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Far field model for time reversal and application to selective
focusing on small dielectric inhomogeneities

Corinna BURKARD∗ † ‡ Aurelia MINUT§ Karim RAMDANI∗†‡

Abstract

Based on the time-harmonic far field model for small dielectric inclusions in 3D, we
study the so-called DORT method (DORT is the French acronym for “Diagonalization
of the Time Reversal Operator”). The main observation is to relate the eigenfunctions
of the time-reversal operator to the location of small scattering inclusions. For non
penetrable sound-soft acoustic scatterers, this observation has been rigorously proved
for 2 and 3 dimensions by Hazard and Ramdani in [20] for small scatterers. In this
work, we consider the case of small dielectric inclusions with far field measurements.
The main difference with the acoustic case is related to the magnetic permeability and
the related polarization tensors. We show that in the regime kd→∞ (k denotes here
the wavenumber and d the minimal distance between the scatterers), each inhomo-
geneity gives rise to -at most- 4 distinct eigenvalues (one due to the electric contrast
and three to the magnetic one) while each corresponding eigenfunction generates an in-
cident wave focusing selectively on one of the scatterers. The method has connections
to the MUSIC algorithm known in Signal Processing and the Factorization Method of
Kirsch.
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1 Introduction

Time reversal techniques have demonstrated in the last decade their efficiency for many
applications. In particular, focusing waves using time reversal mirrors (TRM) has been
successfully used in medicine, submarine communications and non destructive testing (see
for instance Fink et al. [17], Fink and Prada [18] or Fink [16] and references therein).
In this work, we are interested in the so-called DORT method which is an experimental
technique used to focus waves selectively on small and well resolved scatterers (i.e. when
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multiple scattering can be neglected). The case of extended (penetrable or non penetrable)
obstacles is only skimmed here (see Section 3). More about inverse problems for extended
scatterers can be found for instance in Arens et al. [5], Borcea et al. [7] and Hou et
al. [21] in the time-harmonic case and Chen et al. [9] in the time domain. For the case
of small but not necessarily distant scatterers (case where multiple scattering must be
taken into account) see Devaney et al. [14]. The DORT method is in some sense related
to (but different from) the MUSIC algorithm (see for instance Cheney [10], Kirsch [26]
or Ammari et al. [2]) where the eigenelements of the the so-called multi-static response
matrix is used to construct an indicator function of the positions of the scatterers. Let us
also point out that the DORT and the MUSIC algorithm can be seen as limit cases of the
Linear Sampling Method [12, 11] and Kirsch’s Factorization method [23, 24, 25] for small
obstacles.

Let us turn now to the description of the DORT method. Consider a homogeneous
acoustic medium containing small and distant scatterers. One can generate experimen-
tally the matrix corresponding to one cycle “Emission-Reception-Time Reversal”, where
the coefficient (i, j) of this matrix, is the time reversed acoustic field measured by the
transducer i of the TRM when transducer j emits an impulse wave. The time reversal
matrix T is then defined as the matrix corresponding to two successive cycles like the one
above. It turns out the eigenelements of the time-reversal matrix carry important infor-
mation on the propagation medium and on the scatterers contained in it. More precisely,
according to the DORT method: 1. the number of nonzero eigenvalues of T is directly
related to the number of scatterers contained in the medium, the largest eigenvalue being
associated with the strongest scatterer, 2. each eigenvector generates an incident wave
that selectively focuses on each scatterer.

From the mathematical point of view, this assertion has been studied in the time-
harmonic case, where time reversal amounts to phase conjugation. A mathematical jus-
tification of this result has been given in Hazard and Ramdani [20] for the 3D acoustic
scattering problem by small non penetrable scatterers using a far field model. In this
model, the TRM was supposed to be continuous and located at infinity. For other models
of TRM, we refer the reader to Ben Amar et al. [6] and Fannjiang [15]. Then, it has
been extended in Pinçon and Ramdani [29] to the case of a 2D closed acoustic waveguide
and in Antoine et al. [4] to the case of perfectly conducting electromagnetic scatterers.
The case of electromagnetic time reversal has also been considered from a different point
of view (more physically or numerically oriented) and with different assumptions on the
TRM (near field measurements, discrete TRM) in many other references [8, 22, 28, 33].
In this work, we are interested in the case of 3D acoustic scattering by small dielectric
(penetrable) inhomogeneities. Using a far field model for time reversal, we prove that for
kd → ∞ (k denotes here the wavenumber and d the minimal distance between the scat-
terers), each inhomogeneity gives rise to 4 eigenvalues (one corresponding to the dielectric
contrast and three to the magnetic one). Furthermore, each corresponding eigenfunction
generates an incident wave focusing selectively on one of the scatterers.

The paper is organized as follows : the mathematical setting of the problem used
throughout the paper is described in Section 2. In Section 3, we give some focusing
properties of the eigenfunctions of the time reversal operator in the case of extended inho-
mogeneities. The last three sections of the paper, constituting the core of the paper, are
devoted to the case of small inhomogeneities. A mathematical justification of the DORT
method is given in Sections 4 and 5, respectively in the the cases of closed and open (or
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finite aperture) TRM. For the latter, an additional symmetry assumption (see 5.7) on the
open TRM is needed. Finally, we conclude the paper by presenting in Section 6 some
numerical simulations to illustrate our theoretical results.

2 The mathematical model

We consider a three-dimensional homogeneous electromagnetic medium described by a
dielectric permittivity ε0 > 0 and a magnetic permeability µ0 > 0. The time dependence
is supposed to be of the form e−iωt and will therefore be implicit. We assume that a local
inhomogeneity is embedded in the above medium. In particular, let ε, µ ∈ L∞(R3) be
strictly positive functions describing the dielectric permittivity and the magnetic perme-
ability of the perturbed medium. We set B = Supp (ε−ε0)∪Supp (µ−µ0) and we assume
that B is a possibly multiply connected, smooth and bounded domain, i.e. B ⊂ {|x| < a}
for some a > 0. The outgoing unit normal to B is denoted ν.

We consider the scattering problem of an incident plane wave uαI (x) = eikα·x of direction
α ∈ S2, with wave number k = ω

√
ε0µ0 by the local inhomogeneity B. The total field

uα ∈ H1
`oc(R3) satisfies

div
( 1
µ(x)∇u

α(x)
)

+ ω2ε(x)uα(x) = 0 in R3. (2.1)

In order to ensure existence and uniqueness of the solution of 2.1, it has to be completed
by Sommerfeld’s radiation condition for the scattered field vα = uα − uαI ,

∂vα

∂|x|
− ikvα(x) = O

( 1
|x|2

)
, |x| → ∞.

