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Abstract. There are many reasons for measuring a distance between ontologies.
In particular, it is useful to know quickly if two ontologies are close or remote
before deciding to match them. To that extent, a distance between ontologies
must be quickly computable. We present constraints applying to such measures
and several possible ontology distances. Then we evaluate experimentally some
of them in order to assess their accuracy and speed.

1 Motivations

The semantic web aims at exploiting formal knowledge at the world scale. It is, in par-
ticular, based on ontologies: a structure defining concepts used to represent knowledge
and their relationships. These concepts are used for specifying semantic web services,
annotating web resources (pictures, web pages, music) or for describing data flows.

It is however likely that different information sources will use different ontologies.
It is thus necessary to find correspondences between ontologies in order to communicate
from one ontology to another. Finding correspondences is called matching ontologies
and the resulting set of correspondences is called an alignment [Euzenat and Shvaiko,
2007].

Together with matching ontologies, there are many occasions where it is useful to
know if two ontologies are close to each others or not, or what is the closest ontology
to another one. In particular,

– when one wants to find the community of people with whom she will be more
likely to communicate easily, finding if they use similar ontologies can be useful
information [Jung and Euzenat, 2007]; This can also help identifying communities
in social networks [Jung et al., 2007];

– in semantic peer-to-peer systems, it will be easier to find information if queries can
be sent to nodes using similar ontologies because query transformation will miss
less information [Ehrig et al., 2005];

– in ontology engineering, it is useful to find similar ontologies that can be easily
used in conjunction with other ones. For example, when developing an ontology for
radiological diagnoses, it would be useful to find anatomy and pathology ontologies
that can be used with each other;



– when modularising large ontologies into smaller parts [Stuckenschmidt and Klein,
2004], it is useful to consider the module candidates as sub-ontologies which will
be more prone to be separated as they are distant to each others;

– in semantic search engines which return ontologies corresponding to a query
[d’Aquin et al., 2007], it would be useful to introduce a “Find similar ontologies”
button. Distances can also be used in this case for ordering answers to such a query
(ontology ranking, [Alani and Brewster, 2005]) with regard to ontology proximity;

– in some ontology matching algorithms [Gracia et al., 2007] when one wants to use
an intermediate ontology between two ontologies, it may be useful to select the
closest ontology.

In these various applications, there are different requirements for an ontology distance
measure. In particular, there is always a trade-off between speed and accuracy. We will
review some of these possible measures and propose a first evaluation of their qualities.

The remainder of this paper is as follows: we first present and discuss previous
work. Then, after recalling general definitions about distance measures, we introduce
constraints applying to distances between ontologies. The next section introduces some
ontology distances. Finally, we evaluate these measures and with regard to the criteria.

2 Related works

Most of the work dealing with ontology distance [Mädche and Staab, 2002; Hu et
al., 2006; Vrandečić and Sure, 2007] is in reality concerned with concept distances.
Such measures are widely used in ontology matching algorithms [Euzenat and Shvaiko,
2007]. They are quickly extended to ontologies without discussing the different ways
to achieve this.

[Mädche and Staab, 2002] introduced a concept similarity based on terminologi-
cal and structural aspects of ontologies. This very precise proposal combines an edit
distance on strings and a structural distance on hierarchies (the cotopic distance). The
ontology similarity strongly relies on the terminological similarity. This paper evaluates
the ontology design process, but not ontology similarity.

The framework presented in [Ehrig et al., 2005] aims at comparing concepts across
ontologies instead of ontologies themselves. It provides a similarity combining string
similarity, concept similarity – considered as sets – and similarity across usage traces.

There is also a quite elaborate framework in [Hu et al., 2006]. This paper is mostly
dedicated to the comparison of concepts but can be extended to ontologies. First, con-
cepts are expanded so they are expressed in term of primitive concepts. Each concept is
expressed as a disjunction of compound but conjunctive concepts. This works as long as
no cycle occurs in the ontology. Then primitive concepts are considered as dimensions
in a vector space and each concept is represented in this space. The weights used in
this vector space are computed with TF·IDF. The distance between two concepts is the
smallest cosine distance between vectors associated with disjuncts describing concepts.
The way this is extended to ontology concepts is not clearly explained but the methods
that will be explained in §4.3 would work.

