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ABSTRACT

This paper proposes an extension of the Weighted Ensemble Kalman filter

(WEnKF) proposed by Papadakis et al. (2010) for the assimilation of image

observations. The main contribution of this paper consists in a novel for-

mulation of the Weighted filter with the Ensemble Transform Kalman filter

(WETKF) incorporating directly as a measurement model a nonlinear im-

age reconstruction criterion. This technique has been compared to the orig-

inal WEnKF on numerical and real world data of 2D turbulence observed

through the transport of a passive scalar. It has been in particular applied for

the reconstruction of oceanic surface current vorticity fields from Sea Surface

Temperature satellite data. This latter technique enables a consistent recov-

ery of oceanic surface currents, vorticity maps along time in presence of large

missing data areas and strong noise.

1 Introduction

The analysis of geophysical fluid flows is of crucial interest in Oceanography, Meteorology,

or Hydrology for forecasting applications, or for the monitoring of hazards. In all those

domains a great number of orbital or geostationary satellites provides a huge amount of

image data with still increasing spatial and temporal resolutions. The combination of such

fine scale observations with larger scales dynamical models in data assimilation schemes

might be of great interest to infer with a greater accuracy the evolution of the observed

geophysical fluid flows. Compared to in situ measurement techniques supplied by dedicated
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2 SEBASTIEN BEYOU, ANNE CUZOL, SAI SUBRAHMANYAM GORTHI AND ETIENNE MEMIN

probes or Lagrangian drifters, satellite images give access to a much denser observation field

but provide unfortunately only an indirect access to the physical quantities of interest. The

direct estimation from a satellite image sequence of the flow state variables leads hence

to difficult inverse problems. This is particularly true for the recovery of fluid flow motion

fields from successive pairs of images. Such a direct estimation is intrinsically ill-posed and

requires the introduction of additional smoothing constraints imposed either globally on the

image domain in variational approaches (see Heitz et al. (2010) for a review) or within a

local window in correlation based techniques (Adrian, 1991; Emery et al., 1986; Ottenbacher

et al., 1997; Szantai et al., 2002). Those techniques rely heavily on this implicit or explicit

smoothing assumption and are prone to strong errors in presence of noise, missing data or

regions of low photometric variability. Consequently, there is a strong difficulty in imposing

a trajectorial consistency to the sequence of (generally independently) estimated motion

fields. In the best scenario case these methods provide accurate instantaneous displacements

only for a limited range of scales and experience severe difficulties for medium to small scales

measurements due to the smoothing prior used. Their accuracy is also restricted to regions

that exhibit sufficient luminance variations. Although these techniques are very useful to

measure in a fast and tireless way motion fields from an image sequence, all these difficulties

generate in large areas inconsistent measurements along time in real world atmospheric or

oceanic satellite images.

One way to enforce such a dynamical consistency of the velocity measurements consists in

embedding the estimation problem within an image based assimilation process. Variational

assimilation of image information has been recently considered by several authors for the

tracking along time of convective cells (Thomas et al., 2010) or for the estimation of consis-

tent motion fields (Corpetti et al., 2009; Titaud et al., 2010; Papadakis and Mémin, 2008).

All these techniques have been assessed on simplified dynamics: level set transport equation

associated to a transportation component defined from motion measurements with Brown-

ian uncertainties for Thomas et al. (2010), different forms of the Shallow-water equations

for Corpetti et al. (2009) and Titaud et al. (2010) or 2D velocity-vorticity Navier-Stokes

formulation in Papadakis and Mémin (2008). The techniques differ mainly in the way they

are dealing with the relation linking the measurements and the state variables (the observa-

tion operator). In Corpetti et al. (2009); Thomas et al. (2010) linear observation operators

derived from the normal equations associated to a local least square motion estimation for-

mulation are considered. The problem is addressed in a slightly different way in Titaud
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WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER FOR IMAGE ASSIMILATION 3

et al. (2010), simulating from an initial image a sequence transported by the state variable

dynamics. The observation operator is then defined as a relation between this simulated

sequence and the observed image sequence. This approach relies on the hypothesis that the

actual image sequence is close to a reference sequence transported by the model.

Let us note that all these techniques may incorporate either preconditioning stages in

their internal iterative optimization or covariance specifications that include smoothing func-

tional similar as those employed for the motion estimation problems (Souopgui et al., 2009).

Another family of data assimilation procedures is defined as stochastic filters imple-

mented through Monte Carlo samples called ensemble members or particles whether the

filtering is implemented through an ensemble Kalman filter or with a particle filter. Con-

trary to the previous deterministic techniques, those assimilation schemes aim at recovering

a description of the probability density function of the state variable trajectory based on

the complete history of measurements up to the current instant. These schemes have the

advantage to deal with the whole nonlinearity of the dynamics and to include directly a rep-

resentation of the uncertainty associated to the considered dynamics. Obviously the building

of such a stochastic model is debatable on the precise form it may take. However, this ability

is very interesting in cases for which the dynamical model is only imprecisely known. Let

us note that second order variational methods allows also computing the error covariance

matrix through second order adjoint systems (Le Dimet et al., 2002). This is however at the

price of a significant computational cost increase.

Recently a data assimilation procedure embedding an Ensemble Kalman filter into the

particle filter framework, entitled Weighted Ensemble Kalman filter, has been proposed (Pa-

padakis et al., 2010). This filter combines all the nice properties of the ensemble Kalman

mechanics with the correction scheme of the particle filter. Conceptually, this filter is more

adapted to a non Gaussian distribution of the ensemble members, which is a situation that

may arise at very short time horizon with nonlinear stochastic dynamics 1. It has been also

shown experimentally that this modified filter exhibits a faster convergence. This has been

however assessed only on synthetic 2D turbulence models in the simple case of measurements

artificially built from a noisy version of the true simulated data (Papadakis et al., 2010).

