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Abstract

We consider the generalized moment problem (GMP) over the simplex and the
sphere. This is a rich setting and it contains NP-hard problems as special cases,
like constructing optimal cubature schemes and rational optimization. Using the
Reformulation-Linearization Technique (RLT) and Lasserre-type hierarchies, relax-
ations of the problem are introduced and analyzed. For our analysis we assume
throughout the existence of a dual optimal solution as well as strong duality. For
the GMP over the simplex we prove a convergence rate of O(1/r) for a linear pro-
gramming, RLT-type hierarchy, where r is the level of the hierarchy, using a quan-
titative version of Pólya’s Positivstellensatz. As an extension of a recent result by
Fang and Fawzi [Math. Program., 2020, https://doi.org/10.1007/s10107-020-01537-
7] we prove the Lasserre hierarchy of the GMP [Math. Program., Vol. 112, 65-92,
2008] over the sphere has a convergence rate of O(1/r2). Moreover, we show the
introduced linear RLT-relaxation is a generalization of a hierarchy for minimizing
forms of degree d over the simplex, introduced by de Klerk, Laurent and Parrilo [J.
Theoretical Computer Science, Vol. 361, 210-225, 2006].

Keywords Generalized moment problem with polynomials · linear and semidefinite
programming hierarchies

1 Introduction

For a compact set K ⊂ Rn let M(K) denote the (infinite-dimensional) vec-
tor space of signed finite Borel measures with support contained in K. Let
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[m] = {1, . . . ,m} for m ∈ N. The generalized moment problem (GMP) is an
optimization problem of the following form:

val := inf
µ∈M(K)+

∫
K

f0(x)dµ(x)

s.t.

∫
K

fi(x)dµ(x) = bi ∀i ∈ [m]∫
K

dµ(x) ≤ 1,

(1)

where m ∈ N, bi ∈ R for all i ∈ [m], M(K)+ is the convex cone of positive
finite Borel measures supported on K, and f0, f1, . . . , fm are integrable over
K with respect to all µ ∈ M(K)+. We will always assume the GMP (1) has
a feasible solution, which implies that is has an optimal solution as well (see
Theorem 1).

The constraint
∫
K

dµ(x) ≤ 1 essentially means that we know an upper
bound on the measure of K for the optimal solution, since, in this case, we
may scale the functions fi a priori to satisfy this condition.

The GMP is a conic linear optimization problem whose duality theory is
well understood, see e.g. [1]. A wide range of optimization problems can be
modeled as an instance of the GMP. The list includes problems from optimiza-
tion, probability, financial economics and optimal control to name only a few,
see e.g. [2]. For polynomial data, i.e., fi ∈ R[x] for all i = 0, 1, . . . ,m and the
set K being a basic closed semialgebraic set, Lasserre [3] introduced a mono-
tone nondecreasing hierarchy of semidefinite programming (SDP) relaxations
of (1). For a survey on SDP-based approximation hierarchies and their error
analysis, see [4].

In this paper, we will consider the case where K is the standard (probabil-
ity) simplex

∆n−1 =
{
x ∈ Rn+ : x1 + · · ·+ xn = 1

}
,

where Rn+ is the nonnegative orthant, or the Euclidean sphere

Sn−1 =
{
x ∈ Rn : ‖x‖22 = x2

1 + · · ·+ x2
n = 1

}
.

Our main result is to establish a rate of convergence for the Lasserre hierarchy
[3] for the GPM on the sphere, and for a related, RLT-type linear program-
ming hierarchy for the GPM on the simplex. This RLT hierarchy is in fact a
generalisation of LP hierarchies for polynomial optimization on the simplex,
as introduced by Bomze and De Klerk [5], and De Klerk, Laurent and Parrilo
[6].