Denoting by A(α,β) the scattering amplitude, the far field asymptotics of vα in the
direction β ∈ S2 reads

vα(β|x|) = eik|x|

|x|
A(α,β) +O

( 1
|x|2

)
,

Proposition 1. The scattering amplitude is given by the formula

A(α,β) = 1
4π

∫
∂B

{
vα

∂u−βI
∂ν

− u−βI
∂vα

∂ν

}
ds. (2.2)

Moreover, it satisfies the reciprocity relation

A(β,α) = A(−α,−β), ∀ α,β ∈ S2. (2.3)

The proof of this result follows easily by adapting the one given in Colton and Kress
[13, Theorem 8.8] for the case where µ is constant (TE case).

The far field operator F ∈ L(L2(S2)) is defined as the integral operator with kernel
A(·, ·):

Ff(β) =
∫
S2
A(α,β) f(α) dα.
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By linearity of the scattering problem, note that Ff is nothing but the far field obtained
after illumination of the inhomogeneity B by the incident Herglotz wave associated to
a density f ∈ L2(S2): uI(x) =

∫
S2 uαI (x)f(α) dα =

∫
S2 eikα·xf(α) dα. As the kernel

A(·, ·) belongs to L2(S2 × S2) (in fact A(·, ·) is an infinitely differentiable function), the
operator F ∈ L(L2(S2)) is clearly compact. Moreover, since ε and µ are supposed to take
real values, it is also a normal operator (this follows from a straightforward adaptation of
the proof given in [13] for the TE case). Finally, the reciprocity relation 2.3 implies the
following result.

Proposition 2. The adjoint F ∗ ∈ L(L2(S2)) of F is the integral operator with ker-
nel A∗(α,β) = A(−α,−β), so that: F ∗f = RFRf , where R is the symmetry operator
Rf(α) = f(−α).

The time reversal operator is defined as the operator corresponding to two successive
cycles “Emission–Reception–Time Reversal”. Recalling that reversing time amounts to a
conjugation of the acoustic field when the time dependence is of the form e−iωt, we see
that Tf = RFRFf . The presence of the symmetry operator R in this formula indicates
that a measured field in a given direction β is re-emitted in the opposite direction −β.
Combined to Proposition 2, the last formula yields the following result.

Theorem 3. The time reversal operator T is the self-adjoint, compact and positive semidef-
inite operator given by the relation T = F ∗F = FF ∗.

3 Global focusing

Theorem 3 implies that the far field operator F and the time reversal operator T have
the same eigenfunctions (see Zaanen [35, p.442]). Furthermore, the nonzero eigenvalues
of T are exactly the positive numbers |λ1|2 ≥ |λ2|2 ≥ ... > 0, where the complex numbers
(λp)p≥1 are the nonzero eigenvalues of the normal compact operator F .

Proposition 4. Let λp 6= 0 be an eigenvalue of F and fp ∈ L2(S2) an eigenfunction of F
associated to λp. Then, the incident Herglotz wave

uI,p(x) =
∫
S2
uαI (x) fp(α) dα, (3.1)

associated to fp is given by

uI,p(x) = − 1
λp

∫
∂B

{
kj
′
0(k‖x− y‖)

(
νy ·

x− y
‖x− y‖

)
vp(y)

+j0(k‖x− y‖) ∂vp
∂νy

(y)
}

dsy.
(3.2)

where vp(x) =
∫
S2
vα(x) fp(α) dα the diffracted field corresponding to the incident wave

uI,p and j0(ξ) = sin(ξ)/ξ is the spherical Bessel function of order 0.
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Proof. Since we have by assumption fp(β) = λ−1
p Ffp(β) = λ−1

p

∫
S2 A(α,β) fp(α) dα,

expression 2.2 of A(α,β) implies that

fp(β) = 1
4πλp

∫
∂B

{
∂u−βI
∂νy

(y)vp(y)− u−βI (y) ∂vp
∂νy

(y)
}

dsy.

The incident field generated by the eigenfunction fp is given by

uI,p(x) = 1
4πλp

∫
∂B

(∫
S2

∂u−βI
∂νy

(y)eikβ·x dβ
)
vp(y) dsy

− 1
4πλp

∫
∂B

(∫
S2
eikβ·(x−y) dβ

)
∂vp
∂νy

(y) dsy,

Using the identity (see Abramowitz and Stegun [1, p.155])

1
4π

∫
S2
eikβ·(x−y) dβ = sin(k‖x− y‖)

k‖x− y‖
= j0(k‖x− y‖), (3.3)

and noting that ∂u
−β
I

∂νy
(y) = νy · ∇u−βI (y), we obtain

1
4π

∫
S2
νy · ∇u−βI (y) eikβ·x dβ = 1

4πνy · ∇y
∫
S2
eikβ·(x−y) dβ = νy · ∇y

(
j0(k‖x− y‖)

)
.

Equation 3.2 follows then from ∇y
(
j0(k‖x− y‖)

)
= −k x− y

‖x− y‖
j
′
0(k‖x− y‖).

Remark 5. Equation 3.2 shows in particular that the incident field associated to an eigen-
function fp of F (and thus of T ) focuses on the inhomogeneity, as uI,p(x) decreases like
the inverse of the distance from x to the inhomogeneity.

4 Selective focusing for closed time reversal mirrors

From now on, we are interested in the case of several small inclusions, and more especially
in the relation between the eigenfunctions of the time-reversal operator and the location of
the (asymptotically small) scatterers. We suppose that the inhomogeneity is constituted
of a collection of M homogeneous small imperfections of typical size δ centered at the
points sp ∈ R3 : Bδ = ∪Mp=1(sp + δBp). Here, the “reference” inhomogeneities Bp ⊂ R3,
p = 1, . . . ,M are smooth and bounded domains containing the origin. Moreover, we
assume that there exist positive constants (εp, µp), p = 1, . . . ,M , such that{

εδ(x) = ε0, µδ(x) = µ0, ∀ x ∈ R3 \ Bδ,
εδ(x) = εp, µδ(x) = µp, ∀ x ∈ (sp + δBp).

