
HAL Id: hal-00793920
https://hal.inria.fr/hal-00793920

Submitted on 24 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deliverable D6.4: Assessment report: Experimenting
with CONNECT in Systems of Systems, and Mobile

Environments
Emil - Mircea Andriescu, Amel Bennaceur, Antonia Bertolino, Antonello

Calabrò, Paul Grace, Malte Isberner, Antoine Léger, Maik Merten, Youssouf
Mhoma, Pierre Châtel, et al.

To cite this version:
Emil - Mircea Andriescu, Amel Bennaceur, Antonia Bertolino, Antonello Calabrò, Paul Grace, et al..
Deliverable D6.4: Assessment report: Experimenting with CONNECT in Systems of Systems, and
Mobile Environments. [Research Report] 2013. �hal-00793920�

https://hal.inria.fr/hal-00793920
https://hal.archives-ouvertes.fr

 CHEC

Deliverable D6.4
Assessment Report
Experimenting with CONNECT in
Systems of Systems, and
Mobile Environments

ICT FET IP Project

http://www.connect-forever.eu

CONNECT 231167 2

CONNECT 231167 3

Project Number : 231167

Project Title : CONNECT – Emergent Connectors for Eternal Software
Intensive Networked Systems

Deliverable Type : Report

Deliverable Number : D6.4

Title of Deliverable : Assessment report

Nature of Deliverable : R/P

Dissemination level : PU

Internal Document Number : V0.3

Contractual Delivery Date : 30 November 2012

Actual Delivery Date : 17 December 2012

Contributing WPs : WP6

Editor(s) : Youssouf Mhoma (TCF)

Author(s) : Emil Andriescu (Ambientic-Inria), Amel Bennaceur (Inria),
Antonia Bertolino (CNR), Antonello Calabro (CNR), Paul
Grace (LANCS), Malte Isberner (TUDO), Antoine Léger
(TCF), Maik Merten (TUDO), Youssouf Mhoma (TCF),
Pierre Châtel (TCF), Charles Morisset (CNR), Animesh
Pathak (Inria), Pierre-Guillaume Raverdy (Ambientic),
Rachid Saadi (Ambientic), Roberto Speicys-Cardoso
(Ambientic), Daniel Sykes (Inria).

Reviewer(s) : Gordon Blair (LANCS), Valérie Issarny (Inria)

Abstract
The core objective of WP6 is to evaluate the CONNECT technologies under realistic situations.
To achieve this goal, WP6 concentrated a significant amount of its 4th year effort on the
finalization of the implementation of the GMES scenario defined during the 3rd year. The
GMES scenario allows the consortium to assess the validity of CONNECT claims and to
investigate the exploitation of CONNECT technologies to deal with the integration of real
systems. In particular, GMES requires the connection of highly heterogeneous and
independently built systems provided by the industry partners. WP6 contributed also in
providing mobile collaborative applications and case studies showing the exploitation of
CONNECTORs on mobile devices.

Keyword list
Assessment, CONNECTor, CONNECTability, Experiment, GMES, CONNECT architecture, CONNECTor
algebra, Mediator synthesis, Protocol learning.

CONNECT 231167 4

Document History

Version Type of change Author(s)

0.1 Document outline Youssouf Mhoma (TCF)
Rachid saadi (Ambientic)
Pierre-Guillaume Raverdy (Ambientic)

0.2 Initial contributions All

0.3 Revised contributions All

1.0 Overall edition Youssouf Mhoma (TCF)

2.0 Revision based on reviews All

3.0 Final version Youssouf Mhoma (TCF)

Document Review

Date Version Reviewer Comment

30 Nov. 2012 1.0 Gordon Blair More detail on experiments
needed

11 Dec. 2012 2.0 Valerie Issarny Editorial comments

 	

CONNECT 231167 5

Table of Contents
1 Introduction .. 7

1.1 Summary of Y4 achievements ... 7
1.2 Third review recommendations ... 7
1.3 Challenges for Year 4 ... 8
1.4 Achievements in Year 4 .. 8
1.5 Structure of the deliverable .. 8

2 GMES Use Case ... 9
2.1 Use case overview .. 9
2.2 Focus on Enablers .. 11

2.2.1 Discovery Phase ... 12
2.2.2 Learning Phase ... 12
2.2.3 CONNECTor Synthesis/Deployment Phase ... 12
2.2.4 CONNECTability Phase .. 13

2.3 System of Systems assessment .. 15
2.3.1 Respecting the operational and managerial independence of systems 15
2.3.2 Allowing the evolutionary development and emergent behaviour 16
2.3.3 Supporting systems heterogeneity .. 16
2.3.4 Networks of systems and geographical distribution of elements 17

3 Mobile Collaborative Applications Use Case .. 19
3.1 Introduction ... 19

3.1.1 Collaborative applications in the mobile domain ... 19
3.1.2 Ambientic business domain .. 19
3.1.3 CONNECT Challenges for collaborative applications in the mobile domain 20
3.1.4 Ambientic use cases ... 21
3.1.5 Assessment criteria ... 21

3.2 Mobile collaborative applications use cases ... 22
3.2.1 Mobile video streaming interoperability ... 22
3.2.2 Mobile audio streaming interoperability (Push2Talk) .. 24
3.2.3 Cloud storage services .. 25
3.2.4 Online event management services .. 29

3.3 Assessment ... 30
3.3.1 Interoperability between mobile deployed applications 30
3.3.2 Interoperability between mobile applications and cloud services 31
3.3.3 Improvement of the mobile application development process 32
3.3.4 Handling of mobile context dynamicity .. 33
3.3.5 Mobile application scalability ... 34

3.4 Summary .. 34
4 Conclusion ... 37
5 Appendix: NS updates from D6.3 ... 39

5.1 Networked Systems .. 39
5.1.1 NS 1 - UAV .. 39
5.1.2 NS 2 - UGV ... 40
5.1.3 NS4 - C2 GIS .. 42
5.1.4 NS 5 - Mobile Weather Station .. 43
5.1.5 NS 6 - Weather Service .. 44
5.1.6 NS 7.1 - Positioning System – Country A ... 45
5.1.7 NS 7.2 - Positioning System – Country B ... 46

CONNECT 231167 6

CONNECT 231167 7

1 Introduction
The scope of WP6, as introduced in the Description of Work (DoW), is: “to assess the
CONNECT architecture and prototypes, as generated by WP1, against actual scenarios”. To
this extent, the work performed within WP6 has concentrated on:

• Elaborating industry-strength scenarios, further identifying real systems that are
available to the project members and that can provide a testbed against which to
experiment with CONNECT technologies.

• Implementing use cases pertaining to the scenarios, in particular exploiting CONNECT
enablers to make interoperable the legacy networked systems involved in the use
cases. Part of the work also includes implementing a number of networked systems.

While the elaboration of scenarios was mostly carried out in the previous reporting periods, the
4th year work was focused on use cases implementation, further enabling to assess the overall
CONNECT architecture and related enablers. Although the assessment work is integral part of
WP6 achievements, it is actually reported directly next to the scientific and technology content
of deliverables D1 to D5, as a way to be more convenient and ease traceability for the readers.

This report then concentrates on the description of the use cases that were implemented and
that pave the way for exploitation of CONNECT technologies by the industry partners. Use
cases specifically relate to the following areas:

• Systems of Systems, where we more specifically focus on using CONNECT for
addressing the interoperability requirements raised by scenarios related to the
European programme on Global Monitoring for Environment and Security.

• Mobile collaborative applications, where we focus on exploiting CONNECT to address
the interoperability requirements that arise for mobile applications deployed on
increasingly heterogeneous mobile platforms and interacting with diverse Internet-
based services, among which Cloud services. Then, we addressed both application-to-
application and application-to-Internet services scenarios.

1.1 Summary of Y4 achievements
In a nutshell, WP6 achievements over Year 4 relate to:

• Delivery of the final evaluation platform.
• Finalizing the implementation of the Joint Forest-Fire Operation use case (simply

referred to as firefighting use case) that is part of the GMES scenarios, which includes
the implementation of all the networked systems involved in the use case.

• Implementation of new use cases in the area of mobile collaborative applications.
• Application of the assessment methodology introduced in Deliverable D6.3, whose

outcome is reported in Deliverables D1 to D6 according to the specific focus of the
assessment.

1.2 Third review recommendations
The project’s 3rd review provided one main recommendation relevant to the work to be
performed in the 4th year within WP6:

• “Demonstrators need to be extended in order to show the full potential and extent of
the various CONNECT enablers. In doing so, the need for fully distributed enablers and
the potential effects of communication latencies should be clarified.”

The recommendation was accounted for in the further development of the GMES use case as
well as in the development of the mobile collaborative applications exploiting the mobile

CONNECT 231167 8

version of CONNECT. Related updated Networked Systems are formally defined in the
Appendix.

1.3 Challenges for Year 4
The main challenges for Year 4 work on the GMES use case related to:

(i) Effectively integrating the enablers according to the CONNECT architecture so as to
support the use case.

(ii) Dealing with non-functional properties in the implementation of the use case.

A number of challenges were also to be faced for supporting the mobile collaborative
applications, which related to adapting the CONNECT architecture to the specifics of the mobile
environment, as detailed in Deliverable D1.4.

1.4 Achievements in Year 4
As suggested above, one of the main achievements of the work package during Year 4 has
been to experiment with CONNECT solutions using the firefighting GMES use case. This
significantly assisted the consortium in dealing and experimenting with the actual integration of
the enablers, as specified by the CONNECT architecture. In particular, this work is certainly the
one that allowed the consortium to produce an effectively working CONNECT prototype. WP6
work further allowed the consortium to thoroughly assess the CONNECT architecture and
enablers according to the plan set in Deliverable D6.3. Last but not least, WP6 work paves the
way for exploitation of the CONNECT results by industry partners, based on the advanced
interoperable services that have been implemented, especially in the mobile domain.

1.5 Structure of the deliverable
This report is decomposed in two core parts:

• Section 2 is concerned with the implementation of the firefighting use case using
CONNECT to overcome heterogeneity issues.

• Section 3 concentrates on leveraging the CONNECT architecture towards sustaining
mobile collaborative applications.

Each section is structured similarly, providing a description of the use cases and then an
assessment of the use cases in the specific target exploitation domains, i.e., Systems of
systems for GMES, and mobile collaborative applications.

Finally section 4 concludes with a summary of WP6 contributions and resulting exploitation
perspectives for CONNECT technologies.