Finally, [Vrandečić and Sure, 2007] more directly considered metrics evaluating
ontology quality. This is nevertheless one step towards semantic measures since they



introduce normal forms for ontologies which could be used for developing syntactically
neutral measures.

A general comment about these works is that they rely of elaborate distance or sim-
ilarity measures between concepts and they extend these measures to distance between
ontologies. This extension is often considered as straightforward. However, they have
barely been evaluated. This is what we attempt to do here.

3 Distances properties

In this section, we first introduce the ontology model which we used and then review
the general properties that distances between ontologies must satisfy.

3.1 Ontology model

All measure will be based on a set of ontologies O which we refer to as the ontology
space. For simplification purposes, an OWL ontology o ∈ O is represented as a set of
named entities Eo. These entities can be classes (C), properties (P ) or individuals (I):
E = C ∪ P ∪ I . Each entity is identified by a URI thanks to the function uri : E −→
URI . The function lln : E −→ String returns the local name of the entity which is
the specific part of the entity URI in the ontology. Each entity can be also described by
annotations, i.e., labels, comments. The function lannot : E −→ P(String) assigns a
set of annotations to each entity.

3.2 Algebraic distance properties

A dissimilarity is a real positive function d of two ontologies which is as large as on-
tologies differ.

Definition 1 (Dissimilarity). Given a set O of ontologies, a dissimilarity δ : O×O →
R is a function from a pair of ontologies to a real number such that:

∀o, o′ ∈ O, δ(o, o′) ≥ 0 (non-negativeness)

∀o ∈ O, δ(o, o) = 0 (minimality)

∀o, o′ ∈ O, δ(o, o′) = δ(o′, o) (symmetry)

Some authors consider a ‘non symmetric (dis)similarity’, [Tverski, 1977]; we then
use the term non symmetric measure or pre-similarity. There are more constraining
notions of dissimilarity, such as distances and ultrametrics.

Definition 2 (Distance). A distance (or metric) δ : O × O → R is a dissimilarity
function satisfying the definiteness and triangular inequality:

∀o, o′ ∈ O, δ(o, o′) = 0 if and only if o = o′ (definiteness)

∀o, o′, o′′ ∈ O, δ(o, o′) + δ(o′, o′′) ≥ δ(o, o′′) (triangular inequality)



There are in fact many reasons why an ontology measure may not be a distance. In
particular, if we want to consider the semantics of ontologies, a sheer semantic measure
should be 0 when the two arguments are semantically equivalent, even if they are not the
same. For the sake of finding a distance, we must work in the quotient space in which
the congruence relation is semantic equivalence. However, given the cost of computing
semantic equivalence we will try to avoid that.

We will see below that there are good reasons to avoid symmetry as well.
Very often, the measures are normalised, especially if the dissimilarity of different

kinds of entities must be compared. Reducing each value to the same scale in proportion
to the size of the considered space is the common way to normalise.

Definition 3 (Normalised measure). A measure is said to be normalised if it ranges
over the unit interval of real numbers [0 1]. A normalised version of a measure δ is
denoted as δ.

In the remainder, we will consider mostly normalised measures and assume that a
dissimilarity function between two entities returns a real number between 0 and 1.

3.3 Application-specific distance properties

One could imagine some properties which are unrelated to the general notion of distance
but are specific to its use. In addition to algebraic properties, we would like to express
purpose-oriented constraints on the measure. Such constraints must ask that the smaller
the distance,

– the faster it is to provide an alignment;
– the more entities correspond to entities of the other ontology;
– the more entities of the other ontology correspond to entities of this ontology;
– the closest are corresponding entities;
– the easier (the faster) it is to answer queries;
– . . .

For example, we could take into account a property stating that the addition of
specific information in one ontology implies an increase of the distance value:

∀o, o′, o′′ ∈ O, o′′ ∩ o = ∅ ⇒ δ(o, o′) ≤ δ(o, o′ ∪ o′′)

Contrarily, the addition of information issued from the other ontology implies a
decrease of the distance value:

∀o, o′, o′′ ∈ O, o′′ ⊆ o− o′,⇒ δ(o, o′ ∪ o′′) ≤ δ(o, o′)

These first properties show that more ontologies share concepts, lesser is their dis-
tance. Nevertheless, they are useful only if we consider ontologies having entities which
match perfectly. In concrete cases, the ontologies are sufficiently heterogeneous and
consequently, this property cannot be satisfied.