The main contribution of the paper consists thus first in extending the study of WEnKF

1 Other solutions have been proposed to deal with non-Gaussianity in the framework of variational methods or stochastic

filters (interested readers may refer to the review of Bocquet et al. (2010) or Yang et al. (2012))
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4 SEBASTIEN BEYOU, ANNE CUZOL, SAI SUBRAHMANYAM GORTHI AND ETIENNE MEMIN

to the assimilation of observations supplied by image data. We will mainly focus on the

incorporation of a direct image reconstruction error measurement. Here the great advantage

is to avoid the use of external techniques to supply so called pseudo observations at the price

of a nonlinear observation operator. The second purpose of the paper lies in extending the

weighted ensemble framework based on randomly sampling of the measurement noise (re-

ferred usually as ensemble schemes with perturbed observation (Evensen, 1994; Houtekamer

and Mitchell, 1998) to a weighted version that uses the ensemble transform Kalman filter

(ETKF), proposed by Bishop et al. (2001) and developed by Tippett et al. (2003) and Wang

et al. (2004). This transform is built from a (mean-preserving) square-root matrix to update

the mean and covariances, in accordance with the Kalman update equations. This extension

was suggested in Papadakis et al. (2010) but was not implemented. We will see that this

transform is well adapted to the case of nonlinear direct image measurements and enables

processing the fluid flow image sequences directly, without the need of any intermediate

velocity fields observations. The proposed WETKF makes use of the ETKF mechanism as

the proposal distribution of the particle filter and corrects the different members according

to the particle filtering selection step. This selection scheme associates to each ensemble

member a filtering weight determined in our case through a mean square error of displaced

frame differences, and performs a resampling favoring particles corresponding to high values

of the filtering probability distribution.

We organize the paper as follows: Section 2 recalls the principles governing the construc-

tion of the Weighted Ensemble Kalman filter proposed in Papadakis et al. (2010). After a

brief discussion of ensemble transform Kalman filter in Section 2.2, we describe its particle

filter extension. Its application to fluid flow analysis through the direct observation of an

image sequence depicting the transportation of a passive scalar is presented in Section 3. Sec-

tion 4 presents the experimental validation of these approaches and brings out some elements

of comparison. Real results on 2D sequences of 2D turbulence and satellite oceanic data are

presented. Finally, Section 5 concludes the paper with a discussion to future directions.

2 Assimilation with the weighted ensemble transform Kalman filter

We describe in this section how the assimilation problem can be formulated sequentially

by a filtering approach adapted to a nonlinear and high-dimensional framework.

c© 0000 Tellus, 000, 000–000



WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER FOR IMAGE ASSIMILATION 5

2.1 Filtering in a nonlinear and high-dimensional setting

Stochastic filters aim at estimating the posterior probability distribution p(x0:k|y1:k) of

a state variable trajectory x0:k starting from an initial state x0 up to the state xk ∈ Rn

at current time k. The state variable trajectory is obtained through the integration of a

dynamical system:

dxt = M(xt)dt+ ηdBt, (1)

where M denotes a deterministic linear/nonlinear dynamical operator, corresponding to a

physical conservation law describing the state evolution. The random part dBt accounts for

the uncertainties in the deterministic state model. It is usually a Gaussian noise, white in

time but correlated in space with covariance Q = ηη
T
. It is assumed that the true state is

unknown and observed through yk ∈ Rm at discrete time instants. These observations are

assumed to be linked to the state variable through the following measurement equation:

yk = H(xk) + γk, (2)

where the observation noise γk is a white Gaussian noise with covariance matrix R and H

stands for the linear/nonlinear mapping from the state variable space to the observation

space. We note that the (integration) time step used for the state variable dynamics δt is

usually much smaller (about 10-100 times), than the time interval δk between two subsequent

measurements. A sequence of measurements or observations from time 1 to k will be denoted

by a set of vectors of dimension m as: y1:k = {yi, i = 1, . . . , k}, where the time between two

successive measurements is arbitrarily set to δk = 1.

In a nonlinear context, it is known that the filtering equations can no longer be solved

by the Kalman algorithm and its direct variants. Ensemble Kalman filters (Anderson and

Anderson, 1999; Bishop et al., 2001; Evensen, 1994; Houtekamer and Mitchell, 1998; Ott

et al., 2004) have been developed to tackle the filtering problem in nonlinear and high-

dimensional systems. However, these methods still rely on a Gaussian assumption. On the

other hand, particle filters (Doucet et al., 2000; Del Moral, 2004; Gordon et al., 1993) are

able to solve exactly the filtering equations (up to the Monte Carlo approximation). But, in

their simplest formulation, they are not suitable to high-dimensional systems (van Leeuwen,

2009; Snyder et al., 2008).

Particle filtering techniques implement an approximation of the state posterior density

c© 0000 Tellus, 000, 000–000



6 SEBASTIEN BEYOU, ANNE CUZOL, SAI SUBRAHMANYAM GORTHI AND ETIENNE MEMIN

p(x0:k|y1:k) (called filtering law), using a sum of N weighted Diracs:

p(x0:k|y1:k) ≈
N∑
i=1

w
(i)
k δx(i)

0:k
(x0:k) , (3)

centered on hypothesized elements (called particles) of the state space sampled from a pro-

posal distribution π(x0:k|y1:k). This distribution, called the importance distribution, ap-

proximates the true filtering distribution. Each sample is then weighted by a weight, w
(i)
k ,

accounting for the ratio between the two distributions. Any importance function can be

chosen (with the only restriction that its support contains the filtering distribution one).

Under weak hypotheses the importance ratio can be recursively defined as:

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

. (4)

By propagating the particles {x(i)
k , i = 1, . . . , N} from time k−1 through the proposal density

π(xk|x(i)
0:k−1,y1:k), and by weighting the sampled states with w

(i)
k , a recursive sampling of the

filtering law is obtained. The standard choice when applying the particle filter is to fix the

proposal distribution to the transition law p(xk|xk−1). In that case, it is easy to sample from

the proposal (this requires only to sample from the dynamical model (1)). However, this

choice has the major drawback of sampling the particles without taking into account the

observation yk. This makes the particle filter not suitable in a high-dimensional context. As

a matter of fact, particles are led to explore the state space blindly following the dynamical

model only and are most of the time far away from the observation at correction time,

yielding hence very quickly to a filter divergence. It is thus necessary to introduce the

observation within the proposal distribution in order to guide the particles, and then make

the particle filtering technique suitable to high-dimensional problems (van Leeuwen, 2009).