CONNECT 231167 9

2 GMES Use Case
The GMES use case was extensively detailed in Deliverable in D6.3 and we refer the
interested reader to this deliverable for a detailed description of the NSs that were
implemented and related reliance on CONNECT enablers for their CONNECTion. Still, we would
like to stress that the implementation of a number of networked systems had to be finalized
during the fourth year, and this is reflected in the Appendix.

Key focus of our work during the reporting period has then been to actually experiment with
the CONNECTion of GMES NSs to assess the CONNECT architecture and enablers (see D1 to
D5) as well as assess the relevance of the CONNECT approach for the System of Systems
domain.

The next section briefly recalls the main features of the GMES use case, then Section 2.2 and
finally Section 2.3 outline the resulting assessment of CONNECT to sustain interoperability in
the system of systems area.

2.1 Use case overview
GMES (Global Monitoring for Environment and Security) is the European Program for the
establishment of a European capacity for Earth Observation started in 1998. The services
provided by GMES address six main thematic areas: land monitoring, marine environment
monitoring, atmosphere monitoring, emergency management, security and climate change.

The emergency management service directs efforts towards a wide range of emergency
situations; in particular it covers different catastrophic circumstances: floods, forest fires,
landslides, earthquakes and volcanic eruptions and humanitarian crises.

Within CONNECT, we concentrated on the Forest fire situation. The scenario illustrates the
management of forest-fire, close to a border village and a factory, between country A and
country B. Forest monitoring and forest fire management in the country A are the responsibility
of the Country A Command and Control fire operations center (C2-A). For example in France,
the CODIS, led by a professional fire-fighter, is the regional authority in charge of coordination
of operational forces during fires and disasters for one French department. Then, the C2-A
center must interoperate with a number of Networked Systems (NSs) of Country B so as to
monitor the area (see Deliverable D6.3 for the specification of the NSs, and Appendix for
updates on these specifications after Year 4):

• NS 1 - UAV
• NS 2 - UGV
• NS 3.1 - Camera Fixed
• NS 3.2 - Camera Mobile Main
• NS 4 - C2 GIS
• NS 5 - Mobile Weather Station
• NS 6 - Weather Service
• NS 7.1 - Positioning System – Country A
• NS 7.2 - Positioning System – Country B

Figure 2.1 outlines the middleware-layer protocols of the various NSs while Figure 2.2 depicts
the CONNECTion we have been focusing on.

CONNECT 231167 10

	 	 	 	
Middleware-‐layer	 protocols	

Network	 Systems	 	
Protocol	 Exchange	 Pattern	

NS	 1	 UAV	
SOAP	 RPC	
RTSP	 Stream	

NS	 2	 UGV	
SOAP	 RPC	
MJPEG	 Stream	

NS	 3.1	 Camera	 Fixed	
DPWS	 RPC	
RTSP	 Stream	

NS	 3.2	 Camera	 Mobile	 main	
DPWS	 RPC	
MJPEG	 Stream	

NS	 4	 C2	 GIS	
SOAP	 RPC	
MJPEG	 Stream	

NS	 5	 Weather	 Station	 SOAP	 RPC	
NS	 6	 Weather	 Service	 SOAP	 RPC	
NS	 7.1	 Position	 System	 A	 SOAP	 RPC	
NS	 7.2	 Position	 System	 B	 AMQP	 Pub/Sub	

Figure 2.1: NSs and protocols

Figure 2.2: Use case - NSs & CONNECTions

CONNECT 231167 11

2.2 Focus on Enablers
In the GMES use case, 8 enablers have been integrated and each plays a role at some point
of the scenario.

• E1 - Discovery
• E2 - Learning
• E3 - Synthesis
• E4 - Deployment
• E5 - Monitoring
• E6 - Interaction
• E7 - DePer
• E8 - Security

Figure 2.3 outlines the sequence of actions chained when a CONNECTor has to be synthesized
and deployed between two network systems.

Figure 2.3: The interactions between enablers

In the following sections, we describe the realization of the different phases of the CONNECTion
process in the context of GMES. Section 2.2.1 outlines what happens during the initial
discovery phase, the essential step for handling discovery protocol heterogeneity. Section
2.2.2 outlines the learning supportive phase that complete discovery with non-provided
behaviour models. Section 2.2.3 illustrates the synthesis and deployment phases of the GMES
CONNECTors. Section 2.2.4 goes deeper into the CONNECTability phase which is triggered by
the Synthesis enabler prior to CONNECTor deployment.

CONNECT 231167 12

2.2.1 Discovery Phase
For the GMES scenario, the CONNECT discovery techniques were extensively used in all the
networked systems that required interoperability. Specifically, the Fire Fighter C2 system, the
UAV service, the positioning system, and the weather service all announced their affordances
and interfaces, and optionally, their behavior and non-functional properties, using the
CONNECT discovery protocol. Upon receiving these announcements, the CONNECT Discovery
enabler invokes the Learning enabler for obtaining the behaviors of the networked systems
that did not provide their behavior a priori, and subsequently, invokes the Synthesis enabler for
the synthesis and deployment of the CONNECTors where matching required/provided
affordances were found (specifically, C2-UAV, C2-positioning system, and C2-weather
service). Upon deployment, the CONNECT Discovery enabler responds to the “requiring”
networked system (in this case, C2) with the URI of the deployed CONNECTors, in response to
the initial discovery request. E.g., when C2 requests for the UGV, the Discovery enabler
replies to it with address of the deployed C2-UAV CONNECTor.

2.2.2 Learning Phase
In the GMES scenario, developed by WP6 with the goal of showing the interplay of all the
developed technologies, learning technology was successfully used to generate behavioral
models of components such as a service providing weather data and a service that provides
access to a flying drone. In each case, the system could be accurately described as a finite
state machine that models the complete input/output-behavior. These behavioral models can
be obtained without much delay, including the time inherent to networked system invocation.
The accuracy of the learned models was verified by manual inspection. In summary, the
learning technology proved its ability to generate accurate models that are adequate for
CONNECTor synthesis in a time frame that is suitable for ad-hoc CONNECT scenarios.

2.2.3 CONNECTor Synthesis/Deployment Phase
The CONNECT Synthesis Enabler along with Deployment enabler perform the central role of
creating the software CONNECTors for each of the heterogeneous cases in the GMES
scenario. Specifically, the Synthesis Enabler:

(i) Receives the networked system models for each of the matched endpoint systems,

(ii) Computes the required mapping between their interfaces by reasoning about the
semantics of their operations and data,

(iii) Uses the computed mapping, to generate the mediator, in the eLTS format, which
ensures their behavioural matching, i.e., that they will interact without errors (e.g.,
deadlock),

(iv) Translates the eLTS model of the mediator to the concrete deployment format (k-
coloured automata).

(v) If the Networked System Models includes non-functional requirements, the
Synthesis Enabler first passes the generated k-coloured automata to the DePeR
Enabler and the Security Enabler for analysis and further instrumentation.
Otherwise, it directly sens the produced coloured k-coloured automata to the
Deployment enabler.

Figure 2.4 succinctly describes the mismatches that had to be addressed in each use case of
the GMES scenario. In the case of mediating the interaction of the C2 with the Weather
Service, the mediator has to map the getWeather operation to the getHumidity and
getTemperature operations, which also involves translating the output data received (Humidity
and Temperature) into the input data expected (Weather). In the case of the C2
communicating with Positioning-B, there is a unique operation getPosition, and hence there is
only a one-to-one mapping, while the Deployment Enabler handles middleware heterogeneity.
In the case of interaction between C2 and the UAV, the Synthesis Enabler computes only one-

CONNECT 231167 13

to-one mappings between the operations required by the C2 (MoveRight, MoveLeft,
MoveFoward, MoveBackward, TurnLeft, and TurnRight) and those provided by the UAV, but
when generating the mediator, the Synthesis Enabler has to call extra operations (takeoff and
land) to allow the UAV to continue its execution and reach its final state. This extra state has to
be taken care of in the produced k-coloured automata, which requires extra transition in the
bridging automata.

(vi) Use Case Application-layer heterogeneity Middleware-layer
heterogeneity

C2 - Weather Service One-to-many operation and data
mapping

None – both use SOAP

C2 - Positioning-B One-to-one operation mapping RPC-Pub/Sub: SOAP client
with AMQP publisher

C2 - UAV Extra provided operations None – both use SOAP

Figure 2.4: Type of heterogeneity addressed in each GMES use case

The Deployment Enabler upon reception of the k-coloured automata of the mediators,
eventually instruments and deploys them in the networking environment and the networked
systems successfully complete their tasks, illustrating that the interoperability problems are
effectively resolved by CONNECT. In the three cases:

i) For the Fire Fighter C2 system interoperating with the weather service, there were
behavioural and data mismatches between the two systems that were handled by
the synthesis mapping phase;

ii) For the C2 system with the UAV service, there were behavioural differences
between the two systems that were overcome by the synthesis mapping;

iii) For the C2 system with the positioning service, there were differences in the
middleware protocols employed (i.e. a publish-subscribe protocol AMQP and an
RPC protocol SOAP) that were addressed by the concrete binding procedure
provided by the Deployment enabler.

2.2.4 CONNECTability Phase
In the GMES use case, the CONNECT architecture is equipped with several enablers in charge
to enforce, monitor and enhance the behaviour of the CONNECTor offline and at runtime (see
Figure 2.5).

The DePer Enabler is in charge of assisting the synthesis and deployment of a CONNECTor
suitable to satisfy non-functional requirements, namely dependability and performance related
properties. Its activity is carried on both at pre-deployment (where the synthesized CONNECTor
is analyzed and possibly enhanced to meet the stated non-functional requirement before
deployment) and at run-time (to refine and adapt the analysis, to cope with uncertainties and
inaccurate knowledge available at pre-deployment time, as well as evolution undertaken by
the networked systems and the environment). The run-time analysis is performed by
synergically exploiting cooperation with the Monitoring Enabler, through which operational data
of interest to the DePer analysis are gathered and examined. The GMES use case was the
ground to provide an example of DePer activities and its integration/cooperation with other
Enablers, especially the Monitoring Enabler. In the first client to service interaction (C2-UAV),
the two analyzed indicators are: i) a measure of latency, determined as the time from when the
C2 client sends one of the possible orders to move (orderToMove) to when it receives an
acknowledgement back (orderToMoveACK), and ii) a measure of coverage defined as the
percentage of stream video the C2 client correctly receives from the UAV, with respect to the
number of video requests made. In the second client to service interaction (C2-Weather
Service), the indicator of performance is the latency requirement defined by the C2 client to
receive an acknowledgement from the Weather Service once a request is made, while the

CONNECT 231167 14

coverage requirement defined by the C2 client consists in correctly receiving at least 90% of
the requested weather data.

