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Abstract—Stencil based computation on structured grids is a
kernel at the heart of a large number of scientific applications.
The variety of stencil kernels used in practice make this com-
putation pattern difficult to assemble into a high performance
computing library.

With the multiplication of cores on a single chip, answering
architectural alignment requirements became an even more im-
portant key to high performance. In addition to vector accesses,
data layout optimization must also consider concurrent parallel
accesses.

In this paper, we develop a strategy to automatically generate
stencil codes for multicore vector architectures, searching for
the best data layout possible to answer architectural alignment
problems. We introduce a new method for aligning multidimen-
sional data structures, called multipadding, that can be adapted
to specificities of multicores and GPUs architectures. We present
multiple methods with different level of complexity. We show on
different stencil patterns that generated codes with multipadding
display better performances than existing optimizations.

I. INTRODUCTION

The petaflop era has given rise to architectures of increasing
complexity. Modern architectures combine many different
levels of parallelism and a large memory hierarchies. SIMD
instructions, such as those proposed in Intel SSE and AVX ISA
for instance, and multi-thread programming offer opportunities
to use this parallelism to reach high level performance. This
comes however at the cost of a careful data layout organization
in order to match memory alignment constraints. Combining
vectorization and memory bank conflicts limitation with a
proper data layout is a key to performance in current mul-
ticores and GPUs.

Stencil based computations represent a large class of appli-
cations, ranging from image processing, computational elec-
tromagnetics, hydrodynamics, lattice QCD or other physics
simulations requiring the resolution of PDEs using finite differ-
ence or volume discretization. However, the variety of stencil
kernels used in practice make this computation pattern difficult
to assemble into a high performance computing library. Be-
sides, the low flop/byte ratio that most common stencil exhibit
requires to precisely tune the data layout and optimize memory
accesses according to the architecture features.

Automatic transformations for every stencil pattern is im-
portant, as the variety of stencil kernels used in practice is very
large. Generating efficient code for CPUs and GPUs, taking
into account alignment requirements, is paramount. Stream

alignment conflicts are a fundamental algorithmic issues, as
shown by Henretty ez al. [9].
The contributions of this paper are:

e A data-layout transformation so as to handle CPU and
GPU alignment issues.
e A compact code generation for stencils.

In this paper, we develop a novel strategy to automatically
generate stencil code for CPUs and GPUs, searching for the
best data layout to answer alignment issues, without breaking
the stencil structure and the data locality. We introduce a new
data layout transformation, called multi-padding, extending the
usual padding so as to maximize the number of aligned loads
for vectorization. We present several methods to find the best
paddings, with different levels of complexity. We show on
stencil codes, in particular Jacobi and Laplacian computations,
that generated codes compare well with hand-tuned codes,
and that multi-padding can bring significant performance gains
compared to the usual padding.

The rest of the paper is organized as follows. We first
present related works in Section II. Section III presents archi-
tectural alignment requirements for efficient memory access.
In Section IV, we focus on the SIMD alignment issue on sten-
cil computations to propose our multipadding method. Details
on the code generation on any architecture are presented in
Section V. Experimental validation is described in Section VI.
Then we conclude in Section VII.

II. RELATED WORKS

For generalist multicore processors, there has been con-
siderable interest on vectorization issues. Many papers focus
on loop transformations to improve the vectorization quality,
playing with data locality to decrease the amount of unaligned
loads or shuffles ([17], [25], [19], [8], [18], [20], [27], [2], [7]).
Similarly, data locality has been the focus of optimizations
for stencil computation, through blocking ([11], [17], [3],
[26], [24], [16], [5], [6]), tiling ([22], [12], [14]) or skewing
([28]), improving single and multi-core performance. These
works however do not directly consider alignment issues, only
focusing on data locality and register reuse.

For GPUs, generating efficient code able to close the gap
with the peak performance, is quite challenging [13]. Several
auto-tuning models applying on both CPU and GPU archi-
tectures have been proposed, to ease code development on
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Fig. 1. Representation of a Jacobi 2D pattern, using vector of four elements (simple data in SSE). (a) Logical view, update of F’ requires elements B, E, G, J.
(b) Memory view, the four elements are not in the same place in vectors. E is in the first position, B and J are both in the second position, and G is in the
third. Choosing alignment of B and J as the valid one, two shuffles or unaligned loads are required.

multiple target architectures ([1], [16], [26], [23]). Neither of
these models however consider alignment issues.