Such a strategy has been used in Papadakis et al. (2010) through the ensemble Kalman filter

mechanism. Relying on the usual assumption of the ensemble techniques (i.e. considering the

dynamics as a discrete Gaussian system), the proposal can be set to a Gaussian conditional

distribution π(xk|x(i)
k−1,yk). In order to make the estimation of the filtering distribution exact

(up to the sampling), each member of the ensemble must be weighted at each instant k, with

appropriate weights w
(i)
k defined from (4). With a systematic resampling scheme and for high

dimensional systems represented on the basis of a very small number of ensemble members

it can be shown (Papadakis et al., 2010) that the weights reduces to the computation of the

data likelihood:

w
(i)
k ∝ p(yk|x(i)

k ), (5)
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WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER FOR IMAGE ASSIMILATION 7

with
N∑
i=1

w
(i)
k = 1. Those weights may be thus interpreted through (3) as the a posteriori

probability associated to the sample trajectory x
(i)
k and provide for the filtering objective

a natural quality ranking of a given sample. In the following we describe how this ensem-

ble Kalman proposal step can be performed with a particular scheme called the Ensemble

Transform Kalman Filter.

2.2 Ensemble transform Kalman filter

Several forms of ensemble Kalman filters have been successfully proposed since the sem-

inal work of Evensen (Evensen, 1994). Those filters which correspond to the ensemble or

particle implementation of the Kalman Filter (Kalman, 1960) have demonstrated their per-

formances in geophysical sciences as they allow propagating very high-dimensional state vec-

tors. This advantage springs from the ability of the EnKF to approximate or compute the

forecast and analysis two first moments (needed in KF recursion) directly from the ensem-

ble, while propagating the ensemble members through the exact dynamics and observation

models, without an explicit linearization – as it is done in Extended Kalman filter (Anderson

and Moore, 1979). The EnKF avoids explicit computation of the covariance matrix, which

may not even be affordable in very high-dimensional states, and further the algorithms of

Evensen (2003) or Bishop et al. (2001) present computationally efficient schemes for the

inversion of the covariance matrix required in the Kalman gain computation, through a low

dimensional singular value decomposition, when the number of ensemble members is much

lower than the state dimension, which is usually the case.

Two kinds of ensemble filters have been proposed so far in the literature. The first kind

of method (Evensen, 2003) introduces artificially perturbed observations in order to enable

a complete Monte Carlo estimation of the mean and covariance of the filtering distribution.

This technique has been reported to yield good Gaussian approximation in a nonlinear

regime but may show some bias for a too small ensemble. The second kind of techniques

relies on so-called deterministic square-root filters. Among the different variations of square-

root filters, the Ensemble Transform Kalman filters, proposed by Bishop et al. (2001) and

developed by Tippett et al. (2003) and Wang et al. (2004), employ a (mean-preserving)

square-root matrix to update the mean and covariances, in accordance with the Kalman

update equations. We present now the essential ideas of this scheme.

Considering first a linear observation operator H, the covariance and mean update equa-

c© 0000 Tellus, 000, 000–000



8 SEBASTIEN BEYOU, ANNE CUZOL, SAI SUBRAHMANYAM GORTHI AND ETIENNE MEMIN

tions in the Kalman filter at instant k are respectively given by:

Pa
k = Pf

k −Pf
kH

T (HPf
kH

T + R)−1HPf
k , (6)

x̄ak = x̄fk + Pa
kH

TR−1(yk −Hx̄fk), (7)

where superscript ”f” stands for the forecast step, whereas ”a” corresponds to the correction

step (also called analysis) and the overline symbol denotes the empirical average. Using

a forecasted ensemble members perturbation centered around the mean, Xf
k = {xf,(i)k −

x̄fk , i = 1, . . . , N}, an empirical approximation of the forecast covariance is obtained as:

Pf
k = (N − 1)−1Xf

kX
f
k

T

, and we get:

(N − 1)Pa
k = Xf

kX
f
k

T −Xf
kX

f
k

T

HT (HXf
kX

f
k

T

HT + R̃)−1HXf
kX

f
k

T

,

with R̃ = (N − 1)R. Let us note that in general the ensemble dimension N is much lower

than the state space dimension (N << n). A nonlinear observation operator H(Xf
k), can be

incorporated by replacing HXf
k with a centered matrix H(Xf

k), defined as:

H(Xf
k) = {H(x

f,(i)
k )−H(xfk), i = 1, . . . , N}. (8)

The same expression of the nonlinear observation is used in Houtekamer and Mitchell (2001);

Hunt et al. (2007). This leads to the following approximate covariance update with a non-

linear observation model:

(N − 1)Pa
k = Xf

kX
f
k

T −Xf
kH(Xf

k)
T

(H(Xf
k)H(Xf

k)
T

+ R̃)−1H(Xf
k)X

f
k

T

,

which can be written under the form (N − 1)Pa
k = Xf

kDkX
f
k

T

with:

Dk = I−H(Xf
k)

T

(H(Xf
k)H(Xf

k)
T

+ R̃
)−1

H(Xf
k), (9)

and where I is the N ×N identity matrix. Writing (N − 1)Pa
k = Xa

kX
a
k
T where Xa

k gathers

desired centered corrected ensemble members, and expressing Dk = AkA
T
k through its ma-

trix square root, we get Xa
kX

a
k
T = Xf

kAkA
T
kX

f
k

T

, or Xa
k = Xf

kAk. In order to compute the

matrix square-root Ak, we rely on the Sherman-Morison-Woodbury formula as suggested by

Tippett et al. (2003) and which leads to:

Dk = (I + H(Xf
k)

T

R̃−1H(Xf
k))
−1. (10)

From the eigenvalue decomposition:

I + H(Xf
k)

T

R̃−1H(Xf
k) = Uk(I + Λk)U

T
k , (11)

where Uk is an orthogonal matrix the square root Ak can be written as:

Ak = Uk(I + Λk)
−1/2. (12)

Note however that this square-root is not unique and can be replaced by AkV, where V is

c© 0000 Tellus, 000, 000–000



WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER FOR IMAGE ASSIMILATION 9

any arbitrary orthonormal matrix (VVT = I) of suitable dimension. In particular, one can

look for a mean preserving square-root such that:

Xa
k1 = Xf

kAk1 = 0, (13)

where 1 is a vector of ones. As the forecast ensemble is centered by definition, this condition

is fulfilled for an ensemble matrix Xf
k of rank N − 1 if and only if Ak1 = α1. It can be

shown (Ott et al., 2004; Sakov and Oke, 2007; Wang et al., 2004) , that taking:

Ak = Uk(I + Λk)
−1/2UT

k . (14)

satisfies the above mean preserving condition for the transform. The improvement brought

by the use of this mean preserving transform over non mean preserving square root filters or

ensemble filters with perturbed observations has been experimentally shown and analyzed

in Sakov and Oke (2007).