The Security Enabler is in charge of checking that the security policies are respected at
runtime. In particular, the CONNECTor between the C2 client and the UAV has to ensure that
the UAV does not go into a forbidden area (thus simulating some no-fly zone). Each command
from the C2 that would violate the policy is effectively ignored. In order to get the precise
location of the UAV, the Security Enabler establishes a separate connection with the UAV and
interacts frequently with the CONNECTor to update the position.

The Monitoring Enabler, once started, waits for input to start monitoring non-functional
properties provided by one of the two Enablers involved in CONNECTability: DePer Enabler or
Security Enabler. At Synthesis-time, probes able to send messages coming through the
CONNECTor are inserted. When the DePer Enabler finishes the off-line analysis of the
CONNECTor, it sends to the Monitoring Enabler a set of NF-PROPERTIES that have to be
respected at runtime: i) latency between two actions: “login – takeoff” on the UAV client has to
be < than 10s ii) the maximum amount of messages sent in a window time of 30 seconds can
not be more than 500. In the GMES scenario, when the Monitoring Enabler notices that the
warning threshold is reached, it notifies all the others Enablers to try reducing the amount of
messages sent to the CONNECTor in order to deal with the possible performance lack. The
GMES use case illustrates this cooperative network behaviour by making the Security Enabler
managing the Monitoring notification: the Security Enabler checks every 10 milliseconds the
position of the UAV that is stored inside the CONNECTor; when the Security Enabler receives
the “invitation” to reduce the amount of messages, it increases the latency between the polling
on the variable stored into the CONNECTor in order to reduce the global amount of
messages/traffic of the CONNECTor.

Figure 2.5: Dependability, Security and Monitoring cooperation

CONNECT 231167 15

2.3 System of Systems assessment
Based on the experiment using the GMES use case, we have been assessing the possible
exploitation of CONNECT for the system of systems domain.

As defined in Wikipedia’s page on Systems of Systems1, several traits are inherent to System
of Systems:

• Operational Independence of Elements;
• Managerial Independence of Elements;
• Evolutionary Development;
• Emergent Behaviour;
• Geographical Distribution of Elements;
• Inter-disciplinary Study;
• Heterogeneity of Systems; and
• Networks of Systems.

While some of them are not relevant to CONNECT (such as Inter-disciplinary Study), the others
have been gathered in four main objectives given the commonalities of their assessment
methodology:

1. Operational and Managerial Independence of Systems;
2. Evolutionary Development and Emergent Behaviour;
3. Heterogeneity of Systems; and
4. Networks of Systems and Geographical Distribution of Elements.

The following sections assess CONNECT against each of the above objectives in turn.

2.3.1 Respecting the operational and managerial independence of systems
Criteria The non-intrusiveness of the CONNECT platform over the networked

systems.

Initial assessment CONNECT artifacts need to be as transparent as possible to the
business networked entities so as not to violate the separation of
concerns (SoC) between technical (transport) and business aspects
of Systems of Systems (SoS). Confirm independency in the GMES
use case.

Contribution CONNECT artifacts behave as transparently as possible, in a proxy
manner.

Future work Even more decoupling between business and technical levels of
SoS, still relying on CONNECT.

Methodology:

Within the GMES scenario, the evaluation consists of checking that a networked system
implementation’s independent existence is not put into question when deployed in a CONNECT

context.

Assessment:

In the GMES use case, at some point, Country B is responsible of and uses weatherService-B
that provides meteo data. Its implementation has no link with CONNECT and does not possess
any code that is related to it. When Country B wants to provide its service to Country A, the
discovery of the service by CONNECT is managed outside it, without changing the service
implementation. The resulting created relation of C2-AßàCONNECTorßàweatherService-B

1 http://en.wikipedia.org/wiki/System_of_systems

CONNECT 231167 16

exists, allowing Country A to use weatherService-B. But at the same time, weatherService-B is
always available to Country B that keeps the control and the responsibility of weatherService-
B.

Thus, we confirm that networked systems can evolve and be used without depending on
CONNECT platform, while at the same time being used through CONNECT.

2.3.2 Allowing the evolutionary development and emergent behaviour
Criteria Support of Evolutionary development.

Initial assessment SoS typically does not support dynamic adaptation and evolution due
to structural and architectural constraints. The addition and removal
of networked systems need to be directly supported by the Discovery
Enabler.

Contribution The CONNECT platform supports runtime evolution and context
change –including adding and removing Networked Systems on the
fly.

Future work Even more dynamicity in CONNECTors generation at runtime.

Methodology:

Within the GMES scenario, the evaluation consists of:

• Adding and removing Networked Systems to and from the System of Systems, taking
specific care of adding and removing Systems that involve different CONNECTors.

• Evolving the code of the C2 system in order to command in a different way the
Networked Systems, hence establishing a new, emergent, behaviour.

Assessment:

The addition and removal of networked systems is directly supported by the Discovery
Enabler.

We further managed to demonstrate the evolutionary development. When a new version of a
Network System is developed, the previous version can be removed from CONNECT and the
new version added without any consequences thanks to the use of stateless services. For
example, in the C2 graphical application, when the weather service is discovered, it appears in
the list of available services. When the weather service is shutdown, it is removed from the
available services list. Then a new version can be discovered and used again.

2.3.3 Supporting systems heterogeneity
Criteria To deal with systems heterogeneity through CONNECT.

Initial assessment Systems heterogeneity is assessed through the number of supported
exchange patterns and the number of transport protocols supported.

Contribution Rely on the defined set of exchange patterns and associated
transport protocols to support systems heterogeneity in the GMES
context.

Future work Even more systems heterogeneity support in CONNECT framework.

 Methodology:

Within the GMES scenario, a set of exchange patterns and associated transport protocols
have already been selected. The evaluation thus consists of checking their effective realization
and integration when executing the scenario.

CONNECT 231167 17

Ambientic’s video stream adaptation is also a key contributor to this objective.

Assessment:

With the GMES use case, we experienced the support of services using three different kinds
of transport protocols and two different exchange patterns. Coping with the bridging between
these services is the responsibility of CONNECTors. Following is a reminder of bridging
occurring in GMES:

Client and affordance Transport
Protocol/Exchange
Pattern

NS to connect

C2 (VehicleWithVideo) SOAP-HTTP/RPC NS1 UAV and NS 6 Weather Service
(SOAP-HTTP/RPC)

C2 (VideoSource) SOAP-HTTP/RPC NS3.x Camera (DPWS/RPC)

C2 (PositioningSource) SOAP-HTTP/RPC NS8 Position System B (AMQP/Pub-Sub)

Ambientic’s contribution allows also to transform video stream format and so enrich CONNECT
with transformation capabilities displayed in the next charts.

Video client Format Video service

C2 MJPEG NS1 UAV (RTSP)

Mobile RTSP Camera (MJPEG)

2.3.4 Networks of systems and geographical distribution of elements
Criteria To deal with geographical distribution of elements in networks of

systems.

Initial assessment Geographical distribution is assessed through the density of the
networks of supported systems, as well as the effective distribution
of the networked systems in a CONNECT architecture.

Contribution Implement SoS flexibility and elasticity based on geographical
distribution.

Future work Put forward geographical distribution of elements as a key “non-
functional” property when integrating them in System of Systems.

Methodology:

The evaluation of the first criterion consists of running various alternative ways to start the
networked systems (gradually, by set, all at the same time) with a large number of CONNECTed
mock-ups of networked systems and see how the System of Systems react.

Regarding the second criterion, the weather service of the demonstration is to be available on
the Internet and networked systems are to be deployed at different locations.

Assessment:

Density of networks of systems supported: Determining the scalability of the CONNECT

platform is quite not relevant at this stage given that in its current state CONNECT is still a
prototype. However we did some observations in the GMES use case taking into account the
number of NSs to discover. First step is to launch all the NSs at the same time. Time to
discover all the NSs increases with the number of NSs, and errors of discovery occurs with a
couple of hundred of NSs. Though, the CONNECTor generation and the CONNECTor invocation
are not impacted. Second step is to launch the NSs gradually. In this case, all the NSs are

CONNECT 231167 18

discovered whatever their numbers, and CONNECTors generation and invocation are not
impacted. Following these observations, strategies to enhance the discovery of a large
number of NSs can be applied.

Distribution of networked systems: We confirmed in GMES that the networked systems can
be distributed in LAN/WAN without problems of CONNECTors-NS communication, considering
that the host of the generated CONNECTor is connected to the NS network. In GMES the NS 6
weather service is hosted in a server of TUDO.

CONNECT 231167 19

3 Mobile Collaborative Applications Use Case
3.1 Introduction
Current-generation mobile platforms are evolving at a fast pace, with mobile devices
embedding an increasing number of innovative features, networking, sensing, or interacting
with nearby devices, and new mobile usages being adopted massively in short period of time.
We first detail the specific constraints of the mobile domain and their impact on the lifecycle of
collaborative applications, and then explain the business needs of Ambientic w.r.t collaborative
applications in the mobile domain. We then identify key CONNECT challenges to address in this
domain. Finally, we introduce the Ambientic use cases to be fully developed in Section 3.2,
and the assessment criteria to be used in Section 3.3 to validate the extensions to the
CONNECT architecture that are detailed in Deliverable D1.4.

3.1.1 Collaborative applications in the mobile domain
While in the desktop and Internet domains services are loosely bound and easily
interchangeable, the mobile domain exhibits very specific constraints and behaviors that go
towards integrated and heavily controlled services. Indeed, mobile platform vendors, such as
Google with its associated manufacturers with Android, and Apple with iOS, are intensively
focusing on the vision of deeply integrating services within the mobile operating systems. This
approach raises interoperability issues as older phones are not always updated, for technical
or business reasons, and therefore cannot interact with newer phones due to protocol or
content format mismatches.

At the same time, mobile devices store and manage much of the user’s personal information
such as contacts, timetable of personal appointments, location, or payment information that
raise privacy-invasion concerns which have led to a number of additional restrictions on mobile
platform environments. Most notably, the distribution of mobile applications is heavily
controlled, and executable code cannot be generated and deployed at run time. For example,
all iOS applications have to pass through a manual screening and approval process before
being published on the Apple App Store, which is the only means of application distribution on
Apple’s platform.

