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Abstract

Working in an extended variable space allows one to develop tighter reformu-
lations for mixed integer programs. However, the size of the extended formulation
grows rapidly too large for a direct treatment by a MIP-solver. Then, one can work
with inner approximations defined and improved by generating dynamically vari-
ables and constraints. When the extended formulation stems from subproblems’
reformulations, one can implement column generation for the extended formulation
using a Dantzig-Wolfe decomposition paradigm. Pricing subproblem solutions are
expressed in the variables of the extended formulation and added to the current re-
stricted version of the extended formulation along with the subproblem constraints
that are active for the subproblem solutions. This so-called “column-and-row gen-
eration” procedure is revisited here in a unifying presentation that generalizes the
column generation algorithm and extends to the case of working with an approximate
extended formulation. The interest of the approach is evaluated numerically on ma-
chine scheduling, bin packing, generalized assignment, and multi-echelon lot-sizing
problems. We compare a direct handling of the extended formulation, a standard
column generation approach, and the “column-and-row generation” procedure, high-
lighting a key benefit of the latter: lifting pricing problem solutions in the space of
the extended formulation permits their recombination into new subproblem solutions
and results in faster convergence.

Keywords: Extended formulations for MIP, Column-and-Row Generation, Stabilization.

Introduction
Formulating a mixed integer program (MIP) in a higher dimensional space by intro-

ducing extra variables is a process to achieve a tight approximation of the integer convex
hull. Several classes of reformulation techniques are reviewed in [29]: some are based on
variable splitting (including multi-commodity flow, unary or binary expansions), others
rely on the existence of a dynamic programming or a linear programming separation pro-
cedure for a sub-system, further reformulation techniques rely on exploiting the union of
polyhedra or basis reduction. A unifying framework is presented in [13]. An extended
formulation presents the practical advantage to lead to a direct approach: the reformu-
lation can be fed to a MIP-solver. However, such approach remains limited to small size
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instances because the extended formulation grows rapidly too large for practical purposes.
Its size counted as the sum of the number of variables and constraints is often pseudo-
polynomial in the input size or polynomial but with a large degree.

To alleviate the curse of dimensionality, one can in some cases project the extended
formulation into a lower dimensional space; for example by applying a Benders’ decom-
position approach [2]. Alternatively, Van Vyve and Wolsey [26] propose to “truncate” the
reformulation in order to define a good quality outer approximation of the polyhedron
defined by the projection of the full-blown extended formulation. In several application
specific contexts, they show that approximating the extended formulation may indeed
allow one to achieve significant tightening of the linear programming bound while having
manageable size. The techniques range from dropping some of the constraints (the more
complex constraints typically bring the most marginal dual bound improvements), or in
such case as multi-commodity flow reformulation, aggregating several commodities or ag-
gregating nodes, or, more generally, applying the extended reformulation paradigm to
sub-systems only. Such approach preserves the possibility of directly applying a standard
MIP approach to the “truncate” extended reformulation and allows one to deal with larger
size instances. In [26], the level of approximation is controlled by a parameter whose max-
imum value corresponds to the full extended formulation. Their numerical results show
that the best trade-off between dual bound quality and size is often achieved for low level
approximations.

While Benders’ approach results in working with a dynamically improved outer ap-
proximation of the intended extended formulation, the “truncate” extended reformulation
of [26] leads to a relaxation that defines a static outer approximation. The approach
reviewed herein consists in developing an inner approximation of the intended polyhedron
by considering the extended formulation restricted to a subset of variables, delaying the
inclusion of some variables and associated constraints. In the spirit of a Dantzig-Wolfe
column generation approach, the inner approximation is iteratively improved by adding
promising variables along with the constraints that become active once those variables are
added. The method relies on specific pricing and separation strategies. Instead of simply
doing variable pricing or constraint separation based on enumeration on the columns and
rows of a full-blown extended formulation, pricing is done by solving an optimization
subproblem over the whole set of variables and the inserted constraints are those that are
binding for that subproblem solution. The method applies to problems that present some
structure that makes them amenable to Dantzig-Wolfe decomposition. Then, the pricing
subproblem is that of a standard column generation approach applied to the Dantzig-
Wolfe reformulation. However, subproblem solutions must be expressed in the variables
of the extended formulation (which can be understood as column “lifting” or “disaggre-
gation”) and added to a master program which is a restricted version of the extended
formulation.

Therefore, the method is a hybrid between an extended formulation approach and a
standard column generation approach. Compared to a direct use of the extended reformu-
lation, this hybrid approach can be seen as a way to handle dynamically the large size of
the reformulation. Compared to applying a standard column generation to the Dantzig-
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Wolfe reformulation, the hybrid approach has the advantage of an accelerated convergence
of the column generation procedure: “lifting/disaggregating” columns permits their “re-
combination” which acts as a stabilization technique for column generation. Moreover, the
extended formulation offers a richer model in which to define cuts or branching restrictions.

Such column-and-row generation procedure is a technique previously described in the
literature in application specific contexts: for bin packing in [23]; for multi-commodity
flow in [15] and in [14] where the method is extended to the context of a Lagrangian De-
composition – the resulting methodology is named “Lagrangian pricing”; for the resource-
constrained minimum-weight arborescence problem in [9]; for split delivery vehicle routing
in [7, 8]; or for network design problems in [8, 10]. The convincing computational results
of these papers indicate the interest of the method. Although the motivations of these
studies are mostly application specific, methodological statements made therein are to
some extend generic. Moreover, there are recent efforts to explore this approach further.
In a study developed concomitantly to ours, Frangioni and Gendron [11] present a “struc-
tured Dantzig-Wolfe decomposition” for which they adapt column generation stabilization
techniques (from linear penalties to the bundle method). Compared to [11], our generic
presentation, relying on the definition of an extended formulation, assumes slightly less
restrictive assumptions and extends to approximate extended formulation. In [8], Gen-
dreau et al. present a branch-and-price-and-cut algorithm where columns and cuts are
generated simultaneously; their presentation considers approximate extended formulation
but with a weaker termination condition. In [17], Muter et al. consider what they call a
“simultaneous column-and-row generation” approach, but it takes the meaning of a nested
decomposition, different from the method reviewed here: the subproblem has itself a de-
composable structure.

The goal of revisiting the column-and-row generation approach is to emphasize its
wide applicability and to highlight its pros and cons with an analysis supported by nu-
merical experiments. Our paper establishes the validity of the column-and-row generation
algorithm in a form that encompasses all special cases of the literature, completing the
presentations of [8, 9, 10, 11, 14, 15, 17, 23]. We identify what explains the faster con-
vergence: the recombination of previously generated subproblem solutions. We point out
that lifting the master program in the variable space of the extended formulation can
be done while carrying pricing in the compact variable space of the original formulation,
using any oracle. We show that the method extends to the case where the extended
formulation is based on a subproblem reformulation that only defines an approximation
of the subproblem integer hull. This extension is essential in practice as it allows one
to use approximations for strongly NP-Hard subproblems for which an exact extended
formulation is necessarily exponential (unless P=NP). Moreover, we advocate the use of
a generalized termination condition in place of the traditional reduced cost criteria, that
can lead to stronger dual bounds: solving the integer subproblems yields Lagrangian dual
bounds that might be tighter than the extended formulation LP bound. The benefit of the
approach depends on the tradeoff between the induced stabilization effect on one hand,
and the larger size working formulation and possible weaker dual bound on the other
hand. Our analysis should help research fellows to evaluate whether this alternative pro-
cedure has potential to outperform classical column generation on a particular problem.
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In the sequel, we introduce (in Section 1) the column-and-row generation method on
specific applications where it has been used, or could have been used. Next, in Section 2,
we formalize the procedure and show the validity of the algorithm (including in the case
of multiple identical subproblems). We then show how the method extends to the case
where one works with an approximate extended formulation (as in the proposal of [26]).
We show that in such case, the dual bound that one obtains is between the linear re-
laxation bound for the extended reformulation and the Lagrangian dual bound based on
that subproblem. In Section 3, we discuss the pros and cons of the method, we formalize
the lifting procedure, and we highlight the properties that are required for the applica-
tion in order to find some specific interest in replacing standard column generation by
such dynamic column-and-row generation for an extended formulation. This discussion
is corroborated by numerical results presented in Section 4. We carry out experiments
on machine scheduling, bin packing, generalized assignment, and multi-echelon lot-sizing
problems. We compare a direct solution of the extended formulation linear relaxation,
a standard column generation approach for the Dantzig-Wolfe master program, and the
column-and-row generation approach applied to the extended formulation LP. The results
illustrate the stabilization effect resulting from column disaggregation and recombinations
that is shown to have a cumulative effect when used in combination with a standard sta-
bilization technique.

1. Specific Examples

1.1 Machine Scheduling

For scheduling problems, time-indexed formulations are standard extensions result-
ing from a unary decomposition of the start time variables. Consider a single machine
scheduling problem on a planning horizon T as studied by van den Akker et al. [25]. The
problem is to schedule the jobs, j ∈ J = {1, . . . , n}, a single one at the time, at minimum
cost, which can be modeled as:

[F ] ≡ min{
∑
j

c(Sj) : Sj + pj ≤ Si or Si + pi ≤ Sj ∀(i, j) ∈ J × J} (1)

where Sj denotes the start time of job j and pj is its given processing time. Disjunctive
program (1) admits an extended formulation written in terms of decision variables zjt = 1
if and only if job j ∈ J∪{0} starts at the outset of period t ∈ {1, . . . , T}, where job 0 with
processing time 1 models machine idle time. By convention, period t is associated with
time interval [t − 1, t) and zjt is only defined for 1 ≤ t ≤ T − pj + 1. The reformulation

4



takes the form:

[R] ≡ min
∑
j∈J

∑
t

cjt zjt (2)

T−pj+1∑
t=1

zjt = 1 ∀j ∈ J (3)∑
j∈J

zj1 = 1 (4)∑
j∈J

zjt =
∑

j∈J : t−pj≥1

zj,t−pj ∀t > 1 (5)

zjt ∈ {0, 1} ∀j, t (6)

where (3) enforces the assignment of each job, (4) the initialization of the schedule, while
(5) forbids the use of the machine for more than one job at the time: a job j can start
in t only if one ends in t and therefore releases the machine. The formulation can be
extended to the case in which m identical machines are available; then the right-hand-size
of (4) is m and variable z0t represents the number of idle machines at time t. One can
also model in this way a machine with arbitrary capacity where jobs have unit capacity
consumption. Non overlapping are equivalently modeled as

∑
j

∑t
τ=t−pj+1 zjτ ≤ 1 ∀t

which define a consecutive one matrix: each variable zjt appears with a 1 in constraints
associated to consecutive periods t. Hence, this subsystem is totally uni-modular (TU)
and can be reformulated as a shortest path. The objective can model any cost function
that depends on job start times (or completion times). Extended reformulation [R] has
size O(|J |T ) which is pseudo-polynomial in the input size, since T is not an input but
it is computed as T =

∑
j pj. The subsystem defined by constraints (4-5) characterizes

a flow that represents a “pseudo-schedule” satisfying non-overlapping constraints but not
the single assignment constraints. A standard column generation approach based on
subsystem (4-5) consists in defining reformulation:

[M ] ≡ min{
∑
g∈G

cg λg :
∑
g∈G

T−pj+1∑
t=1

zgjt λg = 1 ∀j,
∑
g∈G

λg = m, λg ∈ {0, 1} ∀g ∈ G} (7)

where G is the set of “pseudo-schedules”: vector zg and scalar cg define the associated so-
lution and cost for a solution g ∈ G. As done in [24, 25], reformulation [M] can be solved
by column generation. The pricing subproblem [SP] is a shortest path problem: find a
sequence of jobs and down-times to be scheduled on the single machine with possible
repetition of jobs. The underlying graph is defined by nodes that represent periods and
arcs (t, t+pj) associated to the processing of jobs j ∈ J∪{0} in time interval [t−1, t+pj).
Figure 1 illustrates such path for a numerical instance.