Some recent works propose data layout transformations
([15], [9]) in order to improve vectorization for stencil codes.
The work of Henretty er al. [9] focuses for instance on data
layout reorganization, through dimension lift and transpose,
removing all non-aligned loads. However, they do not consider
multithreaded execution. Array elements initially contiguous
may be spread accross the whole array, and this will probably
result, for a multithreaded execution, in memory sharing
situation inducing performance slowdown.

The works of Datta et al. |[4] and Kamil et al.|[10] describe
an auto-tuning framework to optimize stencil computations
on multicore architectures, including GPU. The optimizations
proposed take advantage of the different levels of memory hi-
erarchy through blocking. Alignment issues are not addressed
directly though. Performance figures bring some comparison
basis that will be used in section VI.

III. EFFICIENT DATA LAYOUT

In current multicore architectures, high performance can be
achieved through careful data layout and memory manage-
ment.

For multicore architectures supporting hardware vector-
ization, one has to deal with a set of entangled hardware
constraints, both coming from vector memory accesses and
from memory structured into multiple banks. We provide in
the following an overview of these constraints for both CPU
and GPU architectures.

A. Thread Warps and Memory Banks

In modern CPUs and GPUs architectures, a set of threads
can run simultaneously on the same chip. To simplify, we
will use the term s warp to refer to such set of simultaneous
threads. A warp is a basic notion in GPU programming. We
generalize it to multicore CPUs, considering a warp as the
collection of threads running on a single chip, with a maximum
of one thread per core (no hyperthreading is considered). On
GPU, due to the SIMD nature of the architecture, threads
of a same warp are synchronous. On CPU, there is no such
limitation.

Vertical parallelization consists in slicing an iteration space
in several parts, which will be swapped by a thread, and
is used very often to parallelize linear algebra or stencil
codes. It implies that simultaneous threads perform the same
instruction at nearly the same time, issuing multiple memory
requests simultaneously. Whenever these requests target the
same memory bank, this is called a bank conflict. Memory

accesses to the same bank are then serialized instead of being
executed in parallel (for different banks). Requests on a busy
memory bank are delayed, and memory accesses, often critical
for the performance of stencil codes, take more time than usual
to fetch the required data.

To avoid this problem, data accessed by different thread can
be mapped to different memory banks. This implies that these
data have different memory alignments modulo the number
of memory banks. However, this is not convenient since the
number of threads can exceed the number of memory banks.
In this case, it is better to divide memory requests equally be-
tween all memory banks, than to aggregate numerous requests
on the same bank.

B. SIMD Memory Accesses

In order to obtain high performance and tip the balance
between memory accesses and computation, array accesses
have to be vectorized. So far, many architectures (includ-
ing Intel AVX) exhibit different performance depending on
whether the accesses are aligned or unaligned on a x byte
boundary, with z the size of the vector. A vector is composed
of several elements, depending on the element size and most
vector operations are element-wise (this changes in recent
vector ISA). For a stencil, vectorizing the computation implies
that all elements of the access pattern are at the same index
in their respective vector.

At first sight, GPUs do not seem to have this problem,
since an element is composed of multiple registers, whereas
on CPUs, a vector register is composed of several elements,
causing alignment issue. On GPUs, a vector register always
includes only one element. In CUDA, built-in vector types
are proposed, providing programmers with a set of vectors of
different sizes, up to 128 bits or a vector of four elements.
In the CUDA Programming Guide [21], these built-in types
are said to enforce specific alignment of data, sometimes
with vector requirements being different from its base type
requirement. Among others, a charl has no memory alignment
constraint, a char2 must be in memory at an address aligned
on a 2 bytes, a char3 has no alignment constraint and a char
4 has 4-byte alignment constraint. Using these built-in types
will cause the same alignment issues as for CPU.

IV. MULTI-DIMENSIONAL MULTI-PADDING

We study in this section alignment issues for stencil com-
putations, which are representative of many linear algebra
computations. For the following, the general stencil pattern
studied is on a n-dimensionnal array A[Vi,...,V,] of the
form:

.= f(Allr+dit, -y in H dinl, - Al F dinty - in + dimn])
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Simple padding applied on the Jacobi 2D pattern with vector of four elements. (a) Logical view, alignment of elements have changed. Dotted lines

represent unfinished vectors on a line, being completed with elements of the next line.(b) Memory view, two distinct alignments. Do not improve compared

to no padding, since here again two shuffles or unaligned loads are required.
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Multipadding 1-3 applied on the Jacobi 2D pattern with vector of four elements. (a) Logical view, alignment of elements have changed. (b) Memory

view, still two distinct alignment.B, E and J are in the same position in vectors. Now only one shuffle or unaligned load required.