Another major evolution in the design of collaborative applications in the mobile domain is the
increasing dependence on Cloud services (or alternatively the availability and use of Cloud
services on mobile devices thru native mobile applications). The multiplicity of personal or
family connected devices (i.e., tablets, smart TV) is also to be accounted for, which results in
the rising demand for exchanging, sharing, and synchronizing data at a global scale between
different users and devices.

These major changes in the lifecycle of devices and applications, as well as constraints
induced by mobility aspects, such as computational resources, connectivity, or battery life,
introduce interoperability barriers between different platforms and also between applications.

3.1.2 Ambientic business domain
Ambientic develops solutions to enable collaboration among applications deployed on
heterogeneous mobile phone platforms. The first product from Ambientic is a suite of mobile
collaborative services, called U-Event, which is aimed at fostering communication among
actors at any event (e.g., visitors, exhibitors and panelists at trade show or conference).

Interoperability issues not only arise from the heterogeneity of the mobile devices, but also
from the heterogeneity in the Cloud services that mobile users indirectly use from their devices
(such as facebook, flick, or google drive), and from the variety of online services that event
organizers rely on when setting up their events (such as registrations, badging, matchmaking,
or multimedia production).

CONNECT 231167 20

Apart for the easy integration of Cloud services, Ambientic also aims to offer innovative
services that promote interactions among participants and boost the event’s profile. Delivering
live multimedia services on-site has been identified as such category of services, in particular
push-to-talk and video-calling services (small groups), as well the broadcast of conferences’
video or audio feeds.

In both cases (mobile and Cloud integration, live multimedia services), we identified significant
interoperability problems stemming from the heterogeneity of platforms and services that we
need to interconnect with. Ambientic is thus particularly interested in leveraging and further
adapting CONNECT solutions to reduce the effort needed to create mobile multi-platform
collaborative applications. Specifically, our goals within the project are to assess the
applicability of the CONNECT Enablers in the mobile domain, assess the CONNECTion of mobile
networked systems towards sustaining mobile collaborative applications, and to support on-
the-fly interoperability of streaming protocols.

Ambientic then aims to leverage the improved CONNECT architecture to enable the automatic
integration of services into any event IT context, and therefore speed-up the integration
process with event organizers. We also aim to quickly deliver compelling collaborative
applications that empower users to share content regardless of their terminals or online
service providers.

3.1.3 CONNECT Challenges for collaborative applications in the mobile domain
CONNECT aims to deliver eternal CONNECTivity to networked systems, primarily through the
dynamic synthesis and deployment of CONNECTors that overcome the interoperability gap
between these systems. To achieve this outstanding goal, CONNECT has been addressing the
following challenges:

1. Modeling and reasoning about peer system functionalities;
2. Modeling and reasoning about CONNECTor behaviors;
3. Runtime synthesis of CONNECTors;
4. Learning CONNECTor behaviors;
5. Dependability assurance;
6. Performant system architecture;
7. Experimenting in the field of wide area, highly heterogeneous systems where today's

solutions to interoperability already fall short (e.g., systems of systems).

In the mobile environment, the extensive heterogeneity of mobile networked-systems
combined with the fragmented support of legacy protocols and the specific lifecycle of devices
and applications, induce an increased complexity for developing multi-platform applications.
Indeed, this requires substantial work on integrating with other systems, services and
protocols.

This is why we believe that the challenges addressed by CONNECT for achieving eternal
interoperability perfectly fit the need of Ambientic, with respect to our sphere of interests, for
building Cloud-enabled, cross-platform, and performant Mobile Collaborative Applications.
Taking into account the time available, during Year 4, we gave priority to the following
CONNECT challenges, displayed in order of importance for the mobile domain:

1. Experimenting in the field of wide area, highly heterogeneous systems;
2. Modeling and reasoning about peer system functionalities;
3. Modeling and reasoning about CONNECTor behaviors;
4. Performant system architecture;
5. Runtime synthesis of CONNECTors.

Given the nature of mobile platforms, we strongly believe that experimentation of
interoperability solutions with actual services and business cases on heterogeneous mobile
platforms (challenge 1) provides the necessary feedback for enabling more efficient modeling

CONNECT 231167 21

and reasoning of mobile component functionalities (challenge 2) and required CONNECTor
behaviours (challenge 3).

The performance of interoperability solutions (challenge 4) is an equally important concern
when dealing with resource-constrained devices. This issue is further accentuated when the
mediated systems impose real-time constraints, like, for example, in the case of live
multimedia streaming.

As described in Deliverable 1.4, dynamic code deployment on existing mobile platforms is
generally prohibited. This constraint introduces further technical and architectural challenges
for the run-time synthesis and deployment of CONNECTors on mobile devices (challenge 5).

3.1.4 Ambientic use cases
In correlation with Ambientic business needs, we have implemented four use cases, which are
representative of the innovations we aim to introduce in the U-Event platform:

• In order to provide, through U-Event, conference’s attendees and speakers the capability
to use their smartphones to broadcast audio/video streams, we implemented two
prototypes that highlight how CONNECT technologies help to achieve multimedia stream
interoperability. The former is on mobile video streaming interoperability and highlights
Control Protocol as well as Media Container interoperability. The latter, called Push2Talk,
implements a “Walkie-talkie” application to be used among a group of people and
highlights mobile group communication and interoperability with legacy audio clients.

• Another innovation consists of enabling U-Event to get access to heterogeneous cloud
providers to allow event participants to retrieve their document and data from the cloud and
share them with other participants. To do so, we implemented a third use-case that
demonstrates inter-application mediation and allows a prototype of mobile application to
interact with the most popular legacy Cloud services.

• The U-Event application interacts with the Ambientic server, which is responsible to
manage users’ data and further bridging the U-Event application with upcoming event
services. Currently, the bridging process is handmade and time consuming. This is why we
envisioned to experiment CONNECT technologies through a real business case involving
different event management systems in order to enable a dynamic interoperability
including complex interaction protocol stacks with cross-layer dependencies.

3.1.5 Assessment criteria
Based on the above challenges and objectives, we define five assessment criteria that allow
us to evaluate the potential of CONNECT to deliver added value in the development and usage
of mobile collaborative applications:

1. Interoperability between mobile deployed applications assesses the ability of
CONNECTors to mediate mobile collaborative applications that are either co-located or
installed on separate mobile devices.

2. Interoperability between mobile applications and cloud services assesses the ability
of CONNECTors to enable mobile applications to get access to miscellaneous remote cloud
and networked services.

3. Improvement of the mobile application development process evaluates the
automation impact of the CONNECTor synthesis process on the development of mobile
collaborative applications.

4. Handling of mobile context dynamicity assesses the ability of collaborative mobile
applications to handle changing network conditions inherent to mobile environments.

5. Mobile application scalability evaluates mobile communication scalability in term of
architecture and usage.

CONNECT 231167 22

Criteria/Use Case Live video
streaming

P2T Cloud
Storage

Event
Management

1 ✔ ✔ ✔

2 ✔ ✔

3 ✔ ✔ ✔ ✔

4 ✔ ✔ ✔

5 ✔ ✔

Table 3.1: Use Cases Highlighted Criteria

3.2 Mobile collaborative applications use cases
In this section, we detail the design and implementation of the mobile collaborative
applications use cases, which serve to assess the aforementioned criteria (see Table 3.1) and
demonstrate that CONNECT technologies can be successfully applied in the mobile domain.

3.2.1 Mobile video streaming interoperability
Last year, in Deliverable D1.3, we addressed the challenges of enabling Live Multimedia
Streaming on heterogeneous mobile devices with reference to the CONNECT architecture. We
introduced AmbiStream, a compile-time, multi-platform CONNECTor that can be deployed in
fully distributed mobile environments. AmbiStream is based on the iBICOOP middleware
technology, a partial and lightweight CONNECT Enabler implementation intended to simplify the
development of Collaborative Mobile Applications on heterogeneous devices. iBICOOP was
then improved and integrated with the AmbiStream CONNECTor in order to fulfill the goal of
interoperable live streaming on current generation mobile platforms. Following the layout
described in Figure 3.1, during the third year review demonstration session, we showed that a
legacy HLS (HTTP Live Streaming Protocol) Video Player (e.g., an Apple iPad Tablet), can
connect and display video streamed by the UAV NS (RTSP Server) using the Real-time
Streaming Protocol. The two NSs interoperate via a Mobile CONNECTor deployed on an
Android smartphone.

Figure 3.1: AmbiStream Mobile CONNECTor Architecture

For this reporting period, we further extended the AmbiStream mobile demonstrator to enable
live streaming interoperability between the NSs that are part of the global GMES scenario. As

Mobile CONNECTor

Network

iBICOOP Enablers

Mediator

Protocol Translation

Media Container
Adaptation

AmbiStream RTP

RTSP HLS

Network

HLS Video Player

UAV

Legacy Client

Network

RTSP Server

RT
SP

RTP MPEG-TS

CONNECT 231167 23

described in Figure 3.2, we demonstrate live video streaming interoperability between the UAV
video-stream service and the C2 GIS integrated video player. At the same time, the
AmbiStream mobile demonstrator can discover, connect, and redistribute the stream of the IP
Cameras part of the GMES scenario. This is achieved by relying on the iBICOOP Enablers
implementation to overcome the mobility-induced restrictions.

Initially, the AmbiStream Mobile CONNECTor was designed to solve interoperability between
live streaming protocols at two levels: Control Protocol (represented by the Protocol
Translation layer in Figure 3.2) and Media Container Adaptation. Each mediation phase is
achieved using high-level descriptions (i) of the interaction protocol, and (ii) of the media
container format. While mediation done at these two levels is sufficient2 to achieve
interoperability between most live streaming protocols supported by mobile platforms, there
exist a number of protocols, which are not agnostic to the image, or audio codec used. In such
cases, the video frames (or audio samples) have to be transcoded to the encoding supported
by the legacy protocol. This is the case for the C2-GIS integrated video player, which only
supports the JPEG image format, while the UAV service provides video frames encoded using
the H.264/AVC codec.

Low-level image processing is a resource intensive task, and can only be achieved on current
generation mobile devices by using dedicated hardware. Since mobile platforms do not
provide the necessary API, or do not support such hardware optimizations, we devised an
approach to execute the Image Processing on an external resource-rich Content Adapter (see
Figure 3.2).

Of course, the Content Adapter stack, including the Image Processing unit, could be easily
deployed on a single resource-rich NS on the local network. But, in order to take mobility into
account, we cannot assume that such a system exists or is easily deployable in any network
environment. Thus, the Content Adapter was designed on top of the iBICOOP Enablers layer,
which assures transparent communication and discovery for mobile environments. In this way,
the adaptation service can be easily deployed as a Cloud Service on the Internet, while the
mobile CONNECTor can assure interoperability for systems on the local network. Following
Figure 3.2, we show that for relaying the multimedia content between the Mobile CONNECTor
and the Content Adapter service we use the AmbiStream protocol, and RTP media container
format.