An alternative to the above standard column generation approach for [M] would be to
generate dynamically the z variables for [R], not one at the time, but by solving the short-
est path pricing problem [SP] and by adding to [R] the components of the subproblem
solution zg in the time index formulation along with the flow conservation constraints that
are binding for that solution. To illustrate the difference between the two approaches,
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Figure 1: Consider the machine scheduling subproblem. A solution is a pseudo-schedule
that can be represented by a path as illustrated here for T = 10 and J = {1, . . . , 4}
and pj = j for each j ∈ J : the sequence consists in scheduling job 3, then twice job 2
consecutively, and to complete the schedule with idle periods (represented by straight arcs).

1 2 3 4 5 6 7 8 9 10 11

Figure 2 shows several iterations of the column generation procedure for [M] and [R],
for the numerical instance of Figure 1. Formulations [M] and [R] are initialized with
the variable(s) associated to the same pseudo-schedule depicted in Figure 2 as the ini-
tial subproblem solution. Note that the final solution of [M] is the solution obtained as
the subproblem solution generated at iteration 11; while, for formulation [R], the final so-
lution is a recombination of the subproblem solution of iteration 3 and the initial solution.

As illustrated by the numerical example of Figure 2, the interest of implementing
column generation for [R] instead of [M] is to allow for the recombination of previously
generated solutions. Observe the final solution of [R] in Figure 2. Let us denote it by
ẑ. It would not have its equivalent in formulation [M] even if the same four subproblem
solutions had been generated: zg, for g = 0, . . . , 3. Indeed, if ẑ =

∑3
g=0 z

g λg, then λ0 > 0
and job 2 must be at least partially scheduled in period 2.

In van den Akker et al. [25] the extended formulation [R] is presented as being typically
too large for practical computation purposes. On this ground, the authors make use of
a standard column generation for [M]. But they did not experiment with the alternative
approach that consists in developing a column generation approach for [R]. Note that
a similar alternative to the standard column generation approach has been proposed
by Bigras et al. [3]. They split the time horizon into intervals, and solve the pricing
subproblem separately for each interval. This idea improves a lot the convergence of
column generation and its solution time. A disadvantage of this approach is that the
columns can contain parts of jobs (which span two or more intervals). Thus, in the solution
of the LP relaxation, jobs can be preempted, which results in worse lower bound.

1.2 Bin Packing

A column-and-row generation approach for an extended formulation has been applied
to the bin packing problem by Valerio de Carvalho [23]. The bin packing problem consists
in assigning n items, i ∈ I = {1, . . . , n}, of given size si, to bins of identical capacity C,
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Figure 2: Solving the example by column versus column-and-row generation (assuming
the same data as in of Figure 1). Each bended arc represents a job, and straight arcs
represent idle periods.

Iteration Subproblem solution

Initial solution

· · · · · ·

Final solution

Column generation for [M]

1

2

3

10

11

Column-and-row
generation for [R]

Subproblem solution

using a minimum number of bins. A compact formulation is:

[F ] ≡ min
∑
k

δk (8)∑
k

xik = 1 ∀i (9)∑
i

si xik ≤ C δk ∀k (10)

xik ∈ {0, 1} ∀i, k (11)
δk ∈ {0, 1} ∀k (12)

where xik = 1 if item i ∈ I is assigned to bin k for k = 1, . . . , n and δk = 1 if bin k is used.
Constraints (9) say that each item must be assigned to one bin, while constraints (10-12)
define a knapsack subproblem for each bin k. The standard column generation approach
consists in reformulating the problem in terms of the knapsack subproblem solutions. The
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master program takes the form:

[M ] ≡ min
∑
g

λg (13)∑
g

xgiλg = 1 ∀i ∈ I (14)

λg ∈ {0, 1} ∀g ∈ G (15)

where G denotes the set of “feasible packings” satisfying (10-12) and vector xg defines the
associated solution g ∈ G. When solving its linear relaxation by column generation, the
pricing problem takes the form:

[SP ] ≡ min{δ −
∑
i

πixi : (x, δ) ∈ X} (16)

where π are dual variables associated to (14) and

X = {(xg, δg)}g∈G = {(x, δ) ∈ {0, 1}n+1 :
∑
i

sixi ≤ C δ}.

The subproblem can be set as the search for a shortest path in an acyclic network cor-
responding to the decision graph that underlies a dynamic programming solution of the
knapsack subproblem: the nodes v ∈ {0, . . . , C} are associated with capacity consump-
tion levels; each item, i ∈ I, gives rise to arcs (u, v), with v = u+ si; wasted bin capacity
is modeled by arcs (v, C) for v = 0, . . . , C − 1. A numerical example is given on the left
of Figure 3.

Figure 3: Knapsack network for C = 6, n = 3, and s = (1, 2, 3)

60 1 2 3 4 5 60 1 2 3 4 5

The network flow model for the subproblem yields an extended formulation for the
subproblem in terms of variables f iuv = 1 if item i is in the bin in position u to v = u+ si.
The subproblem reformulation takes the form:

{(f, δ) ∈ {0, 1}n·C+1 :
∑
i,v

f i0v + f0C = δ (17)∑
i,u

f iuv =
∑
i,u

f ivu + fv,C v = 1, . . . , C − 1 (18)∑
i,u

f iuC +
∑
v

fvC = δ (19)

0 ≤ f iuv ≤ 1 ∀i, u, v = u+ si } (20)
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(Superscript i is redundant, but it shall help to simplify the notation below.)

Subproblem extended formulation (17-20) leads in turn to an extended formulation
for the original problem in terms of aggregate arc flow variables over all subproblems
associated with each bin k = 1, . . . , n: F i

uv =
∑

k f
ik
uv, FvC =

∑
k f

k
vC , and ∆ =

∑
k δ

k.
The extended formulation takes the form:

[R] ≡ min ∆ (21)∑
(u,v)

F i
uv = 1 ∀i (22)

∑
i,v

F i
0v + F0C = ∆ (23)∑
i,u

F i
uv =

∑
i,u

F i
vu + FvC v = 1, . . . , C − 1 (24)∑

i,u

F i
uC +

∑
v

FvC = ∆ (25)

F i
uv ∈ {0, 1} ∀i, (u, v) : v = u+ si . (26)

Valerio de Carvalho [23] proposed to solve the linear relaxation of (21-26) by col-
umn generation: iteratively solve a partial formulation stemming from a restricted set of
variables F i

uv, collect the dual solution π associated to (22), solve pricing problem (16),
transform its solution, x∗, into a path flow that can be decomposed into a flow on the
arcs, a solution to (17-20) which we denote by f(x∗), and add in (21-26) the missing arc
flow variables {F i

vu : f ivu(x
∗) > 0}, along with the missing flow balance constraints active

for f(x∗).

Observe that (17-20) is only an approximation of the extended network flow formula-
tion associated to the dynamic programming recursion to solve a 0-1 knapsack problem.
A dynamic programming recursion for the bounded knapsack problem yields state space
{(j, b) : j = 0, . . . , n; b = 0, . . . , C}, where (j, b) represents the state of a knapsack filled
up to level b with a combination of items i ∈ {1, . . . , j}. Here, it has been aggregated
into state space: {(b) : b = 0, . . . , C}. This entails relaxing the subproblem to an un-
bounded knapsack problem. Hence, feasible solutions to (17-20) can involve multiple
copies of the same item. Because (17-20) models only a relaxation of the 0-1 knapsack
subproblem, the LP relaxation of (21-26) is weaker than that of the standard master
program (13-15). For instance, consider the numerical example with C = 100, n = 5
and s = (51, 50, 34, 33, 18). Then, the LP value of (13-15) is 2.5, while in (21-26) there
is a feasible LP solution of value 2 which is F 1

0,51 = 1, F 3
51,85 = F 5

51,69 = F 5
69,87 = 1

2
,

F 2
0,50 = F 2

50,100 = 1
2
, F 3

0,34 = F 4
34,67 = F 4

67,100 = 1
2
. In [23], to avoid symmetries and to

strengthen the extended formulation, arcs associated to an item are only defined if the
tail node can be reached with a filling using items larger than si (as in the right part of
Figure 3). Note that our numerical example of a weaker LP solution for [R] does not hold
after such strengthening.
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1.3 Multi-Commodity Capacitated Network Design

Frangioni and Gendron [10] applied a column-and-row generation technique to a multi-
commodity capacitated network design problem. Given a directed graph G = (V,A) and
commodities: k = 1, . . . , K, with a demand dk of flow between origin and destination
(ok, tk) ∈ V × V , the problem is to assign an integer number of nominal capacity on each
arc to allow for a feasible routing of traffic for all commodities, while minimizing routing
and capacity installation cost. In [10], split flows are allowed and hence flow variables are
continuous. A formulation is:

[F ] ≡ min
∑
i,j,k

ckij x
k
ij +

∑
ij

fij yij (27)∑
j

xkji −
∑
j

xkij = dki ∀i, k (28)∑
k

xkij ≤ uij yij ∀i, j (29)

0 ≤ xkij ≤ dk yij ∀i, j, k (30)

xkij ≥ 0 ∀i, j, k (31)
yij ∈ N ∀i, j (32)

where dki = dk if i = ok, dki = −dk if i = tk, and dki = 0 otherwise. Variables xkij denote
the flow of commodity k in arc (i, j) ∈ A. The design variables, yij, consists in selecting
an integer number of nominal capacity on each arc (i, j) ∈ A. The problem decomposed
into a continuous knapsack subproblem with varying capacity for each arc (i, j) ∈ A:
X ij = {(x, y) ∈ RK

+ × N :
∑

k x
k ≤ uij y, x

k ≤ dk y ∀k}. An extended formulation for
the subproblem arises from unary disaggregation of the design variables: let ysij = 1 and

xksij = xkij if yij = s for s ∈ {1, . . . , smax
ij } with smax

ij =
⌈∑

k d
k

uij

⌉
. Then, the subproblem

associated to arc (i, j) can be reformulated as:

Zij = {(xksij , ysij) ∈ RK×smax
ij

+ × {0, 1}s
max
ij :∑

s

ysij ≤ 1, (s− 1) uij y
s
ij ≤

∑
k

xksij ≤ s uij y
s
ij ∀s, xksij ≤ min{dk, s uij} ysij ∀k, s} .

