converged models, which can be obtained with the chull_lmfa() function as follows:

chull 1mfa(x = modelselection)

We only have to specify argument x, which pertains to the model-selection object (in our
case, modelselection).”’? The output is shown in LMFA output box 9.

LMFA output box 9
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## Models on the upper boundary of the CHull:

##

## n_par LL st
# [2] 72 -363744.0 NA
## [3] 90 -361759.6 1.126582
## [22] 145 -356377.4 1.288490
## [32] 163 -355010.3 2.319779
## [33] 181 -354421.0 1.905623
## [323] 254 -353166.8 13.191076
## [3322] 327 -353071.7 3.812062
## [3233] 345 -353065.6 NA
##

## Selected model(s):

##

#H# n_par LL

#H# [323] 254 -353166.8

#i#t

## Note 1: The least and most complex models cannot be selected.
## Therefore, it is advisable to also visually inspect the CHull plot.

70 For details about the function, see Appendix M.4 or call the documentation file with ?chull_1mfa.
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i
## Note 2: The st value(s) of the best model(s) might be artificially
## inflated. Therefore, it is advisable to also consider the next best model(s).

The output consists of three parts, the CHull plot, the summary of the models on the upper
boundary of the CHull (including their scree-test values “st”), and the selected model(s).
We can see that the model [3 2 3] was selected. However, we got the note that the scree
value might be artificially inflated. Therefore, in practice, one should also consider the
results of the next best model(s). Because we know the true model, we continue with
model [3 2 3].7! In order to inspect the model, we have to extract it from the model-
selection object modelselection and store it as follows:

measurementmodel323 <- modelselection$ [323]"

The parameters can be displayed with the command:72 73

summary (measurementmodel323)

6.3.3 Step 1b: Interpreting the Measurement Models

Once the best model in terms of the number of states and factors is selected, we can
interpret the state-specific MMs. The output (obtained with
summary (measurementmodel323)) was already displayed in LMFA output box 1 and the
results were already interpreted in Section 6.2.3.1. To briefly summarize them, we found
three states (a displeasure, a neutral, and a pleasure state) that all contained a positive
affect and a negative affect (or distress) factor but the displeasure state was additionally
characterized by a drive factor and the neutral state by a serenity factor.

6.3.4 Step 1c: Attach Factor Scores to the Dataset

Before proceeding with step 2, we can attach state-specific factor scores to our dataset
for each observation in the dataset.”# The factor scores are estimates of the latent

71 The second-best model according to the scree value is model [3 3 2 2]. However, visual inspection of the
CHull shows that adding a fourth state does not considerably improve the fit. The next best model is model
[3 2]. If we would inspect model [3 2], we would see that the smallest state (i.e., the neutral state) would be
divided into the pleasure and the displeasure state.

72 Note that, in the summary () function, the user can specify an additional argument to change the number
of decimals to which the parameters should be rounded. The default for the summary of the MM parameters
isrounding = 2.

73 Note that the model object (i.e.,, measurementmodel323) contains additional information that is not
directly relevant for the interpretation but that may be interesting for some users (e.g., unrotated and
unstandardized loadings). For an overview of all available output, see Appendix M.1.

74 In Imfa, the factor scores are calculated by means of the regression method (Thomson, 1934; Thurstone,
1935), which is one of the most commonly used approaches. For the exact computation, see Appendix N.6.8.
Note that the calculation of factor score estimates is generally considered controversial because different
methods can result in (very) different scores (which is referred to as the problem of factor score
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constructs and can be used for subsequent analyses to investigate dynamics in
psychological constructs (for suggestions on how to proceed in the presence of non-
invariance, see Section 6.4). A copy of the dataset with the factor scores attached can be
obtained with:75

ESM_fs <- factorscores_lmfa(data = ESM, model = measurementmodel323)

In this function, two arguments are required. First, via the argument data, we have to
provide the data that was used for the step1() estimation (in our case, ESM). Second, via
the argument model, we have to specify the step1() object with the state-specific MMs
(in our case, measurementmodel323). In the resulting dataset (i.e.,, ESM_fs), the columns
are called “S1F1”, “S1F2”, etc., where the “S” refers to the state and “F” to the factor.

6.3.5 Step 2: Obtaining state assignments & classification errors

The next step is to obtain information about the classification and the (modal) state
assignments. In this section, we first describe how to obtain the results for our example
data with Imfa and then, based on the output, we explain the different classification
statistics.

In order to obtain the classification information, we use the step2() function as
follows:

classification <- step2(data = ESM_fs, model = measurementmodel323)

The function contains two arguments that we have to specify. First, we have to provide
the data that was used for the stepl() estimation via the argument data. It is most
convenient to use the version including the factor scores estimates (in our case, ESM_fs)
because we will add additional columns later on and this allows us to obtain a complete
dataset for further analyses. Second, we need to specify the step1() object with the state-

indeterminacy; for discussions on this and possible solutions to account for biases in subsequent analyses,
see, e.g., Devlieger et al.,, 2016; Green, 1976; Grice, 2001).

75 Note that, in the factorscores_1lmfa() function, the user can specify two additional arguments. The
first one indicates whether the factor score estimates should be obtained for the obliquely rotated loadings.
The default is oblique = TRUE. Otherwise, the factor score estimates corresponding to the unrotated
factor loadings are obtained. The second argument pertains to the number of decimals to which the factor
score estimates should be rounded. The default is rounding = 4. For details about the function, see
Appendix M.5 or call the documentation file with ?factorscores_1lmfa.
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specific MMs via the argument model (in our case, measurementmodel323).7¢ The
following code prints the results:7”

summary(classification)

The output is shown in LMFA output box 10.

LMFA output box 10

## R2_entropy: 0.86

Hi#t

## Total classification error: 0.05
Hi

## Classification errors:

#H#

Hi# S1 S2 S3

## S1 2568.11 4.12 59.50
## S2 2.71 1146.53 44.37
## S3 50.19 89.35 811.13

##

## Classification-error probabilities:
##

#i S1 S2 S3

## S1 0.98 0.00 0.02

## S2 0.00 0.96 0.04

## S3 0.05 0.09 0.85

##

## State proportions:

##

## S1 S2 S3
## 0.55 0.26 0.19

First, the R-square measure Rgnm,py (called “R2_entropy” in the output) indicates how
well the states are separated (and thus how much the MMs differ) with values ranging
from 0 (bad separation) to 1 (good separation; Lukociené et al., 2010). Note that a larger
state separation implies less classification error. It is important to inspect the Rgnmw
value because a bad state separation (with Rﬁnm,py <.5) can lead to an incorrect
classification-error correction 78 and, in turn, to an underestimation of transition
probabilities and the covariate effects (Vermunt, 2010). When observing a bad state
separation, which is rather unlikely in practice, it is advised to use the FIML estimation,
which is currently only available in Latent GOLD. The Rgntmpyvalue for our example data

76 For an additional explanation of the function arguments, see Appendix M.2 or call the documentation file
with ?step2.

77 Again, the user can adjust the number of decimals to which the parameters should be rounded. The
default for the summary of the classification outputs is rounding = 2.

78 The reason is that the Rgnm,py tends to be overestimated for bad state separations (e.g., if we find a value
of .4, the real state separation is probably even lower). In turn, the classification errors are underestimated,
leading to an incorrect correction in the final step of the analysis (Vermunt, 2010).

171




CHAPTER 6

indicates that the states are well separated, which explains the small total classification
error (called “Total classification error” in the output).

Second, information about the classification errors can be obtained from the
classification error matrix (called “Classification errors” in the output), which cross-
classifies the modal state assignments by the “true” state assignments and which is used
to correct for the error in step 3 of the analysis (for details, see Appendix N.4). Higher
values on the diagonal and lower values on the off-diagonal are indicative of less
classification error. For an easier interpretation, the counts can be translated into
proportions (called “Classification-error probabilities” in the output). Inspecting
the classification error matrices, we see that the classification error is lowest in the
displeasure state (i.e., state 1), followed by the pleasure state (i.e., state 2) and the neutral
state (i.e., state 3). Thus, the classification into the neutral state was accompanied by the
most uncertainty, which is not surprising, given that the neutral state lies somewhat in
between the displeasure and pleasure state.

Third, the state proportions (also called like that in the output; i.e., “State
proportions”) pertain to the overall state sizes. Looking at the state proportions for our
data, we see that the displeasure state is the largest, followed by the pleasure and the
neutral state.

Finally, the state assignments are not displayed in the output because R cannot
display all assignments simultaneously. However, we can simply obtain a copy of our
dataset with additional columns corresponding to the state assignments with the
following command:

ESM_fs_cl <- classification$data

Specifically, the columns with the posterior state probabilities (called “Statel”, “State2”
etc. in the dataset) indicate the probabilities for an observation to belong to a certain state
and, thus, that the state-specific MM underlies the responses for this observation. As
explained in Section 6.2.4, the modal state assignments (called “Modal” in the dataset)
correspond to the state with the largest probability and, hence, to the most likely state
membership.

6.3.6 Step 3a: Selecting the Covariates for the Transition Model

When the state-specific MMs are obtained and the observations are assigned to the states,
we can continue with investigating the transitions between the states and what may
cause them by means of estimating a LMFA with covariates on the initial state and/or
transition parameters. In order to test if a covariate is significantly related to the
transition model parameters (and thus whether it should be included in the model) can
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be evaluated with Wald tests (Agresti, 1990). In the following, we first explain the
covariate selection with the Wald tests (Section 6.3.6.1) and then show how to perform
the covariate selection for our example data with Imfa (Section 6.3.6.2).

6.3.6.1 Covariate Selection Procedure Using Wald Tests

Every covariate in the model is accompanied by separate covariate effects on the initial
state or transition parameters (e.g., the covariate “had an intervention” has six effects,
one on each of the transition parameters). The Wald tests in Imfa are omnibus tests that
show whether including a covariate is significant overall (i.e., across the initial and
transition parameters). Thus, for every covariate, there is one Wald-test statistic. In order
to select which covariates to include, one can start with a LMFA with all covariate
candidates in it. Then, the least significant covariate is removed and the model gets re-
estimated. This “backward selection” continues until only significant covariates are left
(say, according to an alpha level of .05). When only significant covariates are left in the
model, one can continue with the interpretation of covariate effects on the transition
probabilities (as we did for our example in Section 6.2.3.2). Note that, instead of using
such a data-driven approach, a more theory-driven approach is also possible (e.g.,
investigating the significance and effects of a set of covariates that was previously found
to be significantly related to the transition model parameters).

6.3.6.2 Covariate Selection with Imfa

In the following, we estimate a transition model with covariate effects of “had an
intervention” and “negative event” on the transition parameters. In order to estimate the
transition model, we use the step3() function as follows (because the estimation starts
from random values for the transition parameters (see Appendix N.5.4), we set a seed for
reproducibility):

set.seed(1000)

transitionmodel <- step3(data = ESM fs,

identifier = "id",

n_state = 3,

postprobs =
classification$classification_posteriors[,-1],

timeintervals = "deltaT",

initialCovariates = NULL,

transitionCovariates =
c("intervention", "negativeEvent"),

n_starts = 25,

max_iterations = 1000)

There are four mandatory arguments that we have to specify. First, we provide the data
via the data argument. We use the dataset ESM_fs and, thus, the data including the factor
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scores but without the state assignments from step 2 because they are updated in step 3.
Second, we specify the name of the column with the subject identification numbers via
the argument identifier (in our case, "id"). Third, we define the number of states with
n_state = 3. Fourth, we specify the posterior state probabilities by means of the
argument postprobs. The probabilities can be extracted from the step2() classification
output with the command classification$classification_posteriors[, -1], where

[,-1] indicates that we leave out the column with the modal state assignments.

The following three arguments are not required but have to be specified if the
model should account for differences in intervals and if covariate effects on the transition
model parameters should be included. Both applies to our example. Thus, first, via the
argument timeintervals, we provide the function with the name of the column in the
dataset that contains the time intervals. In our case, this is "deltaT" (if no such column
name is provided, observations would be assumed to be equidistant). Next, via the
arguments transitionCovariates and initialCovariates, we can provide (a vector of)
column names that contain the covariate scores (the default for both arguments is NULL,
i.e, no covariates are used). Thus, for our analysis, we provide the vector

c("intervention", "negativeEvent") asinput for transitionCovariates.

Finally, similarly to the step1() function, the users may decide to change the
default values pertaining to the number of start sets?? via the argument n_starts and the
number of maximum iterations via the argument max_iterations®@. However, for our
analysis, we simply use the default values, that is, n_starts = 25 and max_iterations
= 1000.81 After termination of the estimation, the results are obtained as follows:82

summary (transitionmodel)

The estimation for our example data took about 20 minutes. Again, readers who want to
follow the rest of the tutorial can also load the results with the command:
data("transitionmodel™). The results are shown in the “Wald tests” part in LMFA
output box 2. For each covariate, we get a significance test with the corresponding Wald-
test statistic (i.e., “Wald”), the degrees of freedom (i.e., “df”), and the p-value (i.e., “p-

79 Note that the results of the step3() function are sensitive to start values for the transition intensities
(see Appendix N.5.4). Therefore, one should use at least 25 start sets.

80 If the maximum number of iterations is reached without convergence, Imfa displays a note with the
advice to repeat the estimation with an increased number of max_iterations.

81 Note that the user may change the defaults of additional arguments pertaining to the estimation
procedure. For an explanation of these arguments, see Appendix M.3 and the function documentation that
can be called with ?step3.

82 Again, the user can change the number of decimals to which the parameters should be rounded. The
default for the summary of the transition model is rounding = 4. Thus, by default, there are two more
decimals than for the other representations. This is because some parameters can get very small such that
differences would vanish too easily when using less decimal points.
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value”). We see that both covariates have significant effects on the transition parameters.
Thus, we keep both covariates in the model.

6.3.7 Step 3 b: Interpreting the Transition Model & Updating the State
Assignments

After selecting the covariates for the transition model, we can interpret the effects on the
probabilities, investigate changes in the final state proportions, and obtain the final state
assignments. In the following, we show how to obtain the relevant output in Imfa and how
to interpret the results for our example data. First, as previously shown, the regression
parameters and the probabilities for covariates being equal to their sample means (and a
unit interval) can be obtained with summary(transitionmodel). In order to obtain the
initial state and transition probabilities for any covariate score and interval of interest,
we can use the probabilities() function. For example, in order to obtain the
probabilities for a “had an intervention” score equal to zero, a “negative event” score
equal to the sample mean of 49.65, and a unit interval, we use the following command:

probabilities(model = transitionmodel,
deltaT = 1,
initialCovariateScores = NULL,
transitionCovariateScores = c(0, 49.65))

Only the first argument is mandatory, that is, we have to provide the output of the step3()
function (in our case, transitionmodel) via the model argument. By default, the function
prints the probabilities for a unit interval and covariate scores equal to the sample means
(i.e., deltaT = 1,initialCovariateScores = NULL and transitionCovariateScores =
NULL). In order to print the probabilities for specific covariate scores, we have to provide
a vector with these scores in the same order as we included the covariates in the
estimation of the transition model with the step3() function. In our case, we include
transitionCovariateScores = ¢(0,49.65).83.84 The results for the transition model
with covariates were interpreted in Section 6.2.3.2. To briefly summarize them, first,
most subjects started in the displeasure state. Second, the probabilities to stay in a state
were generally higher than to transition to another state (especially for subjects in the
displeasure state). Third, the intervention was related to transitions to a more positive
state and experiencing negative events was related to transitioning to the more negative
state.

83 An additional explanation of the arguments can be found in Appendix M.6 and in the function
documentation, which can be called with ?probabilities.

84 The user can determine an additional argument in the probabilities() function to change the number
of decimals to which the parameters should be rounded. The default is rounding = 2.
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Next, the final state proportions are shown under “State proportions” in the
same output as the transition model parameters (see LMFA output box 2). Comparing the
results to the state proportions in LMFA output box 10 (and thus to the state proportions
resulting from the modal state assignment in step 2), we see that there was no change.
This is not surprising considering the small classification errors from step 2.

Third, we can again obtain a copy of our dataset with the posterior state-
membership probabilities and the modal state assignment attached. To this end, we use
the following command:

ESM_fs_cl <- transitionmodel$data

These are the state assignments that should be considered for subsequent data analyses
because, as described in Section 6.2.4, they may be more accurate than the step 2
assignments. Therefore, we simply overwrite the previous dataset with the step 2
assignments ESM_fs_cl.

6.4 Proceeding Based on the Results of LMFA

Once the MM differences and possible explanations are known, the question is of course:
Based on the LMFA results, how to proceed with (originally planned) analyses to
investigate the dynamics in psychological constructs? The answer to this question largely
depends on the findings. It is important to note that a comparison of the state-specific
MMs may indicate violations of different levels of invariance and that the required level
of invariance depends on the type of comparisons one wants to make. When comparing
the state-specific loadings, one may find that the MMs differ a lot across states—
specifically, in the number and/or nature (the zero-loading pattern) of measured
constructs—which indicates a violation of configural invariance. It may also be that the
pattern of (near-)zero loadings appears to be equal across states, but that the non-zero
loadings differ in size. This suggests that configural invariance holds but weak invariance
fails. When configural or weak non-invariance is indicated, continuing with analyses that
assume invariance is not possible for the full dataset because factor scores are not validly
comparable. Differences in the means of the constructs or relations between constructs
could be due to underlying differences in the MMs. Finding such differences in MMs is
interesting in its own right (e.g., the additional drive factor for anhedonic subjects in our
data example), however. In any case, it is possible to proceed with factor scores from one
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specific state (e.g., the largest state or the state that best corresponds to an a priori
assumed MM) and, thus, with observations for which strict invariance holds.85

If weak invariance holds across the states—that is, if the (near-)zero and non-zero
loadings are highly similar across states—users may examine whether covariances (e.g.,
regression coefficients or autocorrelations) between latent constructs (e.g., positive
affect and negative affect) differ across subjects and/or change across time, because
factor covariances are not affected by intercept differences (Oberski, 2017; Steenkamp &
Baumgartner, 1998). However, examining whether mean construct scores differ across
subjects and time-points calls for strong invariance to avoid mixing up differences in
latent means and intercept differences (Meredith & Teresi, 2006). This implies that strict
invariance is not necessary for meaningfully comparing latent covariances or means
(Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). Thus, finding states that differ
in the unique variances only does not preclude latent variable comparisons. Note that it
is best to allow for non-invariances of intercepts or unique variances (as indicated by
LMFA) as much as possible in your follow-up analysis, ideally by including states.8¢
Otherwise, the latent means and/or covariances may be estimated incorrectly, especially
in the case of large non-invariances (Chen, 2008; Guenole & Brown, 2014). Alternatively,
one could perform one analysis per state (using the state-specific factor scores) and
weight the observations according to the posterior state-membership probabilities such
that observations with larger probabilities receive more weight than observations with
lower probabilities. Another option could be to conduct a weighted multilevel analysis, in
which the states would be considered as observed groups. Furthermore, if “partial”
metric or strong invariance holds (i.e., if only a few loadings or intercepts differ; Byrne et
al,, 1989), one may exclude non-invariant items or, again, capture the differences by
letting parameters differ across states in subsequent analyses or dealing with it by
conducting separate analyses with weighted data. Moreover, in order to avoid non-
invariance in future studies, one could consider removing the problematic items from the
questionnaire or rephrase them. To conclude, LMFA can be viewed as a primary analysis

85 When proceeding with factor scores from one state, it is important to investigate the certainty of the final
state assignments. For instance, the largest posterior state probabilities for some observations might be
rather low (say, below .6 or .7), indicating that it is less clear which of the state-specific MMs best fits the
scores of the observation. Therefore, it is advisable to remove these observations before conducting further
analyses.

86 Note that this is possible with more advanced analyses like dynamic latent class analysis (DLCA;
Asparouhov, Hamaker, & Muthén, 2016). Moreover, in some analyses, it is at least possible to allow for MM
differences across subjects like in dynamic structural equation modeling (DSEM; McNeish & Hamaker,
2020; McNeish, Mackinnon, Marsch, & Poldrack, 2021).

177




CHAPTER 6

step that indicates which observations are actually comparable, what the MMs look like,
and that, in turn, facilitates decisions about how to further analyze the ILD.

6.5 Discussion

When studying dynamics in psychological constructs in intensive longitudinal data (ILD),
it is crucial to investigate whether the measurement models (MMs) underlying the
responses are invariant across subjects and time, which is easily violated due to between-
person differences and/or situation-specific changes in item interpretation and response
styles. Undetected measurement non-invariance poses a threat to valid inference from
state-of-the-art ILD analyses. In this tutorial, we showed how to explore which MMs
underlie the data, what transitions between these MMs look like, and how to investigate
if covariates are related to such transitions by means of latent Markov factor analysis
(LMFA). Most importantly, the method indicates which observations are actually
comparable by classifying them into the same MM-state, which helps to safeguard valid
inferences. Moreover, researchers gain substantive insights into the dynamics of the
underlying MM in their ILD.