Figure 3.2: Mobile CONNECTor with Relayed Content Adaptation

2 Emil Andriescu, Roberto Speicys Cardoso, Valérie Issarny: AmbiStream: A Middleware for Multimedia
Streaming on Heterogeneous Mobile Devices. Middleware 2011: 249-268

Mobile CONNECTor

Network

iBICOOP Enablers

Mediator

Protocol Translation

Media Container
Adaptation

AmbiStream RTP

RTSP HLS

Relayed Content
Adaptation

Network

HTTP/MJPEG Player

UAV

C2 GIS

Network

RTSP Server

RT
SP

RTP MPEG-TS
Content Adapter

Network

Image Processing

AmbiStream RTP

iBICOOP Enablers

MJPEG H264

CONNECT 231167 24

3.2.2 Mobile audio streaming interoperability (Push2Talk)
We further experimented live multimedia streaming interoperability, using the AmbiStream
CONNECTor, focusing on group communication. For this goal, we have implemented the
Push2Talk mobile application. Push2Talk allows one to easily create communication channels
where people can meet and discuss in real time, regardless of their phone platform. As seen in
Figure 3.3, the graphical interface of the Push2Talk application presents three views: Login,
Join/Create channel and the Channel-view. The channel view lists all participants of a
particular session. Each participant can push the microphone button to speak.

Figure 3.3: Push2Talk application GUI on Android and iOS

In order to evaluate the scalability of the Mobile-Communication Enabler, in a non-simulated
environment, we released this prototype as a free application on both Apple and Google
marketplaces (i.e., Apple AppStore3 and Google Play4). Since mobile devices are usually not
directly addressable over the Internet due to Firewalls and network address translation,
Push2Talk relies exclusively on the Relayed Streaming infrastructure, which is part of the
lightweight CONNECT Enabler implementation for mobile platforms. Finally, we enable

3 Push2Talk for iOS: https://itunes.apple.com/en/app/push2talk-connect/id575824793
4 Push2Talk for Android: https://play.google.com/store/apps/details?id=com.ambientic.push2talk

Login Join/Create Channel Channel audio streaming

An
dr

oi
d

iO
S

VL
C

CONNECT 231167 25

interoperability between the Push2Talk mobile application and legacy live streaming
applications using the AmbiStream CONNECTor. More specifically, we demonstrate
interoperability between the Push2Talk application and RTSP-capable streaming clients (e.g.,
VLC, QuickTime, Android Media Player, etc.).

In the context of CONNECT, the Push2Talk application highlights three main contributions: (i)
the mobile cross-platform interoperability (i.e., iOS, Android) assured by the iBICOOP-based
CONNECT Enablers; (ii) N2N group communication supporting audio streaming and (iii)
interoperability between legacy live streaming protocols (i.e., RTSP) and applications (i.e.,
VLC) using the AmbiStream CONNECTor. In this use case, the Mobile CONNECTor was
deployed packaged along with the Push2Talk application, as described in Figure 3.4.

Figure 3.4: The mobile CONNECTor deployed along with Push2Talk application

3.2.3 Cloud storage services
Deliverable D1.4 introduces a new way to deploy CONNECTors in the form of mobile
applications. The CONNECTor architecture was revised to fit mobile requirements and was also
enhanced with a new mobile communication middleware (MiAC) that enables mobile
applications to discover and use onboard CONNECTors in order to communicate with co-
located applications (i.e. Networked Systems) that were not designed to support such
interaction.

We carried out two experiments on the iOS platform. The former involves Instagram legacy
applications that use a custom application data format and the latter is an in-house cloud
application based on MiAC. It provides more complex behaviors, which demonstrates a more
elaborated mediation process.

The first experiment involves the Instagram and Instagram Frame applications both of which
have been developed by Instagram. The first application is used to capture, adjust and share
pictures. The second application allows pictures to be edited by adding picture frames. Users
can also share their framed photos from the Instagram Frame application to the Cloud via the
local Instagram application. In order to extend the sharing capability of the Instagram Frame
application, we developed a mediator (called CloudMediator) which handles the same
Instagram data types (i.e., “com.instagram.exclusivegram”) and enables the corresponding
pictures to be shared with many other cloud applications installed on the mobile device (see
Figure 3.4).

When the CloudMediator is deployed on the device, the Operating System allows the
Instagram application to find the mediator and share images to mediated Cloud services.

Mobile CONNECTor Legacy Client

Network

iBICOOP Enablers

 P

us
2T

al
k

 A

pp
lic

at
io

n

Mediator
Protocol

Translation

Container
Adaptation

AmbiStream RTP

RTSP HLS

RTP MPEG-TS

Network

RTSP Audio Player

CONNECT 231167 26

Figure 3.4: Instagram CONNECTor

The user can select the CloudMediator to share his edited pictures, which drives the Instagram
Frame application to send files over a proprietary extension “ig” (Figure 3.4 step 1). The
CloudMediator receives, parses the file containing the Instagram picture and creates the
corresponding abstract action (Figure 3.4 step 2). The Automaton Engine maps the “open”
Actions and translates the incoming “ig" file into a “jpeg" file (Figure 3.4 step 4). Finally, the
mediator Composer translates the abstract action into a file-call (Figure 3.4 step 4), which
triggers the Operating System to display to the user a list of collocated mobile applications
which are able to handle the incoming image file via the CloudMediator, as for instance
Dropbox (Figure 3.4 step 5).

In order to experiment the applicability of the MiAC middleware in the mobile mediation
process, we considered the use of Cloud storage services, in particular. Indeed, with the
growing usage of mobile applications, many companies provide various Cloud services to help
users access their content and synchronize data across their different devices, or interact and
share content with other mobile users. The multitude of similar Cloud services, and the
heterogeneity of their interfaces make it difficult for mobile applications to leverage these
services, either directly or through the mobile applications of the Cloud services vendors. This
issue is reinforced when two interacting users intend to use different Cloud storage services.

We designed a demonstrator for the iOS platform that shows how a Cloud-enabled application
can seamlessly interact with different Cloud services through mobile mediators. The mobile
application referred as CloudConnect requires a unique proprietary interface to interact with
Cloud storage services. As illustrated in Figure 3.5, this interface defines the following actions:

DropboxInstagram

Instagram
Frame

Mediator

0- Register

Destination=ig
Action Name= open
input= file://save.ig

parser

composer

Destination=jpeg
Action Name= open
input= file://save.jpeg

save.jpeg

save.ig

<key>LSItemContentTypes</key>
<array>
 <string>com.instagram.exclusivegram</string>
</array>

1- send

2- parse

3- map

4- compose

5- send

CONNECT 231167 27

• The Sign-in Action: enables the application to login and authenticate the user
• Name: signIn
• Inputs: email
• Output: uid (login ok), null (login fail)

• Get-user-info Action: retrieves user information that is registered in the corresponding
cloud
• Name: userInfo
• Inputs: uid
• Output: username, userContact

• Get-user-resources Action: lists all user resources in the related cloud
• Name: resourceInfo
• Inputs: uid
• Output: Array of resourceName

Figure 3.5: The Required Interface of the CloudConnect Application

We then designed four instances of the cloud mediator to interconnect the application with
major Cloud storage services, namely: Dropbox, Microsoft’s Skydrive, GoogleDrive and
Flicker.

All these mediators Register to handle the CloudConnect interface and are able to map each
CloudConnect action to its corresponding HTTP RESTful action of the mediated Cloud
services (Figure 3.6 shows the interfaces for each cloud service).

Figure 3.6: The Provided Interface of the Cloud Service

Each mediator requires as input an automaton specifying the mapping between the required
CloudConnect actions and the corresponding cloud service actions.

+signIn(email: String): String
+userInfo(uid: String): HashTable (userName: String, userContact: String)
+resourceInfo(uid:String) HashTable (resourcesName: Array)

CloudConnectService

cloudConnectService

googleDriveService

+oauth(): String
+userInfo(accessToken:String): HashTable (name: String, link: String)
+files(accessToken: String) HashTable (items: Array)

GoogleDriveService

skyDriveService

+oauth(): String
+info(accessToken: String): HashTable (name: String, link: String)
+folder(accessToken: String) HashTable (data: Array)

SkyDriveService

+login(): String
+info(uid: String): HashTable (display_name: String, info: String)
+metadata(uid: String) HashTable (contents: Array)

DropboxService

DropboxService

FlickrService

+auth(): String
+peopleGetInfo(id: String): HashTable (realName: String, profileurl: String)
+searchPhotos(id: String) HashTable (photos: Array)

FlickrService

CONNECT 231167 28

Figure 3.7: Cloud Mediation Storyboard

 A
ction

 nam
e: signIn

 input em
ail

 output:
 source:CloudConnect
 dest:CloudStorage

action.cloud

M
iAC

Com
poser

action.cloud

O
S

O
S

 A
ction

 nam
e: login

 input:
 output:
 source:CloudConnect
 dest:DropboxConnector

M
iAC

Parser

 A
ction

 nam
e: signIn

 input em
ail

 output:
 source:CloudConnect
 dest:D

ropboxC
onnector

Autom
aton

Engine
M

iAC
Interaction

 A
ction

 nam
e: login

 input:
 output: uid
 source:CloudConnect
 dest:DropboxConnector

 A
ction

 nam
e: signIn

 input:
 output: uid
 source:CloudConnect
 dest:DropboxConnector

M
iAC

Interaction

Autom
aton

Engine

CloudConnect://...

M
iAC

Com
poser

O
S

 A
ction

 nam
e: info

 input: uid
 output:
 source:CloudConnect
 dest: DropboxConnector

O
S

 A
ction

 nam
e: userInfo

 input: uid
 output:
 source:CloudConnect
 dest: DropboxConnector

Autom
aton

Engine

 A
ction

 nam
e: userInfo

 input: uid
 output:
 source:CloudConnect
 dest: DropboxConnector

dropboxConnnector://...

dropboxConnnector://...

M
iAC

Parser

 A
ction

 nam
e: info

 input: uid
 output: display_nam

e
 info
 source:CloudConnect
 dest: DropboxConnector

 A
ction

 nam
e: userInfo

 input: uid
 output: userN

am
e

 userC
ontact

 source:CloudConnect
 dest: DropboxConnector

Autom
aton

Engine

CloudConnect://...