We also introduce the minimal distance between the inhomogeneities

d := min
1≤p<q≤M

|sp − sq| (4.1)
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Define respectively by uδ,α and vδ,α the total and scattered fields associated to the scat-
tering problem of the incident plane wave uαI (x) of direction α by the small imperfections
Bδ:  div

( 1
µδ
∇uδ,α

)
+ ω2εδuδ,α = 0 in R3,

vδ,α := uδ,α − uαI is outgoing.
(4.2)

Finally, let Aδ(·, ·), F δ and T δ be respectively the scattering amplitude, the far field
operator and the time-reversal operator associated to the above scattering problem. We
first state a result due to Ammari et al. which gives an explicit representation of the
asymptotic behavior of the scattering amplitude (formula (23) of [3]) .

Theorem 6. (Ammari et al. [3, Theorem 2]) For all p ∈ {1, . . . ,M}, we set

µ̃p(x) =
{
µ0, for x ∈ R3 \ Bp,
µp, for x ∈ Bp.

We also introduce the following quantities measuring the electric and magnetic contrasts

κεp := εp
ε0
− 1, κµp := µp

µ0
− 1. (4.3)

Furthermore, let Φp,j, for all 1 ≤ j ≤ 3, be the unique solution of
div (µ̃p(x)∇Φp,j(x)) = 0 in R3,

lim
|x|→∞

Φp,j(x)− xj = 0.

Let Mp = (Mp
i,j)1≤i,j≤3 be the polarization tensor associated to the inhomogeneity Bp given

by

Mp
i,j =

(
µ0
µp

)∫
Bp

∂Φp,j

∂xi
dx, ∀1 ≤ i, j ≤ 3.

Then, as δ → 0, the scattering amplitude Aδ(·, ·) admits the asymptotics

Aδ(α,β) = −
(
k2

4π

)
δ3A0(α,β) + o(δ3), (4.4)

where

A0(α,β) =
M∑
p=1

eik(α−β)·sp
[
κµp (β ·Mpα)− κεp|Bp|

]
,

with |Bp| being the volume of the inclusion Bp.

The asymptotics 4.4 holds uniformly for all α,β ∈ S2 provided δ = o(d) and δ = o(λ),
where d is defined by (4.1) and λ = 2π/k denotes the wavelength.

Remark 7. Formula (23) of [3] contains a little typo (a minus sign is missing in front
of the leading term of the asymptotics) and we have corrected this in (4.4). However, this
typo has no influence at all on our analysis, as we only work on the leading term A0(·, ·)
of the scattering amplitude which is defined up to a multiplicative constant.
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Remark 8. The fact that the term o(δ3) is uniform for all α,β ∈ S2 follows from the
reciprocity relation and the last statement in [3, Theorem 1], which gives the near field
asymptotics for small inhomogeneities. Indeed it is shown there that this remainder term
is independent of the observation point.

We denote by F 0 : L2(S2) −→ L2(S2) the limit far field operator, namely the integral
operator corresponding to A0. From Theorem 6, the far field operator is explicitly given
by

F 0f(β) =
M∑
p=1

∫
S2
eik(α−β)·sp

{
κµp (β ·Mpα)− κεp|Bp|

}
f(α) dα. (4.5)

From now on, we will study the focusing properties of the time reversal experiment using
this limit far field operator. In particular, we are interested in the eigenelements of the
limit time reversal operator T 0 := (F 0)∗F 0. As the tensor Mp is hermitian and positive-
definite (see for instance [3] and references therein), we clearly have A0(β,α) = A0(α,β).
Therefore, F 0 is self-adjoint and hence normal.

Remark 9. The above result implies in particular that F 0 and T 0 have the same eigen-
functions. Moreover, the nonzero eigenvalues of T 0 are exactly the squares of the nonzero
eigenvalues of the self-adjoint operator F 0 (see [35]).

In order to study the properties of the operator F 0, let us introduce some notation.
Given p = 1, . . . ,M , we denote by ep ∈ L2(S2) the function

ep(α) := e−ikα·sp , ∀ α ∈ S2. (4.6)

Let Mp ∈ L(L2(S2)) be the integral operator

Mpf(β) =
∫
S2

(β ·Mpα) f(α) dα, (4.7)

Then, formula (4.5) can be rewritten in the more compact form

F 0f =
M∑
p=1

κµpMp(fep) ep − κεp|Bp| (f, ep)L2(S2)ep. (4.8)

The next Lemma collects some properties of the integral operator Mp.

Lemma 10. The following assertions hold true.

(i) For all f, g ∈ L2(S2), we have the identity (Mpf, g)L2(S2) = (MpF,G)C3 , where
F,G ∈ C3 are given by F :=

∫
S2 αf(α) dα and G :=

∫
S2 αg(α) dα.

(ii) Mp ∈ L(L2(S2)) is a positive compact self-adjoint operator, and hence it is diago-
nalizable.

(iii) Mp is a finite rank operator : RankMp ≤ 3.

(iv) Let (Vp,1, Vp,2, Vp,3) be an orthonormal basis of C3 constituted of eigenvectors of Mp,
respectively associated with the (strictly positive) eigenvalues ξp,1, ξp,2, ξp,3. Then,
Mp has exactly 3 non-zero eigenvalues:

Mphp,` = ζp,`hp,`, ∀ ` = 1, 2, 3
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where the eigenvalues ζp,` and eigenfunctions hp,` are given by

ζp,` = 4π
3 ξp,` hp,`(α) = α · Vp,`.

Proof. (i) Straightforward consequence of the definition of Mp.

(ii) The self-adjointness and positivity of Mp follows immediately from (i), since the
polarization tensor Mp = (Mp

i,j)1≤i,j≤3 is a hermitian positive matrix. The compactness
of the integral operator Mp is also clear, as it has a analytic kernel.

(iii) From expression 4.7, one clearly has RanMp ⊂ β · RanMp and the result follows
then from Mp being of rank 3.

(iv) Let us first note that
∫
S2 ααT dα = 4π

3 I for the identity I ∈ R3×3, which one easily
verifies by using symmetry arguments or by direct calculation via spherical coordinates.
Using that the vectors Vp,` are eigenvectors of Mp, we then find that

Mphp,`(β) = β ·
(
Mp

∫
S2
α(α · Vp,`) dα

)
= β ·

(
Mp

[∫
S2
ααT dα

]
Vp,`

)
= ζp,`hp,`.

4.1 Eigenvalues and eigenfunctions of the limit far field operator

In this section we focus on the regime kd→∞, i.e. when the inhomogeneities are distant
enough. Under this assumption, we derive an explicit formula for what we call “approxi-
mate” eigenelements of the limit far field operator F 0 (and thus of the limit time reversal
operator T 0). Before stating this result, we first recall a classical result for oscillatory
integrals that will be very useful for our analysis. This result, which can be found in
[31, p. 348], is restated here in a slightly different form that is more convenient for our
purposes.