Outline of the paper. First we introduce some notation in section 1.1.
In section 1.2 we review the duality theory of the GMP. A brief overview of
possible applications of our setting is given in section 1.3. For K the simplex
we introduce a linear relaxation hierarchy in this setting in section 2 and prove
a convergence rate of O(1/r). Section 3 contains the new convergence analysis
of the Lasserre [2] SDP hierarchies of the GPM on the sphere. In Section 4
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we take a mathematical view of how the optimal measure is obtained in the
limit as the level of the hierarchies approaches infinity. In section 5 we explain
how our LP hierarchy is a generalization of an approximation hierarchy for
the problem of minimizing a form of degree d over the simplex introduced by
De Klerk, Laurent and Parrilo [6] based on earlier results obtained by Bomze,
De Klerk [5].

1.1 Notation

Let N = {0, 1, 2, . . . } denote the set of nonnegative integers, N+ = N \ {0}
and Nnt the set of sequences α ∈ Nn for which |α| =

∑n
i=1 αi ≤ t for t ∈ N.

For α ∈ Nn, xα denotes the monomial xα1
1 . . . xαn

n and its degree is |α|. The
ring of multivariate polynomials in n variables x = (x1, . . . , xn) is denoted by
R[x] = R[x1, . . . , xn] and R[x]t is its subspace of polynomials of degree at most
t. The (total) degree of a polynomial is the maximal degree of its appearing
monomials. A monomial basis vector of order t is given by

[x]t = (1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1xn, x

2
n, . . . , x

t
1, . . . , x

t
n)T .

Any polynomial p ∈ R[x] can be written as p =
∑
α∈Nn pαx

α, where only
finitely many pα are non-zero. A polynomial p ∈ R[x] is a sum of squares

(sos) if p =
∑k
j=1(hj)

2 for hj ∈ R[x] and k ≥ 1. The set of sos polynomials is
denoted by Σ[x] and the set of sos polynomials of degree at most t is denoted
by Σ[x]t.

1.2 Duality of the generalized problem of moments

We shall briefly discuss the duality theory associated with the GMP. For this,
let C(K) denote the space of bounded continuous functions on K endowed with
the supremum norm ‖·‖∞. For two vector spaces E,F of arbitrary dimension, a
non-degenerate bilinear form 〈〉 : E×F → R is called a duality of E and F . The
spacesM(K) and C(K) can be put in duality by defining 〈〉 : C(K)×M(K)→
R as

〈f, µ〉 =

∫
K

f(x)dµ(x). (2)

Let again f0, f1, . . . , fm be continuous functions on K and b1, . . . , bm ∈ R. The
dual of (1) is given by

val′ = sup
(y,t)∈Rm×R+

m∑
i=1

yibi − t

s.t. f0(x)−
m∑
i=1

yifi(x) + t ≥ 0 ∀ x ∈ K.
(3)

Note that the dual problem (3) is always strictly feasible, due to the constraint∫
K

dµ ≤ 1 in the primal GMP (1).
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Weak duality holds for this pair of problems, meaning val′ ≤ val. The
difference val − val′ is called duality gap. In fact, the duality gap is always
zero, as the next theorem shows. Note that a zero duality gap does not imply
the existence of a dual optimal solution.

Theorem 1 (see, e.g. [2, Theorem 1.3]) Assume problem (1) is feasible. Then
it has an optimal solution (the inf is attained), and val = val′.

We continue by recalling a sufficient condition for a dual optimal solution
to exist.

Theorem 2 (see, e.g. [1, Proposition 2.8]) Suppose problem (1) is feasible. If

b ∈ int((〈f1, µ〉, . . . , 〈fm, µ〉) : µ ∈M(K)+) (4)

then the set of optimal solutions of (3) is nonempty and bounded.

As discussed in Lasserre [3], it is customary in the literature to assume
that condition (4) holds, but in practice it may be a non-trivial task to check
whether it does. We do stress, however, that condition (4) does hold for the
applications discussed in the next subsection.

Another result worth mentioning is that if the GMP (1) has an optimal
solution, it has on which is finite atomic.

Theorem 3 (see, e.g. [4, Theorem 3]) If the GMP (1) has an optimal solu-
tion, then it has one which is finite atomic with at most m atoms, i.e., of th
form µ∗ =

∑m
`=1 ω`δx(`) where ω` ≥ 0,x(`) ∈ K and δx(`) denotes the Dirac

measure supported at x(`)(` ∈ [m]).