The package Imfa was implemented in the open source software R to provide
researchers with a freely available software option to perform LMFA. Even though this is
a huge advantage, it is important to stress that some features are currently not (yet)
available. In the following, we will elaborate on the current limitations of the package and
ideas for future extensions. 87 Firstly, the state-specific MMs in step 1 of the analysis are
currently obtained by means of exploratory factor analysis (EFA). As previously
explained, EFA is less restrictive than confirmatory factor analysis (CFA), which implies
that it allows to detect all types of non-invariance in the loadings. However, for some
datasets, it is certainly interesting to use a CFA model—thus, with fixed patterns of zero
factor loadings. For example, researchers may want to rely on LMFA results or other
results from previous research showing that the configural factor structure is rather
stable across subjects and time. Therefore, in the future, Imfa will include an option to
perform CFA within the states.

Secondly, the factor analysis models in step 1 assume continuous item responses.
If items are measured with only a few categories or if the item responses are heavily
skewed, state-specific “latent trait” (or “item response theory”) models should be
employed in step 1 of the analysis to adequately deal with categorical data, as is done in
the extension called latent Markov latent trait analysis (LMLTA; Vogelsmeier et al., 2021).
Performing LMLTA is currently only possible in Latent GOLD, but advanced R users could

87 Note that the commercial software Latent GOLD offers most of the features discussed below.
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theoretically specify their own state-specific models for step 1 (for instance, by using
mixture models for categorical data from other packages) and use the posterior state-
membership probabilities as input88 for the step 3 analysis with Imfa. However, suitable
packages are, to the best of our knowledge, currently not available in R. If a package would
become available, possibilities to include it in the Imfa package (in order to perform
LMLTA) will be examined.

Thirdly, prior to performing step 1 in Imfa, users have to remove or impute records
that contain missing values on some of the indicators, that is, for measurement occasions
that were not completely skipped (note that completely omitted measurement occasions
are dealt with by the continuous-time approach). Generally, technological advances in
many experience sampling methodology apps prevent subjects from submitting
incomplete responses. However, sometimes researchers rather have incomplete data
than to lose the measurement occasion entirely. Furthermore, missing data may be a
result of the increasingly employed “planned missing-data designs”, in which researchers
deliberately assess only selected items at each measurement occasions while omitting
others in order to reduce the burden on the subjects, which, in turn, tends to increase the
quality of the responses (Silvia, Kwapil, Walsh, & Myin-Germeys, 2014; van Roekel et al.,
2019). In the future, Imfa will be extended to be applicable for ILD collected with such

innovative missing-data designs and missing data in general.

Fourthly, the inclusion of covariates in step 3 of the analysis helps researchers
understand why certain subjects transition between MMs over time, but some
researchers might be more (or also) interested in individual transition patterns,
especially in case of only a few subjects. Estimating subject-specific transition parameters
is currently not possible in Imfa. However, one can estimate one transition model per
subject. More specifically, step 1 and 2 (i.e., estimating the MMs and obtaining the state
assignments and classification errors) would still be conducted for all subjects8? but step
3 would be performed for each subject individually. Additionally, instead of inspecting
subject-specific transition parameters, it might be interesting to investigate whether
unobserved subgroups of subjects have similar transition patterns, especially in case of
many subjects. Theoretically, it is possible to cluster subjects based on their transition
behavior by adding a latent grouping variable to the LMFA in step 3 (e.g., see Crayen et
al.,, 2017; Vogelsmeier et al., 2021). This is not possible with Imfa but advanced R users
may consider using the depmix package in step 3 of LMFA by passing the modal state

88 As described in Section 6.3.6.2, this would be done by providing a data frame with posterior state-
membership probabilities per state via the argument postprobs.

89 One may also perform the entire LMFA for data of a single subject if the number of observations is large
enough. For guidelines about the required number of observations, see Vogelsmeier, Vermunt, van Roekel,
etal. (2019).
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assignments and classification error probabilities as fixed parameters to the depmix()
function. This package allows for a latent grouping variable in the transition model but
uses a discrete-time latent Markov model and, hence, does not account for differences in
intervals, which may impair the estimation of the transition model parameters when
intervals are unequal (for details about the syntax and about how to fix parameters, see
the package documentation; Visser, 2007).

Lastly, Imfa users currently have to draw conclusions about (non-)invariance by
visually comparing the state-specific MMs. If the number and nature of the factors appear
to be the same across states, determining which parameters differ substantially becomes
a daunting task, especially when comparing parameters for models with many states and
factors. Furthermore, one will always find small parameter differences across states due
to sampling fluctuations and error fitting. Deciding which differences are practically or
statistically significant is not a trivial problem. On top of that, the states also capture
differences in the factor variances (in the loadings) and factor means (in the intercepts)
due to the model identification constraints (see Section 6.2.3.1). To obtain loadings that
are optimally comparable across states and to enable hypothesis testing for these
loadings (using Wald tests), multigroup factor rotation (MGFR; De Roover & Vermunt,
2019) should be applied. MGFR solves rotational freedom by rotating the loadings
towards a simple structure within the states and towards agreement across states while
unraveling differences in the loadings from differences in the factor variances. MGFR is
currently only available in Latent GOLD but possibilities to include it in Imfa will be
investigated in the future. Similarly, a solution for optimally comparing intercepts (with
hypothesis tests) could be to employ multiple group factor alignment (MGFA;
Asparouhov & Muthén, 2014b), in which the factors are rescaled and shifted (or
“aligned”) with respect to their means, thereby disentangling differences in the intercepts
from differences in the factor means. However, currently, MGFA is only applicable to CFA
models without cross-loadings. If an MGFA extension for EFA would become available,
possibilities to include the method in Imfa will be examined. Until MGFR and MGFA are
implemented, users can inspect whether there appears to be a difference in the scaling of
all loadings of a factor and/or a “shift” in all intercepts of items that correspond to the
same factor (as indicated by loadings that are not close to zero). If separate loadings or
intercepts differ across states, it is unlikely that these differences are caused by
differences in the underlying factor variances or factor means, respectively.
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In this dissertation, we presented latent Markov factor analysis (LMFA) as a powerful
method for tracing (non-)invariance of the measurement model (MM) in (intensive)
longitudinal data both across subjects and time. In Chapter 2, we introduced the basic
version of LMFA for continuous item responses and equal intervals between
measurement occasions. Then, in Chapter 3, we extended LMFA to validly accommodate
unequally-spaced observations, which are more common in intensive longitudinal data
(ILD) assessed by means of experience sampling methodology (ESM). In Chapter 4, we
showed how to include explanatory variables to better understand (differences in) the
dynamics of the MM. In Chapter 5, we introduced latent Markov latent trait analysis
(LMLTA), the extension that adequately handles categorical item responses with only a
few categories and/or skewed response distributions, which are often observed when
employing Likert-type response scales. In Chapter 6, we presented a tutorial for
conducting LMFA in the open-source R package Imfa.

Throughout the dissertation, we showed why it is important and interesting to
trace MM differences across subjects and time by means of several applications. For
example, one of the main findings in the application in Chapter 2 was that the responses
by anhedonic individuals with an overall negative mood were not only characterized by
the originally assumed positive and a negative affect factors but also by an additional
“drive” factor. Furthermore, in Chapter 3, we investigated longitudinal data from patients
with a major depression disorder and found that the dimensionality of the underlying
factors reduced over the course of participation. Moreover, in the application in Chapter
4, we added to the theoretical debate whether positive and negative affect are two
separate factors or rather two bipolar ends of a single factor by showing that, for the
adolescents in the analyzed ILD, both perspectives occurred at different points in time,
for instance, related to the overall mood.?®

Despite taking important first steps in developing and evaluating LMFA, a few
questions remain open, some limitations of LMFA and this dissertation in general have
not been critically evaluated yet, and relatedly, not all relevant directions for future
extensions of LMFA have been presented. In the following, we first address these points
(Sections 7.1 and 7.2) and then conclude with a remark about LMFA as a framework for
studying dynamic psychological phenomena (Section 7.3).

7.1 Answers to Open Questions About LMFA

We see two questions that have not been answered sufficiently throughout the
dissertation. That is, (1) how to evaluate which level of invariance holds across states

90 It is important to note that the analyses were entirely exploratory and that the empirical data examples
were solely used to demonstrate the method and its extensions. Therefore, one should not draw
substantive conclusions without validating the findings, for instance, by means of replication studies.
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while disentangling differences in the MM parameters from differences in factor means
and variances, and (2) whether response styles can be identified as such.

7.1.1 Evaluating Higher Levels of Invariance

When applying LMFA to ILD at hand, researchers initially obtain one of two possible
results. Either, LMFA indicates that the best model complexity pertains to a single state,
implying that the highest level of invariance holds across all observations (i.e., the MM is
invariant regarding loadings, intercepts, and unique variances). Or, LMFA concludes that
at least two states are underlying the data, in which case researchers need to determine
which level of invariance is endorsed across states. This is relevant for valid decisions
about subsequent analyses (generally, the higher the level of invariance, the more
meaningful comparisons can be made; for a detailed discussion, see Chapter 6). The
psychometric literature distinguishes between four successive levels of invariance
(Meredith, 1993). The first level is configural invariance, which applies when the number
of factors and patterns of (close to) zero loadings are the same across states (i.e., whether
the same factors are measured across states). The second level is weak invariance, which
is attained when the size of the loadings is also identical across states. The third level is
strong invariance, which applies when, additionally, the intercepts are the same across
states. The fourth level is strict invariance, which holds when the unique variances are
also identical across states.

When configural invariance does clearly not hold (like in our applications where
different constructs were measured across states), one can stop with further invariance
investigations. However, if configural invariance seems to hold, researchers should
continue investigating whether further levels of invariance are attainable. Note that it is
possible that “full” invariance cannot be endorsed but, if only a few loadings, intercepts,
or unique variances differ across states, “partial” weak, strong or strict invariance would
still be tenable (Byrne et al., 1989). As described in Chapter 6, partial invariance does not
preclude subsequent analyses as long as non-invariance is accounted for.%1

In order to evaluate which level of invariance holds in the applications of this
dissertation, we used visual inspection of the state-specific MMs. Although visual
inspection provides relevant first insights into the tenability of different levels of
invariance, determining which parameters differ significantly is cumbersome, especially
when examining differences in parameters for many states and factors. One will always
find some degree of heterogeneity across states due to sample fluctuations and error
fitting. Additionally, rotating towards simple structure per state, differences in loadings

91 Note that there are no clear guideline about the minimum number of loadings, intercepts, or unique
variances that should be invariant (as will be discussed in Section 7.2.1, this should be investigated for
state-of-the-art ILD analyses). For now, one may follow the general rule of thumb that the majority of the
parameters should be invariant (Putnick & Bornstein, 2016).
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across states can be overrated (De Roover & Vermunt, 2019). An alternative to evaluate
higher levels of invariance has not yet been adequately addressed in this dissertation.

Generally, it is possible to evaluate different levels of invariance by progressing
from the baseline model (i.e., the unrestricted exploratory factor analysis (EFA) models
per state) towards more restricted models (i.e., partially or fully invariant models) and
comparing (changes in) their goodness of fit to evaluate if invariance holds (e.g., Joreskog,
1971; Lubke & Muthén, 2005; S6rbom, 1974). One could treat the states as observed
groups and apply the increasingly more restrictive models to the states with standard
multigroup factor analysis (e.g., Dolan et al, 2009; Joreskog, 1971; Sérbom, 1974).
However, this approach is rather naive because the uncertainty of the state assignments
is disregarded. Moreover, restricting parameters in the MMs changes the nature of the
states (i.e., the focus is shifted to other differences) such that the posterior state-
membership probabilities should be allowed to change as well, which is not possible
when treating the states as observed. For both reasons, the invariance results could be
invalid, especially in the presence of a generally large classification uncertainty (i.e.,, when
the posterior state-membership probabilities are not (close to) one for all (or most)
observations). A more valid alternative is to extend the LMFA framework by means of a
confirmatory factor analysis (CFA) variant that allows for equality restrictions across the
states. In the following, we describe this extension and its inherent challenges. It is
important to note that it would not yet be possible to use this extension in the R package
Imfa but only in Latent GOLD.%2

7.1.1.1 Evaluation Procedure

For the LMFA extension, we can build on a procedure suggested by Lubke and Muthén
(2005) for evaluating different levels on invariance for mixture factor analysis (where a
latent class model with non-dynamic classes is used instead of a latent Markov model
with dynamic states). Specifically, the authors proposed estimating increasingly more
restrictive class- (or, in our case, state-)specific CFA models (corresponding to different
levels of (partial) invariance) and to determine the level of invariance based on a
goodness-of-fit measure, for instance, the Bayesian information criterion (BIC; Schwarz,
1978).93 Thus, the idea is very similar to multigroup factor analysis. The LMFA extension
can be considered a latent Markov variant of the procedure for mixture factor analysis.
Note that completely®* re-estimating the LMFA model every time the model is modified
is necessary to account for changes in the nature of the states, that is, by allowing

92 In the future, it would be possible to extend the R package Imfa by using a mixture model that allows to
specify (partially) invariant factor models in the first step, for instance, by building up on the pgmm package
(McNicholas, EISherbiny, McDaid, & Murphy, 2019).

93 Note that, for simplicity, we will only describe the investigation of the tenable level of invariance by
means of the BIC. However, it is debatable which criterion should be considered to decide on the tenability
of invariance. The decision may be guided by (comparing) several measures (see, e.g., Lubke & Muthén,
2005).

94 When using the three-step approach (see Chapter 4), only the first step would have to be re-estimated.
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observations to switch to another state when adding equality constraints to the state-
specific MMs.

7.1.1.1.1 Evaluating Configural and Weak Invariance

When initial results of LMFA indicate that configural invariance is not (obviously)
violated (i.e., the number of factors and the non-zero loading pattern appear to be the
same across states), the next steps would be to investigate if the configural model indeed
holds and if the weak invariance model fits better than the configural invariance or non-
invariance LMFA model according to the BIC. To this end, the LMFA model needs to be
adjusted by specifying a CFA model with an invariant zero-loading structure within the
states (for the configural invariance model) and by allowing to restricting all loadings to
be the same across states (for the weak invariance model). As was explained in Chapters
2-6, the differences in the initial loadings of the unrestricted EFA models can be due to
differences in the factor variances as a consequence of constraining the variances equal
to one for identification.?> However, when estimating the weak invariance model, it is
possible to set aside differences in the loadings from the differences in the factor
variances that are irrelevant for assessing weak measurement invariance by freeing up
factor variances for all but a reference state (e.g., Millsap, 2012).

Once the models are estimated, one can compare the BIC of the unrestricted model
to the BIC of the configural and weak invariance models. Ideally, the weak invariance
model has the best fit (i.e., the lowest BIC), implying that invariance of the loadings would
be endorsed. If the configural invariance model has the best fit, at least configural
invariance holds. If neither weak nor configural invariance is attained, one can investigate
the sources of non-invariance. In order to efficiently scrutinize configural and weak non-
invariances at the same time, multigroup factor rotation (MGFR; De Roover & Vermunt,
2019) can be applied to the baseline LMFA model (i.e., the model without any equality
restrictions).?¢ MGFR obtains optimally comparable loadings by rotating them towards
simple structure within states and towards agreement across states, while also
disentangling the differences in factor variances from the differences in factor loadings.
This enables hypothesis tests for these loadings by means of Wald tests. Specifically, the

95 In Chapter 6, we explained that researchers can get a sense of whether differences in factor variances
and factor loadings are mixed up by investigating whether separate loadings differ across states or whether
the scaling of all loadings of a factor is affected (i.e., whether all loadings are likewise larger or smaller). In
the latter case, loading differences are likely due to differences in the factor variances rather than due to
differences in the loadings themselves. For example, if all loadings turn out to be V2 larger in one of the
states, this can (also) be explained by the factor variance being 2 times larger.

96 Other approaches exist to trace items with non-invariant loadings, for instance, based on modification
indices or item deletion strategies (for an overview, see De Roover, Timmerman, De Leersnyder, Mesquita,
& Ceulemans, 2014). However, none of these methods is as efficient as the MGFR as they all require
estimating multiple models or following several subsequent steps such that selecting an acceptable partial
weak invariance model can become a daunting task, especially in the presence of multiple states, factors,
and items.
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Wald tests indicate which loadings are significantly different across states. These
loadings can then be freed in a partial weak invariance model.

7.1.1.1.2 Evaluating Strong Invariance

If at least partial weak invariance holds, one can progress towards evaluating strong
invariance by estimating a model with all intercepts being equal across states. Note that,
when estimating the strong invariance model, any non-invariant loadings have to remain
unrestricted, that is, they need to be allowed to vary across states. As explained
throughout Chapters 2-6, the factor means are set equal to zero for identifying the
unrestricted baseline model (and also the configural and weak invariance models).%7
However, once equality restrictions are imposed on the intercepts (i.e., in the (partial)
strong invariance model), one can disentangle between-state differences in factor means
from differences in the intercepts by adding factor means to the model for all but a
reference state (e.g., Millsap, 2012).

The fit of the strong invariance model can then be compared to the fit of the
(partial) weak invariance model. If the BIC improves, strong invariance holds. When
strong invariance is violated, one can go ahead and investigate if at least partial strong
invariance is tenable. A method to optimally compare intercepts by means of hypothesis
tests—in the absence of cross-loadings—could be multiple group factor alignment
(MGFA; Asparouhov & Muthén, 2014b), which minimizes the amount of non-invariance
across observed groups while accounting for differences in the factor means. Based on
significance tests, MGFA indicates which parameters differ across groups.’® However,
MGFA is currently not applicable to unobserved groups (i.e., classes or states) and, thus,
not for the type of model that is needed for LMFA.

An alternative approach to assessing which constraints (e.g., on intercepts) should
be relaxed for improving the fit of a model is to examine modification indices (S6rbom,
1989), which are also referred to as score tests (Oberski, van Kollenburg, & Vermunt,
2013). More specifically, for the strong invariance model, the indices indicate which
intercepts are most likely non-invariant across states and, thus, which ones should be
freed in certain states. Based on this information, the model can be progressively adjusted
and the fit compared to the (partial) weak invariance model each time, either until partial
strong invariance is achieved or until the point that one can no longer theoretically justify

97 In these models, differences in the factor means manifested themselves as differences in intercepts. We
showed that one could find out whether differences in factor means and item intercepts are possibly mixed
up by assessing whether separate intercepts differ or whether entire sets of intercepts appear to differ in a
similar way. A “shift” in all intercepts of items corresponding to a factor would be indicative of differences
in the underlying means rather than the intercepts themselves.

98 Note that MGFA starts from the baseline model and also identifies non-invariant loadings (while
accounting for differences in factor variances). Thus, the method could also be used to scrutinize non-
invariant loadings. However, unlike MGFR, MGFA requires the specification of the configural model, which
implies that the method cannot handle cross-loadings. Thus, full configural invariance is assumed to hold,
which can be too restrictive.

186



EPILOGUE

freeing up more parameters. The latter is important because using this approach to adjust
the model progressively until it fits the data well (i.e., until the BIC is lower than for the
(partial) weak invariance model) is susceptible to capitalization on chance (De Roover,
Timmerman, De Leersnyder, et al., 2014; MacCallum, Roznowski, & Necowitz, 1992).

7.1.1.1.3 Evaluating Strict Invariance

Finally, if (partial) strong invariance holds, a model with equal unique variances across
states can be fit in order to evaluate strict invariance. As before, if the BIC improves, strict
invariance holds. If strict invariance is violated, one can detect non-invariant parameters
by means of modification indices for the unique variances. Again, the model can be
adjusted progressively until the model fits the data well (i.e., until the BIC is better than
for the (partial) strong invariance model) or until concluding that strict invariance in
untenable because too many unique variances differ.

7.1.1.2 Challenges

The main challenge of the LMFA extension is that the nature of the states changes every
time the model is re-estimated. When starting with an LMFA model with state-specific
EFA models, where all parameters may differ across states, the states are initially a mix
of differences in the MM parameters and in the factor means and variances (i.e., structural
model differences).?? When fixing MM parameters in more restrictive LMFA models,
differences in the factor means and variances get increasingly more dominant. In the
extreme case, for the full strict invariance model, the states capture only differences in
the means and variances. Therefore, when setting equality constraints, the state
memberships could change and, in rare cases, even the selected number of states (i.e., the
state enumeration)—as was also shown by Lubke and Muthén (2005) for standard
mixture factor analysis. For example, for a non-invariant model, three states may fit best
but among a partial invariant model, two states may provide the best fit. Therefore, one
may wonder if the number of states should be re-evaluated for every step (i.e., for each
more restrictive model), before continuing with the invariance investigation. On the one
hand, increasing the number of states would rather pick up differences in the structural
model, which is undesirable. On the other hand, reducing the number of states would
make sense if the number of states was initially overestimated because of error fitting in
the EFA-based baseline model. Ideally, one would extract enough states in the first
(baseline EFA-based LMFA) model to have enough states to detect all MM differences but
also not more than that in order to avoid capturing differences in the structural model.
This will not always work equally well. Future research should investigate possible
scenarios under different conditions (e.g., with regard to different degrees of partial
invariance and differences in the structural model).