4 Ontology distances

When only two ontologies are available, ontology distances have to be computed by
comparing them. On the basis of such measures, systems will decide between which
ontologies to run a matching algorithm. They can measure the ease of producing an
alignment (expected speed, expected quality). So naturally, one constraint is that the
distance be computed faster than the actual alignment.

There are many possible ways to define a distance between ontologies. First of all,
an ontology can be just viewed as a bag of terms. This approach is similar to those used
in information retrieval based on the vector space model. These techniques relies on
vector representations of ontologies and use distances measures between these vectors.

Another approach is to consider an ontology as a set of entities. These entities will
depend on the techniques used for establishing the distance: they will generally be the
classes or properties to be found within the ontologies. In this case, defining a distance
between the ontologies will very often rely on:

– a distance (δ) or similarity (sim) measure between entities;
– a collection distance (∆) which will use the distance between entities for computing

a distance between ontologies.

We first present ontology distances based on the vector space model. Then, we con-
sider some distances between entities before presenting various kinds of collection dis-
tances.

4.1 Ontology distances based on the vector space model

A distance can be computed by comparing the sets of labels appearing in both ontolo-
gies and using a measure such as the Hamming distance, i.e., the complement to 1 of
the ratio of common terms over the whole set of terms used by any of the ontologies.
This distance would certainly run faster than any serious matching algorithm but does
not tell a lot about the matching process. However, more elaborate measures based on
the vector space model (VSM) have been designed.

In the VSM, each ontology is represented by a vector of terms. These terms are
extracted from the annotations of the ontology entities. The set of terms To con-
tained in an ontology o is build with the help of a term extraction function lte:
To =

⋃
e∈Eo

lte
(
lannot(e)

)
∪ lln(e).

LetO be, a set of ontologies and T be the set of terms contained in these ontologies.
The vector of terms representing an ontology o is

−→
DO = (w1, ..., wn) where each wi

represents the weight of term ti ∈ T for the ontology o. We have selected three types
of weights :

– boolean weights: wi = 1 if ti occurs in o, wi = 0 otherwise.
– frequency weights : wi = TF (ti, o)
– TF·IDF [Robertson and Spärck Jones, 1976] : wi = TF (ti, o). ln

|O|
|{o|ti∈lte(o}|

Then for comparing ontologies, it is possible to apply various similarity measures:

– Jaccard index with boolean weights;



– cosine index with frequency weights;
– cosine index with TF·IDF weights.

The first measure (Jaccard index with boolean weights) is close to the complement
to 1 of the Hamming distance on class names.

4.2 Distances between ontology entities

The main way to measure a distance between ontologies is to compare their entities,
e.g., their classes, properties, individuals. So any sort of distance that has been devel-
oped for matching ontologies can be extended as a distance between ontologies. There
are such entity distances mentioned in [Euzenat and Shvaiko, 2007] since they are the
most common basis of ontology matching.

Label-based distances

Lexical aggregation-based similarity measure This first local measure only relies on
the lexical information coming from annotations and the local name. Given an entity e,
T (e) = {lln(uri(e))} ∪ lannot(e) represents the set containing the annotations and the
local name of e. The lexical similarity between two entities e ∈ o and e′ ∈ o′ is given
by:

siml(e, e′) =

∑
(a,b)∈M(e,e′) simjw(a, b)

min(|T (e)|, |T (e′)|)

where M(e, e′) is a maximum weight matching of T (e)×T (e′), and simjw is the Jaro
Winkler similarity.

Structural distances There has been many proposals for distances between ontology
concepts. Indeed most of the proposed distances in the literature are based on con-
cept distances [Mädche and Staab, 2002; Euzenat and Valtchev, 2004; Hu et al., 2006;
Vrandečić and Sure, 2007].