M
iAC

Com
poser

O
S

 A
ction

 nam
e: m

etadata
 input: uid
 output:
 source:CloudConnect
 dest: DropboxConnector

O
S

 A
ction

 nam
e: resourceInfo

 input: uid
 output:
 source:CloudConnect
 dest: DropboxConnector

Autom
aton

Engine

 A
ction

 nam
e: resourceInfo

 input: uid
 output:
 source:CloudConnect
 dest: DropboxConnector

M
iAC

Com
poser

dropboxConnnector://...

dropboxConnnector://...

M
iAC

Parser

 A
ction

 nam
e: m

etadata
 input: uid
 output: contents
 source:CloudConnect
 dest: DropboxConnector

 A
ction

 nam
e: resourceInfo

 input: uid
 output: resouresN

am
e

 source:CloudConnect
 dest: DropboxConnector

Autom
aton

Engine

CloudConnect://...

M
iAC

Com
poser

O
S

 A
ction

 nam
e: signIn

 input:
 output: uid
 source:CloudConnect
 dest:DropboxConnector

M
iAC

Interaction

CloudConnect://...

M
iAC

Parser

 A
ction

 nam
e: userInfo

 input: uid
 output: userNam

e
 userContact
 source:CloudConnect
 dest: DropboxConnector

dropboxConnnector://...

M
iAC

Parser

 A
ction

 nam
e: resourceInfo

 input: uid
 output: resouresNam

e
 source:CloudConnect
 dest: DropboxConnector

dropboxConnnector://...

M
iAC

Parser

C
loud C

onnect (M
obile A

pplication)
C

loud C
onnect (M

obile A
pplication)

D
ropboxC

onenctor (m
ediator)

SignIn ActionUserInfo ActionResourceInfo Action
Step 1

Step 2
Step 3

Step 4

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Interaction

M
iAC

Com
poser

CONNECT 231167 29

The storyboard in Figure 3.7 shows the step-by-step interaction between the CloudConnect
application and the Dropbox mediator, and highlights how the three aforementioned actions
are performed through the mobile mediation middleware. For instance, as the user pushes the
authentication button, the application triggers a “signIn” action which displays a list of all
collocated mediators that were registered for the CloudConnect interface (Figure 3.7 step 1).
The Dropbox mediator is then selected by the user, and further receives the incoming action,
which is parsed (by the MiAC Parser) and mapped (by the Automaton Engine) into a Dropbox
action using the provided mapping (Figure 3.7 step 2). The mediator authenticates users using
OAuth 5 process. Then, if the user authorizes the caller application to access his account, the
output of the action is filled and mapped back as a CloudConnect action before answering the
caller (Figure 3.7 step 3). The CloudConnect application decodes the action and checks if the
initiated “signIn” action succeeded or not (Figure 3.7 step 4).

Figure 3.8: Case study interoperability scenario

3.2.4 Online event management services
The core business of Ambientic is the Event Market, for which we designed a dedicated
mobile application called U-Event. U-Event supports facilitated exchange of data related to an
event, coordination of organization tasks, and interaction among all event participants
(organizers, exhibitors, booth designers, visitors, the press) via their smartphones.

However, U-event is supported by a web service that enables to store event-data as well as to
interoperate with local event services (e.g., the visitor registration server). Currently, for each
event we have to manually adapt our web service to interact with different service providers,
which is a tedious and time consuming task.

In order to automate the interoperability of different event management systems, we
investigated the use of CONNECT technologies. During this experimentation phase we
proposed and implemented an improvement to the CONNECT architecture, called FCCL6, which
facilitates cross-layer interoperability by automatically generating parsers and composers for
complex protocol stacks. We integrated this framework with the CONNECT Synthesis Enabler,

5 The OAuth 2.0 Authorization Framework: http://tools.ietf.org/html/rfc6749
6 FCCL: Framework for Composite Cross-Layer Protocol Interoperability

Amiando Client Mediator RegOnline Service

EventFind request

Login request

Login response

GetEvents request

GetEvents response

EventFind response

EventRead request

EventRead response

Fig. 7. Case study interoperability scenario

obtained by injecting semantical annotations defined in the
Message Model into the XSD document generated using
JAXB11. Based on the SAXSD, the provided domain ontology
and the LTS behavioral description, the Abstract Mediator
Synthesis component generates a mediator. The mediator and
associated CCL P&Cs are executed by the Mediator Engine,
following the sequence of operations presented in Fig. 7. For
generating the reverse mediator we did not have to provide
any additional inputs.

In Fig. 8, we evaluate the execution-time overhead of
the mediation. Since this test is performed using the real
online services, the response time varies depending on the
network conditions. As expected, the mediated execution-time
is superior to the non-mediated case, given that the number of
messages exchanged is doubled. We show the decomposition
of the execution-time for mediation, composing and access/-
parsing. Network access and parsing cannot be distinguished
in this case because parsing is done in multiple steps when
data is available on the communication channel. While the
overhead of mediation and message composition is low, we
see that parsing and network reception introduce the largest
overhead. This is why, in Fig. 9, we detail the decomposition
of parsing time over each Atomic parser chained in the
generated CCL P&Cs. We see that the EventFind response
message parsing has a peak of 1662 ms. We also observe
that the entire time is associated with the HTTP parser, and
given that the size of the message is only 869 bytes, we
can conclude it is almost entirely due to the response delay
of the Amiando Service. The same reasoning applies for the
GetEvents response message of the RegOnline service, but
in this case 197 ms are associated with the SOAP parser which
is chained to parse the HTTP response’s payload (the HTTP
body). Knowing that in this particular implementation, the
SOAP parser does not wait for network access, we observe
that the SOAP Atomic parser introduces an important SOAP-
Envelope parsing overhead. This observation confirms that the
Amiando/RegOnline mediator execution-time (in Fig. 8) can
be reduced by using a more efficient SOAP Atomic parser.

Comparing to the non-mediated tests, we can conclude that
our mediation approach introduces an acceptable overhead
while enabling seamless interoperability between the two
systems.

11Java Architecture for XML Binding. http://jaxb.java.net/

0"

500"

1000"

1500"

2000"

Regonline/"
Regonline"

Amiando/"
Regonline"

Amiando/"
Amiando"

Regonline/"
Amiando"

Ex
ec
u&

on
)&
m
e)
(m

s)
)

Baseline"(non5mediated)"
Media9on"
Composing"
Access&Parsing"

Fig. 8. Comparison between mediated and non-mediated executions. For
the mediated case we provide the approximate time required for Parsing,
Composing and Mediation.

0" 100" 200" 300" 400"

GetEvents"Response"

Login"Response"

EventRead"Request"

EventFind"Request"
HTTP" JSON" SOAP" XML"

Amiando"Client"/"Regonline"Service"

0" 100" 200" 300" 400"

EventRead"Response"

EventFind"Response"

GetEvents"Request"

Login"Request"

Access%&%Parsing%Time%Decomposi2on%(ms)%

1662"ms"~

Regonline"Client"/"Amiando"Service"

Fig. 9. Parsing overhead decomposed by Atomic parsers

VI. RELATED WORK

In [16], we survey existing approaches to mediation and
give initial thoughts about leveraging ontologies to deal with
interoperability from application down to middleware. In this
paper we give a detailed approach on how to actually achieve
the mediation and evaluate it with a real-world scenario.
In this approach, ontologies are only used for mediation at
the application level, while libraries and learning techniques
are used to perform the necessary parsing and composing
of middleware-specific messages. In this section, we discuss
two categories of related work: network protocol message
processing and automated mediation.

Network protocol message processing: Most approaches
to processing protocol messages [6], [8], [17] rely on a
specification of the structure of messages using variations of
the ABNF metalanguage. While these approaches are highly
efficient, they lack flexibility since they require a very low-
level specification of the exchanged messages each time a
parser or composer must be generated and the whole spec-
ification must be re-written if one of the protocols from the
stack changes. Instead of considering protocols as monolithic
blocks, Model Driven Architecture (MDA)12 proposes to spec-
ify applications using an abstract model, called the Process
Independent Model (PIM). The PIM is deployed atop mid-

12http://www.omg.org/mda/

CONNECT 231167 30

and were able to synthesize and execute mediators for Regonline7 and Ambiando8 event
management systems. A detailed presentation of the framework architecture and integration
with the Synthesis Enabler is provided in Deliverable D3.4.

In Figure 3.8, we present the interoperability scenario used as a case study. The CONNECTor
solves interoperability between the Ambiando client, previously integrated into our application,
and the Regonline service that is not supported by U-Event. We show that the mobile
application can seamlessly connect to the Regonline service, retrieve and display information
about a particular event, via the synthesized CONNECTor. In this case, for privacy reasons, the
CONNECTor was deployed on the server side.

3.3 Assessment
This section assesses CONNECT for the mobile environment considering the criteria set in
Section 3.1.5 and the use cases sketched in the previous section.

3.3.1 Interoperability between mobile deployed applications
Criteria Interoperability between mobile deployed applications.

Initial assessment CONNECT architecture lacks support for on-mobile interoperability.

Multimedia content has specific interoperability constraints (real-time,
fragmentation, multiplexing).

Contribution Modeling of live streaming protocol interface.

Modeling of mobile inter-app communication.

Deployment of CONNECTors on mobile platforms.

Mobile CONNECTor architecture (AmbiStream, Mobile Inter-app
CONNECTor)

Future work Integration of CONNECT Synthesis in the mobile CONNECTor

Interoperability between mobile networked systems has been experimented for NSs deployed
on different mobile devices (live multimedia streaming) or collocated on the same device
(Cloud storage using app 2 app communication).

In the live multimedia streaming use cases (video streaming and Push-2-Talk), CONNECTors
are deployed and executed on mobile devices, and they support the exchange of video or
audio streams between incompatible sources. Specifically, these uses cases, along with
GMES, allowed us to experiment with interoperability at different layers:

• Interaction protocol heterogeneity: We confirmed that the mobile deployed CONNECTor
enables interoperability when interaction protocols differ. For example, the AmbiStream
application, deployed on an Android smartphone, is used to translate an RTSP stream
coming from the UAV NS to an HTTP Live Streaming stream which is further used to
display video in real-time on an Apple iPad.