As a final step a mean analysis term x̄ak has to be added to each element x
a,(i)
k . The mean

analysis vector reads:

x̄ak = x̄fk + (N − 1)−1Xf
kDkH(Xf

k)
T

R−1(yk −H(x̄fk)). (15)

Note that computing (10) only requires the inversion of a N ×N matrix, if the inverse of

the measurement error covariance matrix R is available. Usually R is defined as a diagonal

or band diagonal (very sparse) matrix and is easy to invert. The analysis step can thus be

accomplished efficiently. In our case R will be assumed to be a diagonal matrix and is thus

trivially inverted. Let us note that in the case of image data, it would be very interresting

to investigate the use of sparse banded information matrices (R−1) associated to statistical

graphical models (Lauritzen, 1996).

Ensemble filters may be also accompanied with so-called localization procedures intro-

duced to discard spurious long range correlations that appear in empirical covariance matri-

ces built from a small number of samples. Such a localization procedure is carried out either

explicitely by considering only the observation within a window centered around a given

point grid, or implicitely by introducing in the forecast covariance matrix a factor decaying

gradually to zero as the distance between two grid points increases.

2.3 Weighted ensemble transform Kalman filter

We describe here how to perform the assimilation of observation yk at time k, i.e. how

to update sequentially the filtering distribution from p̂(xk−1|y1:k−1) =
∑N

i=1w
(i)
k−1δx(i)

k−1
(xk−1)

c© 0000 Tellus, 000, 000–000



10 SEBASTIEN BEYOU, ANNE CUZOL, SAI SUBRAHMANYAM GORTHI AND ETIENNE MEMIN

to p(xk|y1:k) =
∑N

i=1w
(i)
k δx(i)

k
(xk). The extension to the ensemble transform Kalman filter

(ETKF) of the WEnKF described in Papadakis et al. (2010) is straightforward. It consists

in sampling the ensemble members from the ETKF procedure and then to weight these

members according to their likelihood (5). A final resampling is then performed, drawing a

new set of N members from the ensemble with probabilities proportional to their weights.

Those steps are summarized below.

At time k, starting from a set of N particles {x(i)
k−1, i = 1, . . . , N}, one iteration of the

WETKF algorithm splits into the following steps:

• Get x
a,(i)
k from the forecast and analysis steps of ETKF:

– Forecast: For all i = 1, . . . , N , simulate x
f,(i)
k from model (1), with initial condition

x
a,(i)
k−1 and a given discrete scheme with time step δt;

– Analysis: Compute x
a,(i)
k from Section 2.2.

• Compute particle filter weights w
(i)
k ∝ p(yk|xa,(i)k ).

• Resample particles to obtain {x(i)
k , i = 1, . . . , N} and set w

(i)
k = 1

N
for all i = 1, . . . , N .

Let us note that the final resampling step is implemented with a small Gaussian perturbation

of the ensemble members. This random perturbation avoids a strict duplication of some

members and implements an additive inflation procedure as it is usually done in ensemble

Kalman filtering implementation. There is no particular constraint on the proposal ETKF

step, it may thus includes any additional localization or inflation procedure. This extension

could be for instance applied to localized ETKF version Hunt et al. (2007); Ott et al. (2004).

3 Fluid motion estimation from images

In this section, we describe the application of the proposed WETKF method to the

problem of fluid motion estimation from a sequence of images.

3.1 Dynamical model

In this work we will rely on the 2D vorticity-velocity formulation of the Navier-Stokes

equation with a stochastic forcing to encode the dynamics uncertainty terms. Let ξ(x)

denote the scalar vorticity at point x = (x, y)T , associated to the 2D velocity w(x) =

(wx(x), wy(x))T through ξ(x) = ∂wy
∂x
− ∂wx

∂y
. Let ξ ∈ R|Ωξ| be the state vector describing the

vorticity over a spatial domain Ωξ of size |Ωξ|, and w ∈ R2|Ωξ| the associated velocity field

c© 0000 Tellus, 000, 000–000



WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER FOR IMAGE ASSIMILATION 11

over the same domain. For incompressible flows, the stochastic dynamics is then written:

dξt = −∇ξt ·wdt+ ν∆ξtdt+ ηdBt (16)

where ν is the viscosity coefficient and dBt is random forcing term. This a white in time

noise model is an isotropic homogeneous random field corresponding to idealistic turbulence

toy model (Kraichnan, 1968; Majda and Kramer, 1999). It is characterized spatially by a

covariance model Q exhibiting a power-law function spatial within an inertial range of scale.

These random fields are in practice simulated in the Fourier domain (Elliot et al., 1997;

Evensen, 2003).

Note that the velocity field can be recovered from its vorticity, for incompressible fluids,

using the Biot-Savart integral as: w = ∇⊥G ? ξ, where G(.) = ln(|.|)
2π

is the Green kernel

associated to Laplacian operator and ∇⊥ = (−∂y, ∂x)T represents the orthogonal gradiant.

This transformation can be efficiently implemented in Fourier domain, noting that ∆Ψ = ξ

and w = ∇⊥Ψ, where Ψ represents the stream function.

3.2 Nonlinear image observation model

There are two ways to assimilate the image data within the system. The first solution

consists in computing pseudo-observations (motion estimates) from two consecutive images.

This leads to a linear observation model. Another approach consists in observing directly the

image data, which makes the problem harder since the observed quantity is then a highly

nonlinear function of the system state. As shown in the previous section, such a nonlinearity

in the observation model can be handled within the WETKF framework.