OLA similarity One good candidate as structural similarity is the those defined for OLA
[Euzenat and Valtchev, 2004] because it relies on every feature of ontologies. OLA first
encodes the ontologies into a labelled graph called OL-graph. Then, given an OL-Graph
node, the similarity between two OL-graph nodes depends on:

– the similarity of the terms used to designate them, i.e., URIs, labels, names, etc.,
– the similarity of the pairs of neighbor nodes in the respective OL-Graphs that are

linked by edges expressing the same relationships, e.g., class node similarity de-
pends on similarity of superclasses, of property restrictions and of member objects,

– the similarity of other local descriptive features depending on the specific category,
e.g., cardinality intervals, property types



Datatype and datavalue similarities are external and therefore they are either user-
provided or measured by a standard function, e.g., string identity of values and datatype
names/URIs.

Formally, given a category X together with the set of relationships it is involved in,
N (X), the similarity measure SimX : X2 → [0, 1] is defined as follows:

SimX(x, x′) =
∑

F∈N (X)

πXFMSimY (F(x),F(x′)).

The function is normalized, i.e., the weights πXF sum to one,
∑
F∈N (X) π

X
F = 1. The

set functions MSimY compare two sets of nodes of the same category. Table 1 illus-
trates the set of similarities used by OLA.

Funct. Node Factor Measure
SimO o ∈ O λ(o) simL

a ∈ A, (o, a) ∈ A MSimA

SimA a ∈ A r ∈ R, (a, r) ∈ R SimR

o ∈ O, (a, o) ∈ U MSimO

v ∈ V , (a, v) ∈ U MSimV

SimV v ∈ V value literal type dependent
SimC c ∈ C λ(c) simL

p ∈ P , (c, p) ∈ A MSimP

c′ ∈ C, (c, c′) ∈ S MSimC

simD d ∈ D λ(r) XML-Schema
SimR r ∈ R λ(r) simL

c ∈ C, (r,domain, c) ∈ R MSimC

c ∈ C, (r,range, c) ∈ R MSimC

d ∈ D, (r,range, d) ∈ R SimD

r′ ∈ R, (r, r′) ∈ S MSimR

SimP p ∈ P r ∈ R, (p, r′) ∈ S SimR

c ∈ C, (p,all, c) ∈ R MSimC

n ∈ {0, 1,∞}, (p,card, n) ∈ R equality
Table 1. Similarity function decomposition (card = cardinality and
all = allValuesFrom).

The value of these similarities is computed as a fix-point of the set of equations
defining the similarity. This process always converges towards a solution. Since this
similarity is already computed as an optimization problem, it generates a match of max-
imal weight.

Triple-based iterative similarity measure We have also defined a new measure based on
RDF triple similarity. This similarity is defined as a convergent sequence. Initially, some
similarity values between nodes in the RDF graph are initialized via string similarity.

In a triple-based representation of an ontology, we consider 4 types of nodes:

– blank node: node having no URI,
– local node: named node defined in the ontology, i.e., node having the same names-

pace as the ontology,
– external node: named node not defined in the ontology : node imported from other

ontologies, or node from the language,
– literal node.



simN0(n1, n2) =


1 if n1 = n2,

simS(n1, n2) if n1 and n2 are literals,
simS(n1, n2) if n1 and n2 are local nodes,
0 otherwise.

where simS is a syntactic similarity such as JaroWinkler or Levenstein.
Then, this measure is iteratively refined until the amount of change reaches a user-

defined threshold. Given two nodes n1 and n2, the node similarity simNi+1 between
n1 and n2 is defined, for the stage i+ 1, by:

simNi+1(n1, n2) =
1

Nmax

∑
k∈{sub,pred,obj}

∆
tx∈Tk

x

ty∈Tk
y

(
simTi(tx, ty)

)
×max(|T kx |, |T ky |)

where T kx = {tx|tx.k = n1}, T ky = {ty|ty.k = n2}, and

Nmax =
∑

k∈{sub,pred,obj}

max(|T kx |, |T ky |)

∆ is a collection similarity such as those introduced in Section 4.3. simTi is a similarity
between two triples defined as the average values of similarities between nodes of two
triples at stage i:

simTi(t1, t2) =
simNi(t1.pred, t2.pred)

3

∑
k∈{sub,pred,obj}

simNi(t1.k, t2.k)

In the evaluations, we instantiate this measure with JaroWinkler similarity as simS
and MWMGM similarity (presented Section 4.3) as ∆. We choose to stop iterations
when

∑
n1,n2∈Nodes2 |simNi(n1, n2)− simNi+1(n1, n2)| ≤ 1.