1.3 Applications

Polynomial and rational optimization. Consider the problem of minimiz-
ing a rational function over K:

p∗ = inf
x∈K

p(x)

q(x)
, (5)

where q, p ∈ R[x] are relatively prime and we may assume q(x) > 0 for all
x ∈ K. Indeed, if q changes signs on K, Jibetean and De Klerk [7, Corollary
1] showed that p∗ = −∞. We will in fact make the stronger assumption that
q(x) ≥ 1 on K, i.e. that we know a positive lower bound on the minimum of
q over K. The optimization problem (5) can be modeled as a GMP:

val = inf
µ∈M(K)+

{∫
K

p(x)dµ(x) :

∫
K

q(x)dµ(x) = 1

}
. (6)

The inequality constraint
∫
K

dµ(x) ≤ 1 is redundant if q(x) ≥ 1 ∀x ∈ K
and can be added to obtain a problem of form (1).
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We emphasize that minimizing a quadratic polynomial over the simplex
∆n−1 is already NP-hard, since it contains the problem of computing the size
(α(G)) of a maximum stable set of a graph G. Indeed, for a graph G with
adjacency matrix adjacency matrix A, Motzkin and Strauss [8] showed that

1

α(G)
= min

x∈∆n−1

xT (A+ I)x,

where I is the identity matrix, which is a quadratic polynomial optimization
problem over the simplex.

Similarly, deciding convexity of a homogeneous polynomial f of degree
4 or higher is known to be NP-hard [9]. It can be modeled as polynomial
optimization problem over the sphere. A homogeneous polynomial f is convex
if and only if

min
(x,y)∈S2n−1

yT∇f(x)y ≥ 0,

which in turn be cast as a GMP over the sphere.
Polynomial cubature. Another application that goes beyond polynomial

optimization is concerned with polynomial cubature rules, see e.g. [10], [11].
Finding polynomial cubature rules is NP-hard in general, see [12]. Let N ∈ N.
Consider the problem of multivariate numerical integration of a function f over
a set K with respect to a given (reference) measure µ0 ∈ M(K)+. Loosely
speaking, a cubature scheme consists of a set of nodes x(`) ∈ K and weights
ω` ≥ 0 for ` ∈ [N ], respectively, such that∫

K

f(x)dµ(x) ≈
N∑
`=1

ω`f(x`).

A possibility to mitigate the error in this scheme is to choose the weights
and points such that the approximation is exact for polynomials up to some
fixed degree. The problem of finding such weights and nodes can be cast as
a GMP. Let d ∈ N and β ∈ Nn any vector such that |β| > d. Assume the
reference measure µ0 is a probability measure, otherwise set µ0 ← µ0/µ0(K).
In the GMP given by

val := inf
µ∈M(K)+

∫
K

xβdµ(x)

s.t.

∫
K

xαdµ(x) =

∫
K

xαdµ0(x) ∀α ∈ Nnd
(7)

the redundant constraint
∫
K

dµ(x) ≤ 1 can be added to turn it into a GMP

of form (1). The the solution µ∗ to (7) will be of the form µ∗ =
∑N
`=1 ω`δx(`) ,

where N ≤ |Nnd | =
(
n+d
d

)
by Theorem 3. This result is known as Tchakaloff’s

theorem [13]. There is some freedom in the choice of the objective function,
however, note that it should be linearly independent of {xα} for α ∈ Nnd .
Hence, our approach discussed in this paper may be applied to the problem
of finding cubature rules for measures on the simplex or sphere.
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2 A linear relaxation hierarchy over the simplex

A moment sequence (yα)α∈Nn ⊂ R of a measure µ ∈ M(K) is an infinite
sequence such that

yα =

∫
K

xαdµ(x) ∀α ∈ Nn.