In order to assimilate directly the image data, a nonlinear image observation model that

relies on the brightness consistency assumption can be formulated as follows:

I(x, k) = I(xk+1, k + 1) + γk(x) ∀x ∈ ΩI , (17)

where I is the luminance function, ΩI is the spatial image domain, xk+1 = x+ d(x) is the

displaced point at time k + 1 and d(x) =
∫ k+1

k
w(xt)dt denotes the displacement between

time k and time k+ 1, with the initial point location at time k fixed to the grid point x (i.e.

xk = x).

Let Ik be the vector gathering values I(x, k) for all x in the image domain ΩI . This

vector constitutes the observation at time k. It is nonlinearly related to the state vector

ξk through the luminance function of the image data at time k + 1. The perturbation γk

c© 0000 Tellus, 000, 000–000



12 SEBASTIEN BEYOU, ANNE CUZOL, SAI SUBRAHMANYAM GORTHI AND ETIENNE MEMIN

is a Gaussian random field with covariance R. This measurement noise is assumed to be

independent of the dynamics noise.

In the following, since this nonlinear image model will be used within the WETKF

framework, the covariance R will be assumed to be diagonal in order to compute the analysis

step more efficiently (see section 2.2). The uncertainty γk(x) is then a Gaussian random

variable of variance R(x,x) = σ2
k(x). As the displaced image difference depends on the

unknown displacement, this variance depends necessarily on the state variable (which is

not contradictory with the independence property between the noise dynamics and the

measurement noise). We propose to estimate empirically the variance from the ensemble

members:

σ2
k(x) =

1

N − 1

N∑
i=1

(I(x+ d(i)(x), k + 1)− Id(x, k + 1))2 + ε, (18)

where Id denotes the empirical mean of the displaced image. The parameter ε corresponds to

a minimal variance value associated to homogeneous photometric regions. Let us note that

in order to enforce some homogeneity between neighbor perturbations, a small Gaussian

smoothing is applied to this variance.

The likelihood of observations (used to compute the particles weights) is then written:

p(Ik|ξ(i)
k ) ∝ exp

− |Ω|∑
x=1

(
I(x, k)− I(x+ d(i)(x), k + 1)

)2

R(x,x)

 . (19)

3.3 Image assimilation scheme

We summarize in this section the WETKF image assimilation technique for fluid flow

estimation.

At time k = 0, the vorticity ξ̂0 is initialized from a given motion estimator applied on

the two first images I0 and I1.

For k = 1, . . . , K, the following steps are performed to estimate ξ̂k:

• Obtain {ξ(i)
k , i = 1, . . . , N} and associated weights w

(i)
k , i = 1, . . . , N from the WETKF

algorithm described in section 2.3, with the following practical details:

– In order to compute the forecast step, estimated vorticity maps {ξ(i)
k−1, i = 1, . . . , N}

at previous step have to be propagated from the dynamical model (16). This supplies the

forecast ensemble members ξ
f,(i)
k , at time k, as the Itô integral:

ξ
f,(i)
k = ξ

(i)
k−1 +

∫ k

k−1

(ν∆ξ
f,(i)
t −∇ξf,(i)t ·w(ξ

f,(i)
t ))dt+ η

∫ k

k−1

dBt, (20)
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WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER FOR IMAGE ASSIMILATION 13

where the velocity w(ξ
f,(i)
t ) is recovered from the Biot-Savart integral (see Section 3.1).

In practice, equation (20) is discretized with the Euler-Maruyama method (Kloeden and

Platen, 1999) associated to a small time increment δt. A conservative numerical scheme

(Shu, 1998) is used for the advective term ∇ξ ·w, which respects the (flux) conservation

law by integrating the flux values at cell boundaries. This total variation diminishing

(TVD) scheme (monotonically preserving flux) prevent from an increase in oscillations

over time and enable to transport shocks, as detailed in Shu (1998). The Laplacian is

implemented through a centered finite difference scheme.

– The analysis step of ETKF is performed with observation model (17), where the

image data Ik = {I(x, k) ∀x ∈ ΩI} constitutes the observation at time k, nonlinearly

related to the vorticity state vector.

– Weights are computed from the likelihood (19).

– The variance of observation noise defined by (18) is not valid in missing data areas.

Such regions appear frequently in oceanic data due to the cloud cover (see the experiments

on oceanic data in Section 4.3) or correspond to areas occluded by layers of higher altitudes

than the layer of interest in meteorological images. The absence of measurement can in

general be easily identified. For such regions we propose to impose a high uncertainty.

The idea here is to rely either on dynamics or on the neighborhood estimates rather than

on false interpolated measurements. The strength of these uncertainties is set to a value

proportional to the number of missing data over a centered local window. The magnitude

of the proportionality factor is scaled to the highest uncertainty of the data (excluding the

missing data). Moreover, for coastal regions, a mask corresponding to the land region is

created with zero velocity values (Dirichlet boundary conditions). The dynamical update

and measurement correction are frozen on such locations.

• Compute the vorticity estimate ξ̂k as the weighted average ξ̂k =
∑N

i=1w
(i)
k ξ

(i)
k , and

associated mean velocity fields estimates ŵk through Biot-Savart integration.

4 Experimental results

In this section, the proposed image assimilation method will be tested on synthetic and

real sequences describing nonlinear and high-dimensional fluid phenomena. Results will be

compared to another data assimilation method which can be used within this framework:

the weighted ensemble Kalman filter (WEnKF, Papadakis et al. (2010)) which also relies on
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14 SEBASTIEN BEYOU, ANNE CUZOL, SAI SUBRAHMANYAM GORTHI AND ETIENNE MEMIN

an ensemble Kalman filtering step, integrated within a particle filtering framework. In Pa-

padakis et al. (2010), the WEnKF was used to assimilate linear observations. In case of image

data that is nonlinearly related to the state of the system, these linear observations consist

in pseudo-observations, i.e. velocity fields (and associated vorticity maps) computed from a

given motion estimation technique. In the experiments below, these pseudo-observations are

computed from a stochastic version of the well-known Lucas and Kanade motion estimator

(Corpetti and Mémin, 2012), applied on each pair of the image sequence.