This computation reads all elements of A belonging to
an access pattern, defined by (i1,...,%,) and the matrix of
integers (dpk)nk- We assume in the rest of the paper that
all elements of A are mapped contiguously in memory, and
to simplify notations, we assume elements of A are 1 byte
long. Results of this section can be generalized to stencil
computations on several statements, involving multiple arrays.

Vectorizing such expression requires to load into SIMD
registers, at the same position in the vectors, all the elements
of the access pattern. Optimization of this code for GPU is
discussed in Section V.

We first discuss alignment issues for an SIMD implementa-
tion, illustrated on a Jacobi stencil, then introduce the multi-
dimensional padding. Finally we extend it further into multi-
dimensional, multi-padding (MDMP).

A. Alignment Issues

A particular case of stencil, used in many application, is a
2D Jacobi stencil:

Bli,j] = Ali — 1,5]+ Ali + 1, 4] + Alé, 5 — 1] + A[¢, 5 + 1]

Fig.1(a) presents the pattern of access: The stencil uses the ele-
ments B, F/, G, J. Fig. 1(b) shows the offsets of these elements
in the vectors of 4 elements (A, B,C,D),(E,F,G,H) and
(I,J, K, L). Here, the elements are not in the same positions
in the vectors. These elements have to be shuffled or loaded
from unaligned addresses.

More generally, we propose to describe the conditions when
the elements of a stencil pattern are all aligned: For SIMD
vectors of size [, this implies that the addresses of these
elements are the same modulo [. The memory address of an
element Aliy,...,14,] is defined by:

&A[il, . ,in] =A+ Ziksk
k=1

where S; define the strides separating consecutive elements
of A in the k" dimension. Thus, given a vector (iy, ..., i),
the elements of A required for the stencil computation have
the same alignment if and only if:

Je,Vh, A + Z(Zk +dpk) Sk =1 ¢
k=1

where =; is the identity modulo [ and c is a constant.
Thus, all elements are aligned if and only if the vector of
strides (Sy) checks the following constraint:

d11 din St c
el oro =] o
dml Sn C

dmn

When Equation (1) is not checked, some elements are
misaligned in memory. Misaligned elements would have to
be aligned in registers for the computation to be correct. The
main methods to align misaligned elements are:

« Misaligned Load: Load data from a unnatural alignment
in a vector register. On many architectures, this comes at
the expense of a performance penalty.

o Memory Duplication: Duplicate the array as many times
as there are different alignments between required neigh-
bors. Each of these arrays will be aligned differently. This
method is not to be used on memory bound computations.

o Shuffle: Create with two naturally aligned vectors a third
vector with the required elements. This method adds
instructions and increases register pressure.

« Padding: Increase the size of the strides so as to align
in memory elements of the pattern.

While the three first are time consuming or consume Sig-
nificantly more memory, padding has the advantage of only
requiring a minor change in the data layout. If padding occurs
only for large strides, most of the spacial locality of the code
is kept unchanged. No additional instruction is inserted in the
code and, although there is an extra memory consumption, it
is negligible compared to the Memory Duplication method.

For instance, in the Jacobi 3D presented in Fig.4(a) (show-
ing three planes of the volume) and (b) (linearized memory),
the elements required by the computation (F’, B, E, G, J, F")
have not the same alignment (resp. (2,2,1,1,2,2)). E and G
are unaligned compared to the other elements.

B. Formulation of Multi-dimensional Padding

Let us assume, with no loss of generality, that the array
is row-major (as in C). We describe in this section a simple
padding for a 2D array, and then generalize this to a padding
for a multi-dimensional array.
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(b) Representation of Jacobi 3D pattern, logical view.

Fig. 4.

Representation of a Jacobi 3D pattern, using vector of two elements (double data in SSE). (a) Logical view, update of F' requires elements

B,E,G,J,F" and F”. (b) Memory view, the three lines are contiguous in memory (P’ in the first and second lines are the same one). The six elements
are spread through the two possible alignment. Choosing alignment of B, J, F’ and F” as the valid one, two shuffles or unaligned loads are required.