Let L : R[x]→ R be a linear operator

p(x) =
∑
α∈Nn

pαx
α 7→ L(p) =

∑
α∈Nn

pαyα

that maps monomials to their respective moments. Thus, to an optimal so-
lution µ∗ of a GMP there is an associated linear functional L∗ such that
L∗(f0) = val and L∗(fi) = bi for all i ∈ [m] as well as L∗(1) ≤ 1. The idea
of the relaxation we are about to introduce is to approximate the optimal
solution by a sequence (hierarchy) of linear functionals L(r) that depend on
r = 1, 2, . . . . Let K = ∆n−1. For i = 0, 1, . . . ,m let fi be a real homogeneous
polynomial of degree d and let r ≥ d. Consider the following linear relaxation
of (1):

f (r)

LP
= min L(r)(f0)

s.t. L(r)(fi) = bi ∀ i ∈ [m]

L(r)(1) ≤ 1

L(r)(xα) ≥ 0 ∀ |α| ≤ r

L(r)(xα) = L(r)

(
xα

n∑
i=1

xi

)
∀ |α| ≤ r − 1.

(8)

Every feasible solution µ′ to (1) provides an upper bound for (8) by setting

L(r)(xα) = 〈xα, µ′〉. Hence, f (r)

LP
≤ val. To see it is a linear program (LP) note

that each L(r)(xα) can be replaced by a scalar variable yα and the result-
ing program is an LP. The second last constraint is reflecting the necessary
condition for a positive measure µ over the simplex:

〈xα, µ〉 =

∫
∆n−1

xαdµ ≥ 0 ∀α ∈ Nn.

The last constraint in (8) arises from the fact that

L(r)(p) = L(r)(q) if p(x) = q(x) ∀x ∈ ∆n−1.

Equivalently, defining the ideal I = {x 7→ p(x) (1−
∑n
i=1 xi) : p ∈ R[x]} we

require

L(r)(p) = L(r)(q)⇔ p = q mod I.

We state two lemmas that will come in handy in our later analysis.
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Lemma 1 Let r, k ∈ N with k ≤ r and let L(r) be a feasible solution to the
linear relaxation (8) for some f0, f1, . . . , fm. Then for all xγ with γ ∈ Nn and
|γ| ≤ r − k we have

L(r) (xγ) = L(r)

xγ

(
n∑
i=1

xi

)k .

Proof The proof is immediate, by using induction on k. ut

Lemma 2 Consider the GMP given in (1) and let (y, t) ∈ Rm × R+. Then
the pair (y, t) is dual optimal only if

0 = min
x∈K

(
f0(x)−

m∑
i=1

yifi(x) + t

)
.

Proof The proof is a direct consequence of the GPM duality theory, and is
omitted here. ut

When we consider the case where K = ∆n−1, we may, without loss of
generality, assume the fi to be homogeneous of the same degree for all i =
0, 1, . . . ,m. Indeed, let f(x) =

∑d
j=0 fj(x), where deg(fj) = j. Then, g(x) :=∑d

j=0 fj(x) (
∑n
i=1 xi)

d−j
is homogeneous of degree d and f(x) = g(x) for all

x ∈ ∆n−1.

2.1 Convergence analysis

The following theorem is a refinement of a result by Powers and Reznick [14],
obtained by de Klerk, Laurent and Parrilo [6, Theorem 1.1]. It is a quantitative
version of Pólya’s Positivstellensatz (see, e.g. [15] for a survey), and it will be
crucial in our analysis of the simplex case.

Theorem 4 Suppose f ∈ R[x] is a homogeneous polynomial of degree d of the
form f(x) =

∑
|α|=d fαx

α. Let ε = min∆n−1 f(x) and define

B(f) = max
|α|=d

α1! . . . αn!

d!
fα. (9)

Then the polynomial (x1 + · · ·+ xn)kf(x) has only positive coefficients if

k >
d(d− 1)

2

B(f)

ε
− d. (10)

We continue by stating and proving one of the main results of this paper.
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Theorem 5 Let val be the optimal value of the GMP (1) for input data
K = ∆n−1, f0, f1, . . . , fm ∈ R[x] homogeneous of degree d and b1, . . . , bm ∈ R.
Assume there exists a dual optimal solution (ȳ, t) and let fm+1(x) := 1 for
every x ∈ ∆n−1 and set ȳm+1 = −t. Then, setting y0 = 1 and yi = −ȳi for
i ∈ [m+ 1] we have

0 ≤ val− f (r)

LP
≤

(∑m+1
i=0 B(yifi) + t

)
d(d− 1)

2(r − 1)− d(d− 1)
, (11)

for B(·) as in (9) and r > d(d− 1)/2 + 1.