Theorem 11. Let S be a smooth hypersurface in RN whose Gaussian curvature (i.e. the
product of the principal curvatures) is nonzero everywhere and let ψ ∈ C∞0 (RN ) such that
Supp (ψ) intersects S in a compact subset of S. Then, as |ξ| → +∞, we have∫

S
ψ(α)eiα·ξ dα = O(|ξ|(1−N)/2).

Theorem 12. Let κεp and κµp be the contrasts defined by 4.3. For all p = 1, . . . ,M and
all ` = 1, 2, 3, we introduce the following functions of L2(S2)

ep(α) = e−ikα·sp , gp,`(α) = hp,`(α)ep(α),

where hp,` ∈ L2(S2) is an eigenfunction (with eigenvalue ζp,`) of the compact self-adjoint
integral operator Mp ∈ L(L2(S2)) (see statement (iv) in Lemma 10). We also set

λεp = −4πκεp|Bp|, λµp,` = κµpζp,` (4.9)

Then, we have the following two results.
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(i) As kd→∞, the functions ep satisfy

F 0ep = λεpep +O
(
(kd)−1

)
. (4.10)

(ii) As kd→∞, the functions gp,` satisfy

F 0gp,` = λµp,`gp,` +O
(
(kd)−1

)
. (4.11)

Proof. (i) We compute F 0ep for a fixed 1 ≤ p ≤M . Thanks to 4.8, we have

(F 0ep)(β) =
M∑
q=1

Ipq(β)eq(β)

in which Ipq(β) = κµqMq(ep eq)(β) − κεq|Bq|(ep, eq)L2(S2). According to 3.3, we note that
for q 6= p, we have (ep, eq)L2(S2) = O

(
(kd)−1). On the other hand, Theorem 11 shows

that for q 6= p, the integral Mq(ep eq)(β) =
∫
S2 (β ·Mq α) eikα·(sq−sp) dα behaves like

O
(
(kd)−1). Consequently, for all q 6= p, we have Ipq(β) = O

(
(kd)−1) uniformly for all

β ∈ S2. Concerning the diagonal term (q = p), we remark that for all β ∈ S2 (1 is the
constant function equal to 1)

Mp(epep)(β) =Mp(1)(β) =
∫
S2

(β ·Mpα) dα = β ·Mp

∫
S2
α dα = 0. (4.12)

Therefore, Ipp(β) = −4πκεp|Bp| = λεp and hence F 0ep = λεpep + O
(
(kd)−1) , from which

one easily gets 4.10.
(ii) Let 1 ≤ p ≤ M and 1 ≤ ` ≤ 3 be fixed. Using once again 4.8, we get that

(F 0gp,`)(β) =
∑M
q=1 Ipq(β)eq(β) where we have set now

Ipq(β) = κµqMq

(
hp,` ep eq

)
(β)− κεq|Bq|(hp,`ep, eq)L2(S2).

For q 6= p the two terms (hp,`ep, eq)L2(S2) and Mq

(
hp,`ep eq

)
(β) are oscillatory integrals

of the form given in Theorem 11. Therefore, Ipq(β) = O
(
(kd)−1) for q 6= p. On the other

hand, for q = p, we see by Lemma 10, (iv), that

Ipp(β) =κµpMphp,`(β)− κεp|Bp|(hp,`ep, ep)L2(S2)

=κµpζp,`hp,`(β)− κεp|Bp|(hp,`, 1)L2(S2).

By (4.12) we observe that 1 is in the null space ofMp. SinceMp is self-adjoint, this yields
(hp,`,1)L2(S2) = 1

ζp,`
(Mphp,`,1)L2(S2) = 1

ζp,`
(hp,`,Mp1)L2(S2) = 0, and, thus, Ipp(β) =

κµpζp,`hp,`(β) which concludes the proof.

Remark 13. We note that the approximate eigenfunctions of F 0 are the far fields cor-
responding to monopole or dipole sources located at the centers of the small inhomo-
geneities. More precisely, let G(x,y) = eik|x−y|

4π|x−y| denote the outgoing Green’s function
of the Helmholtz operator in R3. Then, ep(β) = e−ikβ·sp is nothing but the far field in
the direction β ∈ S2 of the point source G(·, sp) located at sp. Similarly, the function
gp,`(β) = hp,`(β) ep(β) = (β · Vp,`) e−ikβ·sp represents the far field in the direction β ∈ S2

of the dipole source 1
ik∇G(·, sp) · Vp,` of direction Vp,` located at sp.
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4.2 Justification of the DORT Method

We recall that the DORT method consists of the observation that eigenfunctions of the
time-reversal operator possess selectively focusing properties. In the following section, we
provide a precise signification of this property. We start with a straightforward conse-
quence of Theorem 12 (see Remark 9), which provides the approximate eigenelements of
the limit time reversal operator in the regime of uncoupled scatterers (kd→∞).

Corollary 14. Under the notation of Theorem 12, we have the following estimates as
kd→∞

T 0ep = (λεp)2ep +O
(
(kd)−1

)
, T 0gp,` = (λµp,`)

2gp,` +O
(
(kd)−1

)
.

The next result shows that the above 4M approximate eigenfunctions ep and gp,` for
p = 1, . . . ,M and ` = 1, 2, 3 span a subspace of dimension 4M .

Proposition 15. Under the notation of Theorem 12, the functions ep and gp,` for p =
1, . . . ,M and ` = 1, 2, 3 are linearly independent.

Proof. Suppose that there exists complex coefficients (ap)p=1,...,M and (bp,`)j=1,2,3
p=1,...,M such

that
M∑
p=1

ap ep(β) +
M∑
p=1

3∑
`=1

ik bp,` gp,`(β) = 0, ∀ β ∈ S2.