A simple padding for a 2D array consists in adding elements
at the end of each row, in order to align elements needed
in a stencil pattern. The number of elements is the same
for each row. For instance, Fig.2(a) and (b) describe the
access pattern of a Jacobi 2D when rows are padded with one
element. The elements B, F, G, .J needed by the computation
have two different alignments. While better than the first
vectorization (with no padding), there are still 2 elements
unaligned. Likewise in 3D, Fig.5(a) and (b) show that padding
a single dimension is not sufficient to improve the alignment.

A multi-dimensional padding consists in adding elements
at the end of each dimension. The number of elements added
is constant per dimension, but may vary from one dimension
to another. This flexibility allows more elements in a stencil
pattern to be aligned. To define the number of elements pj, to
add in each dimension k, we describe the relation between the
value of the padding and the stride separating two consecutive
elements of the array. For any dimension k, the stride S
separating two consecutive elements in the k' dimension
has to take into account the size taken by all elements in
dimensions h, h < k, and any padding on these dimensions.
This provides a recurrent definition of the stride for dimension
E: it is equal to the stride of the k& — 1** dimension times
the number of elements in this dimension, plus the padded
elements for dimension k£ — 1. Formally, the stride is defined
by:

k>1,5, = Sp-1Vi—1 + pr—1,

and S; is equal to the size in byte of the element. In a matrix
form, this defines a relation between paddings and strides:

P1 =i 1 S1
Pn—1 —Vn-1 1 Sn
2)
where only non-null elements are represented in the matrix.
The value of each padding is bounded by the length of
the SIMD vector (due to the relation =;). Besides, as soon
as strides of two successive dimensions are multiple of the
vector length (maybe thanks to padding of these dimensions),

Equation 2 shows that there is no need for padding in outer
dimensions.

C. Finding a Multi-dimensional padding

Equations (1) and (2) provide the constraints on the padding
so as to obtain potentially an alignment for all elements
of a stencil pattern. Since padding consists in adding extra,
useless elements, the total count of such elements should be
minimized in order to reduce the impact of this method.

Besides, for some stencil patterns, even a multi-dimensional
padding cannot ensure that all elements are aligned. For each
unaligned element, either a shuffle or a misaligned load will
be generated. To count these necessary shuffles, according to
the padding chosen, we reformulate Equation (1) so that a
solution can always be found, using slack variables wy:

d11 din St ¢ wq

: : = | |t
dml Sn c

dmn W

Here, w), stands for an additional shift on the element h of
the stencil pattern, corresponding to an alignment change. As
for any shift, 0 < wjy < [. In order to count and minimize
the number of elements for which an alignment change is
necessary, we add the constraint for any element:

0<wy< (1 up)M @)

with M a big constant. up is a 0 — 1 variable equal to 1
whenever a shuffle or an unaligned load is needed.

An objective function to minimize for the multi-padding
problem, combining the minimization of the number of un-
aligned loads/shuffles and the memory consumption due to
padding can be defined as:

min(> " un + > pr), (5)
h=1 k=1

with Equations (2),(3),(4) on the variables wp, Sy, and pp,.
A different objective function may be formulated, depending
on the architecture and on the cost associated to memory
consumption and shuffles.
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(b) Jacobi 3D pattern with simple padding = 1, memory view.

Fig. S.

Simple padding applied on the Jacobi 3D pattern with vector of two elements. (a) Logical view, alignment of elements have changed. Dotted lines

represent unfinished vectors on a line, being completed with elements of the next line.(b) Memory view, two distinct alignments. Do not improve compared
to no padding. There is again four elements on one alignment (second position), and two elements on the other possible alignment. Again, two shuffles or

unaligned loads are required.
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(b) Jacobi 3D pattern with multi-dimensional padding, memory view

Fig. 6.

Multi-dimensional padding applied on the Jacobi 3D pattern with vector of two elements. (a) Logical view, alignment of elements have changed.

In addition to the simple padding, an extra element is added at the end of each planes.(b) Memory view, all six required elements have the same alignment
(first position in vectors). Only aligned loads will be performed, no additional shuffles or unaligned loads are required.

For the example in Figure 6(a) and (b), the multidimen-
sional padding (1 in each dimension) aligns all elements of
the stencil pattern. There is no need for unaligned access or
shuffle.