Proof By Theorem 1 there is no duality gap. Let r > d(d − 1)/2 + 1 and let
L(r) be an optimal solution to (8). Fix some ε > 0. Then,

0 ≤ val− f (r)

LP
= val− L(r)

(
m∑
i=1

ȳifi − t+ f0 −
m∑
i=1

ȳifi + t

)

= val−
m∑
i=1

ȳiL
(r)(fi) + tL(r)(1)− L(r)

(
f0 −

m∑
i=1

ȳifi + t

)

≤ val−
m∑
i=1

ȳibi + t− L(r)

(
f0 −

m∑
i=1

ȳifi + t

)

= −L(r)

(
f0 −

m∑
i=1

ȳifi + t

)

= −L(r)

(
f0 −

m∑
i=1

ȳifi + t+ ε

)
+ εL(r)(1)

≤ −L(r)

(
f0 −

m∑
i=1

ȳifi + t+ ε

)
+ ε,

where both inequalities follow from the fact that L(r)(1) ≤ 1. By Lemma

2 we have minx∈∆n−1
f0(x) −

∑m+1
i=1 ȳifi(x) + ε = ε. We assume wlog that

f0 −
∑m+1
i=1 ȳifi is homogeneous of degree d. Define

f := f0 −
m+1∑
i=1

ȳifi + ε

(
n∑
i=1

xi

)d
,

which is homogeneous as well and its minimum over the simplex is ε. Hence,
by Theorem 4 for k as in (10) we have

f(x)

(
n∑
i=1

xi

)k
=

∑
β∈Nn

d+k

cβx
β
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with cβ > 0 for all β ∈ Nnd+k. To determine the smallest integer k for which
the theorem holds we will bound B(f). For this, set y0 = 1 and yi = −ȳi. We
may rewrite f as

f =

m+1∑
i=0

yifi + ε

(
n∑
i=1

xi

)d

=

m+1∑
i=0

yifi + ε

∑
|α|=d

(
d

α1 . . . αn

)
xα


=
∑
|α|=d

(
m+1∑
i=0

yifi,α + ε

(
d

α1 . . . αn

))
xα.

Then,

B(f) = max
α

[(
m+1∑
i=0

yifi,α +
d!

α1! . . . αn!
ε

)
α1! . . . αn!

d!

]

=

(
max
α

(
m+1∑
i=0

yifi,α

)
α1! . . . αn!

d!

)
+ ε

≤
m+1∑
i=0

(
max
α

yifi,α
α1! . . . αn!

d!

)
+ ε

=

m+1∑
i=0

B(yifi) + ε.

If r is large enough, i.e.,

r ≥

⌈
d(d− 1)

2

∑m+1
i=0 B(yifi) + ε

ε

⌉
≥
⌈
d(d− 1)

2

B(f)

ε

⌉
,

it follows from Lemma 1 that

−L(r)

(
f0 −

m+1∑
i=1

ȳifi + ε

)
+ ε = ε− L(r)(f)

= ε− L(r)

f ( n∑
i=1

xi

)k
= ε− L(r)

 ∑
β∈Nn

k+d

cβx
β

 ≤ ε,
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where the last inequality follows from the fact that L(r)(xα) ≥ 0 for all |α| ≤ r.
One may bound r as follows

r − 1 ≤ d(d− 1)

2

(∑m+1
i=0 B(yifi)

ε
+ 1

)

⇔ ε ≤
∑m+1
i=0 B(yifi)d(d− 1)

2(r − 1)− d(d− 1)
,

concluding the proof. ut

3 Lasserre hierarchy over the sphere

We now consider the GMP (1) over the sphere, i.e. we consider the case
K = Sn−1. Additionally, we assume the f0, f1, . . . , fm in (1) are homogeneous
polynomials of even degree 2d.