According to Remark 13, the above relation amounts to saying that the function u(x) :=∑M
p=1 apG(x, sp) +

∑M
p=1

∑3
`=1 bp,`∇G(x, sp) · Vp,` has a vanishing far field. By Rellich’s

lemma, u must vanish everywhere, so that
M∑
p=1

apG(x, sp) +
M∑
p=1

3∑
`=1

bp,`∇G(x, sp) · Vp,` = 0, ∀ x /∈ {s1, . . . , sM}. (4.13)

Fix q ∈ {1, . . . ,M} and choose x = sq + ρx̂, for x̂ ∈ S2 and 0 ≤ ρ ≤ ρ∗ small enough.
Multiplying 4.13 by ρ2 and taking the limit as ρ → 0, we note that the only non van-
ishing contribution comes from the most singular term. More precisely, the dipole term
corresponding to p = q gives lim

ρ→0
ρ2∇G(sq + ρx̂, sq) · Vq,` = 1

4π (x̂ · Vq,`). Therefore,

x̂ ·
(∑3

`=1 bq,`Vq,`
)

= 0. Since x̂ ∈ S2 is arbitrary and since the vector columns Vq,1, Vq,2
and Vq,3 are linearly independent, the above relation yields b1q = b2q = b3q = 0 for all
q ∈ {1, . . . ,M}. Finally, 4.13 reduces then to

∑M
p=1 apG(x, sp) = 0 for all x /∈ {s1, . . . , sM}

from which one can easily get that a1 = · · · = aM = 0.

Summing up, we have proved that in the regime of small and distant inhomogeneities
(δ � λp � d), the limit time reversal operator T 0 admits 4M eigenvalues : (λεp)2, (λµp,`)2

for p = 1, . . . ,M , ` = 1, 2, 3. In order to complete our justification of the DORT method,
we need to show that the corresponding (approximate) eigenfunctions ep and gp,` generate
incident waves focusing selectively on the inhomogeneities. Given p in {1, . . . ,M}, let us
first consider the incident Herglotz wave associated with a density ep (TE eigenfunctions).
Then, from (3.3), uI,p(x) = O

(
|x− sp|−1). Regarding the TM eigenfunctions, the incident

Herglotz wave associated with gp,` = hp,` ep is uI,p,`(x) =
∫
S2 eikα·(x−sp)hp,`(α) dα, which

behaves like O
(
(kd)−1) from Theorem 11.
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Remark 16. Clearly, similar selective focusing results hold for the two dimensional prob-
lem. More precisely, by using once again Theorem 11 with N = 2, one can show that each
inhomogeneity gives rise to 3 eigenvalues, one associated with the dielectric permittivity
contrast and 2 with the magnetic permeability contrast. This is also confirmed by our
numerical investigations, which are detailed in Section 6.

Remark 17. In the particular case of spherical inclusions, the polarization tensors become
(see for example [3]) : Mp = 8π|Bp| µp

µp+µ0
I. One can then easily check that the TM eigen-

values λµp,` of the far field operator are given by relations 4.9, with ζp,` = 32π2|Bp| µp
µp+µ0

.

5 Selective focusing for open time reversal mirrors

In this section, we investigate the case of an open TRM, i.e. the case where the TRM
does not completely surround the inhomogeneities. For the sake of brevity, we will only
stress the main differences with the case of a closed TRM. Let Ŝ ( S2 denote the set of
emission directions covered by the open TRM (and thus −Ŝ represents the set of reception
directions). We assume that the emission (resp. reception) directions of the open TRM are
described by a smooth cutoff function χ+ ∈ C∞0 (S2) (resp. χ− ∈ C∞0 (S2)) with Suppχ+ ⊂
Ŝ (resp. Suppχ− ⊂ −Ŝ). The smoothness assumption on χ± is purely technical and is
used to derive more easily the asymptotic behavior of the oscillating integrals. However,
our results still hold in the more realistic case where χ± are characteristic functions of
±Ŝ (see Remark 23). Then, we define the far field operator corresponding to an open
TRM by F̂ = P−FP

∗
+ ∈ L(L2(Ŝ), L2(−Ŝ)), where P± : L2(S2) → L2(±Ŝ) denote the

restriction operators P±f = (χ±f)|±Ŝ and P ∗± : L2(±Ŝ) → L2(S2), whose adjoints are
the extension operators by zero from ±Ŝ to S2. Then, following the arguments detailed
in [20, Sect. 5], one easily gets that for open TRM, the time reversal operator is once
again of the form T̂ = F̂ ∗F̂ ∈ L(L2(Ŝ)), and is nothing but the integral operator with
kernel t̂(α,β) =

∫
−Ŝ A(α,γ)A(β,γ) dγ. Moreover, T̂ defines a compact positive and self-

adjoint operator. Nevertheless, unlike the full far field operator F , the “finite aperture”
far field operator F̂ is not anymore normal and the eigenfunctions of F̂ and T̂ are not
necessary the same. Regarding the case of small inhomogeneities, the limit time reversal
operator denoted T̂ 0 ∈ L(L2(Ŝ)) is then the integral operator with kernel t̂ 0(α,β) =∫
−Ŝ A

0(α,γ)A0(β,γ) dγ where A0 is the limit scattering amplitude is given by 4.4. Then,
given f̂ ∈ L2(Ŝ), the time reversal operator can be represented by

T̂ 0f̂(β) =
M∑
q=1

{ M∑
p=1

∫
Ŝ

(∫
−Ŝ

[
κµp (γ ·Mpα)− κεp|Bp|

]
[
κµq (γ ·Mqβ)− κεq|Bq|

]
ep(γ) eq(γ) dγ

)
ep(α) f̂(α) dα

}
eq(β).

(5.1)

Concerning the selective focusing properties, the main difference with the case of a closed
TRM is that, unlike in 4.12, 1 is not anymore in the kernel of the integral operator
Mp (or more exactly to its counterpart for finite aperture TRM). Indeed, the integral∫
Ŝ

(β ·Mpα) dα does not necessarily vanish for an arbitrary subset Ŝ ( S2.

In the sequel, we consider successively the three cases : the purely TE case (i.e. κµp = 0
for all p = 1, . . . ,M), the purely TM case (i.e. κεp = 0 for all p = 1, . . . ,M) and finally
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the mixed TE/TM case. For the latter case, we prove that the DORT method still works
provided the TRM satisfies a symmetry condition (see 5.7).

We start with the case of vanishing magnetic contrast. One can prove the following
result using the same arguments as those developed in [20, Sect. 5.2].

Theorem 18. Let us assume that κµp = 0 for all p = 1, . . . ,M (TE polarization). Then,
as kd → ∞, the functions êp(α) := (P+ep)(α) = e−ikα·sp, α ∈ Ŝ, are approximate
eigenfunctions of T̂ 0, in the sense that T̂ 0êp = (λ̂εp)2 êp +O

(
(kd)−1), with λ̂εp = κεp|Bp| |Ŝ|.

Proof. In the case of vanishing contrast κµp = 0 for all p = 1, ...,M , equation (5.1) reduces
to

T̂ 0f̂ =
M∑

p,q=1

M∑
q=1

κεpκ
ε
q|Bp||Bq| (ep, eq)L2(−Ŝ)(f̂ , ep)L2(Ŝ)eq.