D. Multi-dimensional Multi-Padding

To further reduce the number of unaligned accesses in a
stencil pattern, we describe now an extension of the multi-
dimensional padding. The principle can be easily explained
for a 2D array.

For a 2D array, each row can be padded by a number
of elements. Instead of padding each row with the same
number of elements, rows are now padded with a number of
elements that can differ from row to row. In order to keep the
code generation with this padding manageable, the padding is
cyclic: every 1" rows, the sequence of padding values starts
over again. This technique can be generalized to any number
of dimensions. The Jacobi 2D in Fig.3 shows that by padding
even rows with one element, and odd rows with 3 elements,
all elements of the stencil pattern can be aligned but one. Note
that the remaining unaligned access is a compulsory alignment

conflict, since the two elements F£ and G are in the same
row. Padding inside the row would remove this conflict, but
also it would degrade spacial locality and increase significantly
memory requirements. We choose in this paper not to consider
padding between elements of the same row. Hence, under this
assumption, the padding proposed for the Jacobi 2D minimized
the number of unaligned accesses.

More generally, we consider some periodic functions Sy (5),
defining the strides separating consecutive elements of A in
the dimension k. The address of an element of the array A is
defined by:

&Afin, ...

(6)

) /I/’I’L]

If T is the period of the functions Sy, then Sy, is characterized
entirely by the set of values {Si(0),...,Sk(T — 1)}. In
Equation 6, Sk(j) can be replaced by Si(j mod T). For
a given value h between 0 and 7' — 1, there are Li’“;j |
occurrences of Sy(h) in the sum. Hence formula (6) can be




rewritten:
n 1T-1 i
&Aliy, ... in A+ZZL’” (h).
k=1 h=0

Considering the elements of the stencil for the computation

in (i1,...,4,), they are all aligned if and only if 3¢, V7,
n T-1 .
h+d
SN S () = e
k=1 h=0

. i—h+d; ;
for some constant c. Let us denote ajp, (i) = | —F—=] —| 7.
The value of a4 (i) can only take two values at most when ¢
changes, and ajkh(i) is a periodic function of period (at most)
T. The condition for alignment then becomes dc, V7,

n T-1
Z Z +a]kh ’Lk))Sk(h) = c
k=1 h=0
Writing this constraint in matrix form:
S1(0)
a110(i1) G1n,7—1(in) c
. Si(T-1) | = :
amio(i1) Gmn,7—1(in) c
Sn(T —1)

@)
where the values of Sy (h) are the unknown. This constraint
of alignment is similar to Equation (1). The periodicity of
the strides leads to consider a larger stencil pattern (matrix
has size m x nT). Similarly to Equation (2), strides between
elements and padding are connected through the equation:

Vk > 1,Yh, Si(h) = ZL%J& 1(7) + pr—1(h).

7=0

®)
Equations (7) and (8) define the constraints for the periodic
padding.

E. Padding for Bank Conflicts

For multithreaded stencil codes, we assume that the paral-
lelization is such that one or several of the dimension of the
stencil correspond to parallel loops. This means for instance
that some indices ¢; can be written as i, = b.t + it where
t is a thread number, 4%, an index enumerating the block in
this dimension allocated to a given thread. Other partitioning
of an array dimension can be considered, as long as the
partitioning correspond to an affine transformation. However,
the parallelization is an input for the padding and the exact
distribution of iterations among threads has to be known before
padding.

To minimize bank conflicts, each elements accessed simul-
taneously by each thread must hit a different memory bank.
Hence, for each couple of threads, the address of their first
element must not be on the same alignment. For a given
address m, the number b of the memory bank corresponding
to it corresponds to some contiguous bits of m: b = m/B
mod NB where B and NB depend on the architecture.
Thus, following the representation of the addresses in previous

section, we can express that each thread accesses different
memory banks: if b(¢q,4i) is the memory bank accessed by
thread 1 through a memory access, and b(t2, i) is the memory
bank corresponding to the same access in the block for thread
2, then the following equation corresponds to the constraint:

with VB the number of banks and db > 1.

As for the padding for vectors, slack variables following
the same constraint as in equation 4 can be added in order to
ensure the existence of a solution.

F. Integer Linear Program Formulation

Finding multi-dimensional multi-padding for a particular
architecture and stencil boils down to the resolution of an
integer linear program. Indeed, provided the period 7" is given
and constant, equations are similar to those considered in
IV-C and are affine. Modulo equations are handled by the
use of a new variable (for the modulo), possible compulsory
unalignment can be handled by the introduction of slack
variables to minimize. This is used for satisfying alignment
constraints for SIMD and for bank conflict.