The Lasserre hierarchy [2] of semidefinite relaxations of the GMP (1) over
the sphere is given by

f (2r)

SDP
= min L(2r)(f0)

s.t. L(2r)(fi) = bi ∀i ∈ [m]

L(2r)(1) ≤ 1

L(2r)
(
[x]r[x]Tr

)
� 0

L(2r)(xα) = L(2r)
(
xα‖x‖22

)
∀ |α| ≤ 2r − 2,

(12)

where the L(2r) operator is now applied entry-wise to matrix-valued functions,
where needed.

The following lemma enables us to use a quantitative Positivstellensatz by
Fang an Fawzi [16] for positive polynomials on the sphere, to obtain a rate of
convergence of the Lasserre hierarchy.

Lemma 3 Let L : R[x]2k → R be a linear operator and suppose L
(
[x]k[x]Tk

)
�

0, where the operator is applied entrywise to the matrix [x]k[x]Tk . Then, L(σ) ≥
0 for all σ ∈ Σ[x]k.

Proof Let σ ∈ Σ[x]k be a sum of squares of degree 2k. Then there exists A � 0
such that σ = [x]TkA[x]k. Let 〈·, ·〉 denote the trace inner product. We have

L(σ) = L
(
[x]TkA[x]k

)
= L

(
〈A, [x]k[x]Tk 〉

)
= L

∑
i,j

Ai,j([x]k)i([x]k)j


=
∑
i,j

Ai,jL (([x]k)i([x]k)j)

= 〈A,L
(
[x]k[x]Tk

)
〉 ≥ 0,
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since both A and L
(
[x]k[x]Tk

)
are psd. ut

The classical sos hierarchy for the problem of minimizing a polynomial p
on the sphere is defined as

pr = max
{
γ ∈ R : p(x)− γ = σ(x) + (1− ‖x‖22)h(x) for σ ∈ Σ[x]r, h ∈ R[x]2r−2

}
.

This scheme provides increasing lower bounds on pmin = minx∈Sn−1 p(x),
i.e., pr−1 ≤ pr ≤ pmin.

In their paper [16], Fang and Fawzi prove the following theorem.

Theorem 6 [16, Theorem 1] Assume p(x) is a homogeneous polynomial of
degree 2d in n variables with d ≤ n, and let pmin (resp. pmax) denote the
minimum (resp. maximum) of p on Sn−1. Then for any r ≥ Cdn

1 ≤ pmax − pr
pmax − pmin

≤ 1 + C ′d

(n
r

)2

for some constants C ′d, Cd that depend only on d.

We may now use the theorem by Fang and Fawzi [16] and Lemma 1 to
derive a rate of convergence for Lasserre hierarchy [2] of the GMP on the
sphere as follows.

Theorem 7 Let val be the optimal value of the GMP (1) for input data K =
Sn−1, f0, f1, . . . , fm ∈ R[x] homogeneous of even degree 2d, b1, . . . , bm ∈ R
and d ≤ n. Let (ȳ, t) be a dual optimal solution and let fm+1(x) := 1 for
every x ∈ Sn−1, set ȳm+1 = −t and set y0 = 1 and yi = −ȳi. Further, let
f i,yimax = maxx∈Sn−1 yifi(x). There exist constants Cd, C

′
d, only dependent on

d, such that if r ≥ Cdn we have

0 ≤ val− f (2r)

SDP
≤
C ′dn

2
∑m+1
i=0 f i,yimax

r2
.

Proof The proof is similar to that of Theorem 5, essentially the only difference
being that Lemma 3 is used, and we omit the details. ut

4 Limiting behavior of the hierarchies of linear operators

Consider the case when K = ∆n−1. When looking at the linear operators in
the relaxation hierarchies (8) one would expect that in the limit, i.e. for r →∞,
the operators L(r)(·) behave like 〈·, µ〉 for some positive measure µ. In the rest
of this section we prove that this is in fact the case and we will define the limit
in a meaningful way. Consider again the ideal I = {x 7→ p(x) (1−

∑n
i=1 xi) :

p ∈ R[x]} and let L : R[x]/I → R be a linear operator such that

1. L(xα) ≥ 0 for all α ∈ Nn
2. L(1) ≤ 1
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and let
L = {L : R[x]/I → R : L fulfills conditions 1. and 2.}

be the class of all linear operators that satisfy the conditions above. Note that
for every L ∈ L the relation

L

((
1−

n∑
i=1

xi

)
xα

)
= 0 for all α ∈ Nn

trivially holds. If ‖f‖ = supx∈∆n−1
|f(x)|, then (R[x]/I, ‖·‖) is a normed vector

space.