99 Note that this is also the case for mixture factor modeling by Lubke and Muthén (2005).
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7.1.2 Unraveling Response Styles

In this dissertation, we discussed two possible reasons for differences in the underlying
MM, that is, substantive differences/changes in item interpretations and response styles.
However, the investigation of the latter has been given little attention so far and,
therefore, requires additional explanation. Response styles refer to participants’
systematic styles or tendencies in responding to questionnaire items, regardless of the
content of the items (Moors, 2003; Paulhus, 1991). Some of the most commonly studied
types are (1) the extreme response style, where respondents tend to choose the extreme
response categories (i.e., the higher and lower ends of a scale; Moors, 2003; Morren et al,,
2011), (2) the agreeing (or “acquiescence”) response style, where respondents tend to
agree to items and thus use the higher categories of the scale (Billiet & McClendon, 2000),
and (3) the “content non-responsivity response style”, which comprises, among others,
careless responding, where respondents do not pay sufficient attention to the
questionnaire items, and random responding, where participants randomly pick an
answer (Meade & Craig, 2012).

Of particular psychometric concern is that response styles can distort the MM in
various ways, that is, response styles may alter factor loadings, intercept, and unique
variances (Cheung & Rensvold, 2000; Eisele et al, 2020; Liu, Harbaugh, Harring, &
Hancock, 2017) and, in turn, lead to invalid findings if not accounted for (e.g., construct
scores could be overestimated; Bolt & Johnson, 2009). Thus, detecting respondents’
response styles is important for safeguarding valid inferences. If researchers suspect
which response style is at play for certain subjects and/or measurement occasions, they
can possibly control for it in subsequent analyses, for instance, by including an additional
response style factor (in a CFA model) that separates the effect of the response style(s)
and the actual “content” factors on the item responses (Billiet & McClendon, 2000; Bolt &
Johnson, 2009; Moors, 2003). Alternatively, researchers can remove inappropriate
observations from the dataset to avoid confounding of the content factors. Moreover,
when researchers also know possible reasons for response styles, they can try to prevent
them from occurring in future studies. For example, if researchers observe a high
prevalence of careless responding only after the first month of participation, they may
conclude that the burden put on the participants is too high and therefore limit the length
of future studies to one month.

The main challenge faced by many researchers is how to identify the presence of
a particular response style in ILD. Throughout this dissertation, we advocated LMFA as a
promising approach to detect MM changes, which may be due to differences and changes
in response styles. One can therefore rightfully come to the intriguing question: Can LMFA
indicate if there is a response style involved, and if so, which one? The short answer is: It
is not that simple. In the following, we elaborate on this answer and show how LMFA in
any case gives important clues for the detection of response styles.
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LMFA is indeed able to detect differences in the MM, which potentially include
differences caused by response styles. Sometimes, it is also possible to identify a response
style and to correct for it. Consider, for instance, that content factors are assessed with
balanced scales (i.e., with both positive and negatively worded items). When LMFA finds
two states that are comparable with regard to the content factors but, for one state, an
additional factor has been extracted with considerable loadings of all items (i.e., both
positively and negatively worded items), one can suspect that this factor pertains to an
agreeing response style (D’Urso, Tijmstra, Vermunt, & De Roover, 2021).

However, in practice, it is often difficult to disentangle whether differences in the
MM are due to response styles or differences in item interpretations for various reasons.
To name just a few, firstly, some MM differences may be due to differences in response
styles and item interpretations. For instance, larger unique variances may be a sign of
careless or random responding as these styles induce measurement error (Meade &
Craig, 2012). However, larger unique variances may also be a sign of truly larger item-
specific variability. Secondly, response styles can affect the MM parameters differently
across studies. For instance, if a rather small agreeing response style is present, the
response style may not be captured by an additional factor but alter the factor loadings
and/or intercepts. Pinpointing the response style is then difficult. Thirdly, even if an
additional factor has been extracted as consequence of a response style, the nature of this
factor may be obscured by an inappropriate rotation. More specifically, naively rotating
towards simple structure (e.g., by means of oblique rotation) may fail to disentangle the
content factors from the response style factors, especially in the case of balanced scales
(D’Urso etal., 2021; Ferrando & Lorenzo-Seva, 2010; Lorenzo-Seva, 1999; Schmitt & Sass,
2011).

As becomes apparent, it is difficult to determine if a MM pertains to a response
style or not. However, LMFA sets a huge first step by making any differences in the MM
visible to the researchers and researchers can apply post hoc analyses to gain insight into
the nature of MM differences. Specifically, researchers may relate explanatory variables
to the state memberships.1%0 To this end, they may choose covariates that previously
showed to be related to response styles (e.g, response time; Meade & Craig, 2012).
Alternatively, one may calculate indices that are indicative for certain response styles
(e.g., the frequency of the highest agreeing category; Bolt & Johnson, 2009) and use these
as covariates. Or, already when designing the study, researchers could include checks that
flag response styles, in particular the careless or random responding (e.g., by specifically
asking to give a certain response to a question; Meade & Craig, 2012), and use these
checks as covariates (i.e., whether the correct answer was provided or not). For example,

100 Note that covariant effects on state memberships can be conveniently explored by means of the three-
step approach introduced in Chapter 4 of this dissertation.

189




CHAPTER 7

by including such a check, one could find out whether large unique variances may be
related to careless responding or whether something else is going on.

Moreover, when suspecting that an additional factor in one state might be the
consequence of a response style (e.g., based on significant covariate effects), researchers
can try to separate content factors from the response style factor by means of applying a
suitable rotation. One possibility is the target rotation (Browne, 2001), where
researchers can specify (part of) the MM in a target loading matrix (i.e., the part
corresponding to the postulated structure 101 of the content factors) and leave the
additional factor unspecified. Then, by inspecting the rotated solution, one might
conclude that the additional factor is an (agreeing) response style factor if all items load
similarly on this additional factor, including items that are theoretically unrelated or with
areverse wording (D’Urso et al., 2021).

In some cases, post hoc analyses may provide insufficient information to identify
a response style and to control for it. However, identifying response styles is generally a
tedious task in ILD and LMFA at least indicates which observations for which subjects are
comparable such that researchers can decide to continue with comparable observations
from a state in which the factor structure seems reasonable. Summarized, LMFA certainly
yields a contribution towards identifying response styles but further work by the
researchers is required to determine if and which response style is at play.

7.2 Current Limitations and Future Research

The first important limitation is that the states in LMFA are currently strongly
determined by differences in the intercepts. In Section 7.2.1, we describe the problem in
more detail and outline ideas to diminish the influence of intercepts in determining the
state memberships by means of extending LMFA. The second limitation is that we did not
investigate consequences of ignoring non-invariance in ILD and differences in dealing
with non-invariance once LMFA detected any violations of invariance. In Section7.2.2, we
elaborate on this limitation and discuss ideas to investigate further how to proceed based
on the results of LMFA.

7.2.1 Predominant Influence of Intercepts

One of the main findings in the simulation study in Chapter 2 was that differences in
intercepts02 are very influential in recovering the correct state memberships. On the one
hand, this can be an advantage in situations in which the intercepts differ among all of the

101 This could be based on assumptions about the structure but also based on the obtained structure of the
content factors in another state (i.e., where only the content factors and not an additional (response style)
factor was extracted).

102 Note that the intercepts are equal to the item means because the factor means are constrained to be zero
in each state. Thus, the structural model also influences the intercepts.
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underlying states (as was the case in the simulation study) because the states are then
easier to trace by LMFA. On the other hand, intercept differences can be a disadvantage
in situations in which not all observations differ with regard to the intercepts (i.e., part of
the observations differ only with regard to other MM parameters). It could then happen
that intercept differences are so influential that only intercept differences are found (i.e.,
other parameter differences would be missed).103 If enough states are selected by the
model selection procedure, all MM differences should be detected. However, whether
enough states would be selected to recover the correct MMs has not been investigated
yet.

The problem of influential intercept differences can get increasingly severe when
a questionnaire contains a few items describing, for instance, emotions or symptoms,
which rarely occur for some subjects or in some situations. For instance, the emotions
“feeling hopeless” or “feeling inferior” are rather extreme for subjects that do not suffer
from any mental disorders. When assessing these symptoms on a Visual Analog Scale
(e.g., ranging from 0 to 100) in subjects with and without mental disorders, one might
obtain an unobserved mix of two response distributions, a normal (or slightly skewed)
distribution for subjects with a mental disorder and a highly skewed distribution with
most scores being exactly equal to zero for subjects without a mental disorder. Thus,
LMFA'’s normality assumption would be violated. The zero scores can then be extremely
influential such that concerned observations would be classified into the same state
(possibly regardless of other MM differences, depending on how many states are
selected). This could lead to a state with zero variances and loadings on the
corresponding items. The severity of this problem has yet to be investigated.

In order to better understand the dominance of intercept differences on state (and
thus parameter) recovery, it is important to conduct an extensive simulation study. In
such a study, one should also investigate whether the problem can be solved by extracting
additional states (possibly more than indicated by model selection criteria). However,
this would only solve the problem for datasets that contain enough observations to retain
the required number of states and not for datasets in which the state enumeration is
bounded by a too small number of observations (for guidelines on the required number
of observations, see Chapter 2). If only a limited number of states can be extracted, it
might be desirable to put more focus on the differences in loadings because some
analyses require only invariant loadings and not intercepts (for a discussion on the

103 To clarify this latter case, consider that three MMs are underlying the data. MM 1 and MM 2 have the
same intercepts and MM 3 has different intercepts for a few items. Furthermore, MM 2 and MM 3 have the
same loadings, while MM 1 has higher loadings for a few items. Thus, MM 1 and MM 2 differ only in terms
of the loadings. In case of dominant intercept differences, MM 1 and MM 2 might be merged into one state.
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required level of invariance, see Chapter 6). Therefore, building up on the results of the
simulation studies, LMFA should be extended to adequately deal with the undesired
dominance of (zero) intercepts. In the following, we discuss two initial ideas to extend
LMFA.

First, in order to lower the impact of zero-scores, we could replace the factor
analysis model in LMFA by a model that accommodates skewed data. In Chapter 5, we
presented latent Markov latent trait analysis (LMLTA) for non-normal categorical data.
For continuous data, one could look into possibilities for implementing mixture factor
analysis models for zero-censored data (e.g., Wang, Castro, Lachos, & Lin, 2019), which
would take into account that item responses in the zero variance state(s) have many more
zero values than can be assumed based on a normal distribution (Vermunt & Magidson,
2016). Thanks to the three-step approach (which was explained in Chapter 4), one would
only have to adjust the first step of the analysis, in which the state-specific MMs are
obtained. For example, if a package to estimate such a model in R would become available,
it could be easily implemented in (or manually combined with step 2 and 3 of) the Imfa
package (presented in Chapter 6).

Second, in order to lower the impact of intercept differences in general, one could
move towards the Bayesian framework!%4, which is, for example, implemented in MPlus
(Muthén & Muthén, 2005). Using this framework, building on dynamic latent class
analysis (DLCA; Asparouhov et al., 2016), it would be possible to add random effects to
the intercept parameters to capture intercept differences between (not within) subjects
to reduce the impact of (between-subject) intercept differences on the state formation
and increase the role of other parameter differences. However, this assumes normally
distributed intercept differences among subjects and future research is required to
evaluate its feasibility and efficiency in lowering the dominance of intercept differences.

7.2.2 Proceeding Based on the Results of LMFA

Throughout this dissertation, we highlighted the need to detect and account for non-
invariance in ILD in order to obtain valid results in subsequent analyses. In Chapter 6, we
suggested several, increasingly complex ways to proceed based on the results of LMFA in
order to deal with non-invariance. More specifically, we suggested that, if configural
invariance is severely violated, one may continue with data of a single state (while only
considering observations with a high posterior state-membership probability for this
state). If (partial) weak or strong invariance holds (depending on the required level of

104 Note that the Bayesian framework is generally more flexible in specifying complex models and for
relaxing distributional assumptions. However, one should keep in mind that the results may strongly
depend on the choice of priors. Additionally, by including too many parameters, one may overfit the data
(Kelava & Brandt, 2019).
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invariance), one may conduct a multilevel analysis on the state-specific factor scores
using states as observed units and data that is weighted by the posterior state-
membership probabilities. Alternatively, by means of advanced analyses such as dynamic
latent class analysis (DLCA; Asparouhov et al, 2016), one could account for non-
invariance by letting parameters differ across latent states or at least across subjects
(McNeish et al,, 2021).

It would have been interesting to go a step further in this dissertation and evaluate
the different strategies to account for non-invariance specifically in the most common
analysis techniques for ILD. Firstly, it would be relevant to investigate how far
researchers can get with partial invariance (i.e, how much non-invariance can be
tolerated before the measured construct changes meaningfully). Secondly, it would be
important to understand how much non-invariance is negligible (i.e., how much can the
results be trusted when ignoring non-invariance). Thirdly, it would be interesting to learn
if the most complex way to deal with non-invariance (i.e., to capture non-invariance by
latent states while also capturing dynamics in constructs) is really necessary or whether
less advanced methods (i.e., the methods that more researchers are familiar with, like
regular multilevel analysis) suffice. Fourthly, especially for replicability of the results
across different studies, it would be crucial to have clear guidelines on how to deal with
non-invariances. Until such guidelines are provided, researchers should at least be
transparent about their choices.

7.3 Concluding Remark About LMFA for Studying Dynamic Phenomena

In the previous section, we have explained that LMFA serves as a precursor for deciding
about subsequent data analyses. However, the LMFA framework also opens the doors to
obtaining interesting insights into dynamics of psychological phenomena. To give a
concrete example, there is a lot of potential in monitoring real-time changes in MM
dynamics of patients. Mental illnesses, such as depression or bipolar disorder, are
complex systems that are not fully understood yet. Often, sudden changes in
symptomology are observed but, presumably, a more gradual internal process precedes
this change, which could be detected by “early warning signals” (Kunkels et al,, 2021;
Wichers, Groot, & Psychosystems, 2016). It would also be worthwhile to devote more
research to MM changes as an early warning signal. For example, when studying
depression, it was repeatedly found that the dimensionality of the constructs varies as a
function of overall severity of depression (for an overview, see Fried et al., 2016), which
also seemed to be the case in our application in Chapter 3. Building up on the assumption
that the MM is indeed related to the depression symptomology, it would be highly
relevant to investigate if the MM changes even before the onset of a depressive episode.
In this case, LMFA could possibly aid in anticipating such episodes. More specifically,
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LMFA could be incorporated into increasingly popular ESM-based apps (e.g., M-Path105)
that are used to monitor patients in addition to regular therapy sessions (e.g., for better
understanding the patients or as a treatment in itself; Bastiaansen, Ornee, Meurs, &
Oldehinkel, 2020; Kauer et al, 2012). In turn, practitioners could directly act on
information about MM changes, which could improve the well-being of the patient and
possibly reduce treatment costs. Summarized, the potential of LMFA for understanding
psychological phenomena has not yet been fully explored.

105 For more information, see https://m-path.io/landing/
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The model is estimated by means of the expectation maximization (EM; Dempster et al.,
1977) algorithm that uses the so-called complete-data loglikelihood (logL.), that is,
assuming the state assignments of all time-points to be known and thus replacing the
difficult maximization by a sequence of easier maximization problems. In the expectation-
step (E-step, see e.g., Bishop, 2006; Dias, Vermunt, & Ramos, 2008), we assume the
parameters of interest ® (i.e., transition probabilities, initial probabilities, and state-
specific MMs) to be given (i.e., by a set of initial values or estimates from the previous
iteration 8°!4, see De Roover et al.,, 2017; Vermunt & Magidson, 2016) and calculate the
posterior probabilities (i.e., conditional on the data) to belong to each of the states and to
make transitions between the states, by means of the forward-backward algorithm (Baum
etal,, 1970). The obtained posterior probabilities are used as expected values of the state
assignments to obtain the expected log L. (E (log L.)). Next, in the maximization-step (M-
step), the parameters @ are updated such that E (log L.) is maximized. The E-step
(Appendix A.1) and M-step (Appendix A.2) are iterated until convergence (Appendix A.3).

A.1 E-Step
The log L, is given by:
K T K
log L = log (1_[ 1_[ [ Sitk 1_[ 1_[ af[,i e 1_[ p(Yit|5itk)Si”‘D
i=1 k=1 t=2 1=1 t=1
I K T K
Al
z Z lsuk log(my) + Z Z Sit-1,1 Sitk 108(@ing) (A1)
1:1 k=1 t=2 1=1

ZZ siee(J 1og(2m) + log (I1Zk) + (¥ie — Vi) Zi ' Vie — Vi) )]

Since the state memberships are in fact unknown, for each subject and time-point, the
expected probability of being in a certain state y(s;x) = p(siex| Yi) and the expected
probability of the occurrence of two consecutive states €(Sjt—1, Sitk) = P(Sie—1,1 Sitxe|Yi)

are inserted, in order to obtain E (log L.):
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The E-step for a LMC is achieved with the forward-backward (or Baum-Welch)
algorithm (Baum et al., 1970). The algorithm finds the posterior probabilities by making
use of the chain rule and the first-order Markov assumption: The joint probability of being
in state k at time-point ¢ and observing the sequence of observations can be expressed as

P(Sitks Yi) = D(Sicrer Yits - Vi) DD View 15 -+ Yir|Sicior Vit -+ Vie )- (A3)

The first-order Markov assumption implies that we can remove the dependency of the
observations at time-point t on all previous observations and let them depend only on the
state at time-point t. Thus, the equation reduces to

(St Yi) = PGSt Yits oo Yie)DP Vit 1s o0 Yir |Siekc )- (A4)

The first factor p(s;tx, Vi1, ---, Vi) refers to the forward probabilities and the second factor
P(YVit+1, - Vir|Sier) corresponds to the backward probabilities. On the one hand, the
forward probabilities, also indicated by a(s;;), are the probabilities of observing y;;.¢
and to end in state s;;, and are calculated by the forward algorithm. First, the initial state
probabilities are used to calculate the forward probabilities for subject i of being in state
k at time-point 1:

a(Sitr) = mep(Yia lSivx)- (A5)

Then, for the consecutive measurement occasions, we weight the forward probabilities
a(sit_u) of the previous time-point by the corresponding transition probabilities. Next,
we sum over all possible ways (i.e., transitions) to come to a specific s; from any s;;_4;

and multiply the values with the corresponding response probabilities:
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K
a(si0) = Pielsie) ). @(sie1.)tme - (46)
=1

On the other hand, the backward probabilities, also indicated by B(s;y), are the
probabilities to be in state s;;;, and to generate the remaining sequence y;;,.r- Instead of
starting at time-point 1, the so-called backward algorithm starts at time-point T and
backtracks to time-point ¢t + 1. The probability for the backward algorithm to be in final
state s;r and, thus, to produce no outcome (@) anymore is assumed to be 1:

B(siri) = p(@lsiry) = 1. (A7)

Henceforth, the backward probabilities can be determined in a similar way as the forward
probabilities. However, as we go backwards here, we now need to consider the response
probabilities of all K states at time-point ¢t + 1, multiplying them with the backward
probabilities B(sml_l) and the respective transition probabilities, prior to summing over
K:

K
B(sir) = Z B(si+1,)P(View1|Sie+1,0) Qitk- (A8)
=1

Next, p(sitk, Y;) (Equation (A.4)) is calculated by multiplying the forward and the
backward probabilities:

(St Yi) = a(Sier) B(Sitxc) (A9)

Subsequently, we can calculate the conditional probability of being in state s;;;, given the
sequence of observations, as we know that:

P(Sitr Yi) = (S| Yo) p(Yi) (A.10)
By inserting this into Equation (A.9), we obtain

p(siee| YO (Ye) = a(sie) B(Sier)- (A11)
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It follows that the conditional state probability is equal to

p(sie| Yi) = W =¥ (Six)- (A12)

The denominator can be calculated by marginalizing Equation (A.9) to p(Y;) by summing
over the latent states for an arbitrarily chosen t:

K

PY) = " alsiu) Blsiae), (A13)

k=1
which is in its simplest form for t = T, where B(s;rx) = 1. Thus, the equation reduces to

K

p(Y) = ) alsiny) (A14)

k=1

Finally, we can calculate the joint probability of two successive states by applying Bayes’

theorem:
p(Yi|Sit-1,0 Sitk ) D(Sit—1, Sick
P(Sit—1,0 Sie|Yi) = (Vs Si) PCSie-sioSiee)
p(Y) (A15)
_ a(sic-1,) PWielSier) @ik B(Siex) — o(s: sue)
Zlk{=1a(sl"[‘k) it—1,l» 2itk
A2 M-Step

In the M-step, we maximize E(log L,) with respect to . To maximize, we set the
derivatives with respect to the parameters to zero, making use of Lagrange multipliers
whenever a constraint, such as Z’k(:l 1, = 1, needs to be satisfied. The resulting updates
are:

new _ Z§=1 Y (Sitk)

KX v (i) (A.16)
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new _ Z{:z S(Sit—l,lrsitk)
Ak =Tk ~r (A.17)
k=1%t=2 E(Sit—l,lr Sitk)

new _ €=1 ZZZI V(Sitk))’it
{1 2t=1V (Sir)

(A.18)

The factor models for the state-specific covariance matrices X = AW AR°" + D3¢
are estimated by another maximization algorithm within each M-step. Specifically, each
observation is weighted by the corresponding y(s;:)-value, resulting in K weighted
datasets Yy. Fisher scoring (Lee & Jennrich, 1979; Vermunt & Magidson, 2016) is used to
perform factor analysis on these weighted data.