Let w̃k be the velocity field estimated by the stochastic Lucas-Kanade method, called

SLK in the following, and ξ̃k its corresponding vorticity. The observation model is written

than as:

ξ̃k(x) = ξk(x) + γk(x), (21)

with γk(x) = σk(x)ηk(x) where ηk is a Gaussian random field with given covariance gλ(x−y),

and σk(x) is defined by the uncertainties of the motion measurements at each point x

(obtained as an output of the SLK method). The additive uncertainty γk is then a Gaussian

random field with non-stationary variance R(x,x) = σ2
k(x), and covariance R(x,y) =

σk(x)σk(y)gλ(x− y).

The likelihood of observations (used to compute the particle weights) reads then:

p(ξ̃k|ξ(i)
k ) ∝ exp

(
−1

2
(ξ̃k − ξ(i)

k )TR−1(ξ̃k − ξ(i)
k )

)
. (22)

As noted in Papadakis et al. (2010), a singular value decomposition of the |ΩI |×N observa-

tion perturbations matrix can be performed in order to compute efficiently this likelihood.

4.1 Results on a synthetic 2D image sequence

Our first set of experiments concerns a synthetic image sequence with images of size

256 × 256 showing the transport of a passive scalar by a forced 2D turbulent flow. This

sequence is, to some extent, representative of typical satellite images depicting transport

processes by oceanic streams, such as sea surface temperature or sea color images. This

scalar exhibits a small diffusion, and does not respect strictly a luminance conservation

assumption. Furthermore, due to low spatial gradients of this scalar in large areas (see

Fig. 3-(a)), most of the usual motion estimators perform quite poorly on this sequence.

The parameters of the power law function involved in the model noise covariance are here

fixed from the ground truth data. The noise samples have thus in this case the same energy

spectrum as the reference. The model noise standard deviation has been set to 0.01 for all the
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experiments. For the nonlinear image measurement model, the observation noise covariance

has been first fixed to a constant diagonal matrix with a unity standard deviation. Some

trials with an image dependant observation covariance are shown at the end of this section.

Let us outline that the vorticity dynamics used for the filtering does not corresponds here

exactly to a perfect dynamical model as the true deterministic forcing of the 2D turbulence

is unknown and represented only by a zero mean random field.

The results are first compared in terms of global RMSE between the ground truth vor-

ticity and the estimated vorticity at each time step, and similarly for the motion fields.

The WEnKF and WETKF results have been obtained with N = 700 particles. As may

be observed on Figure 1, the improvement obtained with the WEnKF filtering technique

over SLK measurements is minor, and even deteriorates the results in terms of velocity

fields reconstruction. The proposed WETKF technique, directly based on image luminance

observations, leads to much better results for the estimation of vorticity and velocity fields.

In addition to global error comparisons, the analysis of spectra allows to observe more

precisely the accuracy of the different techniques at different scales. As a matter of fact the

RMSE constitutes only a performance measure at large scales. It is indeed interesting to

note that all methods give relatively coherent results only from the large scales up to the

beginning of the inertial range. On the other hand, the result obtained with the WETKF

assimilation scheme is closer to the ground truth over the whole scale range (from the largest

scales up to the small dissipative scales). Again, this comes from the fact that this technique

can take benefit of all available information in the image data, while pseudo-observations

given by a local motion estimator will not be able to improve the estimation at all scales.

Filters based on pseudo-observations are unable to correct the loss of energy caused by the

smoothing operator used in the external estimation procedure.

For a qualitative visual comparison, estimated vorticity maps are plotted on Figure 3 at a

given time instant. The scalar image observation is first presented, together with the ground

truth vorticity on Figure 3(b). Figure 3(c) shows the vorticity estimated with the local SLK

technique. The result obtained with the WEnKF assimilation scheme based on these SLK

observations is presented on Figure 3(d), while Figure 3(e) shows the result obtained with

the proposed WETKF technique, assimilating image data directly. As can be seen on Figure

3(c), the vorticity estimated by the local motion estimation technique is far from the ground

truth. As a consequence, the WEnKF assimilation based on these measurements only brings

a small improvement since these observations do not carry enough information. The solution
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clearly lacks of energy compared to the true vorticity. The direct assimilation of image data

through the WETKF scheme leads to a better estimation of vorticity structures, and in

particular of small scales structures as discussed previously with the comparison of spectra.

To conclude, note that the improvement obtained with the WETKF technique comes not

only from the direct introduction of image data within the assimilation system, but also from

the chosen ETKF strategy for the ensemble Kalman step. We highlight this improvement on

Figure 4, comparing the image assimilation technique with the ETKF scheme and standard

EnKF scheme where the linear observation operator Hxk is replaced by H(xk) as described

in section 2.2 equ. (8) for the ETKF approach. Figure 4 shows that the best results are

obtained with the ETKF scheme, for different sample sizes.

On this benchmark, we also compared in terms of vorticity the results obtained by

WETKF and a similar ETKF version (non weighted implementation of the filter). The

results corresponding to different amounts of ensemble members are gathered in tables 6

(a-b). These results correspond to the average mean square error obtained over the last

20 images of the sequence and 10 realizations. The first table shows the root mean square

vorticity error associated to the empiral mean, whereas the second table gives the mean

square dispersion of the ensemble around the ground truth (i.e. (N−1)−1
∑

i ‖ξ
a,(i)
k −ξref‖2).

It can be observed that the results for ETKF and WETKF remain of the same order. The first

moment and the ensemble dispersion are sligtly lower for the weighted version. It is however

important to outline that RMSE constitutes only a large scale criterion. To draw finer

conclusions it is interesting to observe the error power spectrum (spectrum of the difference

between the reference and the results averaged on the last 20 images and 10 realizations).

These curves are plotted in figure 5(a) in log-k×spectrum for different number of particles.

This graph depicts the amount of energy of the velocity error (werr = w − wref ) for each

frequency band. For comparison purpose the ground truth spectrum and these curves are

reproduced in the inside box graph. The error energy curves obtained by ETKF are plotted

in dotted lines whereas those corresponding to WETKF are in plain line. It can be noticed

that for both methods and for the different number of particles the error energy is mainly

concentrated within a frequency band corresponding to 80 to 8 pixels and the error energy

bump inside this range decreases significantly when the number of particles increases. The

results obtained with 10 particles have much higher error energy than for the other amount

of particles and are not acceptable. There is clearly a limit number of particles below which

errors are too important. For 50 particles WETKF provides lower errors on almost all the
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whole frequency range that concentrates the most part of the energy. Another point of view

can be obtained from error power spectrum in log-log scale normalized by the ground truth

power spectrum. This is shown in figure 5(b). As can be observed for 10 particles there

is no scale range for which the normalized error energy drops below 10%. For 50 particles

this 10% error limit scale corresponds to 40 pixels. For 400 particles this scale reaches 25

pixels. Hence for both methods, low energy error levels are only obtained at coarse scales

and accurate results at fine resolution requires to significantly augment the particles. For a

weak number of particles WETKF seems to perform slighly better than ETKF whereas for

a higher number of particles both filter provides very similar results.