Its continuous relaxation gives the convex hull of its integer solutions and its projection
gives the convex hull of X ij solutions as shown by Croxton, Gendron and Magnanti [5]:
reformulation Zij of subproblem X ij can be obtained as the union of polyhedra associated
with each integer value of yij = s for s = 0, . . . , smax

ij .
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These subproblem reformulations yields a reformulation for the original problem:

[R] ≡ min
∑
i,j,k,s

ckij x
ks
ij +

∑
ijs

fij s y
s
ij (33)∑

js

xksji −
∑
js

xksij = dki ∀i, k (34)

(s− 1) uij y
s
ij ≤

∑
k

xksij ≤ s uij y
s
ij ∀i, j, s (35)

0 ≤ xksij ≤ min{dk, s uij} ysij ∀i, j, k, s (36)∑
s

ysij ≤ 1 ∀i, j (37)

ysij ∈ {0, 1} ∀i, j, s . (38)

On the other hand, a Dantzig-Wolfe reformulation can be derived based on subsystems
X ij or equivalently Zij. Let Gij = {(xg, yg)}g∈Gij be the enumerated set of extreme
solutions to Zij. A column g is associated with a given capacity installation level σ:
ygs = 1 for a given s = σ and zero for s 6= σ while the associated flow vector xgks = 0 for
s 6= σ and it defines an extreme LP solution for s = σ. Then, the Dantzig-Wolfe master
takes the form

[M] ≡ min
∑

i,j,s,g∈Gij

(ckij x
g
ks + fij s y

g
s) λ

ij
g (39)

∑
js

∑
g∈Gij

xgks λ
ij
g −

∑
js

∑
g∈Gij

xgks λ
ij
g = dki ∀i, k (40)

∑
g∈Gij

λijg ≤ 1 ∀i, j (41)

λijg ∈ {0, 1} ∀i, j, g ∈ Gij . (42)

When solving [M] by column generation, the pricing problems take the form:

[SP ij] ≡ min{
∑
ks

ckij x
ks
ij +

∑
s

fij s y
s
ij : ({xksij }ks, {ysij}s) ∈ Zij} (43)

for each arc (i, j).

Frangioni and Gendron [10] proceeded to solve reformulation [R] by adding dynami-
cally the ysij variable and associated xksij variables for a given s at the time; i.e., for each arc
(i, j), they include the solution yij = s that arises as the solution of a pricing subproblem
(43) over Zij, while a negative reduced cost subproblem solution is found. Constraints
(35-36) that are active in the generated pricing problem solutions are added dynamically
to [R]. In comparison, a standard column generation approach applied to [M] requires
more iterations to converge as shown experimentally in [11]. This comparative advantage
of the approach based of reformulation [R] has an intuitive explanation: in [R] a fixed
yij = s, can be “recombined” with any alternative associated extreme subproblem solution
in the x variables. While, when applying column generation in [M], one might need to
generate several columns associated with the same subproblem solution in the y variables
but different extreme continuous solution in the x variables.
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1.4 Vehicle Routing with Split Delivery

The vehicle routing problem (VRP) consists in optimizing delivery routes from a de-
pot. Consider an undirected graph G = (V ∪ {o}, E), with cost, ce, on the edges e ∈ E.
Nodes, i ∈ V , represent customer sites where a quantity of goods di must be delivered,
while o denotes the depot. Vehicles, k = 1, . . . , K, of capacity C must be dispatched to
customers so as to deliver their demand (here we assume di ≤ C ∀i). The number, K,
of available vehicles is assumed to be sufficient. In the continuous split delivery variant
studied by Feillet at al. [7], customer demand di can be met through several deliveries,
each of which can represent any fraction of the demand.

The problem can be modeled in terms of the following variables: xik = 1 if customer
i is visited by vehicle k, yik is the quantity of good delivered to customer i by vehicle k,
and zek = 1 if edge e ∈ E is used in the route followed by vehicle k. The formulation is:

[F] ≡ min {
∑
e,k

ce zek :
∑
k

xik ≥ 1 ∀i,
∑
k

yik ≥ di ∀i,
∑
i

yik ≤ C ∀k, yik ≤ dixik ∀i, k

∑
e∈δ(i)

zek = 2 xik ∀i, k,
∑
e∈δ(S)

xek ≥ 2xik ∀S ⊂ V \ {i}

x ∈ {0, 1}K|V |, y ∈ RK|V |
+ , z ∈ {0, 1}K|E|} .

Consider the subproblem associated with vehicle k:

X = {(x, y, z) ∈ {0, 1}|V | × R|V |+ × {0, 1}
|E| :

∑
i

yi ≤ C, yi ≤ di xi∀i,

∑
e∈δ(i)

ze = 2 xi ∀i,
∑
e∈δ(S)

xe ≥ 2xi ∀S ⊂ V \ {i}}

(the index k does not appear in the subproblem formulation as all vehicles are identical).

Subsystem X can be reformulated in terms of route selection variables. Assume that
R denotes the set of routes starting and returning from the depot. Each route r ∈ R is
characterized by an indicator vectors: xri = 1 if customer i is visited in route r and zre = 1
if edge e is in route r, and a cost cr =

∑
e cez

r
e . The reformulation is:

Z = {(y, µ) ∈ R|V |×|R|+ × {0, 1}|R| :
∑
i

yir ≤ Cr µr ∀r, yir ≤ di x
r
i µr∀i, r,

∑
r

µr = 1}

where Cr = min{C,
∑

i dix
r
i}. The subproblem reformulation yields to a reformulation for

the original problem:

[R] ≡ min{
∑
r∈R

cr µr :
∑
r

xriµr ≥ 1∀i,
∑
r

yir ≥ di∀i,
∑
i

yir ≤ Crµr ∀r, yir ≤ di x
r
i µr∀i, r,

∑
r∈R

µr ≤ K, y ∈ R|V |×|R|+ , µ ∈ N|R|}.
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In comparison, a Dantzig-Wolfe reformulation based on the same subsystems X would
take the form:

[M] ≡ min{
∑
g∈G

cg λg :
∑
g

ygi λg ≥ di∀i,
∑
g∈G

λg ≤ K,λ ∈ N|G|}

where G represent the enumerate set of integer solutions to X, i.e. columns g ∈ G rep-
resent delivery patterns that are described by both the route indicator vectors xgi = 1 if
customer i is visited in route underlying delivery pattern g and zge = 1 if edge e is in route
g; but also by the delivery quantity vector: ygi = the quantity delivered to customer i
delivery pattern g.

In [7], [R] is solved using a column-and-row generation approach. The subproblem
involves setting both the route and the delivery quantities in a column generation approach
for [M]. The interest of applying column generation to [R] rather than [M] is here again
due to the decoupling of route selection and the optimization of delivered quantities: using
[R] one does not need to generate columns that use the same route but differ only by the
delivered quantities, hence there are typically fewer iterations to the column generation
procedure. However, contrary to the previous example, here the LP relaxation of Z is
not an extended formulation for X. One can easily exhibit a continuous solution to Z
that is not in the convex hull of integer solutions to Z or equivalently to X. For instance,
assume 3 customers, indexed by 1, 2, and 3, all with demand 2 and a vehicle capacity
of 5. Consider the fractional solution consisting in taking 1

2
of route x1 = (1, 2, 3) and 1

2

of route x2 = (1, 3) that allows to ship quantities y =
∑

r yr = (2, 1, 2). This solution is
in ZLP \ conv(Z). Therefore, the linear relaxation of [R] is weaker than that of [M] in
this case. In practice, numerical experiments have shown that [RLP ] is not tight enough
to build an efficient solution approach. Better results for the split delivery VRP were
obtained using a column generation approach for [M] by Desaulniers [6].

2. The Generic Procedure
Assume a pure integer program that can be stated in the form [F]:

min c x (44)
[F] A x ≥ a (45)

B x ≥ b (46)
x ∈ Nn (47)

with an identified subsystem defined by

P = {x ∈ Rn
+ : Bx ≥ b} and X = P ∩ Zn (48)

where A ∈ Qm1×n and B ∈ Qm2×n are rational matrices, while a ∈ Qm1 and b ∈ Qm2 are
rational vectors. X (resp. [F]) is assumed to be a pure integer program that is feasible
and bounded. Extension to the unbounded case or mixed integer case is merely a question
of introducing more notation.

13



Assumption 1 There exists a polyhedron Q = {z ∈ Re
+ : H z ≥ h, z ∈ Re

+}, defined by
a rational matrix H ∈ Qf×e and a vector h ∈ Qf , and a linear transformation T defining
the projection:

z ∈ Re
+ −→ x = (T z) ∈ Rn

+ ;

such that,

(i) Q defines an extended formulation for conv(X), i.e.,

conv(X) = projxQ = {x ∈ Rn
+ : x = T z; H z ≥ h; z ∈ Re

+} ;

(ii) Z = Q ∩ Ne defines an extended IP-formulation for X, i.e.,

X = projxZ = {x ∈ Rn
+ : x = T z; H z ≥ h; z ∈ Ne} .

Condition (i) is the core of Assumption 1, while condition (ii) is merely a technical restric-
tion that simplifies the presentation. It also permits one to define branching restrictions
directly in the reformulation. We also assume that Z is bounded to simplify the presen-
tation. The dimension e + f of the reformulation is typically much larger than n + m2:
while n+m2 (or n at least) is expected to be polynomial in the input size, e+ f can have
much higher polynomial degree, or even be pseudo-polynomial/exponential in the input
size.

2.1 Reformulations

The subproblem extended formulation immediately gives rise to a reformulation of [F]
to which we refer by [R]:

min c T z (49)
[R] A T z ≥ a (50)

H z ≥ h (51)
z ∈ Ne . (52)

The standard Dantzig-Wolfe reformulation approach is a special case where X is refor-
mulated as:

X = {x =
∑
g∈G

xgλg :
∑
g∈G

λg = 1, λg ∈ {0, 1}|G|}, (53)

G defining the set of generators of X (as they are called in [28]), i.e., G is the set of integer
solutions of X in the case where X is a bounded pure integer program as assumed here.
Then, the reformulation takes a form known as the master program, to which we refer by
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[M]:

min
∑
g∈G

c xg λg (54)

[M]
∑
g∈G

A xg λg ≥ a (55)∑
g∈G

λg = 1 (56)

λ ∈ {0, 1}|G| . (57)

Let [RLP ] and [MLP ] denote respectively the linear programming relaxation of [R] and
[M], while [D] denote the dual of [MLP ]. Let

vRLP = min{c T z : A T z ≥ a, H z ≥ h, z ∈ Re
+} ,

vMLP = min{
∑
g∈G

c xg λg :
∑
g∈G

A xg λg ≥ a,
∑
g∈G

λg = 1, λ ∈ R|G|+ } , and

vDLP = max{π a+ ν : π A xg + ν ≤ c xg ∀g ∈ G, π ∈ Rm1
+ , ν ∈ R1} (58)

denote respectively the linear programming (LP) relaxation value of [R], [M], and [D].

Observation 1 Under Assumption 1, the linear programming relaxation optimum value
of both [R] and [M] are equal to the Lagrangian dual value obtained by dualizing constraints
A x ≥ a in formulation [F], i.e.,

vRLP = vMLP = vDLP = v∗ ,

where v∗ := min{cx : A x ≥ a, x ∈ conv(X)}.
This is a direct consequence of Assumption 1. Note that the dual bound v∗ obtained
via such reformulations is often tighter than the linear relaxation value of the original
formulation [F] (as typically conv(X) ⊂ P ).

The above extends easily to the case where subsystem (46) is block diagonal. Then,
there are K independent subproblems, one for each block k = 1, . . . , K, with their own
generator set Gk and associated variables in the reformulation zk, and λkg respectively.
When all subsystem are identical, extended reformulation and master are better defined
in terms of aggregate variables to avoid symmetries: w =

∑
k z

k and λg =
∑

k λ
k
g . The

extended formulation becomes

min c T w (59)
[AR] A T w ≥ a (60)

H w ≥ h (61)
w ∈ Ne (62)

where constraints (61) are obtained by summing over k constraints Hk zk ≥ hk ∀k, as in
the Bin Packing example, when aggregating (17-19) into (23-25). The aggregate master
takes the form:

[AM ] ≡ min{
∑
g∈G

c xg λg :
∑
g∈G

A xg λg ≥ a;
∑
g∈G

λg = K; λ ∈ N|G|} .
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Observation 1 remains valid as any solution w to [ARLP ] can be casted into a solution
zk = w

K
for k = 1, . . . , K to [RLP ]; and any solution λ to [AMLP ] can be casted into a

solution λk = λ
K

for k = 1, . . . , K to [MLP ].