• Data format mismatch: Multimedia content (video frames and audio samples) is sent over
the network using various encapsulation methods. In the live video streaming use case, the
video frames are adapted from RTP encapsulation to MPEG-TS encapsulation. Besides the
media container format, the audio/video samples may also use different compression
algorithms (i.e., codecs). AmbiStream enables interoperability between the UAV and C2

7 Regonline: http://www.regonline.com/
8 Amiando: http://www.amiando.com/

CONNECT 231167 31

GIS system, by translating RTSP to MJPEG, which, in turn, requires the transformation of
H264 video frames to JPEG images. This final adaptation cannot be done on mobile
platforms, so it is achieved using a relayed content adapter deployed on the Internet.

• Application heterogeneity: Live streaming applications may have different non-functional
requirements. When mediating such interactions, the quality of service might be decreased.
In the case of RTSP (real-time stream) to HLS (high-latency stream), mentioned above, the
CONNECTor is required to buffer content, thus increasing latency in order to accommodate
the incompatible requirements (real-time vs. content buffering).

Interoperability between mobile NSs deployed on the same mobile device has also been
assessed in the Cloud storage use case, as different Cloud services may be accessed
indirectly thru specific client applications deployed on the mobile device. The experiment on
the Apple iOS platform confirmed the feasibility of app2app interoperability, which enables
both Cloud service providers and mobile users to better control how third-party applications
use these services. We demonstrated how to discover and interact with the Instagram legacy
mobile application.

3.3.2 Interoperability between mobile applications and cloud services
Criteria Interoperability between mobile applications and cloud services.

Initial assessment CONNECT architecture lacks support for on-mobile interoperability.

Cross-layer dependencies between physical messaging
encapsulation layers.

Contribution Cross-layer protocol modeling for Cloud service interoperability.

Modeling of mobile inter-app communication.

Deployment of CONNECTors on mobile platforms.

Mobile CONNECTor architecture (Mobile Inter-app CONNECTor).

FCCL framework architecture and prototype

Future work Integration of CONNECT Synthesis in the mobile CONNECTor.

Interoperability between mobile NSs and Cloud services has been assessed with the
CONNECTor being deployed either on the mobile side (Cloud storage services use case) or on
the infrastructure side (Event Management services use case).

As for co-located mobile applications, we have been able to assess the feasibility of the
deployment and use, on the mobile, of mediators enabling interoperability between legacy
mobile applications with different Cloud storage services.

The event management services use case, allowed us to experiment the deployment and use
of CONNECTors supporting mobile applications on the infrastructure side. In this use case, we
also integrated and improved the Synthesis Enabler to support complex data types and cross-
layer interoperability. Specifically, it enabled us to assess interoperability at different layers to
handle the complexity of the interfaces and protocols of the Amiando and Regonline services:

- Interaction protocol heterogeneity: Amiando and Regonline services provide
incompatible interaction protocols. Based on the behavior specified for each service and
their associated interfaces, the Synthesis Enabler was able to identify a correct
correspondence between the actions of the two NSs. An example of a valid action
correspondence is presented in Section 3.2.4. The synthesized abstract mediator enabled
interoperability between the Amiando client, and the Regonline service.

CONNECT 231167 32

- Data format mismatch: Using the FCCL framework, we were able to generate all the
required parsers and composers, and their associated SAXSD descriptions. In the context
of web services, this level of data adaptation is sufficient to enable valid mapping of values
via the abstract mediator.

3.3.3 Improvement of the mobile application development process
Criteria Improvement of the mobile application development process.

Initial assessment Need for rapid integration of Cloud services and in particular Event
Management services and storage services.

Need for mobile integration of legacy systems.

Contribution Modeling of mobile inter-app communication.

Deployment of CONNECTors on mobile platforms.

Cross-layer protocol modeling for Cloud service interoperability.

FCCL framework architecture and prototype.

Integration of CONNECT Synthesis for server side support of mobile
applications.

Future work Integration of CONNECT Synthesis in the mobile CONNECTor
architecture.

From the development standpoint, the use of the different CONNECT technologies was very
helpful to speed up the design and the implementation of all use cases.

The AmbiStream prototype (described in D1.3), which is the CONNECT implementation for
streaming protocol interoperability in mobile environments, represents the core of the
audio/video streaming use cases (i.e., Live Video Streaming, and P2T). Hence, with the help
of the synthesis enabler, we were able, without difficulty, to enable support to new streaming
protocols (e.g., RTSP, HLS, HTTP/M-JPEG, Ambistream/RTP, etc.) with minor development
overhead.

In the cloud storage use case, we based our approach on the mobile CONNECTor architecture,
introduced in D1.4, to design a generic CONNECTor skeleton, deployed in the form of a mobile
application. By specifying the merged automata that map the CloudConnect application
interface with the cloud service interfaces, we were able to synthesize almost integrally all
cloud CONNECTor instances (i.e., Dropbox, GoogleDrive, Skydrive, Flickr CONNECTors). Figure
3.9 confirms the implementation effort, since the current CONNECTor generation achieved
about three-quarters of the CONNECTor, which is already a satisfactory result. Still, we are now
working on integration with the Synthesis Enabler so as to generate the currently handmade
automata. We also aim at enhancing the CONNECTor parsers and composers with Starlink or
FCCL framework to enable CONNECTors to interact with network interfaces that are supported
by legacy middleware such as: REST, SOAP, etc.

The Event management use case is based on the FCCL framework that helps to generate all
the required parsers and composers, and their associated SAXSD descriptions to dynamically
interact with heterogeneous and complex cloud services. The use of the FCCL framework
reduced the development time by (i) enabling the reuse of parser implementations for HTTP
and SOAP (ii) facilitating the re-use of the WSDL interface provided by Regonline and (iii)
being able to learn the structure of the Amiando JSON-encoded responses, based on provided
message samples (initially obtained using a network packet analyzer). However, the mediation
process still requires some expert input in the form of high-level models. We believe that part
of the input can be further automated by inferring, at least partially, the Message Model by
cooperating with discovery mechanisms and packet-inspection software.

CONNECT 231167 33

Figure 3.9: Static part and dynamic part ratio of the cloud CONNECTor instances.

3.3.4 Handling of mobile context dynamicity
Criteria Handling of mobile context dynamicity.

Initial assessment Supporting horizontal and vertical network handoff on mobile
devices.

Reachability of the CONNECTors in the mobile environment.

Contribution Deployment of CONNECTors on mobile platforms.

Mobile CONNECTor architecture (AmbiStream, Mobile Inter-app
CONNECTor).

Lightweight CONNECT Enablers (Ibicoop Discovery and
Communication Enablers) for mobile environments.

In order to evaluate mobile context dynamicity, we considered three CONNECTor deployment
cases, enabling mobile interoperability: iBICOOP-aided deployment, co-located CONNECTor
deployment, and shared-context deployment.

First, the Push2Talk application use-case demonstrates the use of the Discovery and
Communication Enablers part of the iBICOOP mobile middleware to allow seamless vertical
and horizontal network hand-off support for streaming audio data in real-time independently of
the network topology and underlying platform. Based on this use-case we demonstrate that
users participating in a communication group can seamlessly switch networks and even loose
network CONNECTivity for short periods of time, without functional consequences at the
application layer.

Second, as we explained in Deliverable 1.4, mobile context dynamicity w.r.t the deployment of
CONNECTors can be also achieved by isolation, when the CONNECTors and mediated
applications are co-located on a single mobile device. We experimented this type of
architecture with the Cloud Storage Services use-case, where CONNECTors were deployed on
a single iOS device. We showed that local mobile applications could CONNECT to cloud
services via co-located CONNECTors independently of mobile context changes.

0 %

25 %

50 %

75 %

100 %

Dropbox Flicker Google Drive SkyDrive

21 %29 %36 %23 %

79 %
71 %

64 %

77 %

Automation ratio Hardcoded ratio

CONNECT 231167 34

Third, we also considered the case where mobile context dynamicity is solved implicitly by
assuming that the CONNECTor and the mediated networked systems will share the same
context for long periods of time. We demonstrate this case using the AmbiStream application
use-case where a legacy video client (an iOS device implementing the HLS streaming
protocol) connects to a streaming source (the UAV video service), via a CONNECTor, which is
deployed on an Android smartphone. In this case, we assume that the Wi-fi network
infrastructure assuring communication between the UAV, the Android-deployed CONNECTor
and the iOS device represents a shared network-context.

3.3.5 Mobile application scalability
Criteria Mobile application scalability.

Initial assessment Scaling-up the mobile CONNECTor architecture.

Enabling efficient many-to-many communication independently of
network topology.

Contribution Distributed Mobile CONNECTor architecture.

Group communication scalability.

Mobile live streaming QoS.

The AmbiStream CONNECTor relies on the iBICOOP Communication Enabler for assuring
scalable live streaming protocol interoperability. This is particularly important in the case of
Multimedia Broadcast services. The Push2Talk use case validates this claim by providing real-
time N-to-N group communication between hundreds of peers. Further, the Push2talk
application was deployed on the Android and Apple application marketplaces in order to
validate its performance in real use-case environments.

3.4 Summary
In this section, we provided an assessment of the revisited CONNECT architecture that realizes
the CONNECT architecture in the mobile applications domain (see Deliverable D1.4). The
resulting architecture incorporates a set of contributions that together address the CONNECT
challenges relevant to the domain (See Table 3.2).

This assessment as been carried out according to the criteria identified as critical for building
collaborative applications in the mobile domain, and the experiments are based on four use
cases grounded on Ambientic innovation plans to incorporate in its current business products.

CONNECT 231167 35

CONNECT

Challenges

Contributions that address the challenge WP #

1 - peer system
functionalities

Modeling of live streaming protocol interface

Cross-layer protocol modeling for Cloud service interoperability

Modeling of mobile inter-app communication

WP1

WP3

WP1

2 - CONNECTor
behaviors

Deployment of CONNECTors on mobile platforms

Mobile CONNECTor architecture (AmbiStream, Mobile Inter-app
CONNECTor)

WP1

3 - Runtime
synthesis

Integration of CONNECT Synthesis in the mobile CONNECTor
architecture

WP1/3

4 - Performant
system architecture

Distributed Mobile CONNECTor architecture

FCCL framework architecture

Group communication scalability

Mobile live streaming QoS

WP1

WP3

WP1

WP1

5 – Field
experiments

Experiments linked to mobile/cloud and Ambientic business WP6

Table 3.2: Addressing CONNECT Challenges in the mobile applications domain

CONNECT 231167 37

4 Conclusion
In CONNECT Year 4, the partners in WP6 have provided a suitable platform for assessing the
research performed in WP1 – WP5 in a realistic setting. WP6 has collaborated closely with
other WPs to produce a GMES use case on top of CONNECT technical and architectural
abstractions, while, at the same time, taking into account the feedback received in the
previous review.