4.3 Collection distances

Once one has a distance δ (or similarity sim) among concepts available, turning it into
an ontology distance is not straightforward. There are different choices for extending
measures at the concept level to the ontology level. This is achieved with the help of
a collection measure ∆ which computes the ontology measure value from the concept
measures values. We present some of these below. These collection measures are de-
fined as distance measures, but they can be turned into similarity measures easily.

Definition 4 (Average linkage). Given a set of entities E and a dissimilarity function
δ : E × E → [0 1], the average linkage measure between two ontologies is a dissimi-
larity function ∆alo : 2E × 2E → [0 1] such that ∀o, o′ ⊆ E,

∆alo(o, o′) =

∑
(e,e′)∈o×o′ δ(e, e

′)

|o| × |o′|
.



Definition 5 (Hausdorff distance). Given a set of entities E and a dissimilarity func-
tion δ : E × E → [0 1], the Hausdorff distance between two sets is a dissimilarity
function ∆Hausdorff : 2E × 2E → [0 1] such that ∀o, o′ ⊆ E,

∆Hausdorff (o, o′) = max(max
e∈o

min
e′∈o′

δK(e, e′),max
e′∈o′

min
e∈o

δK(e, e′))

The problem with the Hausdorff distance, as with other linkage measures, is that its
value in function of the distance between one pair of members of the sets. The average
linkage, on the other hand, has its value function of the distance between all the possible
comparisons. None of these are satisfactory. Matching-based dissimilarities [Valtchev,
1999] measure the dissimilarity between two ontologies by taking into account an align-
ment (matching) between these two ontologies. It can be defined independently of any
alignment by using the minimum weight maximum matching. The quality of such a
measure is thus that closeness depends on the actual correspondences between two on-
tologies (not an average). It will thus be possible to translate the knowledge of one
ontology into another. However, these measures will be more difficult to compute.

Definition 6 (Minimum weight maximum graph matching distance). Given a set of
entities E and a dissimilarity function δ : E×E → [0 1], for any ontologies o, o′ ⊆ E,
a minimum weight maximum graph matching is a one-to-one matching M ⊆ o × o′,
such that for any one-to-one alignment M ′ ⊆ o× o′,∑

〈p,q〉∈M

δ(p, q) ≤
∑

〈p,q〉∈M ′

δ(p, q)

Then, one can define the distance between these two ontologies as:

∆mwmgm(o, o′) =

∑
〈p,q〉∈M δ(p, q) + max(|o|, |o′|)− |M |

max(|o|, |o′|)

Computing the minimum weight maximum graph matching distance (MWMGM)
from a similarity, involves two related steps: extracting an alignment between the on-
tology and computing the distance value. The value depends on the extracted alignment
and usual algorithms extract a matching, i.e., a one-to-one alignment. While this may
be a reasonable choice mathematically, this may not be the needed alignment on which
to ground such a distance. Hence, MWMGM leaves space for improvement.

5 Experimental setting

The presented measures have to our knowledge, not been evaluated on ontology dis-
tances. We have emitted opinion on their relevance only grounded on their mathematical
form. It is necessary to enhance this judgement through evaluation. We want to eval-
uate both the speed of distance computation and the accuracy with regard to asserted
similarity.

The ideal experimental setting comprises a corpus of ontologies with clear expec-
tations about the distances that should be found between them. We do not have such a



corpus annotated with distances values between ontologies. However, the most impor-
tant thing is to know the proximity order between ontologies.

Finding a relevant corpus is not an easy task. For this reason we provide only pre-
liminary results here. We first describe the tested methods, the test set and various tests
performed with this test set.

5.1 Selected measures

In order to be representative, we selected both terminological and structural measures
usually used in ontology matching. For each kind of measures, we chose to evaluate ba-
sic measures and more elaborated ones as shows Table 2. The JaccardVM(TF) measure
is the simplest one since it only represents the proportion of shared terms in two on-
tologies. CosineVM has been used with two types of weights: TF and TF·IDF. All other
measures are entity based measures and then, they have been tested with the three col-
lection measures presented Section 4.3: the Average Linkage, the Hausdorff distance,
and the MWMGM distance. For normalization purpose, all measures evaluated here are
similarity measures.

basic elaborate
terminological CosineVM(TF & TFIDF), JaccardVM(TF) EntityLexicalMeasure

structural TripleBasedEntitySim OLAEntitySim

Table 2. Selected measures.