Given the potential large size of [R], both in terms of number of variables and con-
straints, one can solve its LP relaxation using dynamic column-and-row generation. If
one assumes an explicit description of [R], the standard procedure would be to start off
with a restricted set of variables and constraints (including possibly artificial variables
to ensure feasibility) and to add iteratively negative reduced cost columns and violated
rows by inspection. The alternative hybrid pricing-and-separation strategy considered
here is to generate columns and rows for [R] not one at the time but by lots, each lot
corresponding to a solution zs of Z (which projects onto xg = Tzs for some g ∈ G) along
with the constraints (51) that need to be enforced for that solution.

2.2 Restricted Extended Formulation

Let {zs}s∈S be the enumerated set of solutions zs of Z ⊆ Ze+. Then, S ⊂ S, defines
an enumerated subset of solutions: {zs}s∈S.
Definition 1 Given a solution zs of Z, let J(zs) = {j : zsj > 0} ⊆ {1, . . . , e} be the
support of solution vector zs and let I(zs) = {i : Hij 6= 0 for some j ∈ J(zs)} ⊆ {1, . . . , f}
be the set of constraints of Q that involve some non zero components of zs. The “restricted
reformulation” [R] defined by a subset S ⊂ S of solutions to Z is:

min c T z (63)
[R] A T z ≥ a (64)

H z ≥ h (65)

z ∈ N|J | (66)

where z (resp. h) is the restriction of z (resp. h) to the components of J = ∪s∈SJ(zs), H
is the restriction of H to the rows of I = ∪s∈SI(zs) and the columns of J , while T is the
restriction of T to the columns of J .

Assume that we are given a subset S ⊂ S properly chosen to guarantee the feasibility
of [RLP ] (otherwise, artificial variables can be used to patch non-feasibility until set S is
expanded). We define the associated set

G = G(S) = {g ∈ G : xg = T zs for some s ∈ S} (67)

which in turn defines a restricted formulation [M ]. Let [RLP ] and [MLP ] denote the LP
relaxation of the restricted formulations [R] and [M ]; while vRLP , vMLP denote the corre-
sponding LP values. Although, in the end, vRLP = vMLP = v∗, as stated in Observation 1,
the value of the restricted formulations may differ.

Proposition 1 Let [R] and [M ] be the restricted versions of formulations [R] and [M]
both associated to the same subset S ⊂ S of subproblem solutions and associated G as
defined in (67). Under Assumption 1, their linear relaxation values are such that:

v∗ ≤ vRLP ≤ vMLP (68)
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Proof: The first inequality results from the fact that [RLP ] only includes a subset of
variables of [R] whose LP value is vRLP = v∗, while the missing constraints are satisfied by
the the current restricted reformulation [RLP ], which we denote by z̃. More explicitly, all
the missing constraints must be satisfied by the solution that consists in extending z̃ with
zero components, i.e. (z̃, 0) defines a solution to [RLP ]; otherwise, such missing constraint
is not satisfied by solutions of S in contradiction with the fact that solutions of S satisfy
all constraints of Q. The second inequality is derived from the fact that any solution λ̃ to
the LP relaxation of M has its counterpart z̃ =

∑
g∈G z

g λ̃g that defines a valid solution
for [RLP ], where zg ∈ Z is obtained by lifting solution xg ∈ X. The existence of the
associated zg is guaranteed by Assumption 1-(ii).

The second inequality can be strict: solutions in [RLP ] do not always have their
counterpart in [MLP ] as illustrated in the numerical example of Section 1.1. This is an
important observation that justify considering [R] instead of [M].

2.3 Column Generation

The procedure given in Table 1 is a dynamic column-and-row generation algorithm
for the linear relaxation of [R]. It is a hybrid method that generates columns for [MLP ]
by solving a pricing subproblem over X (or equivalently over Z), while getting new dual
prices from a restricted version of [RLP ]. Its validity derives from the observations made
in Proposition 2.

Proposition 2 Let vRLP denote the optimal LP value of [RLP ], while (π, σ) denote an
optimal dual solution associated to constraints (64) and (65) respectively. Let z∗ be the
subproblem solution obtained in Step 2 of the procedure of Table 1 and ζ = (c− πA) T z∗

be its value. Then:

(i) The Lagrangian bound: L(π) = π a + (c − πA) T z∗ = π a + ζ, defines a valid dual
bound for [MLP ], while (π, ζ) defines a feasible solution of [D], the dual of [MLP ].

(ii) Let β denote the best of the above Lagrangian bound encountered in the procedure of
Table 1. If vRLP ≤ β (i.e. when the stopping condition in Step 3 is satisfied), then
v∗ = β and (π, ζ) defines an optimal solution to [D].

(iii) If vRLP > β, then [(c−πA)T −σH]z∗ < 0. Hence, some of the component of z∗ were
not present in [RLP ] and have negative reduced cost for the current dual solution
(π, σ).

(iv) Inversely, when [(c − πA) T − σ H]z∗ ≥ 0, i.e., if the generated column has non
negative aggregate reduced cost for the dual solution of [RLP ], then vRLP ≤ β (the
stopping condition of Step 3 must be satisfied) and (π, ν) defines a feasible solution
to formulation [D] defined in (58) for ν = σ h.

Proof:

(i) For any π ≥ 0, and in particular for the current dual solution associated to con-
straints (64), L(π) defines a valid Lagrangian dual bound on [F ]. As ζ = min{(c−
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π A) T z : z ∈ Z} = min{(c− π A) x : x ∈ X}, (π, ζ) defines a feasible solution of
[D] and hence its value, π a+ ζ, is a valid dual bound on [MLP ].

(ii) From point (i) and Proposition 1, we have L(π) ≤ β ≤ v∗ ≤ vRLP . When the stopping
condition in Step 3 is satisfied, the inequalities turn into equalities.

(iii) When vRLP > β ≥ L(π), we note that σ h > (c− π A) Tz∗ because vRLP = π a + σ h
and L(π) = π a + ζ = π a + (c − π A) Tz∗. As Hz∗ ≥ h and σ ≥ 0, this implies
that [(c − π A) T − σ H]z∗ < 0. Assume by contradiction that each component of
z∗ has non negative reduced cost for the current dual solution of [RLP ]. Then, the
aggregate sum, [(c−πA)T −σH]z∗ cannot be strictly negative for z∗ ≥ 0. As (π, σ)
is an optimal dual solution to [RLP ], all variables of [RLP ] have positive reduced
cost. Thus, the negative reduced cost components of z∗ must have been absent from
[R].

(iv) Because Hz∗ ≥ h, [(c − πA) T ]z∗ ≥ σ H z∗ implies (c − π A) Tz∗ ≥ σ h, i.e.,
ζ ≥ σ h. In turn, ζ ≥ σ h implies that (π, ν) with ν = σ h is feasible for [D] (all
constraints of [D] are satisfied by (π, ν)). Note that ζ ≥ σ h also implies vRLP ≤ β,
as vRLP = π a+ σ h ≤ π a+ ζ = L(π) ≤ β.

Table 1: Dynamic column-and-row generation for [RLP ].

Step 0: Initialize the dual bound, β := −∞, and the subproblem solution set S so that
the linear relaxation of [R] is feasible.

Step 1: Solve the LP relaxation of [R] and record its value vRLP and the dual solution π
associated to constraints (64).

Step 2: Solve the pricing problem: z∗ := argmin{(c − πA) T z : z ∈ Z}, and record its
value ζ := (c− πA) T z∗.

Step 3: Compute the Lagrangian dual bound: L(π) := π a + ζ, and update the dual
bound β := max{β, L(π)}. If vRLP ≤ β, STOP.

Step 4: Update the current bundle, S, by adding solution zs := z∗ and update the
resulting restricted reformulation [R] according to Definition 1. Then, goto Step 1.

Remark 1 The column generation pricing problem of Step 2 in Table 1 is designed for
formulation [MLP ] and not for formulation [RLP ]: it ignores dual prices, σ, associated to
subproblem constraints (65).

Remark 2 For the column generation procedure of Table 1, pricing can be operated in
the original variables, x, in Step 2. Indeed, min{(c−πA)T z : z ∈ Z} ≡ min{(c−πA)x :
x ∈ X}. But, to implement Step 4, one needs to lift the solution x∗ := argmin{(c−πA)x :
x ∈ X} in the z-space in order to add variables to [R], i.e., one must have a procedure to
define z∗ such as x∗ = T z∗.
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Remark 3 The procedure of Table 1 is a generalization of the standard “text-book” column
generation algorithm (see f.i. [4]). Applying this procedure to formulation [M] reproduces
exactly the standard column generation approach for solving the LP relaxation of [M].
Indeed, [M] is a special case of reformulation of type [R] where system H z ≥ h consists
of a single constraint,

∑
g∈G λg = 1. The latter needs to be incorporated in the restricted

reformulation along with the first included column, λg, from which point further extensions
consist only in including further columns.

Observation 2 Note that ν = σ h plays the role of the dual solution associated to the
convexity constraint (56). It defines a valid cut-off value for the pricing sub-problem, i.e.,
if ζ ≥ σ h the stopping condition in Step 3 is satisfied.

This observation derives from the proof of Proposition 2-(iv).

2.4 Extension to approximate extended formulations

The column-and-row generation procedure for [R] provided in Table 1 remains valid
under weaker conditions. Assumption 1 can be relaxed into:

Assumption 2 Using the notation of Assumption 1, assume:

(i) reformulation Q defines an improved formulation for X, although not an exact ex-
tended formulation:

conv(X) ⊂ projxQ ⊂ P where projxQ = {x = T z : H z ≥ h, z ∈ Re
+} ;

(ii) moreover, assume conditions (ii) of Assumption 1.

Assumption 2, relaxing Assumption 1-(i), can be more realistic in many applications
where the subproblem is strongly NP-Hard. It also applies when one develops only an
approximation of the extended formulation for X as in the proposal of [26] and in the
bin-packing example of Section 1.2.

Then, Observation 1 and Proposition 1 become respectively:

Observation 3 Under Assumption 2, vLP ≤ vRLP ≤ v∗ = vMLP = vDLP .

Proposition 3 Under Assumption 2, vRLP ≤ vMLP and v∗ ≤ vMLP ; but one might have
vRLP < v∗.

Proposition 2 still holds under Assumption 2 except for point (ii). However the stopping
condition of Step 3 remains valid.

Proposition 4 Under Assumption 2, the column-and-row generation procedure of Table 1
remains valid. In particular, the termination of the procedure remains guaranteed. On
termination, one may not have the value vRLP of the solution of [RLP ], but one has a valid
dual bound β that is at least as good, since

vRLP ≤ β ≤ v∗ = vMLP .
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Proof: Observe that the proofs of points (i), (iii), and (iv) of Proposition 2 remain valid
under Assumption 2. Hence, as long as the stopping condition of Step 3 is not satisfied,
negative reduced cost columns are found for [RLP ] (as stated in Proposition 2-(iii)) that
shall in turn lead to further decrease of vRLP . Once the stopping condition, vRLP ≤ β, is
satisfied however, we have vRLP ≤ vRLP ≤ β ≤ v∗, proving that the optimal LP value, vRLP ,
is then guaranteed to lead to a bound weaker than β.