The figure 8 depicts the spatial maps of the second order moment. For both methods the

evolution of this moment is plotted. We can observe that WETKF provides in a faster way

a smoother variance map and ETKF shows at some localized places a higher variance. The

ensemble covariance values for the center line is also pictured (for 50 ensemble members)

for WETKF and ETKF. Both techniques provide comparable results in terms of covariance

length scale (around 15 pixels).

As a last result on this sequence, we plot in figure 7 an example of the image-based

observation variance (18). It is interesting to see that high variance value concentrates on thin

structures corresponding to high photometric gradients. For this observation covariance and

400 particles we plot the evolution of the root mean square error. We notice this parameter

free covariance observation model yields a better result than the previous constant variance.

The results described in this section comfort us on the use of the WETKF. The weight

updating step and the resampling are not computationally expensive and strengthen the

robustness of ensemble Kalman filter for relative low number of particles. In the following

we will rely uniquely on such filters.

4.2 Results on real 2D turbulence

The next set of experiments corresponds to real experimental images of a passive scalar

transported by a turbulent flow. This image sequence corresponds to the experiments de-

scribed in Jullien et al. (2000). The size of images is 512× 512, and WEnKF and WETKF

results have been obtained with N = 300 particles. Vorticity results at a given time in-

stant are plotted on Figure 9 for the SLK technique, and both WEnKF (assimilating SLK

results) and WETKF (assimilating image data). We note that the SLK motion estimation
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technique captures only coarse-scale vortices. The scales are successfully refined with the

WEnKF assimilation relying on the same measurement and with the WETKF assimilation

incorporating directly the nonlinear image reconstruction error. The WETKF image assim-

ilation reveals small motion scales exhibiting vortex filaments or stretching areas, which are

smoothed out by SLK and WEnKF methods. This can be observed in particular inside the

white delimited area of Figure 9(d-e-f), zoomed in on Figure 9(g-h-i). It must be pointed

out that for the three techniques the estimated motion fields are quite close at large scale,

so the results are consistent although based on different measurement operators. This might

help validating these results, even if the ground truth is unknown here.

4.3 Results on oceanic data

Our final set of results concerns the application of the proposed WETKF technique on

satellite images of Sea Surface Temperature (SST), with large areas of missing data due to

the cloud cover and presence of coastal regions.

First of all, in order to highlight the capability of the method to cope with missing data,

it is tested on a synthetic oceanic sequence. This sequence has been built from an initial

real world 200×200 SST image transported by a synthetic flow, and respects the brightness

consistency assumption given by (17). The synthetic flow is the same 2D turbulent flow as

the one used in section 4.1. Along the whole sequence, four square holes with side 20-45 pixels

have been added randomly on each image. Figure 10 shows an example at a given time k

of the sequence. Figures 10(a) and 10(b) show two consecutive images of the sequence, with

the corresponding simulated ground truth velocity and vorticity on Figure 10(c). The result

obtained with the WETKF assimilation scheme is presented on Figure 10(d) from the images

without missing data, and on Figure 10(e) for the images with holes. It can be observed that

the vorticity and velocity fields are estimated accurately, even in the presence of missing

data. As a matter of fact, since for such regions the method relies on the dynamical model

or on neighborhood estimates, the spatiotemporal consistency is maintained. The results

can be compared on Figure 6 in terms of global RMSE between the mean estimates and the

ground truth at each time step. The accuracy of the estimation deteriorates in presence of

missing data, but the error level remains low and stable with time.

The method is then tested on a real oceanic sequence of SST images. The sequence

consists of 48 images of size 256×256. The images have a spatial resolution of 0.1 degree (10
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km) and a temporal period of 24 hours. The sequence is centered on an area of the Pacific

ocean off the Panama isthmus and shot during an El Niño episode. Representative results

at different time instants of the sequence are shown in Figure 12. The first column of Figure

12 shows the estimated velocity fields at times k = 1, 10, 24 and k = 39, superimposed

on the corresponding SST images. The second column shows the estimated vorticity maps

and velocity fields. The initialization for image 1 is based on the estimation provided by

the local motion estimation approach (SLK). We see that this initialization provides only

a rough large scale motion field. This estimate is refined afterward by the filtering process.

We can note that the motion fields estimated along the sequence stick quite well to the

big image structures observed on the SST images. The sequence of motion fields does not

seem to be perturbed by the big missing data regions observed intermittently. Finally, we

can note that the result obtained shows well an increase of the turbulent agitation with an

intensification of the El-Niño phenomenon.

Let us note there seems to be a good adequation between the 2D vorticity dynamics used

here and the data model based on (local in time) conservation of the observed quantity (the

SST). This coupling enables extracting a 2D component explaining the image observation

deformation and which is consistent with a 2D flow. The incorporation of more realistic

3D oceanic models would require more advanced data model allowing explaining luminance

variations in a consistent way with respect to the dynamical models. In that prospect, the

elaboration of data models relying on physical conservation laws might be of interest (Heitz

et al., 2010).

5 Conclusion and discussion

In the context of image data assimilation, this paper extends to mean preserving square

root filters (Wang et al., 2004) the weighted ensemble strategy proposed in Papadakis et al.

(2010). This technique is defined as a particle filter in which the state variable trajectories

sampling mechanism (i.e. the proposal distribution) is defined from an ensemble Kalman

filter. This type of proposal function revealed to be experimentally much more efficient than

the traditional sequential importance sampling based on the dynamics alone. Furthermore

compared to an importance sampling based on perturbed observations, a mean preserving

square root filter sampling has shown to be more efficient for high-dimensional state space

and a highly nonlinear observation equation. A significant improvement was brought by
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this nonlinear observation over velocity and uncertainty measurements provided by a local

motion estimation techniques (Corpetti and Mémin, 2012). Pseudo-observation of flow ve-

locities constructed from local motion estimator techniques such as the Lucas and Kanade

estimator (Lucas and Kanade, 1981) corresponds to measurements at too coarse scales.