5.2 Evaluation on the OAEI benchmark suite

We have considered the Ontology Alignment Evaluation Initiative1 benchmark test set
because it offers a set of ontologies that are systematically altered from one particular
ontology which will play the role of o. There are here 6 categories of alterations:

Name Name of entities that can be replaced by (R/N) random strings, (S)ynonyms,
Name with different (C)onventions, (F) strings in another language than English.

Comments Comments can be (N) suppressed or (F) translated in another language.
Specialization hierarchy can be (N) suppressed, (E)xpansed or (F)lattened.
Instances can be (N) suppressed
Properties can be (N) suppressed or (R) having the restrictions on classes discarded.
Classes can be (E)xpanded, i.e., replaced by several classes or (F)latened.

Since, these ontologies are generated by applying successive transformations to o we
know that the ontologies resulting from applying less transformations (for inclusion)
should be closer to o. This is this property that we have exploited in this first test set.

1 http://oaei.ontologymatching.org



Order between ontologies of benchmark We can to build a partial order relation ≤
representing the alteration relation over all generated ontologies. o ≤ o′ seems that the
ontology o is an alteration of o′ (o can be obtained by altering some features of o′).

For each category of alteration c ∈ {Name,Comments, Specialization,
Instances, Properties, Classes} and each ontology o, c(o) represents the type of
alteration made on the reference ontology for the category c. For each category, these
alterations are ordered in the following way:

Name {R,N} ≤ {S,C, F} ≤ ∅ Instance N ≤ ∅
Comments N ≤ F ≤ ∅ Property N ≤ R ≤ ∅
Specialization hierarchy {N,E, F} ≤ ∅ Classes {E,F} ≤ ∅
From these rules, an ontology o is an alteration of o′, noted o ≤ o′, if for each

category of alterations c, we have c(o) ≤ c(o′). Figure 1 displays a transitive reduction
of this partial order.

Fig. 1. Order lattice on benchmark ontologies set.

Initially we were considering all triples of ontologies related by a transformation
path. But we observed that this procedure was biased towards lexical measures since
it compares only labels and thus only changes its value between equal labels and non
equal ones. Since our test is based on ≤, very often the distances are the same and thus
the property was satisfied. Given the huge proportion of such tests in our test set we
restricted ourselves comparing two ontologies with the initial ontology.

Another bias given by this test set is that the transformations were of the all-or-
nothing kind: either all labels are changed, or they are preserved. For countering this
bias, we produced a larger altered test set in which the label scrambling transformation
is applied in (always the same) 20, 40, 60 and 80% of the labels. The new lattice is
given in Figure 2.



Fig. 2. Order lattice on the enhanced benchmark ontologies set.

6 Results

According to the experimental settings introduced in the previous section, we have col-
lected and analyzed 3 kinds of results. The first results concern the comparison of the
orders induced by measures and those really observed on the benchmark suites. The
second results show how measures behave when we introduce unrelated ontologies.
The last results are about the time consumption of evaluated measures.

6.1 Order comparison on benchmark

This first experiment aims at checking if the tested similarities are compatible with the
order induced by the alterations. It checks if the assertion sim(o, o′′) ≤ sim(o, o′) (or
δ(o, o′) ≤ δ(o, o′′) for distances) is verified for any triple o, o′, o′′ such as o′′ < o′ < o.
1372 triples can be formed with the original benchmark suite and 15780 triples with the
enhanced benchmark suite.