Thus, once vRLP ≤ β, there is no real incentive to further consider columns z∗ with
negative reduced cost components in [RLP ]; although this may decrease vRLP , there is no
more guarantee that β shall increase in further iterations. Note that our purpose is to
obtain the best possible dual bound for [F], and solving [RLP ] is not a goal in itself.
Nevertheless, sufficient conditions to prove that [RLP ] has been solved to optimality can
be found in [8].

3. Interest of the approach
Here, we review the motivations to consider applying column-and-row generation to

[R] instead of a standard column generation to [M] or a direct MIP-solver approach to
[R]. We summarize the comparative pros and cons of the hybrid approach. We identify
properties that are key for the method’s performance and we discuss two generic cases of
reformulations where the desired properties take a special form: reformulations based on
network flow models or on the existence of a dynamic programming subproblem solver.

3.1 Pros and cons of a column-and-row generation approach

Both the hybrid column-and-row generation method for [R] and a standard column
generation approach for [M] can be understood as ways to get around the issue of size
arising in a direct solution of the extended formulation [R]. The primary interest for imple-
menting a dynamic generation of [R] rather than [M] is to exploit the second inequality of
Proposition 1: a column generation approach to reformulation [RLP ] can converge faster
than one for [MLP ] when there exist possible re-compositions of solutions in [RLP ] that
would not be feasible in [MLP ]. In the literature (f.i. in [23]), another motivation is put
forward for using the column-and-row generation rather than standard column generation:
[R] offers a richer model in which to define cuts or branching restrictions. Note however
that although [R] provides new entities for branching or cutting decisions, one can im-
plicitly branch or formulate cuts on the variables of [R] while working with [M]: provided
one does pricing in the z-space, any additional constraint in the z-variables of the form
α z ≥ α0 for [R] translates into a constraint

∑
g α z

g λg ≥ α0 for [M] (where zg’s denote
generators) that can be accommodated in a standard column generation approach for [M].

The drawbacks of a column-and-row approach, compared to applying standard column
generation, are:

(i) having to handle a larger restricted linear program ([RLP ] has more variables and
constraints than [MLP ] for a given S);
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(ii) having to manage dynamic row generation along side column generation;

(iii) having to face potential symmetries in the representation of solutions that might
arise in the extended formulation; and

(iv) potentially having to use a subproblem oracle specific to the subproblem extended
formulation, if lifting a subproblem solution in the extended space as explained in
Remark 2 is not an option; this is an issue when pricing in the z-variable space
requires higher complexity / computing times than in the x-variables.

3.2 Key properties characterizing the interest of the approach

From the above discussion, we gather that the applications of interest are those for
which the hybrid column-and-row approach can be expected to converge faster than stan-
dard column generation, to reach the same quality dual bound, to implicitly provide
entities for branching or defining cuts, while allowing the use of a pricing procedure in the
original variables if possible and trying to avoid symmetric representations of solutions.
These desirable properties are formalized below.

Faster convergence results from what we call the “recombination property”:

Property 1 (“recombination”)
Given S ⊂ S, ∃z̃ ∈ RLP (S), such that z̃ 6∈ conv(Z(S)).

Property 1 implies that one might not need to generate further columns to achieve some
solutions in Q \ conv(Z(S)); hence, the column generation approach to [RLP ] might need
fewer iterations to converge compared to column generation applied to [MLP ].

The dual bound quality is guaranteed by the “convexification property”:

Property 2 (“convexification”)
Given S ⊂ S, ∀z̃ ∈ RLP (S), one has (T z̃) ∈ conv(X);

Assumption 1-(i), along with Definition 1, implies Property 2, that is a form of re-wording
of Proposition 1. However, the “convexification property” does not hold under Assump-
tion 2.

Branching can be performed simply by enforcing integrality restriction on the z vari-
ables if the “integrality property” holds:

Property 3 (“integrality”)
Given S ⊂ S, ∀z̃ ∈ R(S), one has (T z̃) ∈ X.

Assumption 1-(ii), together with Definition 1, implies Property 3. But, Property 3 does
not generalize to the case of multiple identical subsystem giving rise to aggregate formu-
lation [AR] presented in (59-62) [29].

Let us formalize the lifting of Remark 2. According to Assumptions 1 or 2, any
subproblem extended solution z ∈ Z can be associated with a solution x ∈ X through
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the projection operation: x = p(z) = T z. Inversely, given a subproblem solution x ∈ X,
the system T z = x must admit a solution z ∈ Z: one can define

p−1(x) := {z ∈ Ne : T z = x; H z ≥ h} . (69)

However, in practice, one needs an explicit operator:

x ∈ X −→ z ∈ p−1(x)

or a procedure that returns z ∈ Z, given x ∈ X. Thus, the desirable property is what we
call the “lifting property”:

Property 4 (“lifting”)
There exists a lifting procedure that transforms any subsystem solution x ∈ X into a
solution to the extended system z ∈ Z such that x = T z.

Then, in Step 2 of the procedure of Table 1, one computes x∗ := argmin{(c− πA) x : x ∈
X}, and in Step 4, one defines z∗ = p−1(x∗).

Observation 4 A generic lifting procedure is to solve the integer feasibility program de-
fined in (69).

Note that solving (69) is typically much easier than solving the pricing subproblem, as
constraint T z = x already fixes many z variables. However, in an application specific
context, one can typically derive a combinatorial procedure for lifting. When the richer
space of z-variables is exploited to derive cutting planes or branching constraints for the
master program, it might induce new bounds or a new cost structure in the Z-subproblem
that cannot be modeled in the X space. Then, pricing must be done in the z-space.

Finally, let us discuss further the symmetry drawback. It is characterized by the fact
that the set p−1(xg) defined in (69) is often not limited to a singleton (as for instance in
the bin packing example of Section 1.2, when using the underlying network of the left part
of Figure 3). In the lack of uniqueness of the lifted solution, the convergence of the so-
lution procedure for [RLP ] can be slowed down by iterating between different alternative
representations of the same LP solution. (Note that a branch-and-bound enumeration
based on enforcing integrality of the z variables would also suffer from such symmetry.)
The lifting procedure can break such symmetry by adopting a rule to select a specific
representative of the symmetry class p−1(xg), or by adding constraints in (69).

In summary, a column generation approach for the extended formulation has any in-
terest only when Property 1 holds; while Assumption 1 guarantees Properties 2 and 3.
Property 4 is optional but if it holds any pricing oracle on X will do, until cut or branch-
ing constraint expressed in the z variable might require to price in the z-space. The
combination of Property 4 and Property 1, leads to the desirable “disaggregation and re-
combination property”. We review below several important special cases where the desired
disaggregation and recombination property holds, along side Properties 2 and 3.
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3.3 The case of network flow reformulation

Assume that the extended formulation stems from reformulating a subproblem as a
network flow problem: a subproblem solution x ∈ X can be associated with a feasible
arc flow in the network, z ∈ Z, that satisfies flow bounds on the arcs and flow balance
constraints at the nodes. Note that extreme solutions z ∈ Q are integer in this case; they
map onto integer solutions x by the linear transformation T . In an application specific
context, any subproblem solution x can typically easily be interpreted as a feasible flow
along paths and/or cycles although the association may not be unique. Then, the flow
decomposition theorem [1] yields a unique arc flow z and Property 4 is satisfied: trans-
forming x into path and/or cycle flows and applying flow decomposition define an explicit
lifting procedure.

Given a set of feasible flows z1, . . . , zk, and their combined support graph, let the
solution set Q = Q(z1, . . . , zk) = {z ∈ Re

+ : H z ≥ h, z ∈ Re
+} be the restriction of the

network flow formulation to the support graph of flows z1, . . . , zk. Observe that Q holds
solutions that are not convex combinations of z1, . . . , zk: those are solutions that can be
defined from a convex combination plus a flow along a undirected cycle in the support
graph. Indeed, for any pair of feasible flows, z1 and z2, the difference w = z1 − z2 is a
cycle flow. By the flow decomposition theorem [1], w decomposes into elementary cycle
flow wA, wB, . . ., and z̃ = z1 +αwA ∈ (Q \ conv(z1, z2)) for any elementary cycle wA and
α ∈ (0, 1). Hence, Property 1 holds.

This special class also encompasses extended formulations that are “equivalent” to
network flow problems; for instance, when H is a consecutive 1 matrix that can be trans-
formed into a node arc incidence matrix [1]. In particular, it encompasses time index
formulation for scheduling problems as developed in Section 1.1. More generally, flow re-
combinations can be encountered in any extended formulation that include a network flow
model as a subsystem; in particular, in multi-commodity flow reformulations of network
design problems.

It is interesting to observe that Property 3 remains valid even in the case of multiple
identical sub-systems developed in reformulation (59-62), when {z ∈ Re

+ : H z ≥ h} mod-
els a shortest path in an acyclic network. Then, the aggregate flow w can be decomposed
into path flow (by the flow decomposition theorem [1]), each of which corresponds to a
solution xg ∈ X and therefore an integer aggregate flow w solution to [AR] decomposes
into an integer solution for [R].

3.4 The case of dynamic programming based reformulations

Another important special case is when the extended formulation is stemming from
a dynamic programming solver for the subproblem [16]. Most discrete dynamic program
entails finding a shortest (or longest) path in a directed acyclic decision graph, where
nodes correspond to states (representing partial solutions) and arcs correspond to tran-
sitions (associated with partial decisions to extend solutions). This directly leads to a
reformulation as a unit flow going from origin (empty solution) to destination (complete
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solution). Then, one is again in the special case of Section 3.3.

However, more complex dynamic programs may involve the composition of more than
one intermediate state (representing partial solutions) into a single state (next stage par-
tial solution). These can be modeled by hyper-arcs with a single head but multiple tails.
Then, the extended paradigm developed by [16] consists in seeing a dynamic program-
ming solution as a hyper-path (associated to a unit flow incoming to the final state) in a
hyper-graph that satisfy two properties:

(i) acyclic consistency – there exists a topological indexing of the nodes such as, for
each hyper-arc, the index of the head is larger than the index of the tail nodes;

(ii) disjointness – if a hyper-arc has several tails, they must have disjoint predecessor
sets.

This characterization avoids introducing an initial state, but instead consider “boundary”
arcs that have undefined tails: see Figure 4. The dynamic programs that can be modeled
as a shortest path problem are a special case where the hyper-graph only has simple arcs
with a single tail and hence the disjointness property does not have to be checked.

Figure 4: Illustration of the recombination of subproblem solutions that are associated
with hyper-paths in the hyper-graph underlying the paradigm of [16]: nodes are indexed
in acyclic order; node 21 represents the final state; hyper-arcs may have multiple tail
but a single head; “boundary” arcs that represent initialization conditions have no tail; a
solution is defined by a unit flow reaching the final node 21; when a unit flow exits an
hyper-arc, a corresponding unit flow must enter in each of the tail nodes; solutions z1
and z2 are depicted on in the hyper-graphs on the left and in the middle; they share a
common intermediate node 19; their recombination, ẑ, is represented in the hyper-graph
on the right.
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Following [16], consider a directed hyper-graph G = (V ,A), with hyper-arc set A =
{(J, l) : J ⊂ V \ {l}, l ∈ V} and associated arc costs c(J, l), a node indexing σ : V →
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{1, . . . , |V|} such that σ(j) < σ(l) for all j ∈ J and (J, l) ∈ A (such topological indexing
exists since the hyper-graph is acyclic). The associated dynamic programming recursion
takes the form:

γ(l) = min
(J,l)∈A

{c(J, l) +
∑
j∈J

γ(j)} .