For MDMP, The number of equations has increased due to
the periodic values and due to the fact that the coefficients
of the matrix in formula 7 are also periodic (in (i1,...,i,))-
The formulation of the function to minimize, depending on the
number of shuffles, is similar to the one presented in section
IV-C.

The period T' can be chosen either by the user, or iteratively
found (trying 1, 2, ... and each time computing a solution).
Other metrics, such as the size of the code, the number
of registers used, can be used to bound the search for a
appropriate padding period.

V. CODE GENERATION

Code generation for stencils on CPUs or GPUs consists in
two phases:

1) Memory allocation and data transfer: The resolution
of the system of constraints relative to multi-padding
provides the necessary amount of memory to allocate (or
re-allocate) for effectively pad the different dimensions
of the data structures. Since the data layout transforma-
tion consists in translating data in memory, any required
copy (for instance for GPU) is easily generated.

2) Instruction generation: Once data layout is computed
and memory is allocated, the code is generated. Memory
instructions are generated taking into account the new
data layout. Aligned and unaligned instructions can be
necessary, and the two different ways to generate these
instructions are presented in Section V-B.

A. Efficient data layout

Algorithm 1 describes the different steps to remove a max-
imum number of inefficient memory accesses (bank conflicts
or unaligned aligned data accesses).



Algorithm 1 Efficient Multi-Padding and Memory Manage-
ment

1: Find Multidimensional Multi-padding to remove bank
conflicts while aligning data for vectorization.

2: Memory Allocation

3: Data transfer, and Copy from High Latency Memory
(HLM) to Low Latency Memory (LLM)

1) Padding for Vectors: Padding for vector is used to align
a maximum of required elements in the computation pattern.
Aligned elements will be accessed through more efficient
memory transactions. The complete procedure is describe in
Section IV. The constraints are the same for CPUs and GPUs
when using built-in vector types in CUDA.

However, on GPUs, hardware computations use only on
element at a time. If one uses its own vector structure instead
of CUDA built-in types, no specific alignment is required,
and this step may be skipped, remaining only to avoid bank
conflicts between the threads.

2) GPU parallelism: As explained in Section III-A, si-
multaneous memory accesses from concurrent threads should
target different memory banks.

GPU threads can be considered as CPU threads, and the
GPU code can be designed for each thread to access an inde-
pendent block of data. However, warps often access contiguous
data in the shared memory. To generate such a GPU code, one
has to know if the whole warp will access contiguous data (in
that case there is nothing to do), or if slices of warp will be
spread across several lines/blocks. For example, a warp being
a set of 32 threads, the code can be designed for the warp
to access 32 contiguous data, or for four quarter of warps
to access 8 contiguous data on different lines. These slices
will then be considered as meta-vectors (4 in our example),
which should not have any memory banks in common . The
multipadding method will be applied with these meta-vectors,
using their specific constraints.

3) Memory Allocation: Once all the necessary paddings
found, one must combine them to know the total amount of
memory to allocate.

On GPU, memory will be allocated to the shared memory of
a chip, according to the padding found in the first step of the
algorithm. Then, in a next step, necessary data will be transfer
from global memory to the shared memory, closer and easier
to access efficiently.

On CPU, a global memory allocation will be made. This
global allocation will include the padding for vectorization,
and the padding for threads at end of logical thread block.

4) From HLM to LLM: Data transfer consists in putting all
needed data for computation on the correct device memory. It
will be a copy to the global memory if GPU is considered. In
order to reduce the cost of memory transactions, or to simplify
memory accesses pattern, a first copy from the High Latency
Memory, in which the data are originally stored, to a Low
Latency Memory can be useful.

On GPU, data will be transfered from the global memory
to the shared memory. Global memory has a very restrictive

access, since all threads of a warp should access contiguous
data with a specific alignment to perform efficient memory
movement (coalesced loads). On the other hand, threads can
load data from shared memory very easily, and the concurrent
memory transactions can be spread across the entire array
without penalties (if bank conflicts are avoided).

CPU memory hierarchy is simpler since the wherever the
data are, they are fetched to the nearest memory to the
computing unit each time they are read. The only needed data
transfer is from the original array to the new allocated region,
modifying the data layout.