These measurements should not be used in image based data assimilation. As those estima-

tors have generally better performances than correlation techniques on scalar images (such

as top of cloud pressure, sea surface temperature, sea color, etc.) the same conclusion applies

also to maximum cross correlation or particle image velocimetry techniques. The nonlinear

reconstruction error based on the displaced frame difference criterion has demonstrated to

provide much better results. This criterion relies on a noisy transport assumption from frame

to frame. This transport assumption is however only local since it applies only on the time

interval in between two images. It is thus a weaker assumption than a strong transport as-

sumption over the whole assimilation window used in Titaud et al. (2010). Besides it enables

when coupled with ensemble techniques to access to empirical observation error covariance

that can easily be adapted to missing information regions. This ability has allowed us to

apply such an assimilation on a real noisy sequence of sea surface temperature. The results

obtained for a simple 2D velocity-vorticity formulation of Navier-Stokes (with stochastic

forcing) are very promising and demonstrate the possibility to estimate a coherent velocity

fields sequence from difficult images exhibiting poor photometric contrast and large regions

with missing data. In future works, we plan to extend such an image based assimilation

strategy to more realistic geophysical models in oceanography or meteorology.
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compared. For both filters the dynamics noise has a standard deviation of 0.01 and

the parameters of the self-similar power law are fixed from the ground truth data.

Mean square estimation errors with respect to the ground truth are presented on
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the second table. Note the ground truth is associated to a zero variance as it is a
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Results (mean estimation)

Number of members WETKF ETKF

10 0.145 0.146
50 0.079 0.083

150 0.051 0.052

400 0.043 0.044

Results (ensemble dispersion)

Number of members WETKF ETKF

10 0.146 0.147
50 0.080 0.084

150 0.053 0.053

400 0.045 0.046

Table 1. Experiments on 2D turbulence. Results obtained from WEKF and ETKF are compared. For both filters the dynamics

noise has a standard deviation of 0.01 and the parameters of the self-similar power law are fixed from the ground truth data.

Mean square estimation errors with respect to the ground truth are presented on the first table, the ensemble dispersion around
the ground truth is indicated on the second table. Note the ground truth is associated to a zero variance as it is a deterministic

system. The mean has been computed through an empirical average over the 20 last image frames of 10 realizations
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Figure 1. Synthetic 2D turbulent flow. (a) RMSE between mean estimate of vorticity and ground truth; (b) RMSE between

mean estimate of velocity and ground truth.
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Figure 2. Synthetic 2D turbulent flow. (a) Energy spectra; (b) Error energy spectra.
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(a) (b)

(c) (d) (e)

Figure 3. Synthetic 2D turbulent flow. (a) Example of scalar image of the sequence at given time k; (b) Ground truth vorticity
at time k; (c) SLK vorticity estimate; (c) Mean estimate of vorticity with WEnKF assimilation of SLK observation; (d) Mean

estimate of vorticity with WETKF direct assimilation of image data.
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Figure 4. Comparison of WEnKF and WETKF techniques for the direct assimilation of image data. (a) RMSE between mean

estimate of vorticity and ground truth; (b) RMSE between mean estimate of velocity and ground truth.
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(b) Normalized error energy spectrum log(k)× log(ÊErr(k))/(log Êref (k))
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Figure 5. (a) Error Energy spectrum in log k vs. kE(k) scale obtained with ETKF (dotted lines) and WETKF (plain lines)
for different number of particles; (b) Energy spectrum in log-log scale obtained with ETKF (dotted lines) and WETKF (plain

lines) for different number of particles; (c) vorticity root-mean-square error along time obtained for WETKF with a diagonal

constant observation variance (blue) and with the empirical image based variance (red).
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Figure 6. Visualization(with 50 members) of the covariance matrix values corresponding to the central line at t = 99 left:

ETKF, right: WETKF . The significative covariance length-scale is about 15×∆x large for both filters

Figure 7. Left: visualization for WETKF (with 400 members) of an example of the image based adapted variance map

associated to the displaced frame observation model ; Right: corresponding image of the passive scalar. High values of the
standard deviation correspond to areas associated with high photometric gradient
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Figure 8. Example of the ensemble dispersion maps evolution along time; left column ETKF ensemble dispersion; right column

WETKF ensemble dispersion
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Real 2D turbulent flow (Jullien et al., 2000). (a) Image at given time k and estimated velocity field with SLK;
(b) Image at given time k and estimated velocity field with WEnKF assimilation of SLK result; (c) Image at given time k

and estimated velocity field with WETKF direct assimilation of image data; (d) Vorticity estimate with SLK and associated

velocity field; (e) Mean estimate of vorticity with WEnKF assimilation of SLK observation, and associated velocity field; (f)
Mean estimate of vorticity with WETKF direct assimilation of image data, and associated velocity field; (g)-(h)-(i) Zoom in

on white delimited areas of (d)-(e)-(f).
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(a) (b) (c)

(d) (e)

Figure 10. Synthetic oceanic sequence with missing data. (a) Image at given time k; (b) Image at given time k+1; (c) Ground
truth vorticity and velocity field; (d) Mean estimate of vorticity and velocity from WETKF assimilation of images without

missing data; (e) Mean estimate of vorticity and velocity from WETKF assimilation of images with missing data shown in

(a)-(b).
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Figure 11. Synthetic oceanic sequence with missing data. (a) RMSE between mean estimate of vorticity and ground truth;

(b) RMSE between mean estimate of velocity and ground truth.
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k = 1

k = 10

k = 24

k = 39

k = 49

Figure 12. Real satellite sequence of SST (sea surface temperature) images. Dark blue regions indicate missing data due to

the cloud cover or land regions. First column: SST images at different times k = 1, 10, 24, 39, 49 and estimated velocity fields
with the WETKF assimilation of image data; Second column: Mean estimated vorticity with WETKF and associated velocity

fields.
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