Values γ(l) can be computed recursively following the order imposed by indices σ, i.e.,
for l = σ−1(1), . . . , σ−1(|V|). Solving this dynamic program is equivalent to solving the
linear program:

max{uf : ul −
∑
j∈J

uj ≤ c(J, l) ∀(J, l) ∈ A} (70)

where f = σ−1(|V|) is the final state node. Its dual is

min{
∑

(J,l)∈A

c(J, l) z(J,l) (71)

∑
(J,f)∈A

z(J,f) = 1 (72)

∑
(J,l)∈A

z(J,l) =
∑

(J ′,l′)∈A:l∈J ′

z(J ′,l′) ∀l 6= f (73)

z(J,l) ≥ 0 ∀(J, l) ∈ A} (74)

that defines the reformulation Q for the subproblem.

In this generalized context, [16] gives an explicit procedure to obtain a solution z, defin-
ing the hyper-arcs that are in the subproblem solution, from the solution of the dynamic
programming recursion: the hyper-arc selection is a dual solution to the linear program
(70); given the specific assumption on the hyper-graph (acyclic consistency and disjoint-
ness), this dual solution z can be obtained through a greedy procedure. So if one uses the
dynamic program as oracle, one can recover a solution x and associated complementary
solution z. Alternatively, if subproblem solution x is obtained by another algorithm, one
can easily compute distance labels, ul, associated to nodes of the hyper-graph (ul = the
cost of partial solution associated to node l if this partial solution is part of x and ul =∞
otherwise) and apply the procedure of [16] to recover the complementary solution z. So,
Property 4 is satisfied. The procedure is polynomial in the size of the hyper-graph.

Property 1 also holds. Indeed, given a hyper-path z, let χ(z, J, l) be the characteristic
vector of the set of hyper-arcs (J ′, l′) in the hyper-path defined by z. Now consider two
hyper-paths z1 and z2 such that z1(J1,l) = 1 and z2(J2,l) = 1 for a given intermediate node l,
with J1 6= J2. Then, consider z̃ = z1−χ(z1, J1, l) +χ(z2, J2, l). Note that we have z̃ ∈ Z
but z̃ 6∈ conv(z1, z2), as z1(J1,l) = 1 and z̃(J1,l) = 0. Such a recombination is illustrated in
Figure 4.

3.5 The case of reformulations based on the union of polyhedra

A third important class of reformulations consists of those exploiting one’s ability to
formulate the union of polyhedra. Assume Qk = {z ∈ Re

+ : Hkz ≤ hk} is an extended
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Figure 5: The union of three polyhedra

formulation for Xk and X = ∪kXk while Ck := {z ∈ Re
+ : Hkz ≤ 0} = C ∀k, then

Q = {(z, δ) ∈ Re
+ × [0, 1]K : z =

∑
k

zk;
∑
k

δk = 1;Hkzk ≤ hk δk∀k}

defines an extended formulation for X. Figure 5 illustrates three polyhedron and their
convex combination defined by Q.

Let us consider how does Property 1 applies in such case. For a given ẑ ∈ Z, there
exists an associated δ̂k = 1 such that ẑ = ẑk. Then, in [RLP ] restricted to ẑ, any LP solu-
tion to Qk

(ẑk) (defined as the restriction of Qk to ẑk) is feasible and not just ẑk. However,
even after adding several subproblem solutions for each subsystem Qk, recombination
shall remain internal to each subsystem Q

k, i.e., at any stage, the restricted master [RLP ]
do not allow combinations of the solutions associated to different subsystems k other than
their convex combination. In other words, recombinations only arise within each of the
subsystem Q

k and not between them. The example of Section 1.3 is an application based
on such union of polyhedra.

4. Numerical experimentation
Consider the three formulations introduced in Section 2: the compact formulation [F],

the extended formulation [R], and the standard Dantzig-Wolfe reformulation [M], with
their respective LP relaxation [FLP ], [RLP ], and [MLP ]. Here, we report on comparative
numerical experiments with column(-and-row) generation for [RLP ] and [MLP ], and a di-
rect LP-solver approach applied to [RLP ] (or [FLP ], when the direct approach to [RLP ] is
impractical). The column(-and-row) generation algorithm has been implemented gener-
ically within the software platform BaPCod [27] (a problem-specific implementation is
likely to produce better results). The master program is initialized with either a single
artificial variable, or one for each linking constraint, or a heuristic solution. For column-
and-row generation, all extended formulation variables z that form the pricing subproblem
solution are added to the restricted master, whether or not they have negative reduced
cost. CPLEX 12.1 was used to attempt to solve directly [RLP ] or [FLP ]. CPLEX 12.3
is used to solve the restricted master linear programs, while the MIP subproblems are
solved using a specific oracle.
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For applications where the subproblem is a knapsack problem, we used the solver of
Pisinger [19]. Then, when using column-and-row generation, the solution in the original
x variables is “lifted” to recover an associated solution z using a simple combinatorial
procedure. For a 0-1 knapsack, we sort the items i for which x∗i = 1 in non-increasing
order of their size, si, and let z∗uv = 1 for the arc (u, v) such that u =

∑
j<i sjx

∗
j and

v =
∑

j≤i sjx
∗
j . Note that this specific lifting procedure selects one representative amongs

all equivalent solutions in the arc-space, automatically eliminating some symmetries. It
can be extended to integer knapsack problems. For the other applications considered
here, the subproblems are solved by dynamic programming and hence the z∗ solution is
obtained directly: z∗uv = 1 if the optimum label at v is obtained using state transition
from u.

Results of Tables 2 to 7, are averages over randomly generated instances. The column
headed by “cpu” reports the average computational time (in seconds on a Dell PowerEdge
1950 workstation with 32 Go of Ram or an Intel Xeon X5460 3.16 GHz processor); “it”
denotes the average number of iterations in the column(-and-row) generation procedure
(it represents the number of calls to the restricted master solver); “v(F1

F2
)” (resp. “c(F1

F2
)”)

denote the average number of variables (resp. constraints) generated for formulation F1

expressed as a percentage of the number of variables (resp. constraints) generated for
F2. Additionally, “%gap” (reported in some applications) denotes the average difference
between dual bound and best primal bound known (the optimum solution in most cases),
as a percentage of the latter. Bounds are rounded to the next integer for integer objectives.

To validate the stabilization effect of the column-and-row generation approach, we
show how it compares to applying stabilization in a standard column generation ap-
proach. We point out that stabilization by recombination is of a different nature than
standard stabilization techniques. To illustrate this, we show that applying both standard
stabilization and column recombination together leads to a cumulative effect. For these
experiments, the “standard stabilization technique” that we use is a dual price smoothing
technique originally proposed by Wentges [30]. It is both simple and among the most
effective stabilization techniques. It consists in solving the pricing subproblem for a linear
combination, π̄, of the current restricted master dual solution, π, and the dual solution
which gave the best Lagrangian bound, π̂: i.e., π̄ = απ̂+(1−α)π, where α ∈ [0, 1). Thus,
α = 0 means that no stabilization by smoothing is used.

4.1 Parallel Machines Scheduling

For the machine scheduling problem of Section 1.1, our objective function is the total
weighted tardiness (this problem is denoted as P ||

∑
wjTj). Instance size is determined

by a triple (n,m, pmax), where n is the number of jobs, m is the number of machines, and
pmax is the maximum processing time of jobs. Instances are generated using the procedure
of [21]: integer processing times pj are uniformly distributed in interval [1, 100] and integer
weights wj in [1, 10] for jobs j, j = 1, . . . , n, while integer due dates have been generated
from a uniform distribution in [P (1−TF −RDD/2)/m, P (1−TF +RDD/2)/m], where
P =

∑
j pj, TF is a tardiness factor, and RDD is a relative range of due dates, with

TF,RDD ∈ {0.2, 0.4, 0.6, 0.8, 1}. For each instance size, 25 instances were generated, one
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for each pair of parameters (TF,RDD).

Cplex Col. gen. Col-&-row Hyb. col-&-row and relative
for [RLP ] for [MLP ] g. for [RLP ] g. for [RLP ] size

m n pmax cpu it cpu it cpu it cpu v(RR) v(M
R

) c(M
R

)
1 25 50 1.6 331 0.5 50 0.3 106 0.3 5.3 45.6 4.1
1 50 50 18.8 1386 19.7 76 2.9 207 2.8 3.2 72.7 3.7
1 100 50 304.2 8167 1449.5 104 24.8 354 19.4 2.3 138.0 4.0
1 25 100 7.1 337 0.9 72 0.9 124 0.8 3.8 33.8 2.0
1 50 100 132.6 1274 24.2 107 8.9 246 8.6 2.7 43.1 1.8
1 100 100 2332.0 8907 1764.4 144 90.3 455 61.3 1.9 103.2 1.9
2 25 100 4.1 207 0.3 63 0.2 97 0.2 3.9 40.0 3.9
2 50 100 109.2 645 5.7 94 1.7 173 1.9 2.8 39.9 3.5
2 100 100 3564.4 2678 115.5 117 14.3 319 14.9 2.1 59.3 3.7
4 50 100 18.7 433 1.5 90 0.6 167 0.7 3.0 45.0 6.6
4 100 100 485.7 1347 27.9 113 4.7 295 5.2 2.2 56.2 7.2
4 200 100 >2h 4315 409.7 148 36.1 561 39.7 1.5 69.7 7.6

Table 2: Computational results for Machine Scheduling without using dual price smooth-
ing (α = 0).

In Table 2, we compare methods on these instances without using dual price smoothing
as a stabilization technique. The table reports on column generation for [MLP ], column-
and-row generation for [RLP ], and solving [RLP ] directly using Cplex. In both column
generation and column-and-row generation, the master is initialized with a trivial heuris-
tic solution. We note that with column-and-row generation, a lot of recombinations occur
during the “heading-in” phase at the outset of the algorithm when the dual information is
still very poor. These recombinations slow down the master solution time, while not being
very useful as variables generated during this initial phase are not likely to appear in the
optimum solution. Hence, we adopt a hybrid approach (also reported in Table 2), starting
the algorithm using pure column generation and switching to column-and-row generation
only beyond the “heading-in” phase (precisely, when L(π) > 0). This hybrid technique
induces time saving in solving the master at the expense of an increase in the number of
iterations (by a factor 2 to 3). The results reveals that solving [RLP ] directly using Cplex
is not competitive. Thanks to the stabilization effect of column recombinations, column-
and-row generation yields a significant reduction in the number of iterations compared to
standard column generation. However the restricted master [RLP ] is typically much larger
(and harder to solve) than [MLP ] (around twice the number of variables and 20 times the
number of constraints). Despite this fact, column-and-row generation is much faster. The
measure “v(R

R
)” shows that only around 2 to 5% of variables are actually generated to

solve [RLP ] by column-and-row generation (“c(R
R
)” is omitted, as it was always close to

100).