A.3 Convergence

The convergence can be evaluated either with respect to the log L or with respect to the
parameter estimates. LG applies the latter approach and assesses convergence by
computing the following quantity:

é‘v _ é‘v—l
T (A19)
o1

’

R
5:2
r=1

which is the sum of the absolute values of the relative parameter changes where r =
1, ..., R refers to the parameters. In this chapter, the stopping criterionis § <1 x 1075.
The estimation also stops if the change in the log L becomes smaller than 1 x 1071°
prior to reaching the stopping criterion above.
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//LG5.1//
version = 5.1
infile 'Siml.csv' quote = single

model
options
algorithm
tolerance=1e-008 emtolerance=1e-008 emiterations=3000
nriterations=0;
startvalues
seed=0 sets=25 tolerance=1e-005 iterations=100 PCA;
bayes
latent=0;
montecarlo
seed=0 replicates=500 tolerance=1e-008;
quadrature nodes=10;
missing includeall;
//classification added to output
output
profile parameters standarderrors estimatedvalues
classification probmeans iterationdetails
WriteParameters = 'results parameters.csv'
write = 'results.csv'
writeloadings='results loadings.txt';
outfile
'classification.csv' classification;

variables
caseid id;
dependent
V1l continuous, V2 continuous, V3 continuous, V4 continuous,
continuous, V6 continuous, V7 continuous, V8 continuous, V9
continuous, V10 continuous, V11 continuous, V12 continuous,
continuous, V14 continuous, V15 continuous, V16 continuous,
continuous, V18 continuous, V19 continuous, V20 continuous;
latent
State nominal dynamic coding=first 2,
F1l continuous dynamic,
F2 continuous dynamic;
independent id nominal;
equations
// factor variances
(1) F1| State;
(1) F2| State;
// Markov model
State[=0] <- 1 ;
State <- (~tra) 1 | State[-1] id;
//dependent variables determined by state specific Factors
V1-v20 <- 1 | State + F1 | State + F2 | State;
//Unique variances
V1-v20 | State;
end model

V5

V13
V17
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C.1 Problem of the Additional Simulation Study

To test whether lag-one autocorrelations of factors not captured by the within-state EFA
analyses harm the performance of LMFA, we manipulated factors (a) to (g) as in the main
simulation study, leaving out the levels with an already inferior performance, and added
an eighth factor (h) specifying the autocorrelation.

C.2 Design and Procedure

We crossed eight factors in a complete factorial design:106
a. number of factors per state F* at two levels: 2, 4;
b. number of states K at three levels: 2, 4*;
c. between state difference at two levels:
medium loading difference & low intercept difference,
medium loading difference & medium intercept difference*;
d. unique variance e : fixed at .2, .4;
frequency of transitions between the states at two levels: frequent,
infrequent*;
f. number of subjects N at three levels: 2, 10%;
g. number of observations per subject per state T;;, at three levels: 50, 100,
200;
h. autocorrelation ¢ at three levels: 0, .3, .7*

The data was generated by means of the orthogonal dynamic factor model which implies
that, at time-point ¢, the factors are uncorrelated with one another but a factor’s scores at
time-point t are dependent on its scores at time-point t — 1. Specifically, they are auto-
correlated by the coefficient ¢ as follows:

Vie = Vi + Ay £ + €
(C.1)
fir = ¢y + &,

where &;, is a subject-specific F¥ x 1 vector of noise at time-point ¢t which is assumed to
be multivariate normally distributed with zero mean and the identity matrix as
covariance matrix (~MVN(0; I)). Thus, to generate the subject-specific datasets Y;, first,
the e;; and g;; vectors were sampled for each observation. Subsequently, we created the
autocorrelated factor score vectors f;; by applying a recursive filter (Hamilton, 1994).

106 The conditions marked by “*” are the ones that now have less levels than in simulation study 1.
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This filter sets the first noise element as the first factor score and computes the remaining

factor scores as in Equation (C.1). The resulting factor scores were multiplied by \/1——¢>2
to retain an expected variance of 1 (De Roover et al., 2014). Finally, the datasets Y; were
again merged into one data matrix Y. Note that, for the strength of the autocorrelation
(h), we used the values suggested by Cabrieto, Tuerlinckx, Kuppens, Grassmann and
Ceulemans (2016). To check how the manipulation played out, we calculated the average
autocorrelation across the datasets for each of the three conditions: they amounted to .05,
.29 and .68.

For each cell of the factorial design, 20 data matrices Y were generated as
described above. In total 2 (number of states) X 2 (number of factors) X 2 (between-state
difference) X 2 (transition frequency between states) X 2 (number of subjects) X 3
(number of observations per subject and state) X 2 (unique variance) X 3
(autocorrelation) X 20 (replicates) = 5760 simulated data matrices were generated. As in
Simulation Study 1, the data was generated in R and analyzed in LG with the same settings
and the correct number of states and factors per state.

C.3 Results

In general, the recovery was largely unaffected by the autocorrelation conditions (h).
Specifically, the recovery of the transition matrices and unique variances was not affected
= MADtrans = .05 and MADuniq = .03 for ¢ = 0,¢p = .3, ¢ = .7 — whereas the recovery of the
states, loadings and intercepts was only slightly affected - ARI = .91 for¢p = 0 and ¢ =
.3 and .90 for ¢ =.7; GOSL = .99 for ¢ =0,¢p =.3 and .98 for ¢ =.7; MADint =
.07 for ¢ = 0, .08 for ¢ = .3 and .11 for ¢ =.7. Note that the mild decrease in intercept
recovery with an increased autocorrelation is merely a consequence of the higher
variance of the estimated intercepts, since they capture part of the autocorrelation and
thus vary more around the population values.
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In (CT-)LMFA, the logL is complicated by the unknown latent states and therefore
requires non-linear optimization algorithms. LG uses the expectation maximization
algorithm (EM algorithm; Dempster et al., 1977) that employs the so-called complete-
data loglikelihood (log L.), which means that the latent state assignments of all time-
points are assumed to be known. This is convenient because the latent variables and the
model parameters can be estimated separately in an iterative manner as follows: In the
expectation-step (E-step; Appendix D.1), the parameters of interest, 8, (i.e., the initial
state probabilities, the transition intensities, and the state-specific measurement models
(MMs)) are assumed to be given. In the first iteration, initial values for the parameters
are used and, for every other iteration, the estimates from the previous iteration 8°'¢ are
applied. The time-specific univariate posterior probabilities of belonging to the states and
the bivariate posteriors for adjacent measurement occasions, conditional on the data, are
calculated by means of the forward-backward algorithm (Baum et al, 1970). These
posterior probabilities are in turn used as expected values for the state memberships in
order to obtain the expected log L. (E(log L.)). Then, in the maximization-step (M-step;
Appendix D.2), the parameters 8 get updated so that they maximize E(log L.). This
procedure is repeated until convergence (Appendix D.3).

As mentioned in Section 3.2.3, the E-step and the M-step (for all parameter
updates but the transition intensities) are largely identical with the steps for DT-LMFA.
Therefore, in the following, we only briefly summarize these steps. For more details and
derivation of the equations, see Vogelsmeier, Vermunt, van Roekel, et al. (2019).
However, we describe the M-step to update the transition intensities in more detail
(Appendix D.1.3) because this is the part where CT-LMFA differs from DT-LMFA.

D.1. E-Step

The E(log L) is given by

I K 1 T K K
E(log L) = Z Z ¥ (sike) log(my) + Z Z Z &(Sit-1,0 Siere) log((e9iukder)
, , r Ki=1 k=1 i=1 t2 l=1k=1 (Dl)
=500 > Vsl log(2m) + log (1Zil) + (ee — Vi) E (Vie = vid .
i=1t=1k=1

Here, 6;; refers to the time interval between time-point ¢t and t — 1 for subject i.
Furthermore, y(s;;;) are the expected values to belong to each of the states and
e(sit_u, sitk) are the expected values to make transitions between the states. Both are

computed based on the so-called forward probabilities a(s;;) —which are the
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probabilities of observing the observations for time-point 1 to ¢, y;1.;, and ending in state
sizr—and the backward probabilities B (s;;,)—which are the probabilities to be in state
Sitr and to generate the remaining observations for time-point t + 1to T, y;z41.7. For
time-point t = 1, the forward probabilities are computed with

a (i) = mrp(Via|Sitk) (D.2)

and for all for all the remaining time-points with

K
a(sigr) = p(VielSicrc) Z a((si—1,)e k0, (D.3)
=1

The backward probabilities for time-point t = T are computed with

B(sirk) = p@lsiri) = 1, (D.4)

where @ refers to “producing no outcome”. For all the remaining time-points the
backward probabilities are computed with

K
B(Sitr) = Z ﬁ(sit+1,z)P(Yit+1 |5it+1,l) b, (D.5)
=1

Finally, the expected univariate values to belong to each of the states are calculated with

a(sie) B(Sitx)
S: = S: Y)=——— D.6
V( ltk) P( ltkl l) 2£=1 a(SiTk) ( )
and the expected bivariate values to make transitions between the states with
a(sie-1,1) PVielSier) €700 B(sy50)
e(Sie-10 Siek) = P(Sie-1,0 Siere| Vi) = —— — = (D.7)

Zlk(=1 a(sirk)
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Note that, upon convergence (see Appendix D.3), observations are assigned to the state
they most likely belong to (i.e., to the state with the largest probability y (si)).

D.2. M-Step
In the M-step, the parameters get updated so that they maximize (logL.).

D.1.1 Update Initial State Probabilities and Intercepts

The initial state probabilities and state-specific intercepts are updated as follows:

new __ 2i=1Y(Si1k)

T =K v . v (D.8)
‘ =1 2i=1 ¥ (Sitke)
yiew = §=1 Z{:1 Y (Sitr)Yie (0.9)

o1 X V(Sie)

D.1.2 Update State-Specific Covariance Matrices

In order to find the maximum likelihood estimates for updating the state-specific
covariance matrices Y3 = AREYAR®Y' + DE®Y, the observations are weighted by the
corresponding y(s;y) -values and these K weighted datasets Y, are in turn factor
analyzed by means of Fisher scoring (Lee & Jennrich, 1979).

D.1.3 Update Transition Intensities

In order to calculate the updates for the intensities, we also have to a apply a Fisher
algorithm (Kalbfleisch & Lawless, 1985). This algorithm consists of two steps. First, the
partial derivatives of the transition probability matrix P(6;;) have to be computed and
second, a scoring procedure is used to find the maximum likelihood estimate of the
parameters in the transition intensity matrix Q, subsequently referred to as 2. For the
example of K = 3 states, the parameters would be 82 = (q;5, ¢13, 921, 423, 931, G32)- Note
that Kalbfleisch and Lawless (1985) suggest to re-parameterize the parameters to 8¢ =
(log (912),10g(q13) ,1og(g21),10g(q,3), log(qs1), log(q32)) in order to prevent restrictions
of the parameter space, which is also what Latent GOLD (LG) does. In LG, the partial
derivatives of P(6;;) with respect to the parameters 91Q to 91? in 02 are calculated by
means of the Padé approximation (Moler & Van Loan, 2003). Once the partial derivatives
are obtained, we start the scoring procedure to get the maximum likelihood estimate of
02 This implies that we first calculate the b x 1 vector S(8?) with entries
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I
dlogL
s(ed) = =z
e} &

i

T
&(Sir—1 Sitre ) 0 O
Z Z (Sit—1,00 Sieke) OPue( n)’ (0.10)

=] Puc(6¢i) 603

k,l1=1

where u = 1,...,b. Here, E(Sit—l,lrsitk) are the expected bivariate state-membership
probabilities obtained from the E-step (Equation (D.7)). Next, we calculate the b X b
matrix M(09) with entries

1 T K
o1 1) 0D (840) Dy (81
m(6262) =ZZ Z Y(Sit-1k) sz(Qn) plk(Qn)’ (011)
: p(e) 06, a6,

wherev = 1, ..., b, just as u. Finally, we put all the elements together to compute the

update Bgew:
Q _gQ Q lergQ
enew - 9old + M(eold) S(eold ’ (D.lZ)

where Bled is either the initial parameter vector (for the first iteration) or the previous
parameter vector (for all other iterations). This procedure is repeated until convergence
within one M-step of the EM algorithm, before the EM algorithm moves on to the next E-
step. The convergence criteria for the Fisher algorithm within the M-step are based on
the loglikelihood and the change in parameter estimates and are the same as the ones for
the “outer” total EM algorithm for CT-LMFA, which is explained in Appendix D.3.

D.3. Convergence

Convergence is evaluated with respect to either the loglikelihood or the change in
parameter estimates. Primarily, LG evaluates the sum of the absolute values of the

R g;}ew_’g‘;}ld

relative parameter changes, thatis, w = },57_; ,withr =1, ..., R referring to the

’9‘1qld
parameters. By default, LG stops when w <1 x 10~8. However, if the change in the
loglikelihood gets smaller than 1 X 107° prior to reaching the stopping criterion for w,
LG stops iterating as well.

D.4. StartValues

In LG, a specific multistart procedure with multiple (e.g., 25, as used in our simulation
study) sets of start values is employed, which decreases the probability of finding a local
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instead of the global maximum. The start sets generally consist of random start values
but, for loadings and residual variances, they are based on principal component analysis
(PCA; Jolliffe, 1986) performed on the entire dataset. More specifically, to get K different
start sets, randomness is added to the PCA solution per state k. For more details on the
entire multistart procedure, see De Roover et al. (2017) and Vermunt and Magidson
(2016).
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This appendix provides additional information on the convergence problems inherent to
the phantom-variable approach of LMFA, which emerged from an additional simulation
study that we conducted. In this extra simulation study, we used the same datasets as in
discrete-time- (DT-) and continuous-time- (CT-) LMFA but we put the observations on a
1-hour grid and included the phantom variables. Note that, when missing data is part of
the data matrix, the response probabilities p (y;;|s;) are changed to p (y;|s;)" i, where
ki = 1 ifsubject i provides information for time-point t and k;; = 0 otherwise. While for
k; = 1 nothing changes, for k;; = 0, p (yi|s;)® = 1, so that the missing data do not
influence the likelihood (Vermunt et al., 2008).

The overall simulation study results were very much comparable to CT-LMFA
(which shows that the theoretical approximation works very well in practice) and are
therefore not further discussed. However, while almost all analyses converged in DT-
LMFA and CT-LMFA, 10.76 % of the replications in the phantom variable approach
exhibited estimation problems, especially for the lowest level of the number of
measurement occasions per day (i.e, Tgqy = 3). Closer investigation of the non-
convergence problems revealed that they were caused by reaching the maximum number
of EM iterations without convergence (despite the high number of 10,000 iterations). The
problem is that fewer measurement occasions per day increase the amount of phantom
variables in the dataset, which hampers convergence. Re-estimating the non-converged
models with new starting values or increasing the number of iterations may help.
However, it should be noted that also the computation time is influenced. To validly
compare the computation times, we re-estimated the first replications for all conditions
while allowing for up to 50,000 iterations in the phantom-variable approach to obtain the
computation times when estimation is not interrupted by too few iterations. With an
average of about 10 minutes, estimation in the phantom variable approach—on an i5
processor with 8GB RAM—took about three times longer for Ty,,, = 3 than for Tg,, = 6.
Just to give a reference, the conditions with Tg4, = 3 took only about 2 minutes in CT-
LMFA and 1 minute in DT-LMFA. Although this computation time is perfectly feasible, the
phantom-variable approach can become unfeasible for datasets with highly unequal time
intervals and very fine grids (such as the application that was described in Section 3.4),
which lead to very large numbers of empty rows with missing values only.

Moreover, we also observed that the percentage of local maxima amounted to 7.24
% for datasets analyzed with the phantom-variable approach, which is much higher than
for the other two methods. Here, the local maxima especially occurred for the lowest level
of the number of measurement occasions per day, T4, = 3 and hence again, just as it was

the case for the convergence problems, the level with the most phantom variables in a
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dataset. More random start sets can reduce the probability of retaining local ML solutions
(as briefly outlined in Appendix D.4).

Considering all the disadvantages of the phantom variable approach (i.e.,
cumbersome data-organization procedure, difficult decisions on the length of the time
interval, many required iterations and start sets when the number of phantom variables
is large, and results that cannot be easily compared across studies), we advise against
using the phantom variable approach, which is why we did not consider this approach in
our main simulation study.
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In the following, we provide the Latent GOLD syntax that we used to analyze our
application data, more specifically, the syntax of the chosen model with two states and
respectively two and three factors within the states.

model
title '17 [3 21';
options
algorithm
tolerance=1e-008 emtolerance=1e-008 emiterations=6000 nriterations=0;
startvalues
seed=0 sets=100 tolerance=1e-005 iterations=100 PCA;
bayes
latent=1 categorical=1 poisson=1 variances=1l;
montecarlo
seed=0 replicates=500 tolerance=1e-008;
quadrature nodes=10;
missing includeall;
output
profile parameters standarderrors estimatedvalues classification
probmeans iterationdetails
WriteParameters = 'results parametersl7.csv'
write = 'resultsl7.csv'
writeloadings="results loadingsl7.txt';
outfile
'classificationl7.csv' classification;

variables
caseid short ID;
timeinterval deltaT;
dependent
V1l continuous,
V2 continuous,
V3 continuous,
V4 continuous,
V5 continuous,
V6 continuous,
V7 continuous,
V8 continuous,
V9 continuous,
V10 continuous,
V1l continuous,
V12 continuous,
V13 continuous,
V14 continuous,
V15 continuous,
V16 continuous,
V17 continuous,
V18 continuous,
V19 continuous,
V20 continuous;
latent
State nominal dynamic coding=first 2,
F1l continuous dynamic,
F2 continuous dynamic,
F3 continuous dynamic;

independent condition nominal;

equations
// factor variances
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(1) F1| State;
(1) F2| State;
(1) F3| State;

// Markov model
State[=0] <- 1 ;
State <- (~tra) 1 | State[-1] ;

//Dependent variables determined by state specific

V1l <- 1 | State + (al)Fl | State + (bl)F2 | State + (cl)F3 | State;

V2 <- 1 | State + (a2)Fl1 | State + (b2)F2 | State + (c2)F3 | State;

V3 <- 1 | State + (a3)F1 | State + (b3)F2 | State + (c3)F3 | State;

V4 <- 1 | State + (a4)Fl | State + (b4)F2 | State + (c4)F3 | State;

V5 <- 1 | State + (a5)F1l | State + (b5)F2 | State + (c5)F3 | State;

Ve <- 1 | State + (a6)Fl | State + (b6)F2 | State + (c6)F3 | State;

V7 <- 1 | State + (a7)F1 | State + (b7)F2 | State + (c7)F3 | State;

V8 <- 1 | State + (a8)F1l | State + (b8)F2 | State + (c8)F3 | State;

V9 <- 1 | State + (a9)F1l | State + (b9)F2 | State + (c9)F3 | State;
V10 <- 1 | State + (alO)Fl | State + (b1l0)F2 | State + (cl0)F3 | State;
V1l <- 1 | State + (all)Fl | State + (bll)F2 | State + (cll)F3 | State;
V12 <- 1 | State + (al2)Fl1 | State + (bl2)F2 | State + (cl2)F3 | State;
V13 <- 1 | State + (al3)F1l | State + (b13)F2 | State + (cl3)F3 | State;
V14 <- 1 | State + (al4)Fl | State + (bl4)F2 | State + (cl4)F3 | State;
V15 <- 1 | State + (al5)Fl1 | State + (bl5)F2 | State + (cl5)F3 | State;
V16 <- 1 | State + (al6)Fl | State + (bl6)F2 | State + (cl6)F3 | State;
V17 <- 1 | State + (al7)Fl | State + (bl7)F2 | State + (cl7)F3 | State;
V18 <- 1 | State + (al8)Fl | State + (b1l8)F2 | State + (cl8)F3 | State;
V19 <- 1 | State + (al9)Fl | State + (b19)F2 | State + (cl9)F3 | State;
V20 <- 1 | State + (a20)F1 | State + (b20)F2 | State + (c20)F3 | State;
//Variances

V1 | State;

V2 | State;

V3 | State;

v4 | State;

V5 | State;

Ve | State;

V7 | State;

V8 | State;

V9 | State;

V10 | State;

V11l | State;

V12 | State;

V13 | State;

V14 | State;

V15 | State;

V1l6e | State;

V17 | State;

V18 | State;

V19 | State;

V20 | State;

//constraints:

cl[2,] = 0;

c2[2,] = 0;

c3[2,] = 0;

c4[2,] = 0;

c5[2,] = 0;

c6[2,] = 0;

c7[2,] = 0;

c8([2,] = 0;

co[(2,] = 0;

cl0[2,] = 0;

cll[2,] = 0;
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cl212,]
cl1312,]
cl4[2,]
c15(2,]
cl6[2,]
cl712,]
cl18[2,]
c19(2,]
c20[2,]

end model

leNoNoNeoNoNeoNeNoNe]
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In the following, we provide some additional information about the treatment and the
Becks Depression Inventory (BDI; Beck et al., 1979) used in the presented application
(Section 3.4). Regarding the treatment, all participants were randomly assigned to attend
up to 20 sessions of either the cognitive behavior therapy (CBT; see Beck et al,, 1979; n =
60) or the interpersonal psychotherapy (IPT; Klerman, Weissman, Rounsaville, &
Chevron, 1984; n = 62). Note that there were also patients who were assigned to
medication groups but that we focused on the therapy groups only. Furthermore, we did
not distinguish between the two types of therapy to simplify the application, with the
main purpose to simply demonstrate the use of CT-LMFA. For the requirements to
participate, early termination reasons (e.g., dissatisfaction with treatment), and the
explanation of the therapies and the procedure, you are referred to Elkin et al. (1989)
where this has been extensively described.