Theorem 8 (see, e.g. [17, Theorem 1.4.2]) Suppose F : X → Y is a linear
operator between two normed vector spaces (X, ‖·‖X) and (Y, ‖·‖Y ), then the
following are equivalent

1. F is continuous
2. ‖Fx‖Y ≤M‖x‖X for some M ∈ R.

Using Theorem 8 we can prove that the operators we consider are contin-
uous in the limit.

Lemma 4 Every L ∈ L is continuous.

Proof By Theorem 8 it suffices to show that every L ∈ L satisfies

|L(f)| ≤M‖f‖ = M sup
x∈∆n−1

|f |

for all f ∈ R[x]/I. Hence, let f ∈ R[x]/I and let ‖f‖ = supx∈∆n−1
|f(x)|.

Also set

fmin = min
x∈∆n−1

f(x) ≥ −‖f‖ and fmax = max
x∈∆n−1

f(x) ≤ ‖f‖.

Let L∗ be the optimizer of

minL(f) s.t. L ∈ L

and note that L∗(f) = fmin as an immediate consequence of Theorem 5. Hence,
for all L ∈ L we have

L(f) ≥ L∗(f) = fmin ≥ −‖f‖.

Similarly, let L′ be the optimizer of

maxL(f) s.t. L ∈ L.

By the same reasoning we have L′(f) = fmax and it follows that L(f) ≤ ‖f‖
for all L ∈ L. Hence one can set M = 1 and we see

|L(f)| ≤ ‖f‖.

ut
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The set R[x]/I is dense in C(∆n−1). This means we can employ the fol-
lowing theorem in the next step.

Theorem 9 (see, e.g. [17, Theorem 1.9.1]) Suppose that M is a dense sub-
space of a normed space X, that Y is a Banach space, and that T0 : M → Y
is a bounded linear operator. Then there is a unique continuous function
T : X → Y that agrees with T0 on M . This function T is a bounded lin-
ear operator and ‖T‖ = ‖T0‖.

Now let

L̄ =
{
L̄ : C(∆n−1)→ R : L̄ is the continuous linear extension of some L ∈ L

}
.

Proposition 1 Let L̄ ∈ L̄ and f ∈ C(∆n−1). Then

L̄(f) =

∫
∆n−1

f(x)dµ(x)

for some positive measure µ supported on ∆n−1, satisfying µ(∆n−1) ≤ 1.

Proof It is sufficient to show L̄(f) ≥ 0 for all f ∈ C(∆n−1)+ = {f ∈ C(∆n−1) :
f(x) ≥ 0 ∀x ∈ ∆n−1}. To see this, note that the space C(∆n−1) can be ordered
by the convex cone C(∆n−1)+. Now L̄(f) ≥ 0 for all f ∈ C(∆n−1)+ implies that
L̄ ∈ (C(∆n−1)+)

∗
, i.e. the dual cone of C(∆n−1)+ which is known to be the set

of finite Borel measures on ∆n−1. Let f be a homogeneous continuous function
that is non-negative on the simplex and consider its Bernstein approximation
of order r given by

Brf (x) =
∑
α∈Nn

r

|α|=r

f
(α
r

)(r
α

)
.

The approximation converges uniformly to f as r →∞ since f is continuous.
Using Lemma 4 we see

L̄(f) = L̄( lim
r→∞

Brf )

L̄ cont.
= lim

r→∞
L̄(Brf )

= lim
r→∞

∑
α∈Nn

r

|α|=r

f
(α1

r
, . . . ,

αn
r

)
︸ ︷︷ ︸

≥0

(
r

α

)
︸ ︷︷ ︸
≥0

L̄(xα)︸ ︷︷ ︸
≥0

≥ 0.