In Table 3, we compare column generation for [MLP ], pure and hybrid column-and-row
generation for [RLP ] using dual price smoothing for stabilization purposes. Experimental
tuning lead to selecting parameter α to 0.9 and 0.5 respectively, i.e. on average column(-
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Col. gen. Col-&-row Hyb. col-&-row and relative
for [MLP ], g. for [RLP ], for [RLP ], α = 0.5 size
α = 0.9 α = 0.5

m n pmax it cpu it cpu it cpu v(R
R
) v(M

R
) c(M

R
)

1 25 50 145 0.2 45 0.2 84 0.2 4.1 31.5 4.3
1 50 50 341 2.5 70 2.3 154 1.8 2.5 36.9 3.8
1 100 50 746 26.1 91 22.0 266 12.6 1.8 30.8 4.0
1 25 100 150 0.2 61 0.5 96 0.4 2.6 26.6 2.2
1 50 100 354 3.8 91 6.8 172 4.0 1.7 25.7 1.9
1 100 100 781 39.5 115 78.6 299 31.1 1.3 28.8 1.9
2 25 100 142 0.2 55 0.2 87 0.2 3.3 37.5 4.1
2 50 100 323 1.7 84 1.5 158 1.6 2.2 32.2 3.6
2 100 100 715 17.3 102 12.4 275 11.3 1.6 29.2 3.7
4 50 100 287 0.6 83 0.5 154 0.6 2.6 39.5 6.7
4 100 100 638 8.7 102 4.1 264 4.6 1.8 38.7 7.2
4 200 100 1553 87.7 136 33.5 481 33.4 1.2 36.3 7.6

Table 3: Computational results for Machine Scheduling using dual price smoothing as a
stabilization technique.

and-row) generation takes the least time to execute when α is fixed to these values. The
restricted masters are initialized by a single artificial column, except in pure column-
and-row generation, in which the master is initialized with a trivial heuristic solution.
Here again, the hybrid approach consists in using standard column generation during the
“heading-in” phase and switching to column-and-row generation when L(π) > 0. Results
of Table 3 show that smoothing yields a speed-up in both standard column generation
and column-and-row generation, but it is less impressive for the latter as the method
was already stabilized by the recombination effect. The difference in cpu time between
the two methods increases when either processing times are smaller (allowing for more
recombinations) and when number of machines and jobs are larger.

In Table 4, we compare the column(-and-row) generation approaches on the arc-
indexed formulation proposed by Pessoa et al. [18] where a binary variable zijt is defined
for every pair of jobs (i, j) and every period t: zijt = 1 if job i finishes and job j starts
in period t. Then, flow conservation constraints are defined for every couple (j, t). Going
to this larger extended space has some advantages: (i) direct repetitions of jobs are for-
bidden by not defining variable ziit; and (ii) a simple dominance rule is incorporated by
not defining variable zijt if permuting jobs i and j decreases the total cost. The resulting
strengthening of the LP relaxation bound is, in our experiments, on average 0.38% for
single-machine instances, 0.28% for two-machine instances, and 0.13% for four-machine
instances. This difference is significant given the fact that the time-indexed formulation
is already very strong. However, the arc-indexed formulation has huge size (solving [RLP ]
directly is excluded). Moreover, the complexity of the dynamic program for solving the
pricing problem increases to O(n2T ) and hence time for pricing dominates the overall cpu
time. In this context, reducing the number of iterations is key, which gives the advantage
of the column-and-row generation approach. For this reason, we did not use the hybrid
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column-and-row generation approach here. For the results of Table 4, experimental tuning
lead to selecting smoothing parameter α to 0.9 and 0.7 respectively, while the restricted
master is initialized by a single artificial column for standard column generation and us-
ing a trivial heuristic solution for column-and-row generation. Using a column-and-row
generation approach yields a reduction of both iterations and cpu time by factor up to
5.6. The number of variables and constraints in the final restricted master [RLP ] is only
a very small fraction of that of [RLP ].

Col. gen. Col-&-row g. and relative
for [Marc

LP ], α = 0.9 for [Rarc
LP ], α = 0.7 size

m n pmax it cpu it cpu v(R
R
) c(R

R
) v(M

R
) c(M

R
)

1 25 50 127 0.5 85 0.5 0.30 1.3 23.1 11.0
1 50 50 332 11.7 117 5.6 0.09 0.8 23.7 9.5
1 100 50 734 198.1 161 57.3 0.03 0.4 21.8 9.5
1 25 100 128 1.1 100 1.2 0.13 0.6 24.5 12.9
1 50 100 328 25.7 160 16.0 0.05 0.4 21.5 9.7
1 100 100 758 466.3 197 144.7 0.02 0.3 19.9 8.3
2 25 100 145 0.7 89 0.5 0.16 1.1 42.6 12.0
2 50 100 332 13.0 140 5.9 0.07 0.7 32.6 11.3
2 100 100 730 203.7 186 54.4 0.02 0.4 27.1 10.5
4 50 100 286 5.6 145 3.1 0.08 1.1 42.6 13.2
4 100 100 618 83.5 197 27.5 0.03 0.6 33.6 13.3
4 200 100 1530 2233.2 275 389.9 0.01 0.2 30.4 12.0

Table 4: Computational results for Machine Scheduling using smoothing and an arc-
indexed formulation.

4.2 Bin Packing

For the bin packing problem of Section 1.2, we compared solving [FLP ] using Cplex
(as solving [RLP ] directly is impractical), standard column generation for [MLP ], and pure
column-and-row generation for [RLP ]. Instance classes “a2”, “a3”, and “a4” (the number
refers to the average number of items per bin) contain instances with bin capacity equal to
4000 where item sizes are generated randomly in intervals [1000, 3000], [1000, 1500], and
[800, 1300], respectively. Results in Table 5 are averages over 5 instances. Experimental
tuning lead to selecting smoothing parameter α to 0.85 for both approaches, while the
restricted master is initialized with a trivial heuristic solution. Here, “gap” denotes the
absolute value of the difference between dual bound and the optimum solution (which we
computed by branch-and-price); it is always zero for formulations [MLP ] and [RLP ]. The
percentage gap is also given under “%gap”. Although the reformulation is based on As-
sumption 2, the dual bound obtained solving [RLP ] is the same as for [MLP ] on the tested
instances. The column-and-row generation for [RLP ] outperforms column generation for
[MLP ] only when the number of items per bin increases (i.e., for class “a4”), as other-
wise the potential for column recombination is very limited. The number of iterations is
reduced when using column-and-row, but this might not compensate for the extra time
required to solve the master, as here pricing required only between 4% and 30% of the
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overal cpu time. The average relative size (v(M
R
), c(M

R
)) in percent is respectively (82, 36)

for class “a2”, (39, 37) for class “a3”, and (52, 32) for class “a4”; while the percentage (v(R
R
),

c(R
R
)) reported in Table 5 are very small.

Cplex Col. gen. Col-&-row g.
for [FLP ] for [MLP ], α = 0.85 for [RLP ], α = 0.85

class n gap %gap cpu it cpu it cpu v(R
R
) c(R

R
)

“a2” 200 5.6 5.2 0.1 439 0.3 281 0.5 0.21 14.9
400 8.6 4.0 0.8 1001 1.2 599 2.0 0.15 25.7
800 6.6 1.6 10.4 2725 6.8 1331 12.2 0.13 40.8

“a3” 200 4.0 6.0 0.1 158 0.2 124 0.2 0.16 15.1
400 8.6 6.4 0.6 298 0.7 192 0.8 0.10 24.7
800 17.4 6.5 7.7 596 5.5 297 4.8 0.08 38.7

“a4” 200 0.8 1.5 0.1 400 0.8 253 1.0 0.27 18.9
400 1.8 1.7 0.6 841 5.4 414 4.5 0.17 29.0
800 2.8 1.3 5.8 1662 38.6 602 16.3 0.13 41.6

Table 5: Computational results for Bin Packing using dual price smoothing as a stabi-
lization technique.

4.3 Generalized assignment problem

In the Generalized Assignment Problem (GAP), the objective is to find a maximum
profit assignment of a set J = {1, . . . , n} of jobs to a set I = {1, . . . ,m} of machines such
that each job is assigned to precisely one machine subject to capacity restrictions on the
machines. A compact formulation in terms of binary variables xij that indicate whether
job j is assigned to machine i, is:

[F] ≡ min{
∑
i,j

cijxij :
∑
i

xij = 1 ∀j,
∑
j

aijxij ≤ bi ∀i, xij ∈ {0, 1} ∀i, j}, (75)

where cij ∈ N is the cost of assigning job j to machine i, aij ∈ N is job j’s claim on the
capacity of machine i, and bi ∈ N is the capacity of machine i. The binary knapsack
subproblem consists in selecting a job assignment for a single machine i: X i = {xi ∈
{0, 1}n :

∑
j aijxij ≤ bi

}
. It can be reformulated as a shortest path problem:

Zi =
{
zi ∈ {0, 1}bi×n :

n∑
j=0

zij0 = 1,
n∑
j=0

(zijt − zi,j,t−aij) = 0 ∀t ∈ {1, . . . , bi − 1}
}

(76)

where binary variable zijt indicates whether job j uses capacity interval [t, t + aij) on
machine i.

In Table 6, we compare three approaches: solving [FLP ] using Cplex (as solving [RLP ]
directly is impractical); solving [MLP ] by standard column generation; and solving [RLP ]
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by pure column-and-row generation. The three approaches were tested on instances from
the OR-Library with 100, 200 and 400 jobs, and 5, 10, 20 and 40 machines. The in-
stances in classes C, D, and E were used, since the instances in classes A and B are easy
for modern MIP solvers. Results are averages over 3 instances, one for each class. For
column(-and-row) generation, experimental tuning lead to selecting smoothing parameter
α to 0.85 and 0.5 respectively, while the restricted master is initialized respectively with
a single artificial column and a trivial heuristic solution. Column-and-row generation is
much faster than standard column generation, but it produces dual bounds that are much
worse (almost as bad as those obtained solving [FLP ]). This is explained by the fact that
the reformulation is done under Assumption 2, relaxing the subproblem to an unbounded
knapsack problem (76).

Cplex Col. gen. Col-&-row g. and relative
for [FLP ] for [MLP ], α = 0.85 for [RLP ], α = 0.5 size

m n %gap cpu it %gap cpu it %gap cpu v(R
R
) v(M

R
) c(M

R
)

20 100 1.17 0.05 201 0.09 1.4 31 0.40 1.3 2.1 116.2 8.5
10 100 0.55 0.03 229 0.10 1.2 33 0.35 1.1 1.9 83.2 9.0
5 100 0.26 0.01 295 0.05 2.2 35 0.20 1.1 1.6 61.8 9.0
20 200 0.28 0.10 358 0.02 11.9 37 0.17 8.1 1.2 109.1 8.4
10 200 0.17 0.05 448 0.04 24.6 38 0.14 7.7 1.0 78.7 8.5
5 200 0.07 0.02 637 0.02 70.5 34 0.07 6.8 0.9 62.1 8.4
40 400 0.15 0.51 591 0.03 131.1 41 0.11 80.9 0.8 146.9 8.0
20 400 0.09 0.23 696 0.03 407.1 41 0.08 65.9 0.6 102.9 8.1
10 400 0.04 0.11 909 0.01 1338.8 41 0.04 58.8 0.5 75.0 8.1

Table 6: Computational results for Generalized Assignment using dual price smoothing
as a stabilization technique.

We have also experimented with applying the column-and-row generation approach
to a larger extended formulation obtained directly from the dynamic programming solver
for the pricing sub-problem as explained in Section 3.4. As this larger formulation models
a bounded knapsack subproblem, the LP bound then coincides with the one given by
the standard column generation. In our experiments, column-and-row generation lead
to a reduction of iterations by a factor 3 on average. However, the restricted master
of the column-and-row generation approach is much larger than with standard column
generation. Hence, this approach is not competitive in terms of cpu time.