With regard to the BDI measures, note that we removed the two items “weight
loss” and the dichotomous item whether this was “wanted” from the original
measurement because this distinction cannot be made in factor analysis. Since desired
weight loss is not part of depression, we deemed it important to remove the item from
our analyses.
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H.1. Derivation Step 2

We obtain the conditional probabilities, p(W;;, = 1|S;jz = 1), starting from the joint
probability p(W;t, = 1, siex = 1, ;i) applying the product rule:

PWitm = LStk = 1,¥ie) = DWiem = 1sigre = 1,y3c) X

(H.1)
p(¥itlSicr = Dp(Sigre = 1).
Next, conditioning on s;;;, = 1 yields
PWitm = Lyielsik = 1) = DWigm = 1sier = L, ¥i) DYielSiere = 1) (H.2)

= pWitm = UYi) D Wit lSiee = 1)

because w;;,,, = 1is conditionally independent of s;;;, = 1 given y;; (see Figure 4.3). Next,
we obtain the marginal probability by integrating out y;;:

PWigm = 1sie = 1) = fp(witm = UyidpYiclsier = D dyis, (H.3)

where the second factor on the right-hand side can be rewritten using Bayes’ theorem:

Py )p(Sier = 1lyie)

si, = 1) = H.4
p(YEtISLtk ) p(sl‘tk — 1) ( )
Inserting this in Equation H.3 leads to
=1y . o =1lv.) dv;
p(Witm — 1|Sitk — 1) — fp(WLtm |YLt)p(YLt)p(SLtk |yn) Yn’ (H.5)

p(sier = 1)

where p(s;, = 1) is factored out from the integral because it is independent of y;;.
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H.2. Derivation Step 3

We consider the joint probability and solve for p(W;|Z;). The joint probability is
p(W;, Y, Si, Z;) = p(WilY;, Sy, Z)p (YIS, Z)p(Si| Z)p(Z). (H.6)

Next, we condition on Z; and use the assumption that Z; and Y; are conditionally
independent given S; and that W; is conditionally independent of S; and Z; given Y;,
which is also depicted in Figure 4.4:

p(W;, Y;, $i1Z;) = p(W;[Y)p(Y;S)p(S:1Z;)

= p(Wi1lyi1) = (Wi lyir)D(Via ISin) - 0 YirISir) 0 (Sias -ov s Si|Zits s Zi7)

= p(yurlsi)pWislyin) - p(yirlsir)p(Wirlyir) X (H.7)
Markov Chain (MC)

p(si1|2:)0(Si218i1, Zi2) - D(SiT|SiT—1, Zir),

where we use p(w;;|y;;) with the mth element in w;; equal to 1 and all others equal to 0
as a shorthand notation for p(w;;,, = 1|y;;). We then marginalize over S; and Y;:

p(Wi|Z))
=Y [ pGulsipalywdyie = [ pGlspOelyddye (g
Si1 SiT

X MC

We can then rewrite p(y;;|s;;) using Bayes’ theorem (see Equation (H.4)), insert it in
Equation H.8, and make use of H.5, which leads to

p(W;|Z))
classification error classification error
_ Z Zf PGuly)p@i)pWauly)dyu [ p(Sirlyir)p Ger)pWirlyir)dyer .
o p(si1) p(sir) (H.9)

= Z "'ZP(Wi1|Si1) < p(Wir|sir) X MC

Si1 SiT
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T T
= Z Z p(si1lzin) 1—[ p(SiclSit—1, Zit) HP(Witlsit)-
t=2 t=1

Si1 SiT
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I.1. Additional Simulation Study: Autocorrelated Factor Scores
1.1.1. Problem

In order to investigate whether ignoring autocorrelated factor scores is more harmful for
the performance of 3S-LMFA than it is for FIML-LMFA (Vogelsmeier, Vermunt, van
Roekel, et al., 2019), we conducted a simulation study with selected conditions from the
main simulation study (a-d) and, furthermore, manipulated the autocorrelation (e). More
specifically, we kept the state-separation conditions (a) and (b) as they had considerable
effects on the performances in the main simulation study (Section 4.3) but we kept
respectively only one factor of the conditions pertaining to the amount of information (c
and d) as these conditions had only minor effects on the performances. For the size of the
autocorrelation, we used the coefficients suggested by Cabrieto, Tuerlinckx, Kuppens,
Grassmann, and Ceulemans (2017), that were also used in the simulation study to
investigate the effect of ignoring autocorrelation in FIML-LMFA (Vogelsmeier, Vermunt,
van Roekel, et al., 2019).

1.1.2. Design and Procedure

The conditions were the following:

a. between-state loading differences at two levels:
State-separation medium loading differences, low loading differences;
b. between-state intercept differences at two levels:
no intercept differences, low intercept differences;
Amount of {C. fixed number of subjects N: 70%;
information d. fixed number of days D: 7%;
e. autocorrelation ¢ at three levels: 0, 0.3, 0.7

The conditions marked with “*” are the ones that are the ones that are now fixed to one
value from the manipulated conditions in the main simulation study. This design resulted
in2x 2x1x1x3 =12 conditions. The data generation was the same as in the main
simulation study (again with 100 replicates). However, instead of using an orthogonal
regular factor model as shown in Equation (4.1), we used an orthogonal dynamic factor
model, where the factor scores at time-point t are correlated with the factor scores at t —
1 by the coefficient ¢ (e):

Vie = Vi + Ay £ + €y
(L1)
fir = pfir1 + &1,
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where g;~ MVN(O0,I) is a subject- and time-point specific F;, X 1 noise vector. The
correlated factor scores f;; were generated by means of a recursive filter (Hamilton,
1994), that is, the first factor scores are set equal to the noise elements €;; and the
remaining scores are computed as in Equation (I.1). In order to retain the expected

variance of 1, we multiplied the resulting factor scores by \/1——¢'2 (De Roover,
Timmerman, Van Diest, et al., 2014). Note that we computed the average autocorrelation
across all datasets belonging to the same condition to see how the manipulation played
out. The autocorrelations were -0.02, 0.26, and 0.64.

1.1.3. Results

Overall, the state recovery and the parameter recovery of the MMs was unaffected for
both 3S- and FIML-LMFA (Table 1.1). Only the state recovery after step 3 of 3S-LMFA was
slightly worse for increasing autocorrelations. Furthermore, with both procedures, the
intercept recovery decreased for increasing autocorrelations. This is because the
autocorrelations are partly captured by the intercepts and in turn have a higher variation
around the population values.

Regarding the SM (Table 1.2), the recovery was also largely unaffected for both 3S-
and FIML-LMFA. Only for the strongest autocorrelation (¢ = .7) in 3S-LMFA, the RMSE
was slightly higher and the SEs slightly more underestimated for the initial state
intercepts and the bias was slightly higher for the transition intercepts. Thus, the
autocorrelation appears to be partially captured by the step-3 latent state transitions.
However, the effect of the autocorrelation on the parameter estimation is negligible.
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I.2. Additional Simulation Study: Varying Covariate Distributions and

Effects
I.2.1. Problem

In order to test whether non-uniform covariate distributions and the strength of the
covariate effects influence the performance of 3S- and FIML-LMFA differently, we
repeated selected conditions from the main simulation study and additionally
manipulated the strength of the covariate effects (e) and the distribution of covariates (f).
More specifically, we selected the conditions that affected the performances in the main
simulation study the most (Section 4.3). This implied that we kept the state-separation
conditions (a and b) while selecting only one factor from the conditions pertaining to the
amount of information (c and d).

1.2.2. Design and Procedure

The conditions were the following:

a. between-state loading differences at two levels:
State-separation medium loading differences, low loading differences;
b. between-state intercept differences at two levels:
no intercept differences, low intercept differences;
Amount of c. number of Subjects N at four levels: 70%;
information {d. number of days D at two levels: 7%;
e. strength of covariate effects 7 at three levels: 0.25, 0.5, 1
f. distributions of covariate scores at three levels: 70/30,
50/50,30/70

The conditions marked with “*” are the ones that are now fixed to one value from the
main simulation study. This design resultedin 2 X 2 X 1 X 1 X 3 X 3 = 36 conditions. We
generated the data as in the main simulation study (again with 100 replicates). However,
the effects of the time-varying covariate z;;; and time-constant covariate z;, as well as
their distributions across observations and/or subjects differed depending on factors (e)
and (f). First, with regard to the strength of the covariate effects, a higher value for z;;;
still lowered the probabilities of transitioning to and staying in state 1 and 3 and
increased the probabilities of transitioning to and staying in state 2 but with slope
parameters being equal t0  Vizz,, = V322, =1 and Vizz,, =Va1z,, = Y23z, =
Y31,z;, = —T- Furthermore, a higher value for z; still increased the probability to
transition away from the origin state but with slope parameters being equal to y1,,5,,, =
V13,2100 = Y2lzis, = V23,202 = V31,2iy = V32,2i, = T- 1€ parameter T was either 0.25, 0.5,

or 1 (see factor e).
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Next, with regard to the distributions of the covariate scores —0.5 and 0.5, we
included conditions with a uniform distribution (i.e.,, “50/50”) and both a “70/30” and
“30/70” condition. The time-varying covariate z;;; was assigned such that the score
changed from —0.5 to 0.5 after 5 of the 7 days in the 70/30 condition and after 2 days in
the 30/70 condition. To obtain exactly a 50/50 condition, the scores changed after 3 days
for the first half of the subjects and after 4 days for the other half of the subjects. For the
time-constant covariate z;,, the scores —0.5 and 0.5 were randomly selected with
probabilities being equal to the three distribution levels (i.e.,, 70/30, 50/50, or 30/70).
Note that we included a 70/30 and 30/70 condition to prevent a possible confounding of
the results: The covariate scores influence the transition probabilities (i.e., the state
memberships become more or less stable) and a higher stability of the state membership
previously showed a positive influence on the recovery of the states in FIML-LMFA
(Vogelsmeier, Vermunt, van Roekel, et al., 2019). For instance, a covariate score of —0.5
on both covariates would lead to a slightly more stable transition probability matrix than
a covariate score of 0.5 on both covariates (e.g., with an average of 96% versus 92%
probability to stay in a state with T = 1 and a one-unit interval). Note, however, that the
difference is so small that it might not affect the performance.

I.2.3. Results

The results can be found in Table 1.3. The state and MM recovery of 3S- and FIML-LMFA
were largely unaffected by the strength of the effect and the distribution of the covariates
and, therefore, will not be further discussed. With regard to the SM, there was only a very
small effect with regard to the RMSE but it was the same for both estimation procedures.
First, the RMSE was slightly higher for the strongest covariate effect (i.e,, 7 = 1). This is
likely due to somewhat larger SE values that are inherent to larger logit parameters.
Second, the RMSE for the transition intercepts and transition slopes was slightly higher
for non-uniform covariate distributions, which is likely caused by the general loss of
information when covariate scores are not uniformly distributed.
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J.1. Step 1 and 2 Syntax of 3S-LMFA

//LG5.1//
version = 5.1
infile 'Dataset.csv' quote = single
model
title 'Step 1 and Sep 2 CT-[2 2 2]"';
options
algorithm
tolerance=1e-008 emtolerance=1e-008 emiterations=5000
nriterations=0;
startvalues
seed=0 sets=25 tolerance=1e-005 iterations=100 PCA;
bayes
latent=1 categorical=1 poisson=1 variances=1l;
quadrature nodes=10;
missing includeall;

output
parameters=effect
betaopts=wl
standarderrors
classification
profile
probmeans=posterior
bivariateresiduals
estimatedvalues=model

iterationdetails
WriteParameters = 'results parametersl.csv'
write = 'resultsl.csv';

outfile

'classificationl.csv' classification
keep id deltaT covl vary D cov2_con_N;

variables
dependent
V1l continuous,V2 continuous,V3 continuous,V4 continuous,V5
continuous,V6 continuous,V7 continuous,V8 continuous,V9
continuous,V10 continuous, V11 continuous, V12 continuous,V13
continuous, V14 continuous, V15 continuous, V16 continuous, V17
continuous, V18 continuous, V19 continuous, V20 continuous;
latent
State nominal coding=first 3,
Fl continuous,
F2 continuous;

equations
(1) F1| State;
(1) F2| State;
State <- 1 ;
V1-V20 <= 1 | State + F1 | State + F2 | State;
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V1
V2
V3
A\
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V1ie
V17
V18
V19
V20

State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;
State;

end model
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J.2. Step 3 Syntax of 3S-LMFA

Note that the step-3 syntax below is only one option to estimate the third step. Instead of
calculating the classification error probability matrix manually and inserting it into the
syntax ('w = ...") to tell LG that the matrix should be used as fixed response probability
matrix, it is also possible to use the “step3” option in LG ('step3 ml modal;'). When using
this option, LG automatically calculates the classification error probability matrix from
the input file (i.e., the step 1 posterior probabilities and the modal state assignments, here
‘classificationl.csv') and uses it as fixed response probability matrix. However, when
using the step3 option, LG does not yet provide the user with the final latent state-
assignments. This is because the classification is often not the primary focus of interest in
other three-step analyses where researchers rather focus on parameter estimates such as
covariate effects. Since classification is certainly of interest in LMFA, we suggest to use the

manual syntax version.

//LG5.1//
version = 5.1
infile 'classificationl.csv' quote = single
model
title 'Step 3-[2 2 2]';
options
algorithm
tolerance=1e-008 emtolerance=1e-006 emiterations=5000
nriterations=500 expm=pade;
startvalues
seed=0 sets=25 tolerance=1e-005 iterations=100 PCA;
bayes
latent=1 categorical=1 poisson=1 variances=1 ct=1;
quadrature nodes=10;
missing includeall;
output
parameters=effect
standarderrors
classification
profile
iterationdetails
estimatedvalues=model
WriteParameters = 'results parameters2.csv'
write = 'results2.csv';
outfile
'classification2.csv' classification;

variables
caseid id;
independent covl vary D nominal, cov2Z con N nominal;
timeinterval deltaT;
latent
State3 nominal dynamic coding=first 3;
dependent State#;
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equations
State3[=0] <- 1;
State3 <- (~tra) 1 | State3[-1]
+ (~tra) covl vary D | State3[-1] + (~tra)
covZ2 con N | State3[-1];
State# <- (w~wel) State3;
w = values obtained from first syntax;
end model
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K.1. Model Selection Procedure with the CHull Method

For the model selection, we ran all models five times to see whether the maximum
likelihood solutions were indeed global solutions. We considered the solutions to be
global when the absolute differences between the loglikelihood values of the 5 solutions
was respectively smaller than 0.01. As a result, 11 out of 19 models were passed to the
model selection procedure with the CHull method, which was conducted with the R-
package “multichull” (note that we also did a sensitivity check by doing the CHull test
including possible local optima and the selected model was always the same). The CHull
can be considered an automated generalized scree-test (Bulteel et al.,, 2013; Ceulemans &
Kiers, 2006; Ceulemans & Van Mechelen, 2005). The method identifies the models in a
“loglikelihood versus number of parameters” plot that are at the higher boundary of the
convex hull (Cattell, 1966) and identifies the optimal model by evaluating the elbow in the
scree plot (i.e., the point where the improvement in fit with additional parameters levels
off). During the CHull procedure, following Wilderjans et al. (2013)’s recommendation,
we discarded models for which the fit was almost equal to the fit of a less complex model
(i.e., when it fitted less than 1 percent better than the less complex model, which is also
the default value in the R-package). The model with 2 states and respectively 2 and 1
factors (“[2 1]”) was the best (see output in K.1.1). The second-best model was the model
with two states and 1 factor in both states (“[1 1]”). From the grouping of points,
corresponding to the different number of states, it can also be seen that the improvement
in fit from 1 to 2 states is much larger than the one from 2 to 3 states. Model [2 1] was also
better than model [1 1] according to the BIC values (see output K.1.2) and furthermore,
better interpretable (model [1 1] was comparable to model [2 1] only that the second
factor in the first state was clearly missing as was evident from tremendously high unique
variance proportions for the items that had high loadings on the second factor in model
[2 1]. Therefore, for this application, we chose model [2 1].

K.1.1. Output CHull

Output from the CHull method performed by the R-package “multichull“ shows the
models considered, the models on the upper bound of the convex hull, the selected model
[2 1], and the CHull-figure plotting the number of free parameters against the
loglikelihood value.

SETTINGS BY USER:
Ooptimalization: upper bound
Required improvement in fit: 1%
Number of considered models: 11

RESULTS:
Number of selected models: 1
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SELECTED MODEL:

complexity fit
[2 1] 71 -41695.7
ALL MODELS ON upper BOUND:
compTlexity fit st
[1] 30 -48338.88 NA
[1 1] 61 -42738.06 1.733280
[2 1] 71 -41695.70 2.572494
[111] 92 -40844.78 NA
ORIGINAL MODELS
compTlexity fit
[1] 30 -48338.88
[2] 40 -47601.71
[3] 50 -47468.42
[1 1] 61 -42738.06
[2 1] 71 -41695.70
[2 2] 81 -41477.40
[3 2] 91 -41430.23
[1 1 1] 92 -40844.78
[3 3] 101 -41406.83
[2 1 1] 102 -40495.49
[3 2 1] 122 -40367.42
Convex hull (upper bound)
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K.1.2. Output BIC

This is an extra BIC-figure that, comparable to the CHull-figure, plots the number of free
parameters against the BIC value, showing that model [2 1] fits considerably better than
model [1 1] not only according to the CHull but also according to the BIC value.

BIC criterion
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K.2. Differentiation of Emotional Experience

Dutch translation of the Range Subscale form the Range and Differentiation of Emotional
Experience Scale (RDEES; Kang & Shaver, 2004); Answer format: 1 = Totally disagree; 2 =
disagree; 3 = disagree a little, 4 = neutral; 5 = agree a little; 6 = agree; 7 = Totally agree

“De volgende stellingen hebben betrekking op jezelf en je emoties. Sommige
formuleringen lijken op elkaar. Probeer je daar niet aan te storen en probeer elke stelling
te beantwoorden.”

e Ik ben me bewust van de verschillende nuances en subtiliteiten van een
gegeven emotie

o Elke emotie heeft een aparte en unieke betekenis voor mij

e Ik heb de neiging om subtiel onderscheid te maken tussen soortgelijke
emoties (bijv. depressief en neerslachtig; geérgerd en geirriteerd)

e Ik ben mij ervan bewust dat iedere emoties een compleet verschillende
betekenis heeft

e Als emoties verschillende kleuren waren, dan zou ik zelfs de kleinste
verschillen binnen één soort kleur (emotie) kunnen opmerken

e Ik ben me bewust van de subtiele verschillen tussen de gevoelens die ik
ervaar

e Ik ben goed in het onderscheiden van subtiele verschillen in de betekenis
van nauw verwante emotie-woorden

K.3. Emotion Clarity Deficit

Dutch translation of the Emotion Clarity Questionnaire (ECQ; Flynn & Rudolph, 2010).
Answer format: 1 = Totally disagree; 2 = disagree; 3 = neutral; 4 = agree, 5 = Totally agree

“De volgende stellingen hebben betrekking op hoe jij je gevoelens ervaart. Geef antwoord
in hoeverre je het eens bent met elke stelling.”

e Ik weet meestal hoe ik mij voel!

e Meestal begrijp ik mijn gevoelens?!

e Ik ben vaakin de war over mijn gevoelens

e Mijn gevoelens zijn meestal logisch voor mij!

e lkvind het vaak lastig om te begrijpen hoe ik mij voel
e Ik ben meestal zeker over hoe ik mij voel?

e Ik weet meestal hoe ik mij voel!