Since χ− is assumed to be a smooth function, we can still apply Theorem 11 and get that
for q 6= p,

(ep, eq)L2(−Ŝ) = O
(
(kd)−1

)
, (5.2)

which leads to T̂ 0êm = (κεm)2|Bm|2 |Ŝ|2 êm +O
(
(kd)−1).

In the case of purely TM polarization, i.e. when κεp = 0 for all of the inhomogeneities,
we proceed similarly to the case of the closed time reversal mirror. That is, we shall see
that the eigenfunctions of T̂ 0 can be approximated using eigenfunctions of the integral
operator M̂p ∈ L(L2(Ŝ)) with kernel

m̂p(α,β) :=
∫
−Ŝ

(γ ·Mpα)(γ ·Mpβ) dγ. (5.3)

The next Lemma, given without proof, summarizes some simple properties of the integral
operator M̂p.

Lemma 19. The following assertions hold true.

(i) M̂p ∈ L(L2(S2)) is a positive self-adjoint compact operator and hence it is diago-
nalizable.

(ii) M̂p is a finite rank operator : RankMp ≤ 3. In particular, M̂p admits at most 3
non zero eigenvalues ζ̂p,`, ` = 1, 2, 3.

Theorem 20. Let κεp = 0 for all p = 1, ...,M and let ĥp,` ∈ L2(Ŝ) be an eigenfunction
of the compact self-adjoint integral operator M̂p with kernel (5.3), associated with an
eigenvalue ζ̂p,` 6= 0 for ` = 1, 2, 3. Then, as kd→∞, the function

ĝp,`(α) = ĥp,`(α)êp(α), ∀ α ∈ Ŝ (5.4)

is an approximate eigenfunction of T̂ 0, in the sense that

T̂ 0ĝp,` = (λ̂µp,`)
2 ĝp,` +O

(
(kd)−1

)
,

with λ̂µp,` = κµp ζ̂p,`.

12



Proof. From (5.1) and for κεp = 0 for all p = 1, . . . ,M , we have

T̂ 0f̂(β) =
M∑

p,q=1
κµqκ

µ
p

∫
Ŝ
α ·

[∫
−Ŝ

Mpγ (γ ·Mqβ) ep(γ) eq(γ) dγ
]
ep(α)f̂(α) dα eq(β).

For q 6= p the inner integral behaves like O
(
(kd)−1) by Theorem 11. Thus, the time

reversal operator can be represented by

T̂ 0f̂ =
M∑
p=1

(κµp )2M̂p

(
f̂ êp

)
êp +O

(
(kd)−1

)
, (5.5)

Noting that, for m 6= p,

M̂p

(
ĥm,`êm êp

)
(β) = O

(
(kd)−1

)
, (5.6)

the statement follows immediately from the representation (5.5) of T̂ 0 and the circum-
stance that ĥp is an eigenfunction of the integral operator M̂p.

In the case of mixed TE/TM polarization (i.e. when both contrasts are present), the
following statement shows that for particular shapes of Ŝ, we can still obtain expressions
of approximate eigenfunctions of the limit time reversal operator.

Theorem 21. Let Ŝ be chosen such that∫
Ŝ
α dα = 0. (5.7)

Then, as kd→∞, the functions êp and ĝp,`, p = 1, ...,M , respectively defined in Theorem
18 and Theorem 20, constitute approximate eigenfunctions of T̂ 0 with an error bound of
size O

(
(kd)−1).

Proof. For the functions ê`, ` = 1, ...,M , the statement is a result of the representation
(5.1), the assumption that the integral

∫
Ŝ
α dα vanishes and Theorem 11. In particular,

we have

T̂ 0ê`(β) =(κε`)2|B`|2 |Ŝ| ê`(β) +
M∑
p=1

(κµp )2M̂p

(
ê` êp

)
(β) ep(β) +O

(
(kd)−1

)

−
M∑

p,q=1
κµpκ

ε
q|Bq|

∫
Ŝ

(∫
−Ŝ

(γ ·Mpα) ep(γ) eq(γ) dγ
)
ep(α) ê`(α) dα eq(β)

−
M∑

p,q=1
κµqκ

ε
p|Bp|

∫
Ŝ

(∫
−Ŝ

(γ ·Mqβ) ep(γ) eq(γ) dγ
)
ep(α) ê`(α) dα eq(β).

Using for p 6= q Theorem 11, we find that∫
−Ŝ
γ ep(γ) eq(γ) dγ = O

(
(kd)−1

)
, (5.8)

Hence, for kd→∞, the two double sums simplify respectively into

−
M∑
p=1

κµpκ
ε
p|Bp|

∫
Ŝ
α ·Mp

(∫
−Ŝ
γ dγ

)
êp(α) ê`(α) dα ep(β) +O

(
(kd)−1

)
,
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and

−
M∑
p=1

κµpκ
ε
p|Bp|

∫
Ŝ
β ·Mp

(∫
−Ŝ
γ dγ

)
êp(α)ê`(α) dα ep(β) +O

(
(kd)−1

)
.

Thus, we have

T̂ 0ê`(β) =(κε`)2|B`|2 |Ŝ| ê`(β) +
M∑
p=1

(κµp )2M̂p

(
ê` êp

)
(β) ep(β)

−
M∑
p=1

κµpκ
ε
p|Bp|

∫
Ŝ

(α+ β) ·Mp

(∫
−Ŝ
γ dγ

)
ep(α) ê`(α) dα ep(β)

+O
(
(kd)−1

)
By 5.7, we obtain

T̂ 0ê`(β) = (κε`)2|B`|2 |Ŝ| ê`(β) +
M∑
p=1

(κµp )2M̂p

(
ê` êp

)
(β) ep(β) +O

(
(kd)−1

)
.

But from Theorem 11

M̂p

(
ê` êp

)
(β) =

{
O
(
(kd)−1) , p 6= `,

M̂p (P+1) (β), p = `,

Moreover, from assumption 5.7, P+1 is in the null space of the integral operator M̂p.
Hence, T̂ 0ê`(β) = (κε`)2|B`|2 |Ŝ| ê`(β) +O

(
(kd)−1).