Table 3 shows results obtained respectively on the original benchmark and the en-
hanced one. This table presents, for each measure, the proportions of triples o, o′, o′′

(such as o′′ < o′ < o) verifying sim(o, o′′) ≤ sim(o, o′).
On the original benchmark, the triple-based similarity performs the best with all

structural measures. Cosine measure with TF weights also obtains good results and
outperforms measures based on OLA similarity. Then, Jaccard similarity on TF weights
gives satisfactory results. The measures based on lexical similarity and cosine with
TF·IDF weights are the worst measures since they successfully passed only the half of
the tests. Concerning, structural measures, MWMGM seems to be the best collection
measure with the lexical and triple-based similarities. Hausdorff is only relevant with
triple-based similarity because only 10% of tests have a reference similarity, sim(o, o′′),



Measure Tests Passed (ratio)
Original Enhanced

MWMGM (EntityLexicalMeasure) 0.53 0.72
Hausdorff (EntityLexicalMeasure) NaN NaN
AverageLinkage (EntityLexicalMeasure) 0.44 0.31

MWMGM (OLAEntitySim) 0.75 0.78
Hausdorff (OLAEntitySim) 0.75 0.65
AverageLinkage (OLAEntitySim) 0.79 0.74

MWMGM (TripleBasedEntitySim) 0.86 0.92
Hausdorff (TripleBasedEntitySim) 0.86 0.89
AverageLinkage (TripleBasedEntitySim) 0.82 0.91

CosineVM (TF) 0.82 0.92
CosineVM (TFIDF) 0.57 0.81
JaccardVM (TF) 0.71 0.87

Table 3. Results on the original and enhanced benchmark test sets.

greater than 0 with OLA and none with lexical similarity (which explain the NaN
value). Surprisingly, OLA similarity obtains its best result with AverageLinkage.

Measures tend to perform better on the enhanced benchmark than on the original
benchmark. This improvement is especially noteworthy with lexical measures such as
lexical entity, vector-based similarities. Triple-based similarity improves it results with
all collection measures. OLA similarity almost obtain the same results. This owes to
the fact that ontologies are, on average, more lexically similar in the enhanced bench-
mark. Results of MWMGM are better with all tested measures, but average linkage
obtains worse results with lexical and OLA similarities. Results of Hausdorff are still
not relevant with OLA and lexical similarities.

These results show that structural measures are more robust to the lexical alterations
than lexical based measures. In cases where ontologies are lexically close, the use of
vectorial measures seems to be relevant. The entity lexical measure is more sensitive to
the collection measure used than structural measures. This can be explained by the fact
that structural entity distances values are more dependent each other than lexical entity
distances values. The advantage of TF against TF.IDF is probably due to the nature of
the benchmark: since the altered ontologies are generated from one reference, a term
tends to appear in a lot of ontologies and then its IDF weight is around 0.

6.2 Tests with different cardinality matching

Finally, the benchmark test set is still biased towards 1-1 matching, so algorithms which
are enforcing them (and in particular maximal matching algorithms) should be favored
by our tests. In order to counter this problem, we used two imperfect tests:

– we compared with similar but different ontologies: 301, 303, 304 to be compared
with the higher level of the hierarchy where what has changed is added/suppressed
classes (248, 251, 252, 221, 222, 223, 228, 250) and suppressed properties (228,
250);

– we compared with irrelevant ontologies (confious, iasted and paperdyne from the
conference test).



The expected result here is that the slightly altered ontologies are closer than the 30x
which are still better than the conference ontologies (2xx > 3xx > CONFERENCE).

Table 4 presents, for each measure, the ontologies which have not been correctly
ordered and the observed order. For example, 250 < 304 means that the measure finds
that 304 is closer to 101 than 250 (sim(101, 250) < sim(101, 304)). In this experiment
MWMGM similarities perform the best. Results given by Hausdorff measure combined
with lexical and OLA similarities are not relevant since a lot of values are equals to
0. Nevertheless, triple-based similarity with Hausdorff gives good results. Results ob-
tained by average linkage with lexical and triple-based similarities are not satisfactory
since a lot of ontologies are not correctly ordered. Vectorial measures fail on the same
tests: they do not work very well when the names of classes have been removed (on-
tologies 248, 250, 251, 252).

In this experiment, ontologies having different cardinality do not penalize
MWMGM in comparison with other measures. These results also show the limits of
lexical measures on tests where structure is preserved but not the lexical data.