1reversed coded
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K.4. Example of Display of Mood Items in the Ethica Data App

Display of the instructions and the first item (Now, I am feeling joyful) in the Ethica Data
app (Ethica Data Services Inc, 2018). The participants could scroll through all the Affect
items from the Dutch version of the Positive and Negative Affect Schedule for Children
(PANAS-C; Ebesutani et al,, 2012; Watson et al., 1988) and give their answer by sliding on
the Visual Analog Scale (VAS) from 0 (“notatall”) to 100 (“very much”). Initially the slider
was set to zero. The participants had to move the slider before they could continue with
the next items. Translation of instruction: The following questions are about how you are
feeling. The answer scale from “not at all” to “very much”.

66 De volgende vragen gaan over hoe je je
nu voelt. De antwoordschaal loopt van
"helemaal niet" tot "heel erg".

99
Ik voel mij nu blij
47
_
Helemaal niet Heel erg
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L.1. Complication in Estimating LMLTA

The main complication in estimating LMLTA is the lack of a closed form expression for
the Ry -dimensional integral in the marginal density in Equation (5.9), p(¥;t|Sitx = 1).
This is different in LMFA: As the factors and observations are both normally distributed
continuous variables, the marginal density in Equation (5.9) can be written as
multivariate normal distribution with means v, and covariance matrices X, = ApA}, +
¥,, where A, is the state-specific /] X Ry, loading matrix and ¥, contains the unique
variances i ; on the diagonal and zeros on the off-diagonal. In LMLTA, LG approximates
the integral using Gauss-Hermite quadrature with M quadrature nodes per factor. For
instance, with M = 10 and R), = 2, there are 102 nodes in total. The integration in
Equation (5.9) is then substituted by R, summations (Vermunt & Magidson, 2016):

J

MM
pYielsiw = 1) = Z Z ﬂp(yijt =glm, ..o, s = 1)Ap 4, | (L1)
m o=1

=1 j=1

Here,m,o0 = 1, ..., M indicate the nodes, which are the M roots of the Mth-order Hermite
polynomial, and A4,, indicates their corresponding weights. The values of the nodes and
weights can be found in Abramowitz and Stegun (1970).197 Note that usually at least 10
nodes per factor are used (Lesaffre & Spiessens, 2001). As the number of nodes and thus
the computational effort increases exponentially, specifying models with more than three
factors is often unfeasible.

L.2. Summary of the 3S Estimation

In the following, we provide a summary of the 3S estimation of the LMLTA model. In step
1, the state-specific MMs are obtained by estimating a mixture GPCM (e.g, Vermunt &
Magidson, 2016). To this end, all repeated observations are treated as independent,
which is valid because they are assumed to be conditionally independent given the state
memberships at consecutive time-points. Hence, the relations between the states (i.e., the
transitions) and the covariate effects that influence the transitions (as well as any latent
class variable that clusters subjects by their transition patterns) are ignored in this step.
The parameters of interest encompass (1) the state proportions, that is, the proportions

107 Note that the formula in Equation (L.1) assumes that the factor scores are uncorrelated. When
covariances are non-zero, Cholesky decomposition of the covariance matrices is used to orthogonalize the
factors and obtained parameters in LG are not covariance matrices but Cholesky decomposed covariance
matrices (Vermunt & Magidson, 2016).
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of the observations that belong to each state, which is denoted as p(s; = 1), where s;
now refers to the state memberships across all subjects and time-points, and (2) the
state-specific response probabilities p(y;¢|S;sx = 1). The mixture GPCM is

K
PO = ) sk = Dpielsiee = 1) (L.2)
k=1

with p(yi¢|sit = 1) as in Equation (5.9). The loglikelihood function is

I T
logLgrgpr = Z z log p(yir) (L.3)

i=1t=1

In order to find the ML estimates for the mixture model, LG combines an expectation
maximization algorithm with Newton-Raphson iterations.

Subsequently, in step 2, we consider the posterior state probabilities, p(s;;x =
1yie) = p(si = DpWielsier = 1)/[Xki=1 2 = DpGielSies = 1], which  are  the
probabilities for every subject and time-point to belong to each of the states. For every
observation, we assign a state membership p(w;;, = 1]y;:) = 1 to the state k with the
highest posterior probability (i.e., the most likely state membership), which implies a
weight of zero for all other states.198 The indicators wj,,, are collected in a new variable
Wi = (Wjpq, -, Wirk)' and, instead of the original observations y;;, will be used for the
estimation of the CT-LMM in step 3. As the highest posterior state probability is typically
not equal to 1 for all observations, there will be classification error, which would lead to
underestimation of the relation between the states and the covariates and the states at
consecutive time-points if not accounted for in step 3. In order to calculate the errors we
need to account for in step 3, we condition the assigned state memberships on the
expected true state memberships p(W;¢, = 1|s;, = 1), forallk,m = 1, ..., K, and collect
them in a K X K “classification error probability matrix”. The entries of the matrix are
calculated as (for details, see Di Mari et al., 2016; Vogelsmeier et al., 2020):

1
15T s T PO = PG = 1) 1 43
p(sp=1)

PWigm = 1lsie = 1) =

108 Note that this so-called “modal” assignment is the only feasible assignment procedure for a LMM with
many subjects and time-points (Di Mari et al., 2016)
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Note that the diagonal elements (i.e., where k = m), correspond to the correctly classified
observations and the off-diagonal elements to the classification errors.

Finally, in the third step, we estimate the (mixture) CT-LMM based on the state
memberships that were determined in the previous step and correct for the inherent
classification error. As was shown by Di Mari et al. (2016) and Vogelsmeier et al. (2020),
this is done by treating the state assignments w;; as error-containing observed indicators
of the error-free latent states s;; that are inferred through ML estimation and used to
determine the parameters of the CT-LMM. To this end, the following loglikelihood with
the classification-error probabilities p(w;|s;;) as fixed response probabilities is
maximized (Vogelsmeier et al., 2020):

logLsreps
I T T L5)
= Z log Z Z p(si112i1) 1_[ P(Sti(sit|sit—1' Zit) 1_[ p(Wiclsic) |- .
i=1 Si1 SiT t=2 t=1

Note that the loglikelihood of a mixture CT-LMM as used in our application (Section 5.3),
where both the initial state and the transition probabilities may depend on a time-
constant or time-varying latent class variable, has a slightly different form (e.g., Vermunt
etal,, 2008). In the simpler case of time-constant latent classes one gets:

lOgLSTEPS,mixture =

T

I T
Z log Z Z Z p(cy) p(sirlzi, ) 1_[ pﬁti(sitlsit—li Zit, ;) 1_[ p(Wiclsi) |,
i=1 t=1

€ Si1 SiT t=2

(L.6)

where ¢; = (¢jq, ..., i)' denotes the class memberships and p(c;) the latent class or
“mixture” proportions. LG obtains the ML parameter estimates by means of a
combination of the forward-backward algorithm and the Newton-Raphson algorithm.
For details on the mixture with a time-constant latent class variable, see Vermunt et al.
(2008). The generalization to a mixture with a time-varying latent variable is
straightforward and can be found in Crayen and colleagues (2017).
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L.3. Model Selection Procedure Step 1

In the following, we provide detailed information about the model selection procedure in
step 1 of the 3S approach to estimate the LMLTA model. In order to see if the ML solutions
of the nine estimated models were indeed global solutions, we estimated all models five
times. The ML solutions were considered global solutions (at least, as far as we know)
when the absolute difference between the solutions was smaller than 0.01. This was the
case for the five one- and two-state models, but not for the three-state models. First, we
compared the BIC values of the stable models. As can be seen from the BIC output below
(L.3.1), the two-state model with two factors per state was the best (i.e., the model “[2
2]"), because it had the lowest BIC value.

Second, with the R-package “multichull”, we conducted the CHull model selection
procedure, which can be considered an automated scree test that identifies which models
in a “loglikelihood versus number of parameters” figure are at the higher boundary of the
convex hull (Cattell, 1966) and points out where the improvement in fit levels off when
adding additional parameters (Bulteel et al., 2013; Ceulemans & Kiers, 2006; Ceulemans
& Van Mechelen, 2005). Note that we also included the best ML solutions of the three-
state models in the CHull procedure because the method entails that the most complex
and most simple model cannot be chosen and the most complex model of the stable
models would have been the best fitting model according to the BIC (i.e., the model [2 2]).
However, sensitivity checks using all five local optima solutions revealed that the CHull
would always come to the same conclusion. As can be seen from the CHull output below
(L.3.2), the two best models were the one-state model with two factors (i.e.,, model [2]
with a “scree test value” st = 4.52), and the two-state model with two factors in each
state (i.e., model [2 2] with st = 3.17). Looking at the grouping of points that correspond
to the different number of states in the convex hull figure below, it can be seen that the
improvement in fit is largest from one to two states, but that the improvement from two
to three states is still substantial. For the application, we chose the two-state model, [2 2],
because it was among the best two models according to the CHull, better than the one-
state model [2] according to the BIC, parameters differed considerably across the states
(as is illustrated in Section 5.3), and finally, because it was well interpretable.
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L.3.1. Output BIC

number of parameters BIC value

] 84 300418.1
] 95 286193.3
1] 169 273333.9
1] 180 263239.3
2] 191 259446.7

BIC criterion
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Complexity of the model
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L.3.2. Output CHull

SETTINGS BY USER:
Ooptimalization: upper bound
Required improvement in fit: 1%
Number of considered models: 9

RESULTS:
Number of selected models: 1

SELECTED MODEL:

complexity fit
[2] 95 -142641.7
ALL MODELS ON upper BOUND:
complexity fit st
[1] 84 -149806.8 NA
[2] 95 -142641.7 4.520469
[2 2] 191 -128808.7 3.174246
[2 2 2] 287 -124450.8 NA

252




ORIGINAL MODELS
complexity fit
[1] 84 -149806.8
[2] 95 -142641.7
[1° 1] 169 -135857.7
2 1] 180 -130757.7
2 2] 191 -128808.7
11 1] 254 -129577.7
2 11] 265 -127080.1
2 2 1] 276 -125147.9
2 2 2] 287 -124450.8
Convex hull (upper bound)
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L.4. Additional Tables for the Application

In the following, we provide two additional tables related to the application (Section 5.3).
First, we investigated whether the state-specific MM patterns (i.e., that state 1 consists of
the two factors PA and NA and that state 2 consists of the two factors HA-PA and PA/NA)
only emerged as a consequence of constraining specific item loadings (i.e., setting the
loadings of “happy” and “unhappy” equal to zero). To this end, we re-estimated the model
[2 2] with factor covariance matrices @, set to identity matrices (i.e., uncorrelated factors
that have variances of 1) and with the loadings of the item “irritated” set to equal to 0 for
respectively the first factor. The resulting loadings are shown in the first table below,
Table L.1. It can be seen that the first state again consists of the two factors PA and NA
and the second state again consists of the two factors HA-PA and PA/NA. The only
difference compared to the initial solution given in Section 5.3 (Table 5.1) is that, in state
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2, the items “happy” and “excited” now have cross-loadings (i.e., they have large loadings
on both factors) and not only on the first factor. Cross-loadings can be a result from
constraining truly correlated factors to be uncorrelated. We conclude that the state-
specific MM patterns emerge regardless of the chosen identification constrains.

Second, Table L.2, shows the differences in the G — 1 category intercept
parameters for the 12 items across the two states. As can be seen, all intercepts differ
significantly across the two states. In Section 5.3, we investigate the between-state
differences in the mean item scores (Table 5.1; an explanation of how to calculate the
item means is provided in the same section). These differences directly follow from the
intercept differences but are easier to interpret.
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L.5. Syntax for Running the Models

In the following, we show the Latent GOLD (LG) syntax files to obtain the application
results. Note that only one syntax is required for step 1 and 2 and one separate syntax is
required for step 3.

L.5.1. Step 1 and 2 Syntax

In this syntax, the regular ESM dataset is used as input. Note that all variables in the
dataset that are not necessary in step 1 and 2 but that are necessary in step 3 (i.e., all the
covariates, time intervals, and subject IDs) have to be listed under “keep”. The variables
are then added to the “classificationS1.csv” output file containing the posterior state
probabilities. This is important because the file serves as only input for step 3 of the
analysis as described next.

options
algorithm tolerance=1e-008 emtolerance=0.01 emiterations=250
nriterations=50;
startvalues seed=0 sets=100 tolerance=1e-005 iterations=100;
bayes latent=1 categorical=1l;
quadrature nodes=10;
missing includeall;
output
parameters=effect
standarderrors
profile
estimatedvalues=model
iterationdetails;

outfile

'classificationSl.csv' classification

keep ID deltaT depression family c classmates c friends c
NEWWAVE ;

variables

psuid ID ;

dependent
PA LAl, PA LA2, PA LA3, PA HAl, PA HA2, PA HA3, NA IAl,
NA LA2, NA LA3, NA HAl, NA HA2, NA HA3;

latent
State nominal coding=first 2,
F1l continuous,
F2 continuous;

equations
(cl)F1l| State;
(c2)F2| State;
(c3)F1 <-> F2 | State;
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State <- 1 ;

PA LAl<- 1 | State + (al)Fl | State + (bl)F2 | State;
PA LA2<- 1 | State + (a2)F1l | State + (b2)F2 | State;
PA LA3<- 1 | State + (a3)Fl | State + (b3)F2 | State;
PA HAl<- 1 | State + (a4)Fl | State + (b4)F2 | State;
PA HA2<- 1 | State + (a5)Fl | State + (b5)F2 | State;
PA HA3<- 1 | State + (a6)Fl | State + (b6)F2 | State;
NA LAlI<- 1 | State + (a7)F1 | State + (b7)F2 | State;
NA LA2<- 1 | State + (a8)Fl | State + (b8)F2 | State;
NA LA3<- 1 | State + (a9)F1l | State + (b9)F2 | State;
NA HAI<- 1 | State + (alO)Fl | State + (bl0)F2 | State;
NA HA2<- 1 | State + (all)Fl | State + (bll)F2 | State;
NA HA3<- 1 | State + (al2)Fl | State + (bl2)F2 | State;

//Constraints (on "I feel happy/unhappy")

L.5.2. Step 3 Syntax Full Model

In this syntax, the “classificationS1.csv” file is used as input. When using LG’s “step3”
option, the software automatically calculates the classification error probability matrix
from the posterior state probabilities. In order to specify the columns of the
classificationS1.csv file in which LG can find the posterior probabilities, the user has to
provide the column names as “posterior = (State.1 State.2)”. Note that the column names
depend on the name that was used to define the state variable in the step 1 and 2 syntax.
Also note that we used a CT-LMM for the latent states and a DT-LMM for the latent classes.
While subjects were allowed to transition between the states with every new observation,
subjects were allowed to transition between the classes only at the beginning of every
new wave. Therefore, we added a variable (“NEWWAVE”) that indicated whether a record
concerned a new wave (NEWWAVE = 1) or whether a record was another observation
from the same wave (NEWWAVE = 0). By means of constraints on the logits, all transition
probabilities for NEWWAVE = 0 were set to zero. Moreover, 19 subjects skipped wave 2.
If this was ignored, LG would assume that all intervals between the waves were the same
(i.e, approximately 3 months) although there were 19 longer intervals (ie,
approximately 6 months), which could lead to inaccurate parameter estimates. To solve
this problem, 19 empty records (i.e., with missing values on all variables but the ID and
the NEWWAVE variable) were added to the “classificationS1.csv” file. By choosing to
including all records with missing observation (“missing includeall”), LG accounts for the
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fact that that the second wave has been skipped and corrects for this when estimating

the

transition probabilities. Finally, note that the final latent state assignments may differ

from the initial state assignments (i.e., the single indicators) when the classification error

is rather large. In order to see the final state assignments, the user has to add
command “noignoreclassification” to the “step3” option.

the

options
algorithm tolerance=1e-008 emtolerance=0.01 emiterations=250
nriterations=50 expm=pade;
startvalues seed=0 sets=10 tolerance=1le-005 iterations=100;
bayes latent=1 categorical=1l ct=1;
missing includeall;
step3 ml modal noignoreclassification;

output
parameters=effect
standarderrors
profile
iterationdetails
estimatedvalues=model
classification;

variables
caseid ID;
independent family ¢ nominal coding=first, classmates c nominal
coding=first, friends c nominal coding=first, NEWWAVE nominal
coding=first, depression2 nominal coding=first;
timeinterval deltaT;

latent State nominal dynamic posterior=(State.l State.2)
coding=first, Class nominal dynamic dt 3 coding=first;

equations
Class[=0] <- 1 + depression;
Class <- (b~tra) 1 | Class[-1] NEWWAVE
+ (~tra) depression| Class[-1];

State[=0] <- 1;
State <- (~tra) 1 | State[-1]

+ (~tra) Class | State[-1]
+ (~tra) family c | State[-1] Class
+ (~tra) classmates c | State[-1] Class
+ (~tra) friends c | State[-1] Class;
b[1l] = -100;
b[2] = -100;
b[(3] = -100;
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L.5.3. Step 3 Syntax Reduced Model

This syntax is the same as the step 3 syntax for the full model but without the covariate
effects of depression on the initial class and class transition probabilities and without the
effect of being with friends on the state-transitions conditional on the class. Instead, the
unconditional effect of being with friends on the state-transitions was added. Below, we
only stated the changed equations.

equations
Class[=0] <- 1;
Class <- (b~tra) 1 | Class[-1] NEWWAVE;

State[=0] <- 1;

State <- (~tra) 1 | State[-1]
+ (~tra) Class | State[-1]
+ (~tra) family c | State[-1] Class
+ (~tra) classmates c | State[-1] Class
+ (~tra) friends c | State[-1];
b[1l] = -100;
b[2] = -100;
b[3] = -100;

L.6. Model Selection Procedure Step 3

In the following, we provide information about the model selection procedure that was
used to determine the number of latent classes in step 3 of the estimation (note that a
description of the CHull procedure is provided in Appendix L.3). In contrast to the model
selection in step 1 (Appendix L.3), the models in step 3 were estimated only once because
local maxima are very unlikely when the MMs are fixed. First, we estimated the full model
(“F”) as specified in Equation (5.11) with 1-3 classes. Investigating the models with 2 and
3 classes, we saw that depression did neither predict the initial state probabilities nor the
transition probabilities for the classes. Furthermore, the effect of being with friends on
the transition intensities for the states appeared to be significant but did not significantly
differ across classes. Since it was already apparent form the BIC that the full 3-class model
fitted better than the 1- and 2-class models, we also examined a 4-class model in order
not to overlook a relevant class. However, the full model with 4 classes did not converge
and was therefore not considered in the model selection procedure.

Subsequently, we re-estimated the models with multiple classes (including the 4-
class model), leaving out the effects that were non-significant in the full models (i.e., the
effect of depression on the initial class and transition probabilities between classes and
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the effect of being with friends depending on the class), while including the unconditional
effect of being with friends (i.e., not conditional on the class). All reduced (“R”) models
converged. As can be seen from the BIC and CHull outputs below, the reduced model with
3 classes (i.e., the model “R3classes”) had the best fit according to the BIC, as it has the
lowest BIC value, and was under the best three models according to the CHull when
considering all converged full and reduced models.

Although we chose the reduced model with three classes, we also investigated the
reduced model with two classes as the improvement in fit when adding a third class was
rather small (as can be seen from the BIC and CHull plots in L.6.1 and L.6.2). Similar to the
three-class solution, the two-class solution had one stable class. In the other class,
adolescents had a high probability to transition between to states with a slightly higher
probability to move to and stay in state 2. Therefore, if we would have considered the 2-
class solution, we would have missed the third class, in which adolescents frequently
transition between the states but are more likely to transition to and stay in state 1.