Let m ∈ 1, ...,M be fixed. For the functions ĝm,` defined in (5.4), according to the
representation (5.1) we obtain

T̂ 0ĝm,`(β)

=
M∑
p=1

(κµp )2M̂p

(
ĝm,` êp

)
(β) ep(β) + (κεp)2|Bp|2 |Ŝ| (ĝm,`, ep)L2(Ŝ) ep(β)

−
M∑
p=1

M∑
q=1

κµpκ
ε
q|Bq|

∫
Ŝ

(∫
−Ŝ

(γ ·Mpα)ep(γ) eq(γ) dγ
)
ep(α) ĝm,`(α) dα eq(β)

−
M∑
p=1

M∑
q=1

κµqκ
ε
p|Bp|

∫
Ŝ

(∫
−Ŝ

(γ ·Mqβ) ep(γ) eq(γ) dγ
)
ep(α) ĝm,`(α) dα eq(β)

+O
(
(kd)−1

)
Since P+1 ∈ KerM̂p,

(
ĥm,`, P+1

)
L2(Ŝ)

= 1
ζm,`

(
ĥm,`,M̂mP+1

)
L2(Ŝ)

= 0, we get like above
that

(ĝm,`, ep)L2(Ŝ) = (ĥm,`em, ep)L2(Ŝ) =
{
O
(
(kd)−1) , m 6= p,

0, m = p,

and hence T̂ 0ĝm,` = (κµm)2ζm,`ĝm,` +O
(
(kd)−1).
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In order to justify the DORT method for the case of open and symmetric mirrors, it
remains to show that the functions êp and ĝp,` generate incident waves focusing selectively
on the inhomogeneities. Given a fixed p in {1, . . . ,M}, let us first consider the incident
Herglotz wave associated with a density êp (TE eigenfunctions). From (5.2) we immediately
see that uI,p decreases like |x − sp|−1. Regarding the TM eigenfunctions, the incident
Herglotz wave associated with ĝp,` = ĥp,` êp is an oscillatory integral given by uI,p,`(x) =∫
Ŝ
ĥp,`(α)eikα·(x−sp) dα = O

(
(k|x− sp|)−1).

Remark 22. Condition (5.7) is satisfied whenever Ŝ is symmetric i.e. Ŝ = −Ŝ. Its
main advantage lies in the fact that it allows us to decouple between the TE and TM
approximate eigenfunctions êp and ĝp,`. Nevertheless, numerical experiments indicate that
selective focusing still holds for open TRM even when 5.7 is not satisfied (see Section 6).
Unfortunately, we have not been able to prove this result.

Remark 23. We have assumed the open TRM to be described by a smooth cutoff function,
so that we can apply directly Theorem 11. Of course, it would be more relevant for practical
applications to assume the TRM to be defined via the characteristic function 1|±Ŝ. In this
case, one has to derive high frequency asymptotics (i.e. for k → +∞) of integrals of the
form

∫
Ŝ
ψ̂(α)eikα·s dα. Describing the TRM by spherical coordinates Ŝ = {α = (θ, ϕ) ∈

Jθ × Jϕ}, the above integral reduces to two dimensional oscillatory integrals of the form∫
Jθ

∫
Jϕ

Ψ(θ, ϕ)eikΦs(θ,ϕ) dθdϕ. Using a two dimensional version of the stationary phase
theorem [34, Chap. VIII], one can show that the above integrals decay as k → ∞, with
a rate of decay of 1/k (as in the case of a smooth TRM). This is due to the fact that
the possible (interior) critical points of Φs are non degenerate as it can be checked from
lengthy but not difficult calculations.

6 Numerical tests

We consider the case of spherical two-dimensional inclusions, i.e. ∂Bp = sp + apS
2, p =

1, ...,M , where ap denotes the radius of the disk Bp. We use an integral equation approach
to solve the scattering problem (4.2). Taking advantage of the particular form of the inho-
mogeneities, we use a spectral approach (also known as multipole expansion or Mie series
method) to solve the system of integral equations (instead of a using a boundary element
method). Each boundary unknown density is then decomposed on the local Fourier basis
associated to each inhomogeneity. Using the projection of the integral operators in these
Fourier basis, it is possible to obtain an explicit expression for the integral kernels, for
more details see for instance [27, 32]. This leads to solving a linear system whose diagonal
blocks represent single scattering, while the off-diagonal blocks take into account multiple
scattering phenomena. The above method can be adapted to tackle the three-dimensional
case, the unknown density being then approximated via an infinite sum of spherical har-
monics. Of course, this leads to much larger systems to solve (more details on the case of
non penetrable scatterers can be found for instance in [19]).

We illustrate the DORT method for several different setups. The implementation was
realized under MATLAB. Throughout this section we assume that µ0 = ε0 = 1 (which is
equivalent to considering ε and µ as being not the absolute but the relative permittivity
and permeability) and ω = 2π, leading to a wavelength λ = 1. The radius of the spheres
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is given by ap = 0.002 for all p = 1, ...,M . The emission and reception directions are ob-
tained by discretizing uniformly the unit circle (0, 2π) using 200 points. These directions
will be fixed and in the case of an open TRM, we will restrict ourselves to those emission
and reception directions which are in the interior of the given set Ŝ resp. −Ŝ. We begin
with an example of one single inclusion. Then, we proceed by an example with two in-
clusions, by considering successively a symmetric and a non symmetric configuration (i.e.
two inclusions different magnetic and dielectric contrast). More realistic setups (with an
open TRM and noise) are presented in Examples 3a and 3b.

Example 1. One inclusion. We first consider the case of one single inclusion, and
we show in Table 1 the four largest eigenvalues of the time-reversal operator for different
values of the dielectric and magnetic contrasts. In particular, we observe that for each
setup, there are three significant eigenvalues, two of them being equal. These eigenvalues
correspond to the TM polarization (magnetic contrast) while the third one is related to the
TE polarization (dielectric contrast). This fact is in agreement with the DORT method
in dimension two (see Remark 16).

µ1 ε1 λ1 λ2 λ3 λ4

4 2 0.0049019 0.0017636 0.0017636 6.8683e-13
5 1.5 0.0021772 0.0021772 0.0012253 8.4791e-13

Table 1: Single inclusion at position s1 = (0, 5). We present the different eigenvalues of
the time-reversal operator (rescaled by a factor 1/|B1| = 1/(πa2

1)).

Figure 1 shows the absolute values of the DORT Herglotz waves for the case µ1 = 4 and
ε1 = 2. We see that the Herglotz wave function associated to these eigenvalues represents
a dipole situated at the (unknown) location of the inclusion. Also, the first Herglotz wave
associated to the largest eigenvalue is a monopole, which confirms our theoretical results.
In Figure 2 we present similar results for the case µ1 = 5 and ε1 = 1.5. Here, the first
two eigenvalues are equal, see Table 1, and hence, they are most likely associated to the
magnetic contrast. Indeed, as we can see in Figure 2, the first two Herglotz waves are
dipoles whereas the third is a monopole situated at the unknown location of the inclusion.