4.4 Multi-Item Multi-Echelon Lot-Sizing

The Multi-Item Lot-Sizing problem consists in planning production so as to satisfy
demands dkt for item k = 1, . . . , K over a discrete time horizon with period t = 1, . . . , T
either from stock or from production. The production of an item entails production stages
(echelons) e = 1, . . . , E, each of which takes place on a different machine that can only
process one product in each period (under the so-called small bucket assumption). A
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compact formulation is:

[F] ≡ min
∑
ket

(cket x
k
et + fket y

k
et) (77)∑

k

yket ≤ 1 ∀e, t (78)

t∑
τ=1

xkeτ ≥
t∑

τ=1

xke+1,τ ∀k, e < E, t (79)

t∑
τ=1

xkEτ ≥ Dk
1t ∀k, t (80)

xket ≤ Dk
tT y

k
et ∀k, e, t (81)

xket ≥ 0 ∀k, e, t (82)
yket ∈ {0, 1} ∀k, e, t , (83)

where variables xket are the production of item k at echelon e in period t (at unit cost
cket) and yket take value 1 if the production of item k at echelon e is setup in period
t (at a fixed cost fket); Dk

1t =
∑t

τ=1 d
k
τ . The stock values can be computed as sket =∑t

τ=1 x
k
eτ −

∑t
τ=1 x

k
e+1,τ ; their costs have been eliminated (they are included in cket).

For the single item problem, there exists an optimal solution where at each echelon
and period either there is an incoming stock or an incoming production but not both, i.e.,
such that xket sket = 0 ∀e, t. Hence, production can be restricted to lots corresponding to
an interval of demands. This dominance property can be exploited to solve single item
subproblems by dynamic programming in polynomial time [20]. A backward dynamic
program (DP) can be defined where the states are associated with quadruples (e, t, a, b)
denoting the fact of having at echelon e in period t accumulated a production that is
covering exactly the demand Dk

ab for the final product of item k. It is defined for t ≤ a ≤
b ≤ T and e = 1, . . . , E. The backward recursion is:

V (e, t, a, b) = min{V (e, t+1, a, b), min
l=a,...,b

{V (e+1, t, a, l)+cketD
k
al+f

k
et+V (e, t+1, l+1, b)}}

for all e = E, . . . , 1, t = T, . . . , 1, a = T, . . . , 1, and b = T, . . . , a. By convention
V (e, t, a, b) = 0 if a > b. The initialization is V (E + 1, t, a, b) = 0. The optimum is
given by V ∗ = V (1, 1, 1, T ).

From this dynamic program, one can reformulate the single item subproblem as select-
ing a decision tree in an hyper-graph whose nodes are the states of the above DP. The DP
transition can be associated to flow on hyper-arcs: zke,t,a,l,b = 1 if at echelon e ∈ {1, . . . , E}
in period t ∈ {1, . . . , T} the production of item k is made to cover demands from period
a ∈ {t, . . . , T} to period l ∈ {a − 1, . . . , T}, while the rest of demand interval, i.e. de-
mands from period l+ 1 to period b ∈ {l, . . . , T}, will be covered by production in future
periods. If l = a− 1, there is no production; this can only happen when a > t. While if
l = b, the whole demand interval, Dk

ab, is produced in t. The associated cost, cke,t,a,l,b, is
(cketD

k
al + fket) if l ≥ a and zero if l = a− 1. For the initial echelon e = 1, variables zk1,t,a,l,b
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are only defined for b = T . For the first period t = 1, they are only defined for a = t = 1.
This leads to reformulation:

[R] ≡ min
∑

e,t,a,l,b,k

cke,t,a,l,b z
k
e,t,a,l,b (84)

E∑
e=1

∑
a,l,b,k:l≥a,Dk

al>0

zke,t,a,l,b ≤ 1 ∀e, t (85)

∑
l

zk1,1,1,l,T = 1 ∀k (86)∑
l

zke,t,a,l,b −
∑
τ≤a

zke,t−1,τ,a−1,b −
∑
τ≥b

zke−1,t,a,b,τ = 0 ∀k, e, t, a, b (87)

zke,t,a,l,b ∈ {0, 1} ∀k, e, t, a, l, b , (88)

which results from subproblem reformulation Zk defined by constraints (86-88) for a fixed
k. Note that constraints (87) are only defined for t > 1 and b = T when e = 1; while,
when e > 1, they are only defined for a = t when t = 1.

In Table 7, we compare standard column generation and pure column-and-row gener-
ation respectively for [MLP ] and [RLP ]. (Solving formulation [RLP ] directly with Cplex
is impractical.) Experimental tuning lead to selecting smoothing parameter α to 0.85
and 0.4 respectively, while the restricted master is initialized with a trivial heuristic so-
lution. Results are averages over 5 instances generated randomly, with a number of jobs
K ∈ {10, 20, 40}, a number of periods T ∈ {50, 100, 200, 400}, while setup costs are uni-
formly distributed in [20, 100], production costs are zero, and storage cost hke are generated
as hke−1 + γ, where γ is uniformly distributed in interval [1, 5]. For each period, there is a
positive demand for 3 items on average. Demands are generated using a uniform distri-
bution on interval [10, 20].

For the column generation approach to [MLP ], instances get easier as the number of
items increases. Indeed, instances with more items have fewer feasible solutions given the
single mode constraints. The column-and-row generation clearly outperforms standard
column generation on all instances except those with 2 echelons and 50 periods. The
number of iterations for column-and-row generation is up to an order of magnitude smaller.
This shows the benefit of recombinations of decision trees (as illustrated in Figure 4) that
take place in this application. This benefit increases with the number of echelons and the
ratio T

K
. Once again, the percentages (v(R

R
), c(R

R
)) are very small. These experiments

shows that very large extended formulations can be tractable when solved by column-
and-row generation.

Conclusion
The “column-and-row generation” has been presented here as a generalization of stan-

dard column generation, in the spirit of [28]. Our aim was to explain exactly when it
should be considered, how it works, why it can be comparatively more efficient, and what
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Col. gen. Col-&-row g. and relative
for [MLP ], α = 0.85 for [RLP ], α = 0.4 size

K T it cpu it cpu v(R
R
) c(R

R
) v(M

R
) c(M

R
)

2 echelons
10 50 126 1.7 29 1.6 0.57 1.32 26.4 3.4
20 50 79 1.8 27 3.1 0.44 1.06 17.2 2.1
10 100 332 38.0 43 8.1 0.15 0.36 34.2 3.2
20 100 232 31.5 38 20.0 0.14 0.34 21.7 1.7

3 echelons
10 50 187 11.8 38 5.5 0.16 1.08 24.3 3.2
20 50 112 12.0 33 9.8 0.12 0.82 16.9 2.1
10 100 509 454.5 49 36.4 0.02 0.27 33.5 3.3
20 100 362 520.4 48 103.1 0.02 0.27 21.4 1.6

5 echelons
10 50 296 62.6 48 16.3 0.10 0.91 24.4 3.3
20 50 223 66.8 42 34.3 0.07 0.69 18.8 2.2
10 100 882 4855.9 61 134.0 0.01 0.24 32.9 3.2
20 100 750 4657.8 56 386.1 0.01 0.22 22.3 1.7

Table 7: Computational results for multi-echelon multi-item lot-sizing

are its practical performance on a scope of applications. Our generic presentation made
it straightforward to extend the method to the case where the Dantzig-Wolfe decompo-
sition paradigm is based on a subproblem approximate extended formulation. Then, by
pricing on the subproblem integer hull, one can derive Lagrangian dual bounds that serve
to define early termination of the algorithm before meeting the reduced cost conditions.
We emphasized that the algorithm aims at identifying optimal dual prices (Lagrangian
multipliers) for the linking constraints, disregarding the dual value of the other constraints
of the extended formulation.

In the literature, a motivation for working with an extended formulation and using
the “column-and-row generation” methodology has been the use of the richer variable
space of the extended formulation to define cuts or branching constraints. This benefit
can be achieved by working with a pricing subproblem in the extended variable space,
while working with the traditional master program and a standard column generation
approach. Here, we highlighted the benefit of working with a master program expressed
in the variable space of the extended formulation, while possibly working with a subprob-
lem compact formulation and implementing a lifting of the subproblem solutions. The
interest is to achieve faster convergence thanks to recombinations of previously gener-
ated subproblem solutions into new points that are not in the convex hull of currently
generated subproblem solutions. By working in the variable space of the extended formu-
lation in both master and subproblem, one can combine the two above benefits to develop
branch-and-price-and-cut based on column-and-row generation (such application specific
algorithm is beyond the scope of this paper).

We considered two generic situations where the recombination property (Property 1)
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holds: when the reformulation stems from a network flow model, or a dynamic program-
ming subproblem solver. More generally, this analysis could be extended to generalized
flow reformulations, or to reformulations based on a branched polyhedral system [13].
Other examples where the recombination property holds include special cases such as
the example of Section 1.3, where subproblem solutions that differ only by the value of
the continuous variables are all implicitly defined in the restricted reformulation. This is
linked to the concept of “base-generators”, as developed in [28], that are extracted from
regular columns by keeping only the fixed values of the “important” variables in the sub-
problem solution.

The recombination property leading to a reduction in the number of iterations can
be understood as a stabilization technique for column generation. “Disaggregation” helps
convergence as it is numerically demonstrated in many studies related to column genera-
tion. For instance, in the presence of block diagonal systems, good practice is to define
separate columns for each block, or even to artificially differentiate commodities to create
block diagonality as illustrated for origin-destination flow problems in [12]; another ex-
ample is the disaggregation of the time horizon used by [3] for a scheduling application.
In the example of Section 1.3, the disaggregation amounts to defining “base-generators”
associated to the integer part of the subproblem solution.

The recombination property is closely related to the concept of “exchange vectors” in
standard column generation approach [28]; the latter are columns defining rays in the
lattice of subproblem solutions (for instance the elementary cycles of Section 3.3 define
rays). Using a convex combination of regular columns and exchange vectors allows one
to define new solutions that are outside the convex hull of already generated subproblem
solutions. Exchange vectors define so-called dual cuts (valid inequalities for dual prices)
in the dual master program [22].

When the subproblem reformulation is not actually an exact extended formulation for
it (i.e., under Assumption 2), there are typically even more recombinations in the relaxed
subproblem solution space. The relaxation can imply a weakening of the dual bound, as
illustrated on the generalized assignment application, or no difference in dual bound as in
the bin packing case. Relaxing Assumption 1 into Assumption 2 is related to the concept
of the “state space relaxation” for column generation as presented in [28]. It can also be
interpreted as the development of a column-and-row generation approach based on an
approximated extended formulation for the subproblem as underlined by the proposal of
Van Vyve and Wolsey [26].

Our numerical comparative study of column-and-row generation illustrates the experi-
mental trade-off between the comparative acceleration of convergence, the potential losses
of quality in dual bounds (under Assumption 2), and the higher computing time required
to solve the restricted master (due to its larger size and potential symmetries). The
recommendation that arises from our numerical experiments is to adopt column-and-row
generation instead of a standard column generation approach when (i) the subproblem
solution space offers many possible column recombinations; (ii) the extended formulation
offers a strong enough relaxation of the pricing problem (when working under Assump-

36



tion 2); and (iii) the pricing procedure dominates the cpu consumption (so that the
increase in master solution time is marginalized). We have shown that column-and-row
generation makes it tractable to consider much stronger/larger extended formulations,
with more combinatorial structure built into the pricing subproblem, while generating
only a very small percentage of its variables and constraints.
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