B. SIMD code generation

For CPU code generation, we rely on state-of-the art com-
piler vectorization techniques to generate SIMD code. Two
approaches are taken:

e Vector extensions proposed by compilers (icc and gcc,

with attribute directives)

« Intrinsic functions

We favor in the code generation the first approach, whenever
aligned elements are accessed. The advantage of this method is
that instruction selection is actually performed by the compiler,
depending on the target architecture and target vector ISA.
However, this method is limited to basic algebra operators
and all memory accesses to a vector have to be all aligned to
be efficient. These limitations narrow the number of stencil
patterns that can be handled, and only a Jacobi pattern in
double precision can be efficiently generated with this method.
For other cases, we use the intrinsics approach (with SSE2),
with some possible remaining unaligned vector elements.

VI. BENCHMARK RESULTS

To evaluate our method, we run several tests of stencil
computations (Jacobi, Laplacian and the convex envelope of a
Von-Neumann neighbourhood), on several Intel architectures
along with a GPU environment, and all tests have been done
with icc 12.1.0 and gcc 4.6.1 compilers.

The multipadding method was also applied on a 9-points
2D stencil, and a 25-points 3D stencil using Moore’s neigh-
bourhood, and on a diamond-shape pattern in 2D using a Von-
Neumann neighbourhood of range 2 Performance results are
not presented since the best possible padding for the 9-points
and 25-points stencil is no padding at all. For the diamond-
shape pattern, the best possible padding is a simple padding.

Performance results in section VI-B are for computations
in simple precision, as it is more difficult to align data when
vectorizing such codes (four possible positions in vectors).
Tested codes have been generated with intrinsics performing
aligned loads on correctly aligned data, and unaligned loads
otherwise. Graphs bars labelled ”"No pad”, used as basis
for comparison, are for vectorized versions of the stencil
computations with no padding transformation.

Performance results in section VI-C are for computations
in double precision, since the results we use for comparison
have been presented only in double precision. Tested codes
have been generated with vector extension, and loads are
automatically managed by the compiler. Note that for all
experiments, no blocking is realized to increase data locality.
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A. Target Architectures

We evaluate our approach on several architectures. We run
experiments on three Intel CPUs and on a GPU NVIDIA
Quadro card, plugged to the Nehalem machine:

e Nehalem Gainestown X5550, NVIDIA Quadro 5800 FX:

The architecture is a 2.66 Ghz quad-core processor with
a shared 8MB L3 cache. Supporting SSE4 SIMD instruc-
tions, each core can fetch and decode four instructions per
cycle, for a peak performance of 10.64 GFlop/s per core
in double precision. Each core has a 32KB L1 data cache,
32KB L1 instruction cache and a 256 KB L2 cache.
The machine has two sockets, for a total of 8 available
cores. Each socket has access to a FSB delivering a max.
bandwidth of 12.8 GB/s.
Besides, the machine considered is equipped with a
NVIDIA Quadro 5800 FX card, running at 1.30 GHz
and with 4GB of memory. This card is used to perform
GPU tests presented in section VL.

o Westmere Gulftown X5650: The machine used for the
benchmarks is a 2.66Ghz four socket architecture, and
each socket is an hexa-core with a shared 12MB L3.
This processor, a successor of Nehalem, has the same
characteristics concerning SIMD. Each core has a peak
performance of 10.64 GFlops/s in double precision.

o Sandy Bridge E3-1245: The processor used for the
benchmarks is a 3.3Ghz quad-core processor with a
shared 8MB L3 cache. Supporting SSE4 and AVX SIMD
instructions, each core can fetch and decode up to eight
instructions per cycle, for a peak performance of 26.4
GFlops/s per core in simple precision when using SSE
instructions. Each core has a 32KB L1 data cache, 32KB
L1 instruction cache and a 256 KB L2 cache. Only one
processor is available. The maximum memory bandwidth
achievable is 21 GB/s.

B. Overall improvement

In order to validate our approach, the first part of our
experimentation testbed consists in trying several padding
values, for simple padding and multipadding, to see if the
best padding(s) returned by the methods discussed in section
IV are indeed the best one(s).