Example 2a. Two non symmetric inclusions. We consider a second inclusion at
position (10, 22) with the same size as inclusion B1 and with ε2 = 3 and µ2 = 15. In
Figure 3 one can see that the first six eigenvalues (ordered by their magnitude) of the
time-reversal mirror are significantly larger than the subsequent eigenvalues. Moreover,
the second and third as well as the fourth and fifth eigenvalues are equal. This indicates
that the Herglotz waves associated to the 2nd and third eigenvalue are dipoles focusing on
one inclusion and that the Herglotz waves generated from the 4th and 5th eigenfunctions
should focus on the other inclusion. Indeed, as can be seen in Figure 4, this is the case.
Also, the first and six Herglotz waves are monopoles each focusing on one of the two
inclusions which is what one expects from the theoretical results.

Example 2b. Two symmetric inclusions. Let us again consider the two inclusions
B1 and B2 at (0, 5) and (10, 22) but with the same magnetic and dielectric contrast given
by ε1 = ε2 = 3 and µ1 = µ2 = 5. In Figure 5 the obtained eigenvalues are shown.
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(a) (b)

(c)

Figure 1: Herglotz waves (in modulus) generated by the eigenfunctions of the time reversal
operator for parameters µ1 = 4 and ε1 = 2. (a) uses the eigenfunction of the first
eigenvalue, (b) of the second and (c) of the third eigenvalue.

The absolute values of the associated Herglotz waves is presented in Figures 6(a)–(f).
Noting that the eigenvalues associated to B1 equal those associated to B2, there are two
of the first six (associated to the first six largest eigenvalues) eigenelements of T 0 which
are in span{e1, e2}, further two are in span{g1,`, ` = 1, 2}, and the remaining two are in
span{g2,`, ` = 1, 2}. In particular, this explains the observation that the Herglotz waves do
not selectively focus on one but on both of the inclusions. Nevertheless, selective focusing
can be recovered by using a linear combination of the Herglotz waves using Figure 6, as
proposed in Prada et al. [30]. For example, in Figure 7(a), we present the absolute value
of the first Herglotz function plus i-times the second Herglotz wave function. In Figure
7(b), we plot i-times the third Herglotz waves minus the sixth Herglotz wave focuses on
B1.

Example 3a. Two non symmetric inclusions with an open symmetric TRM. In
this example we use the same setup as in Example 2a, but with an open and symmetric
TRM given by

Ŝsym = {α ∈ S2 : α = (cosφ, sinφ), φ ∈ [π/5, 4π/5] ∩ π + [π/5, 4π/5]}. (6.1)

Furthermore, we consider the more realistic setup of working with noisy data. In Figure 8
we present the eigenvalues obtained from using the open symmetric TRM (6.1) for different
levels of noise. Whereas the first six eigenvalues do not seem to depend on the amount
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(a) (b)

(c)

Figure 2: Same as Figure 1, but with a strong magnetic contrast.

Figure 3: Eigenvalues of the time-reversal operator obtained for the setup of Example 2a.

18



(a) (b)

(c) (d)

(e) (f)

Figure 4: Two inclusions with different magnetic and dielectric contrast (Example 2a).
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Figure 5: Eigenvalues of the time-reversal operator obtained for the setup of Example 2b.

of noise, the subsequent eigenvalues are significantly larger when working with noise. In
Figure 9 the absolute values of the associated Herglotz waves are shown for a noise of 8%.
Although the first six eigenvalues are not anymore significant larger than the subsequent
eigenvalues, the associated Herglotz waves still focus selectively. This is even true in the
case of 20% of noise, compare Figure 10.

Example 3b. Two non symmetric inclusions with an open and non symmetric
TRM. In this last example we study the case of a non symmetric open TRM given by

Ŝnon−sym = {α ∈ S2 : α = (cosφ, sinφ), φ ∈ [π/5, 4π/5]}. (6.2)

We recall that the open but non symmetric TRM did not allow a direct decoupling of
the TE- and TM-eigenfunctions, see Remark 22. Nevertheless, it is straightforard to see
that all eigenfunctions are linear combinations of monopoles and dipoles with centres sp,
p = 1, ...,M up to an error of order O((kd)−1). In this numerical example, we use the
same setup as in Example 2a (i.e. the same position, size and contrasts of the inclusions).
Our numerical experiment indicates that the DORT method still works. We present the
eigenvalues in Figure 11 without and with noise. Using noisy data (8% noise added to
the far field data) we obtain the Herglotz waves presented in Figure 12, which do still
selectively focus on the inclusions.

7 Conclusion

In this work, we presented a rigorous mathematical justification of the DORT method
in the context of penetrable small inhomogeneities. The mathematical model used to
achieve this analysis is a far field model for time reversal in the frequency domain. The
main result states that each scatterer gives rise to N + 1 significant eigenvalues (N being
the dimension), provided the scatterers are small and distant enough. This result was
proved for closed mirrors, but also for symmetric finite aperture mirrors. In the two-
dimensional case, the theoretical results were further confirmed by numerical simulations.
The case of non symmetric open mirrors requires further analysis and it not addressed in
this paper.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Two inclusions with identical magnetic and dielectric contrast (Example 2b).
The Herglotz waves do selectively focus on both inclusions.
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(a) (b)

Figure 7: (a) linear combination of the first and second Herglotz waves, (b) linear combi-
nation of third and sixth Herglotz wave function of Example 2b.

(a) No added noise (b) 4% noise

(c) 8% noise (d) 20% noise

Figure 8: We present the eigenvalues of Example 3a (using the open symmetric TRM
(6.1) for different levels of noise. In (d) we observe that the first six eigenvalues are not
anymore significant larger than the subsequent eigenvalues.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: The DORT method for the open symmetric TRM (6.1). We show the absolute
values of the Herglotz waves obtained from using the setup of Example 3a with 8% noise.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: The DORT method for the open symmetric TRM (6.1). We show the absolute
values of the Herglotz waves obtained from using the setup of Example 3a with 20% noise.
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(a) No noise (b) 8% noise

Figure 11: We present the eigenvalues for the non symmetric open TRM (6.2) without
and with noise.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: The absolute values of the Herglotz waves for Example 3b, using an open non
symmetric TRM (6.2) with noise of 8%.
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