Measure Observed disorders
MWMGM(EntityLexicalMeasure) 250 < 304

250 < {CONFERENCE}
{301, 303} < iasted < 304 < {confious ,paperdyne}

MWMGM(OLAEntitySim) 250 < 304
303 < {confious, paperdyne}

MWMGM(TripleBasedEntitySim) 250 < {301,303} < 228 < 304
250 < {CONFERENCE}

Hausdorff(EntityLexicalMeasure) All values equals to 0
Hausdorff(OLAEntitySim) {228, 248, 250, 251, 252} < 304

{228, 248, 250, 251, 252} < {CONFERENCE}
{301, 302 }< iasted < 303 < {confious, paperdyne}

Hausdorff(TripleBasedEntitySim) 250 < {3xx}
250 < confious

AverageLinkage(EntityLexicalMeasure) {2xx} < {301,304}
{228, 248, 250, 251, 252} < {confious, iasted} < {221,222, 223} < paperdyne
303 < {CONFERENCE}

AverageLinkage(OLAEntitySim) {223, 248, 250, 251, 252} <301
{303} < {confious, paperdyne}

AverageLinkage(TripleBasedEntitySim) { 248, 250, 251, 252} < 303 < {221, 222, 223, 228}< {301,304}
250 < {confious, iasted}

CosineVM(TF) {248, 250, 251, 252}<{3xx}
CosineVM(TFIDF) {248, 250, 251, 252}<{3xx}
JaccardVM(TF) {248, 250, 251, 252}<{3xx}

Table 4. Ordering error between ontologies on a selection of ontologies.

6.3 Time consumption

We compared the CPU time used by each measure. The testing platform is powered by
a quad-core 3GHz Xeon processor with a Linux OS. All evaluated measures (but OLA)
have been implemented and evaluated using the same framework. For each measure, we
computed all similarity values between ontologies of the original benchmark. This test
was performed two times with no significant differences in taken times. These results
are those of the second round. Table 5 shows the CPU time spent to compute these 1225
similarities and the average time spent to compute one similarity value.



These results clearly shows that measures based on OLA are runtime intensive.
Measures using triple-based entity similarity are 5 times less expensive than the first
family. Lexical Entity based similarities and those based on the vector space model
measures are computed largely faster.

Globally, these results confirm that entity-based measures are more time intensive
than VSM measures. Among the entity-based measures, structural measures (OLA and
triple-based entity similarities) are more extensive than lexical ones since they rely on an
iterative refinement process. The observed runtime is consistent with theoretical com-
plexity of measures (and the computation of all but the more complex is deterministic),
so we do not observe a significant effect from coding.

This experimentation shows that only lexical measures are useable at large scale.

Measure Total time Average time
(s) per similarity value (s)

MWMGM(EntityLexicalMeasure) 558 0.46
MWMGM (OLAEntitySim) 39 074 31.9
MWMGM (TripleBasedEntitySim) 7 950 6.49
Hausdorff (EntityLexicalMeasure) 451 0.37
Hausdorff (OLAEntitySim) 38 912 31.76
Hausdorff (TripleBasedEntitySim) 7 410 6.05
AverageLinkage (EntityLexicalMeasure) 444 0.36
AverageLinkage (OLAEntitySim) 38 995 31.83
AverageLinkage (TripleBasedEntitySim) 7 671 6.26
CosineVM (TF) 101 0.08
CosineVM (TFIDF) 102 0.08
JaccardVM (TF) 101 0.08

Table 5. CPU time consumption on the original benchmark.

7 Conclusion

Measuring distances between ontologies can be useful in various tasks for different
purposes (finding an ontology to replace another, finding an ontology in which queries
can be translated, finding people using similar ontologies). Hence there is no universal
criterion for deciding if an ontology is close or far from another.

There exist many measures using different aspects of ontologies. In order to know
the behaviour of these methods, we have evaluated them on specific test benches. Re-
sults shows that structural similarities tends to more reliable and robust than lexical
similarities. This is especially true when the ontologies to compare do not share a lot
of common vocabulary. Nevertheless, due their complexity, structural measures are not
adapted for real-time applications or for measuring similarities between large ontolo-
gies. We can also notice that some basic measures such cosine on TF vector give quite
accurate results. Such kind of measures can be useful for quickly select a subset of close
ontologies and thus allowing the use of structural measures in order to refine the prox-
imity relation between the selected ontologies. Hence, more work must be developed
for finding trade-offs between accuracy and efficiency.

This paper only restricts the study to measures used for matching ontologies. It
could be interesting to test others measures relying on some global ontology character-
istics (size, graphs densities, etc.).
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