Hence, it follows that L̄(f) = 〈f, µ〉 for some positive measure µ, such that
µ(∆n−1) ≤ 1. ut

Remark 1 By the proof given above, it becomes clear that the continuous
linear extension can in fact be defined in terms of the limit of the Bernstein
approximation, i.e., define L̄(f) := limr→∞ L(Brf ) for f ∈ C(∆n−1) and L ∈ L.

For the sphere case, i.e. K = Sn−1 consider the following theorem.
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Theorem 10 (see, e.g. [2, Theorem 3.8]) Let y = (yα)α∈Nn ⊂ R∞ be a given
infinite real sequence, L : R[x]→ R be the linear operator defined by

p(x) =
∑
α∈Nn

pαx
α 7→ L(p) =

∑
α∈Nn

pαyα,

and let K = { x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. The sequence y has a finite
Borel representing measure with support contained in K if and only if

L(f2gJ) ≥ 0 ∀J ⊆ {1, . . . ,m} and f ∈ R[x],

where gJ(x) =
∏
j∈J gj(x).

Now, let L be a linear operator such that

1. L(1) ≤ 1
2. L([x]t[x]Tt ) � 0 ∀t ∈ N
3. L(xα) = L(xα‖x‖22) ∀α ∈ Nn

and let L′ = {L : R[x]→ R : L satisfies 1. - 3.}. Recall that as a semialge-
braic set the sphere can be written as Sn−1 = {x ∈ Rn : g1(x) := 1− ‖x‖22 ≥
0, g2(x) := ‖x‖22 − 1 ≥ 0}. Then for K = Sn−1 every L ∈ L′ satisfies all con-
ditions of Theorem 10. To see this, note that the only possibilities for J are
{∅, {1}, {2}, {1, 2}}. Because of condition 3 we have that L(±(1−‖x‖22)p) = 0
for all p ∈ R[x] covering all cases except J = ∅. For J = ∅ the condition
reduces to L(p2) ≥ 0 which holds for all p ∈ R[x] because of Lemma 1. Hence,
every L ∈ L′ has a representing measure whose support is contained in Sn−1.

5 Concluding remarks

In this last section we conclude by outlining the connection of our results to
previous work. We show that — in the special case of polynomial optimization
on the simplex — our RLT hierarchy reduces to one studied earlier by Bomze
and De Klerk [5], and De Klerk, Laurent and Parrilo [6].

De Klerk, Laurent and Parrilo [6] introduced the following hierarchy for
minimizing a homogeneous polynomial p ∈ R[x] of degree d over the simplex.

p(r) = maxλ s.t. the polynomial

(
n∑
i=1

xi

)rp(x)− λ

(
n∑
i=1

xi

)d
has only nonneg. coefficients.

(13)

It was proved that limr→∞ p(r) = pmin = minx∈∆n−1
p(x). The LP hierar-

chy introduced in section 2 of this paper is a generalization of the hierarchy
(13), in the sense made precise in the following theorem.
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Theorem 11 For some homogeneous polynomial p ∈ R[x] of degree d let

f (r+d)

LP
be the solution to the LP relaxation of the problem

min
x∈∆n−1

p(x) = val = inf
µ∈M(∆n−1)+

{∫
∆n−1

p(x)dµ(x) :

∫
∆n−1

dµ(x) = 1

}
for some r ∈ N. Then,

p(r) = f (r+d)

LP
.

Proof The proof is straightforward, and omitted for the sake of brevity. ut

In the case of polynomial optimization our estimate (8) becomes

fmin − f (r+d)

LP
≤ d(d− 1)

2(r + d− 1)− d(d− 1)
(B(f)− fmin)

and applying the inequality

B(p)− pmin ≤
(

2d− 1

d

)
dd (pmax − pmin) ,

shown in [6, Theorem 2.2], we find

fmin − f (r+d)

LP
≤ d(d− 1)

2(r + d− 1)− d(d− 1)

(
2d− 1

d

)
dd (fmax − fmin) .

This is essentially the same result as was obtained in [6, Theorem 1.3].
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