L.6.1. Output BIC

number of parameters BIC value

Flclass 9 13677.23
R2classes 18 12056.45
F2classes 23 12097.09
R3classes 29 11828.40
F3classes 41 11923.62
R4classes 42 11847.99

BIC criterion

o Ficlass
(o]
S
2 &
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9 —
i}
o F2classes
8 o-—9 F3classes
(o]
™ R2classes \\o %
R3classes R4classes
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Complexity of the model
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L.6.2. Output CHull

SETTINGS BY USER:
optimalization: upper bound
Required improvement in fit: 1%
Number of considered models: 6

RESULTS:
Number of selected models: 1

SELECTED MODEL:

complexity fit
R2classes 18 -5942.029
ALL MODELS ON upper BOUND:

complexity fit st
Flclass 9 -6795.519 NA
R2classes 18 -5942.029 6.257659
R3classes 29 -5775.329 NA

ORIGINAL MODELS

compTlexity fit
Flclass 9 -6795.519
R2classes 18 -5942.029
F2classes 23 -5938.405
R3classes 29 -5775.329
F3classes 41 -5765.476
R4classes 42 -5722.873

Convex hull (upper bound)

_ R3classes o o
R2classe
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S w
[ _
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8 @
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L.7. R Code to Calculate Transition Probabilities

In the following, we show how to calculate transition probabilities between the states for
a given class membership and covariate value and for any interval of interest. More
specifically, we calculate the transition probability matrix for being with family in class 2
and a median interval length (i.e., 2.25 hours). As explained in Section 5.2.2, the log
intensities can be calculated as log q;x = Yo + YixZi and the transition probabilities
P, ,s are the matrix exponential of Q X 2.25.

library(expm)

# fill the estimates from table 2 into equation (12) from the article.
# note that the ©'s and 1's are the values on the dummy variables.

# for example, -0.63 * 0 implies that we calculate the

# transition intensity when not being with friends.

ql2 <- -0.55 + # transition intercept state
0.00 * 1 + # effect of class for class 2
-7.21 * @ + # effect of class for class 3
-0.48 * 0 + # effect of family x class 1
-0.10 * 1 + # effect of family x class 2
-1.11 * @ + # effect of family x class 3
-2.62 * @ + # effect of classmates x class 1
-0.75 * @ + # effect of classmates x class 2
-2.70 * @ + # effect of classmates x class 3
-0.63 * o # effect of friends

g2l <- -0.08 + # transition intercept state
-1.71 * 1 + # effect of class for class 2
-8.74 * @ + # effect of class for class 3
-0.63 * 0 + # effect of family x class 1
-1.12 * 1 + # effect of family x class 2
-2.27 * @ + # effect of family x class 3
-1.30 * @ + # effect of classmates x class 1
0.51 * @ + # effect of classmates x class 2
-0.96 * @ + # effect of classmates x class 3
-0.39 * o # effect of friends

# put log intensities in a matrix:
LogIntensities <- matrix(c(e, q12,
q21, e),

nrow = 2, ncol = 2, byrow = TRUE)

# exponentiate to obtain intensities:
Intensities <- exp(LogIntensities)

# at this point, we already have the intensities of the
# off-diagonal elements. the diagonal elements are equal to
# the negative row sums of the off-diagonal elements:
for (i in 1:ncol(Intensities)){
Intensities[i, i] <- -(sum(Intensities[i, -i]))}
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# get the probabilities for the median interval d = 2.25

# (note that we can specify any interval of interest here):
d <- 2.25

TransitionProbabilities <- expm(Intensities * d)

# transition probabilities when being with family (in class 2).
# as can be seen, there 1is a high probability to transition to
# state 2 (66%) and to stay in state 2 (93%):
round(TransitionProbabilities, digits = 2)

#
## [1,]
## [2,]

3 3

(1] [,2]
9.34 0.66
0.07 0.93
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In the following, we summarize the arguments and the output for each function. Note that
additional documentation files are available for all functions. These can be called by
typing a questionnaire mark followed by the function name (e.g., ?step1).

M.1. stepl() function
Arguments
data The dataset with the indicators.
indicators The variable names of the indicators.
n_state The number of states that should be estimated when modelselection
= FALSE
n_fact The number of factors that should be estimated when modelselection
= FALSE
modelselection The indication whether model selection should be performed or not. The

defaultis FALSE.

n_state_range

The range of states that should be estimated when modelselection
TRUE.

n_fact_range

The range of factors that should be estimated when modelselection
TRUE.

n_starts

The number of start sets. Multiple start sets are required in order to
increase the chances of finding the global maximum (for details, see
Appendix N.3.5). The default is 25.

n_initial_ite

The number of initial iterations, that is, the number of iterations that is
performed for each start set (for an explanation, see Appendix N.3.5).
The default is 15.

n_m_step

The number of maximization-step iterations inside the implemented
expectation maximization algorithm (for details, see Appendix N.3). The
defaultis 10.

em_tolerance

The estimation convergence criterion (for details, see Appendix N.3.4).
The default is 1e-8.

m_step_tolerance

The criterion for stopping the maximization-step iterations. The default
is 1le-3. Thus, the maximization-step iterations stop when either
m_step_tolerance or n_m_step has been reached.

max_iterations

The maximum number of iterations after which the estimation
terminates regardless of whether convergence has been reached or not.
The defaultis 1000 iterations.

n_mclust

The number of mclust start sets (for details, see Appendix N.3.5). The
default is 5.
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Output

n_ it The number of iterations.

seconds The time in seconds that was required to reach
convergence.

convergence Indicates whether the model estimation
converged prior to reaching the maximum
number of iterations. A convergence of 1
indicates that the model converged.

LL The value of the loglikelihood.

BIC The value of the BIC.

intercepts The state-specific intercepts.

loadings_stand_obli

The state-specific standardized obliquely
rotated loadings. If the number of factors is
equal to one, the loadings are equal to the ones
in loadings_stand_list.

unique_variances

The state-specific unique variances.

state_proportions

The state proportions.

n_obs

The total number of observations across all
subjects and time-points.

n_par

The total number of free parameters (for
details, see Appendix N.6.1).

explained_variance

The amount of explained variance weighted by
the state sizes (for details, see Appendix N.6.4).

n_state

The number of states.

n_fact

The state-specific number of factors.

intercepts_list

List of state-specific intercepts.

loadings_list

List of state-specific loadings.

loadings_stand_list

List of state-specific standardized loadings.

loadings_obli_list

List of state-specific obliquely rotated loadings.
If the number of factors is equal to one, the
loadings are equal to the ones in
loadings_list.

loadings_stand_obli_list

List of state-specific standardized obliquely
rotated loadings. If the number of factors is
equal to one, the loadings are equal to the ones
in loadings_stand_list.

unique_variances_list

List of state-specific unique variances.

factor_correlations_stand_obli_list List of state-specific factor correlations
resulting from the rotations of the standardized
loadings.

factor_correlations_obli_list List of state-specific factor correlations

resulting from the rotations of the loadings.

activated_contraints

The number of activated constraints (for
details, see Appendix N.3.4).

classification_posteriors

The posterior state-membership probabilities
and the modal state assignments.

classification_errors

The classification errors when using the modal
state assignment (for details, see Appendix
N.4).
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classification_errors_prob

The classification-error probabilities when
using the modal state assignment (for details,
see Appendix N.4).

R2_entropy

The entropy-based R-squared measure (for
details, see Appendix N.6.6)

warning_loadings

A message indicating whether convergence for
rotating the loadings was reached or not.

warning_loadings_stand

A message indicating whether convergence for
rotating the standardized loadings was reached
or not.

raw_data The data corresponding to the indicator items
that were used in the analysis.
M.2. step2() function
Arguments
data The dataset used in step1().
model The model estimated with step1().
Output

classification_posteriors

The posterior state-membership probabilities and the
modal state assignments.

classification_errors

The classification errors when using the modal state
assignment (for details, see Appendix N.4).

classification_errors_prob

The classification-error probabilities when using the
modal state assignment (for details, see Appendix N.4).

R2_entropy

The entropy-based R-squared measure (for details, see
Appendix N.6.6).

totoal classification_error

The total classification error.

state_proportions

The state proportions.

data The data with the posterior state-membership
probabilities and the modal state assignments attached.
M.3. step3() function
Arguments
data The dataset (including the covariate values).
timeintervals The name of the column containing the intervals between
measurement occasions. The default is NULL, which means that the
measurement occasions are assumed to be equidistant.
identifier The name of the column containing the subject identifiers.
n_state The number of states that was used for the estimation with
stepl().
postprobs The posterior state-membership probabilities of step2().
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transitionCovariates

The covariate(s) for the transition intensities. The default is NULL,
which means that no covariate effects are estimated.

initialCovariates The covariate(s) for the initial state probabilities. The default is
NULL, which means that no covariate effects are estimated.
n_starts The number of random start sets (for details, see Appendix N.5.4).

The default is 25.

n_initial_ite

The number of initial iterations that should be performed for each
start set. The default is 10.

method

The estimation method. The default is "BFGS", which is usually
faster and more stable when including covariates. The alternative
is "CG".

max_iterations

The maximum number of iterations after which the estimation
stops regardless of whether convergence has been reached or not.
The default is 1000.

tolerance

The convergence tolerance (for details, see Appendix N.5.3). The
default is 1e-10. When the message occurs that the model has
likely not converged because the Hessian is not positive definite, it
is advisable to set the argument to a lower value and repeat the
analysis (e.g., 1e-16; Jackson, 2011).

scaling

A scaling parameter for the loglikelihood that can prevent
numerical problems from occurring, which is internally passed to
the optimization function optim(). An appropriate scale value is
close to -2 times the loglikelihood, but the loglikelihood is of course
unknown prior to estimating the model. Therefore, by default, Imfa
uses an approximation, which is based on the loglikelihood value
of a CT-LMM without transitions. Next to this default (i.e.,, scaling
= "proxi"), itis also possible to specify own scale values.

Output

seconds

The time in seconds that was required to reach
convergence.

convergence

Indicates whether the model estimation converged prior to
reaching the maximum number of iterations. A
convergence of 1 indicates that the model converged. Note
that it is not possible to obtain the number of iterations
because this information is not returned by the optim()
function.

LL

The value of the loglikelihood.

WaldTests

The Wald test output.

estimates

The parameter estimates of the transition model.

classification_posteriors | The posterior state-membership probabilities and the

modal state assignments.

state_proportions

The state proportions.

n_initialCovariates

The number of covariates for the initial state probabilities.

n_transitionCovariates The number of covariates for the transition intensities.

n_initial_covariates

The number of covariates specified for the initial state
parameters.

transition_covariate_means | The number of covariates specified for the transition

parameters.

n_state

The number of states.
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data The data with the posterior state-membership
probabilities and the modal state assignments attached.

M.4. chull_1lmfa() function

Arguments

X The model-selection output of the function step1().

Output

Prints the models on the upper boundary of the CHull, the corresponding scree-test
values, and the selected model(s).

M.5. factorscores_lmfa() function

Arguments
data The dataset used in stepl().
model The model estimated with step1().
oblique The indication whether the factor scores should be obtained

for the obliquely rotated loadings or unrotated loadings. The
default is TRUE, indicating that the obliquely rotated loadings
are considered.

rounding The number of decimals to which the results should be
rounded. The default is 4.

Output
Attached the state-specific factor scores to the dataset.

M.6. probabilities() function

Arguments
model The transition-model output of the function step3().
deltaT The interval for which the transition probabilities should be
calculated.
initialCovariateScores The covariate scores for which the probabilities should be

calculated. The defaultis NULL, which implies that any scores
are set equal to the sample means.
transitionCovariateScores The covariate scores for which the probabilities should be
calculated. The defaultis NULL, which implies that any scores
are set equal to the sample means.
rounding The number of decimals to which the results should be
rounded. The default is 2.
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Output

Prints the initial state and transition probabilities for specified covariate values (and
intervals).
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APPENDIX

In this appendix, we provide all technical information about latent Markov factor analysis
(LMFA) and the three-step (3S) estimation with the R package Imfa. In the following, we
first introduce relevant data notation (N.1). Then, we explain LMFA (N.2). Thereafter, we
describe the three estimation steps (as presented in Section 6.2.4) and how they are
implemented in Imfa (N.3-N.5). Finally, we provide equations for relevant statistics, such
as the Bayesian information criterion (BIC; N.6).

N.1. Data Notation

The observations are denoted by y;;; with i = 1, ..., I referring to the subjects, with j =
1,...,J indicating the variables, and with t = 1, ..., T,!® referring to the measurement
occasions. The observation are collected in the / X 1 vectors y;; = (ym,ym, s Yi]t)’ that
are themselves stored in the T x J data matrices Y; = (¥;;, iz, -, ¥ir)'- The covariate
scores are denoted by z;,, (withu = 1, ..., U referring to the covariates) and are collected
in the U x 1 vectors z;; = (Zjt1, Zitz, -, Zizy)'» Which are themselves collected in the T X |

matrices Z; = (z{1, Zi3, -, Zi7)-

N.2. LMFA

The LMFA model consists of a transition model (i.e., the continuous-time- (CT-)LMM) and
state-specific measurement models (MMs) (i.e., the FA models). The conceptual ideas
behind the models were described in Section 6.2. In the following, we describe the
technical details.

N.2.1. CT-LMM

The CT-LMM makes two assumptions. First, the first-order Markov assumption states that
the probability to be in state k (with k = 1, ...,K) at time-point t depends only on the
state membership [ (with [ = 1, ..., K) at time-point t — 1. Second, the local independence
assumption states that the responses y;; at time-point t depend only on the state
membership k at this time-point. The CT-LMM, for subject i, is defined as follows:

p(Yy, Si|Z) = p(Yir, o) Vir,Sits oo Sir|Zi, o) Zir)
initial state transition response
probabilities T probabilities T probabilities (N])

pGalz) | [PoaGilsirzo | | pulso
t=2 t=1

109 Note that the number of time-points T may differ across subjects but we mostly omit the index i for the
sake of simplicity.
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The K X 1 vectors s;; = (Sjz1, -, Sitx)' contain binary indicators that determine the state
memberships at time-point ¢, with s;;;, = 1 for one state k and s;;;, = 0 for all other states.
As can be seen in Equation (N.1), the model contains three types of probabilities:

1. p(si11zi1) is a K X 1 vector with the initial state probabilities that define the

probabilities to start in a certain state at the first time-point and thus sum to one.

2. ps, (Sitlsic-1,Zi) is a K X K matrix Ps_, with transition probabilities that define
the probabilities to stay in a state or transition to another state at two consecutive
measurement occasions with rowsums equal to 1. As indicated by the index &;;, the
transition probabilities are a function of the interval §;; between two consecutive

observations and the K X K transition intensity matrix Q with the off-diagonal

P(Sitk=1lSie-5,1=1Zit)

elements q;, = }sil‘f(l) S , which define transitions between the origin

state [ and the destination state k for a very small time unit. The diagonal elements
are equal to the negative row sums (Cox & Miller, 1965). The transition probability
matrix Ps,, is obtained with Exp(Q X 8;;), where Exp(:) denotes the matrix

exponential.

3. p(yi¢ls;) determine the state-specific response probabilities and thus the
probabilities of having a certain response pattern depending on the state
membership at time-point t. In LMFA, the probabilities depend on the state-

specific MMs.

As can be seen from Equation (N.1), the initial state and transition intensities may
depend on the covariates z;;. Note that the covariates and the observations at time-point
t are assumed to be conditionally independent given the state membership at that time-
point (i.e., the covariates affect only the state membership and not the indicators directly).
The covariates are included by means of regression (Bartolucci et al.,, 2014; Vermunt et
al,, 1999). Note that a logit model is used for the initial state probabilities and a log-linear
model is used for the transition intensities. Specifically, the initial state probabilities are
modelled as:

p(sik = 1251)
log 22tk = 1%/ + Brzj=q; fork =2,..,K, N.2
gp(siu =1]zy) ot & BiZie=s 2
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with B indicating the initial state intercepts and B}, = (ﬁk,ziu’ . ﬁk_ziw)' indicating the

slopes (i.e., the covariate effects). For the transition intensities, the model is
log quk = Yo + YuZie; fork #1, (N.3)

with ygy, as transition intercepts and yj, = (Vlk.zln' .y }/lk'zitu) as slopes.

N.2.2. State-Specific FA Models

The state-specific FA models determine what the MMs look like. The state-specific FA
model for subject i being in state k at time-point t (i.e., S;;, = 1) is:

ielsie = 11 = v + A £y + ey, (N.4)

where vy is a state-specific /] X 1 intercept vector; Ay is a state-specific /] X F, loading
matrix, where F;, indicates the number of factors for state k; f;; ~ MVN(0,®;) is a
subject-specific and time-point-specific F;, X 1 vector of factor scores with ®; being the
state-specific factor covariance matrix. Furthermore, e;; ~ MVN(0,¥,,) is a subject- and
time-point-specific J X 1 vector of residuals, where W) contains the unique variances ¥y
on the diagonal and zeros on the off-diagonal. This implies that the response probabilities,
p(Vit|sir) in Equation (N.1) are determined by state-specific multivariate normal
distributions with covariance matrices X; = A, ®; A}, + ¥, and mean vectors v;.

N.3. Step1inImfa

The first step of the 3S procedure consists of obtaining the maximum likelihood (ML)
estimates for the state-specific MMs (and thus the FA models) by means of mixture factor
analysis (McLachlan & Peel, 2000; McNicholas, 2016). In Imfa, this is done by means of the
step1() function. Details about the arguments and the output are provided in Appendix
M.1. In the following, we first show the loglikelihood (logL) function that has to be
optimized. Then, we explain how the model is estimated in the Imfa package, followed by
the description of the inherent convergence criteria, the implemented algorithm, and,
finally, the multistart procedure.

N.3.1. Likelihood Function

In order to obtain the ML estimates, the following logL function has to be maximized:
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[T K
logLsrgpr = Zz log Z P(Sik = DpWiclsir = 1 |, (N.5)
k=1

i=1t=1

where p(s;;x = 1) are the state proportions, p(y;:|Sitck = 1) = MVN(y;|vk, Zi) are the
response probabilities for a specific state, and X, was defined before (N.2.2). In step1(),
the proportions and response probabilities are estimated by means of an expectation
maximization (EM) algorithm described next.

N.3.2. Estimation

The observed-data logL in Equation (N.5) is complicated by the latent-state memberships
and the latent factor scores. The EM algorithm solves this problem by iterating though the
following steps. First, in the expectation- (E-)step, the model parameters are assumed to
be given and the posterior state-membership probabilities are calculated accordingly (i.e.,
under current estimates of the model parameters). Subsequently, in the maximization-
(M-)step, the posterior state-membership probabilities are treated as observed and the
model parameters are updated (i.e., optimized) one by one. In fact, in the M-step, another
EM algorithm with a limited number of iterations is used to update the factor parameters
for each state. The algorithm iterates through the E- and M-steps until convergence. In the
following, we describe the specific steps of the EM algorithm of Imfa (N.3.4), including
convergence criteria (N.3.3), and the multistart procedure (N.3.5).

N.3.3. Convergence

The EM algorithm (N.3.4) stops when reaching a convergence criterion. In the step1()
function, the convergence is evaluated with respect to both the logLgsrgpq:

Apogr = logLirgpy — lOgLZ';éPp (N.6)

where v refers to the iteration number, and with respect to the sum of the absolute
changes in the parameter estimates:

) (N.7)
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with r = 1, ..., R referring to the separate parameters. More specifically, the algorithm
stops when one of the two criteria (or the maximum number of specified iterations) is
reached. Within the EM algorithm, the M-step is either repeated as long as the parameters
still change a lot, which is evaluated with

gb — gp-1

) (N.8)

where b refers to the M-step iteration number, or until a certain number of M-step
iterations is reached.

N.3.4. EM algorithm

In the following description of the EM algorithm, we use specific values to specify, for
instance, the convergence tolerance and the maximum number of iterations. These are
just the default values, which may be changed by the user.

START

Set the iteration number: v = 0 (or equal to the final iteration number of the chosen start
set as described in N.3.5). While A;,5, and A, > 1e — 06 and v < 1000:

1. Update the iteration number: v = v + 1.

2. Update posterior state-membership probabilities p(s;;, = 1]y;;) as follows:

(i = 1lyie) = p(Siee = Dp(yie|Sier = 1)
itk it p(yu)

_ P(Siex = Do Vieke|Sier = 1)
Yho1PGiee = D WieklSiee = 1)

(N.9)

3. Update the state-specific expected sample size Ny, state proportions p(s;; = 1),

and J X 1 state-specific intercept vectors v, with

[T

N = Z Z p(Siek = 1lyie), (N.10)
=1 t=1

k N.11

P(Sitk=1)=le,and (N-11)
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_ i=1 Di=1[P(Sice = 11yie)Yie) (N.12)
k - .
Ny

4. Compute the J X ] state-specific expected observed covariance matrices C;, with

_ {:1 YtealpGioe = 1Y) ie — Vi) (Vie — Vk),].