In Fig. 9 are shown results for a 4-point 2D jacobi stencil
computation, running on only one thread. The multipadding
version is compared with versions with no padding, and the
usual simple padding. Fig. 9(a) presents results when using the
gcc compiler, on different square sizes (from L1 to memory).
Except for data in L1, the multipadding outperforms the
other versions of the Jacobi 2D stencil, with a performance
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Fig. 8. Performance of a 3D 256> Jacobi stencil on Westmere architecture.

improvement up to 52% for a size of 512x512, and a gain of
28% compared to the simple padded version on the same size.
The same experiment as in Fig.9(a) is displayed in Fig. 9(b),
only this time with the use of icc compiler. As the compiler
use more aggressive and guided optimization, the produced
code without padding already performs well. The multipadding
method still gives better performance when in upper hierarchy
memory (L3 begins at size 256), up to a x1.24 speedup for
a 1600x1600 array against the original version, and a x1.11
speedup compared to the padded version for the same size.

In Fig.10 are presented results for a stencil covering the
convex envelope of a 3D Von-Neumann neighbourhood of
range 2. The shape of this stencil pattern is displayed in
Fig.7(b). As before, the multipadding version is compared with
version with no padding, and the usual simple padding. Here,
only a multidimensionnal padding is sufficient, i.e. each di-
mension has been modified with only one padding value. This
multipadding allows to align 10 elements in the stencil, instead
of only 6 elements for the version with no padding and with
the simple padding. Figures 10(a) and 10(b) presents results
when using respectively gec and icc compilers. For each set
of benchmarks, the multipadding version always outperforms
the other version, up to a performance improvement of 52%
compared to the original version for a size of 256° with gec,
and 72% for a size of 300% with icc.

Some multi-threaded performance are displayed in Fig.8 for
a 6-point 3D Jacobi compiled with icc, with simple precision
data. The stencil shape is displayed in Fig.7(b). Each thread is
pinned to a different core, and no hyperthreading is considered.
The results are presented for a 256 matrix, since data are in
memory, and this size is the one presented in most of stencil
related papers. The multi-dimensional multipadding version is
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Fig. 10. Performance of stencil based on 3D Von-Neumann neighbourhood of range 2 on Intel’s Sandy Bridge for different square sizes.

compared to the original version with no padding. The MDMP
version outperforms the original version each time, with a 45%
improvement for one thread, and up to a 69% improvement
for eight threads.

C. Comparing with related works

In this section, results are in double precision and compared
with results presented in related works, on a 7-point 3D Lapla-
cian stencil computation. In Fig.11(b), we reported results
shown in Kamil ef al. [10], and presented our own performance
figures obtained by applying a multipadding method (here,
thread alignment and a multi-dimensional padding) for the
7-point 256% sized Laplacian stencil. Benchmarks for the
Nehalem architecture (Fig.11(b)) have been realized on the
exact same Gainestown architecture. Our method confirm its
great results when in memory and for multiple cores. MDMP
performances are more than 4x better with 2 and 4 cores than
[10].

For the GPU figure, we were able to run the code from
Datta et al. [4] on our machine, allowing to compare directly
the results on the same basis. As our code generator does not
produce CUDA code directly, only the code for the threads
have been produced by the generator. All data transfers, and
memory and thread allocations, are performed by hand. The
white bars (labelled "Multipadding”) give results when the
code is generated taking into account CUDA programming
guide’s [21] recommendation: one stencil update per thread.

However, in Datta et al. [4], it is stated to compute 4 stencil
updates per thread. A code modification have been made sub-
sequently, and performance results are displayed in grey bars
(labelled ”Multipadding aware”). As our first version can not
withstand the comparison, the “aware” version successfully
sustains around the same performance as Datta ez al. [4], until
beginning to take off for a great number of CUDA threads
blocks (;128).

VII. CONCLUSION

Stencil computations correspond to codes at the heart of
a large class of applications. Due to the nature of stencils,
alignment, memory management and vectorization are the key
to performance, for GPU and CPU architectures alike. The
contributions of this paper for stencil code generation are

o A data-layout transformation so as to handle CPU and
GPU alignment issues for parallel stencils. This transfor-
mation called multi-dimentional multipadding introduces
new elements in multi-dimensional structures and gener-
alizes the usual padding transformation.

e A compact code generation for stencils. The data-layout
transformation only requires to unroll partially loops and
translate some indices of data structures.

Experimental results on multiple targets demonstrate the va-

lidity of the approach on several stencils with x1.72 speed-up
on one core, and up to x1.69 speed-up on multicore. These
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results outperform previous work results on multicore CPUs
and are similar to those on GPUs.
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