C
k N,

(N.13)

5. Set the M-step iteration number: b = 0.
6. While DGyt > 1€ = 03 and b < 10:

a. Update the M-step iteration number: b = b + 1.

b. Compute the F;, X J regression-weight vectors f; (from regressions of the

items on the latent factors) and the Fj, X F), matrices @, containing the
expectations of the factor covariances based on the current parameters and

the observed data with
Bi = A, (A A} + D) tand (N.14)
0y =I5, — BxA + BrCiBy- (N.15)
Update loadings A, and unique variances ¥, with
A, = C,B;95" and (N.16)
Y, = diag(Cy, — ArBrCp). (N.17)

Updating the loadings and unique variances basically comes down to
calculating the regression parameters and residual variance in a series of
simple linear regressions for items with the factors as predictors. Note that
small unique variances can lead to numerical problems. Therefore, if the
variances fall below a certain threshold value, they are fixed to this value.
The item-specific threshold values are constant across states and

determined by multiplying the observed variance of an item with 1e-06.110

d. Compute the change in parameters AgM_step (Equation (N.8)).

110 Note that this value cannot be changed by the user.

279



APPENDIX

7. Compute the logLsrgp, value (Equation (N.5)).

8. Compute the change in parameters Ag  ~and logLsrgp; Ajogr, (Equations (N.7) and

(N.6)).
END

N.3.5. Multistart Procedure

In order to increase the chances of finding the global maximum, the following multistart
procedure with multiple start sets is used where the number of starts is equal to the
specified number of model-based clusterings plus 10 times the specified number of start
sets (i.e, by default, 5+ 10 x 25 = 255). Specifically, the procedure starts with five
model-based clusterings by means of the mclust package (Scrucca, Fop, Murphy, &
Raftery, 2016) to assign observations to states. Then, parameters are initialized for each
of the five start sets as follows. The state-specific sample size N,, state proportions
p(sitx = 1), and state-specific intercepts vy, as well as the state-specific weighted sample
covariance matrices C; are computed as in Equations (N.12) and (N.13). Subsequently,
probabilistic principal component analysis (Tipping & Bishop, 1999) is used in order to
obtain the state-specific loading matrices A, and unique variances ¥,. To this end, the
following eigendecomposition is conducted:

EI; = MkaMk_l, (N18)

where the state-specific / X J matrix My, is the matrix of eigenvectors and the state-
specific J X 1 vector v, the eigenvalues. Moreover, the state-specific /] X F, matrix
M, r, contains the first F, eigenvectors, the state-specific J X (J — F, ) matrix
M, _r, contains the disregarded eigenvectors, and the state-specific F X Fy, diagonal
matrix Vj r, contains the first F, eigenvalues of v, on its diagonal. The loadings and

unique variances are then obtained with

My -
Ay =My, Jvk_Fk - Z}_"—'F:klpk and with (N.19)
XMy _p
p ==k N.20
k ] —Fy ] ( )
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where } M _r, denotes the sum of the disregarded eigenvalues and Iy, and I; denote
Fi, X F, and J X ] identity matrices, respectively. Next, the loadings A, and unique
variances W, are updated once as in Equations (N.16) and (N.17). Subsequently, the value
of logLsrgp, is obtained (Equation (N.5)). Then, the partitions are ranked according to
their logLsrgpy values.

From the mclust start set with the largest logLsrgpq value, 250 random start sets
are generated by iteratively reassigning 30 percent of the assignments, that is, for start
set 1, 30 percent of the mclust assignments are reassigned, for start set 2, 30 percent of
the assignments from start set 1 are reassigned, and so on. Then, for each of the start sets,
parameters are again initialized and the logLgrzp, values are computed as described
above. Next, the partitions of the random start sets and the best mclust set are ranked
according to their logLgrgp; Values and the best 25 start sets (i.e., the number of specified
start sets) are selected as start partitions. For each start set, 15 iterations are performed
by the EM algorithm (N.3.4). Subsequently, the testing strategy selects the start set with
the highest logLgrzp; and saves the parameter estimates, 82°¢, which serve as the initial
values in the EM algorithm. Note that, instead of setting the number of iterations v = 0
(as at the beginning of the first iterations through the start sets), the algorithm continues
with the number of iterations that have already been performed; thatis v = 15.

N.4. Step 2 in Imfa

In step 2, the subject- and time-point-specific observations are classified into the states
W;r = (Wjzq, ..., Wirg) based on the largest estimated posterior probability to belong to a
state (i.e., based on a so-called “modal” state assignment). Thus, the observations are
assigned to the MM that is most likely underlying the item responses. This can be
expressed as p(Wi, = 1|y;:) = 1 for state k with the largest p(siym = 1lyie) - It is
important to understand that the assignment of almost any observation includes some
amount of uncertainty or “classification error” and can be calculated by conditioning the
assigned state membership on the true state membership; that is p(w;; | S;1)- For details,
see N.6.5. As stated before, the amount of classification error is related to the degree of
state separation, which is quantified by the entropy-based R-squared measure RZ¢yopy-
The larger the state separation, the smaller the classification error. In Imfa, the state
assignments, classification errors, and the Rg,mopy can be obtained with the step2()

function. For details about the arguments and the output, see the Appendix M.2.
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N.5. Step 3 in Imfa

The third step of the 3S procedure consists of estimating the transition model by means
of a single indicator CT-LMM (with covariates), which automatically corrects for the
classification uncertainty from step 2. More specifically, the single indicator model is:

T T
p(W;|Z;) = z Z p(8i11Zi1) np(sitlsit—lﬂzit) HP(WL‘HSL‘»:); (N.21)
Si1 2 t=1

SiT t=

where the response probabilities p(w;;|s;;) are fixed to the classification errors of step 2
and W; = (w;;, W;,, ..., W;r) are manifest single indicators (containing error) of the latent
(error free) latent states S; (Di Mari et al.,, 2016; Vogelsmeier et al., 2020). Note that W;
and S; may differ, which is increasingly more likely for larger classification errors. In Imfa,
the CT-LMM can be estimated with the step3() function. Details about the arguments and
the output are given in Appendix M.3. In the following, we first show the logL function
that has to be maximized to obtain the ML estimates. Afterwards, we describe how the
estimation is performed in the Imfa package, including the inherent convergence criteria
and a multistart procedure.

N.5.1. Likelihood Function

The following logL function has to be maximized to obtain the ML parameter estimates.

1
logLsreps = Z log(p(W;]Z))). (N.22)

=1

Note that all parameters have been defined before.

N.5.2. Estimation

The model is estimated by means of an optimization routine from the msm package
(Jackson, 2011). The corresponding function msm() can be used to estimate various types
of CT-LMMs. In order to obtain the estimates, msm() itself uses the optim() function,
which performs “general-purpose optimization” (R Core Team, 2020). In brief, instead of
maximizing the logL, optim() minimizes a loss function that is equal to -2 times the logL.
For details about the estimation procedure, we refer to the function documentations, that
can be called with the commands ?msm and ?optim. The step3() function in Imfa is
tailored to the type of model that needs to be estimated in the third step of LMFA (i.e, a
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single indicator CT-LMM with response probabilities fixed to the classification errors that
results from the modal state assignment in step 2). Thus, step3() can be seen as a
wrapper that facilitates the usage of msm() by providing proper parameter specifications
and constraints and showing the desired parameter estimates, including significance tests
for covariate effects by means of Wald tests.

N.5.3. Convergence

The optimization of the loss function (N.5.2) stops when the convergence criterion (say,
le-10, the default) is reached. More specifically, the optimization stops when the loss
function (i.e., —2logL) can no further be reduced by a factor equal to the specified
tolerance times the sum of the absolute value of the loss function and the tolerance. Thus,
when defining the reduction in the loss function as

Az = _ZIOng;éps — (—2logLsrgp3), (N.23)

the estimation stopes when A_,;,4;, < 1e — 10 (| — 2log Lsrgps | + 1e — 10).

N.5.4. Multistart Procedure

The results of the CT-LMM are very sensitive to the start values of the log transition
intensities. More specifically, as previously stated, the intensities are directly related to
the size of the time unit in the dataset. If the unit of the intensities from which the
algorithm starts are too far from the actual unit, the model estimation will likely end up
in alocal maximum. Therefore, the following multistart procedure has been implemented:
First, (by default) 25 random diagonal transition probability matrices P are sampled with
staying probabilities on the diagonal that lie between 0.5 and 1. Per row, the off-diagonal
probabilities are set equal (considering the constraint that rows must sum to 1).
Subsequently, the transition intensity matrices Q are obtained by taking the matrix
logarithm of the transition probability matrices P. Then, the Q matrix is rescaled by
dividing it by the average length of the time intervals. Next, for each start set, 10 initial
iterations of the CT-LMM analysis are performed. For each set, the logL values are
obtained and ranked and the solution with the best logL value is used for the final
analysis. Note that the estimation is not sensitive to the start values of the initial state
logits and the covariate effects, which are, therefore, simply initialized to zero (i.e.,
covariate effects are absent and probabilities to start in a state are equally likely).
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N.6. Statistics

N.6.1. Number of Free Parameters

The number of free parameters, fp, is obtained as follows:

state proportions intercepts unique variances loadings
—_ — —_— —_ (N.24)
fr = K—-1 + KxJ] + K x]J + K X ] X Fy,.

Note that the number of activated constraints for small variances (see N.3.4) would be
subtracted from fp.

N.6.2. BIC

The BIC considers complexity and parsimony by penalizing models with more parameters
(fp) and larger sample size (N) as follows:

BIC = -2 % logLSTEpl + fp X log(N); (NZS)

with logLgrgp, as in Equation (N.5), fp as in Equation (N.24),and N = ¥X_, N, with N, as
in Equation (N.10).

N.6.3. CHull Scree-Test Value

For all models (but the least and most complex model) on the upper boundary of the
convex hull (CHull), the following scree-test value, st, is obtained:''!

(logLSTEPl,n - lOgLSTEPl,n—l)

fpn — fpn—l
st, = : N.26
" (lOgLSTEPl,n+1 - lOgLSTEPl,n) ( )
fpn+1 - fpn

where the index n denotes the nth hull model. Note that the numerator and the
denominator pertain to the slopes of two consecutive parts of the upper boundary of the

111 For the procedure to obtain the models on the upper boundary, see Bulteel et al. (2013) and Vervloet,
Wilderjans, Durieux, and Ceulemans (2017).
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CHull. Large values of st,, indicate that model n fits clearly better than model n — 1, while
model n + 1 only leads to a small increase in model fit (Bulteel et al., 2013).

N.6.4. Explained Variance

The amount of explained variance, EV, is calculated by taking the sum of squares of the
standardized loadings per state, SS, dividing them by the number of items, J, weighting
them by the state proportions, p(s;;, = 1), and , finally, adding them up across states K.
Thus,

J Fg
SS, = Z Z(Aw)z, (N.27)
i=1f=1
K
EV = Z SSp/] % (i = 1). (N.28)
k=1

N.6.5. Classification Error
The classification error is obtained by conditioning the assigned state w;;,,, = 1 on the

true, latent state s;;, = 1 for all statesm, k = 1, ..., K. That is:

1
T Zi=1 2i=1P Wiem = 1|yi)P(Siek = 1|Yit). (N.29)
p(sie = 1)

PWigm =1 s =1) =

For a derivation, see Vogelsmeier et al. (2020). Note that p(s;, = 1) are the state
proportions (Equation (N.11) and p(w;;,, = 1]y;;) are the modal state assignments based
on the posterior state-membership probabilities p(s;;x = 1]y;:) (Equation (N.9).

N.6.6. R-squared Entropy

The state separation in terms of the R-square measure RZ,¢yopy Can be calculated as

follows:

R2 _ Entropy(S) — Entropy(S|Y) o Entropy(S|Y)
entropy Entropy(S) Entropy(S)

(N.30)
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with
I T K
Entropy($) = » ) > =p(siee = DlogpCsige = 1) (N31)
i=1t=1k=1
and
I T K
Entropy(SIV) = > "> ~p(sue = Uy logp(siee = lyie)  (N.32)
i=1t=1k=1

Thus, Equation (N.30) shows that the Rgnmw measure determines the relative
improvement in predicting the state memberships given the observations (numerator)
versus predicting the state memberships without the observations (denominator).

N.6.7. Wald-test Statistic

The Wald statistic W? is computed as follows:

w?=10,5(00,71, (N.33)

with 8, and £ (6,) ! indicating the slopes and the estimated variance covariance matrix
for covariate u, respectively. Note that the degrees of freedom (df) are equal to the
number of constrained parameters (e.g., df = 6 when testing the significance of a covariate
with six slopes).

N.6.8. Factor Scores

The state-specific factor score estimates, F;,, are obtained by means of the regression
method (Thomson, 1934; Thurstone, 1935):

Fi = Y2 1A Dy, (N.34)

Wlth Ek = Akq)kA’k
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SUMMARY

Studying dynamics in psychological constructs in intensive longitudinal data (ILD)
becomes increasingly popular among researchers in the social and behavioral sciences.
Technological advances facilitate gathering such ILD, for instance, with experience
sampling methodology. However, before beginning with their analyses, researchers have
to verify that the measured constructs are equivalent across subjects and time. To this
end, the “measurement model” (MM) - indicating how items measure the constructs -
needs to be invariant across subjects and time (i.e., “measurement invariance” (MI) must
hold). If violations of MI are undetected or ignored, conclusions about (between-person
differences in) within-person dynamics in the constructs may be invalid.

Ml is often violated in ILD because response styles or item interpretation may not
only differ across subjects, but subjects may also change in the way they respond to the
questionnaire items over time. For instance, how subjects interpret an item could change
depending on the context in which the questionnaire is completed, or subjects may start
agreeing to all items once they are no longer motivated to complete the questionnaires.

Existing methods could only test a priori assumptions about MI violations.
However, these assumptions are usually absent or incomplete, leaving the social and
behavioral scientists with no efficient approach to explore the tenability of the MI
assumption in their ILD. This dissertation aims to solve this gap by presenting latent
Markov factor analysis (LMFA) for unraveling MM differences/changes for many subjects
and time-points simultaneously. In LMFA, a latent Markov model (i.e., a latent class model
that allows subjects to transition between dynamic latent classes or “states” over time)
classifies observations based on their underlying MM into a few states and exploratory
factor analysis per state evaluates the structure of the state-specific MMs. Observations
within the same state have the same underlying MM and are thus validly comparable.

In this dissertation, we first introduce LMFA and show that the method performs
well in recovering the state memberships and the MMs per state under a wide range of
conditions (Chapter 2). Then, we extend LMFA by means of a continuous-time latent
Markov model to adequately handle typically encountered unequally-spaced
observations (Chapter 3). Next, we propose a three-step maximum likelihood estimation
as an alternative to the originally employed one-step full information maximum
likelihood estimation because this facilitates the inclusion of explanatory variables and
thus offers researchers the possibility to understand why MMs differ/change (Chapter
4). Thereafter, we extend LMFA into latent Markov latent trait analysis that adequately
handles categorical data, which allows researchers to investigate MI in their ILD also if
the data contain responses with only a few categories and skewed distributions (Chapter
5). Finally, we provide a tutorial on how to investigate MI with our R package Imfa, which
is openly available to all researchers in the social and behavioral sciences (Chapter 6).

310



Acknowledgments

311



ACKNOWLEDGMENTS

First, I would like to thank my daily supervisor, Kim De Roover. Kim, you gave me the
chance to start my PhD, and I could not be more grateful for your intense mentoring,
supervision, your detailed and ever constructive feedback, for your empathy and support
whenever I needed it, and for your immense trust in me, which taught me to also trust
myself and become the researcher and teacher I am today. You walked the “philosopher's
path” with me, both in academia and in Japan, during a vacation in connection with my
first international conference. It was an experience I will never forget. In some ways, the
path in academia and the journey in Japan were very similar. Sometimes the way to the
goal was difficult and took a bit longer than planned (looking for errors in a simulation
study or algorithm is a bit like looking for the right entrance in Tokyo's subway stations).
From time to time, we encountered disappointing events (driving all the way to the Kegon
Falls and not seeing the waterfall because it was so foggy is a bit like getting Reviewer 2’s
comments after working so hard on a paper). Usually, though, the effort was totally worth
it (I'm not sure if we smiled more when we were in the middle of a gigantic crowd
watching the most amazing fireworks we've ever seen or when we received the NWO
talent grant). Thank you, Kim, you were an awesome supervisor!

Next, I would like to express my sincere gratitude to my promotor, Jeroen
Vermunt. Jeroen, on one of my first days in the department, you told me that your door
was always open when I needed help. And indeed, whenever 1 had a question, you
immediately took the time needed to answer it and get me back on track. I learned an
incredible amount from you. You also granted me a lot of autonomy and you had great
confidence in my own judgment and work, which helped me develop confidence in my
own decisions. Additionally, you taught me that a PhD is not just about writing papers but
also about personal development, enjoying conferences and vacations, and attending
MTO borrels. Thank you for having been such an inspiring promotor, Jeroen!

I would also like to thank the members of my committee for their time to read and
evaluate my dissertation and for their valuable suggestions. Eva Ceulemans, Ellen
Hamaker, Jelte Wicherts, and Zsuzsa Bakk, it is an honor that you are in my committee.
Eva, I would also like to thank you for making an online research visit possible in times
of Covid-19 and for welcoming me so kindly to Leuven together with Rosi.

Moreover, [ am grateful to my co-authors for their valuable contributions to the
chapters and our insightful discussions about real data applications. I really enjoyed
collaborating with and learning from you.

[ would also like to thank all my current and former colleagues at the Department
of Methodology and Statistics. | was always looking forward to coming to work, and [ am
very grateful for all the fun discussions we had and for all the things I learned from you.

312



ACKNOWLEDGMENTS

Specifically, I would like to thank all the colleagues who provided their helpful comments
for the talent grant proposal and helped me prepare for the NWO interview. Thanks also
to all the members of the Vici and Psychometrics lab groups for reading my chapters and
giving me constructive feedback, and for the possibility of learning about your projects.
Moreover, I am grateful to my colleagues whose doors were always open to ask for help
when I did not know how to solve a problem I encountered while consulting at the
Elisabeth Hospital in Tilburg. Additionally, I would like to thank my colleagues who
supported me in coordinating my first course. Furthermore, thanks for all the breaks in
the form of “gezellige borrels” at the Esplanade, walks through the forest, and mindful
yoga sessions in the evening. And last but not least, Anne-Marie, thank you for all your
support, whether it was planning conference travel or an entire symposium. I really
appreciated your help!

A special thanks goes to my great paranymphs, Esther and Damiano. I am so
grateful that you stand behind me. Thank you both for countless hours ranting about
measurement in psychology, for laughing at things that went wrong in research (or, more
often, in life), for your unfiltered, honest opinions (as well as for accepting mine), and for
the drinks and walks when it was time for some distraction from research. Thanks to you,
[ stayed motivated and had a lot of fun at work. Esther, thank you for being so inspiring
and caring. Damiano, thank you for being such a supportive PhD-bro.

Before and during my time at Tilburg University, I met the most amazing friends
both in Germany and in the Netherlands. While [ was working on my dissertation, I was
often very busy, but you all made sure that there was always something fun to distract
me from work and enjoy life. Thank you for all the laughter, for giving me many great
memories and experiences, and for coming all the way to Tilburg from Hemer, Iserlohn,
Dortmund, Bocholt, Diisseldorf, Berlin, Hamburg, Munich, Amsterdam, or Utrecht. I am
lucky and grateful to have you in my life.

On my first day at work, Jeroen told me that he had reserved a desk next to you,
Florian, saying that he thought we would get along well. He couldn't have been more right.
[ am immensely grateful for the past five years with you. There hasn't been a single year
that we haven't had a great vacation, not a single month that you haven't tried to answer
one of my many statistics questions, not a single week that you haven't made sure we had
fun and relaxing distractions by hiking through nature or seeing friends and family, and
not a single day that you haven't made me smile. Thank you for being my best friend, for
being patient with me and supporting me when [ feel anxious or stressed, and for
genuinely being happy for me in moments of joy.

I would furthermore like to thank the Boing-Messings for welcoming me so
warmly into their family. Thank you for all the long nights when we shared not only lots

313



ACKNOWLEDGMENTS

of wine and delicious food but also lots of happiness, joy, and emotional support. [ am
grateful to be part of your family.

[ am also deeply attached and thankful to my brothers, Sebastian and Benjamin
Vogelsmeier. Sebastian, [ am so grateful for your honesty and down-to-earth attitude and
for the fact that we have the same sense of humor, which often made me laugh and forget
about problems during my PhD. Benjamin, I greatly appreciate your ease of mind, and I
am so grateful that you always share your positivity and optimism with me because this
gave me a lot of positive energy while working on this dissertation.

My very special thanks go to my parents, Gabriele and Eberhard Vogelsmeier, who
supported me every day in the last 31 years of my life and to whom I dedicate this
dissertation. Mama, you have always been my role model, and Papa, I have always looked
up to you. Thank you both for letting me follow my own path, for constantly believing in
me, for your unconditional love, and for your never-ending enthusiasm for trying to
understand what exactly it is | worked on during my PhD. I love you.

Tilburg, November 16, 2021 Leonie V. D. E. Vogelsmeier

314















	155048-Vogelsmeier-OMS_voorkant.pdf
	Blank Page

	155048-Vogelsmeier-OMS_achterkant.pdf
	Blank Page