In the GMES use case, a lot of Networked Systems are involved with heterogeneous
communication and data patterns. This experiment has assessed CONNECT architecture
and enablers from a System of System (SoS) perspective, by illustrating and validating
the underlying technical approach. Indeed, we grounded this validation on specific results
over:

• The non-intrusiveness of the CONNECT platform over the networked systems;
• Support of Evolutionary development;
• Dealing with systems heterogeneity;
• To deal with geographical distribution of elements in networks of systems.

In addition to this SoS assessment, we introduced a series of Mobile Collaborative
interoperability use-cases for highlighting our contributions in WP1 and WP3 on revisiting the
overall CONNECT architecture and prototypes to deal with mobile environments and
interaction with associated cloud services. In this context, we experimented the
deployment of CONNECTors on existing mobile platforms (currently, iOS and Android) following
the proposed architectural designs for mediating Networked Systems and also mobile inter-
application interaction. More specifically, for this second assessment protocol, we looked for
assessed results in:

• Interoperability between mobile deployed applications;
• Interoperability between mobile applications and cloud services;
• Improvement of the mobile application development process;
• Handling of mobile context dynamicity;
• Mobile application scalability.

Assessment and validation results for all aforementioned criterions have been precisely
characterized in the content of this document.

CONNECT 231167 39

5 Appendix: NS updates from D6.3

5.1 Networked Systems

5.1.1 NS 1 - UAV
The UAV system is a flying mobile platform, hosting a UAV Camera. It provides a SOAP Web
service for its control operations and it offers a RTSP video stream and uses CDP as
Discovery Protocol.

5.1.1.1 Interfaces

Figure 1: UAV Interface

authenticate(login: String, password: String): String – authenticates with a login and password, returns
an access token to be used for all other commands

getCoordinates(accesstoken: String): CoordinateResponse – gets current coordinates of UAV, returns
a 6D value including roll, pitch, and yaw in addition to X,Y, and Z

takeoff(accesstoken: String): Void – orders the UAV to take off

land(accesstoken: String): Void – orders the UAV to land

logout(accesstoken: String): Void – invalidates the access token

emergencylogout(accesstoken: String): Void – logout from ugv but beforehand, land it.

moveforward(accesstoken: String, distance: long): Void – self explanatory

moveback(accesstoken: String, distance: long): Void – self explanatory

moveup(accesstoken: String, distance: long): Void – self explanatory

movedown(accesstoken: String, distance: long): Void – self explanatory

moveleft(accesstoken: String, distance: long): Void – self explanatory

moveright(accesstoken: String, distance: long): Void – self explanatory

turnleft(accesstoken: String, angle: long): Void – self explanatory

uav

DroneService

+authenticate(login: String, password: String): String
+getCoordinates(accesstoken: String): CoordinateResponse
+takeoff(accesstoken: String)
+land(accestoken: String)
+logout(accesstoken: String)
+emergencylogout(accesstoken: String)
+moveforward(accesstoken: String, distance: long)
+moveback(accesstoken: String, distance: long)
+moveup(accesstoken: String, distance: long)
+movedown(accesstoken: String, distance: long)
+moveleft(accesstoken: String, distance: long)
+moveright(accesstoken: String, distance: long)
+rotateleft(accesstoken, angle: long)
+rotateright(accesstoken, angle: long)
+getvideourl(accestoken: String): String

CONNECT 231167 40

turnright(accesstoken: String, angle: long): Void – self explanatory

getvideourl(accesstoken: String): String – return the video url stream of the embedded camera.

5.1.1.2 Affordance
The UAV’s affordance is about providing a vehicle which can move in 3D space. The
affordance itself is declared as a subclass of the general "Vehicle" affordance.
<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="FlyingMachine" ontology="connect-gmes-uc.draft5.owl"
middleware="SOAPBinding.xml">
 <Affordance name="FlyingMachineAff" kind="provided">
 <FunctionalConcept>http://www.connect.com/ontology/media#FlyingMachineWithVideo</Functio
nalConcept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>
 </Affordance>
</Affordances>

5.1.1.3 Behaviour
The behaviour of the UAV affordance is illustrated in Figure 2. The user first needs to
authenticate with the service. After authenticating, the user can get the coordinates of the
UAV, or order it to move left, right, front, back, up or down, or land. Note that the movements
are contingent on first invoking the command for the UAV to take off. Each of the movement
operations takes time duration as an argument, which controls how far the UAV will go.

Figure 2: Behaviour of UAV

5.1.2 NS 2 - UGV
UGV provides access to a video stream issued from a video camera embedded on a ground
mobile platform, controlled using remote procedure call (RPC) over HTTP. It uses CDP as
Discovery Protocol.

CONNECT 231167 41

5.1.2.1 Interfaces

Figure 3: UGV interface

logToUGV(String uname, String password) – Log into the UGV with given parameters. Return a valid
token if success.

quitUGV(String token) – user kill the session created on UGV.

moveUGVForward(String token, Double distance) - makes the vehicle to move forward of a distance
of distance. Only authenticated user can use this command.

moveUGVBackward(String token, Double distance) - makes the vehicle to move backward of a
distance of distance. Only authenticated user can use this command.

turnUGVRight (String token, Double angle) - makes the vehicle to turn right of an angle of angle. Only
authenticated user can use this command.

turnUGVLeft (String token, Double angle) - makes the vehicle to turn left of an angle of angle. Only
authenticated user can use this command.

getVideoUGV(String token) - returns the address of the video MJPEG flux of the camera. Only
authenticated user can use this command.

5.1.2.2 Affordance
<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="C2Ugv" ontology="connect-gmes-uc.draft5.owl" middleware="SOAPBinding.xml">
 <Affordance name="vehiclevideo" kind="provided">

 <FunctionalConcept>http://www.connect.com/ontology/media#GroundVehicleWithVideo</Functio
nalConcept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>
 </Affordance>
</Affordances>

5.1.2.3 Behaviour
The following BPEL explains the sequence of operation permitted on the UGV. Before any
action on the UGV, user needs to authenticate with “logToUGV”. And then anytime afterwards
user can move the UGV with operation “moveUGV*” or “turnUGV*”. Operation “getVideoUGV”
can also be called. And finally operation “quitUGV” reset the state of the service..

ugv

UGVehicle

+logToUGV(uname: String, password: String): String
+quitUGV(token: String)
+moveUGVForward(token: String, distance: Double)
+moveUGVBackward(token: String, distance: Double)
+turnUGVRight(token: String, angle: Double)
+turnUGVLeft(token: String, angle: Double)
+getVideoUGV(token: String): String

CONNECT 231167 42

Figure 4: UGV Behaviour

5.1.3 NS4 - C2 GIS

5.1.3.1 Affordance
C2 GIS needs a lot of different type of services. It displays videos, it controls vehicles and
cameras. It needs weather data and position of individuals. The affordances that the C2
declares correspond to request for new network systems. According to the scenario, C2 could
be linked with three different types of services connecting to the network, this is reflected in its
affordances:: "WeatherInfo" for weather data, "VehicleWithVideo" for a vehicle hosting a video
source, and "PositioningSource" for positions feeders.

<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="C2Weath" ontology="connect-gmes-uc.draft5.owl" middleware="SOAPBinding.xml">
 <Affordance name="weather" kind="required">

 <FunctionalConcept>http://www.connect.com/ontology/media#WeatherInfo</FunctionalConcept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>
 </Affordance>
</Affordances>

<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="C2Ugv" ontology="connect-gmes-uc.draft5.owl" middleware="SOAPBinding.xml">
 <Affordance name="vehiclevideo" kind="required">

 <FunctionalConcept>http://www.connect.com/ontology/media#VehicleWithVideo</FunctionalCon
cept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>
 </Affordance>
</Affordances>

<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="C2Pos" ontology="connect-gmes-uc.draft5.owl" middleware="SOAPBinding.xml">
 <Affordance name="position" kind="required">

 <FunctionalConcept>http://www.connect.com/ontology/media#PositioningSource</FunctionalCo
ncept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>

CONNECT 231167 43

 </Affordance>
</Affordances>

5.1.4 NS 5 - Mobile Weather Station
This system provides local weather information through a shared data space exchange
implemented with Lime. It uses CDP as Discovery Protocol.

5.1.4.1 Interfaces

Figure 5: Weather Station interface

logToStation (String pass, String login) - logs the user into the system using his login/password. It
grants the user with a token when login succeeds.

retrieveTemperatureInformation(String token) - returns the current temperature.

retrieveHumidityInformation(String token) - returns the current humidity.

quitStation (String token) – destroy the session of the user identified by the given token.

5.1.4.2 Affordance
The weather station has the functional concept «WeatherInfo". A client asking for a
"WeatherInfo" will then be able to connect to this station.
<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="WeatherStation">
 <Affordance name="WeatherStationAff" kind="provided">

 <FunctionalConcept>http://www.connect.com/ontology/media#WeatherInfo</FunctionalConcept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>
 </Affordance>
</Affordances>

5.1.4.3 Behaviour

weatherstation

WeatherStation

+logToStation(pass: String, login: String): String
+getWeatherInfo(token: String): WeatherInfo
+quitStation(token: String)

WeatherInfo

+humidity: String
+temperature: String

CONNECT 231167 44

Figure 6: Weather station Behaviour

5.1.5 NS 6 - Weather Service
This service provides weather report on a given location using a SOAP Web service. It uses
CDP as Discovery Protocol.

5.1.5.1 Interfaces

Figure 7: Weather Service interface

login(String username, String password) - logs the user into the system using his login/password. It
grants the user with a token when login succeeds.

logout(String sessionId) - destroy the session of the user identified by the given token.

getTemperature(String sessionId) – returns the temperature of the location. Need to be authenticated
before.

getHumidity(String sessionId) - returns the humidity of the location. Need to be authenticated before.

5.1.5.2 Affordance
The weather service has the functional concept "WeatherInfo". A client asking for a
"WeatherInfo" will then be able to connect to this service.
<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="WeatherService">
 <Affordance name="WeatherServiceAff" kind="provided">

weatherservice

WeatherService

+login(username: String, password: String): String
+getHumidity(sessionId: String): String
+getTemperature(out result, sessionId: String)
+logout(sessionId: String)

CONNECT 231167 45

 <FunctionalConcept>http://www.connect.com/ontology/media#WeatherInfo</FunctionalConcept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>
 </Affordance>
</Affordances>

5.1.5.3 Behaviour

Figure 8: Weather service Behaviour

5.1.6 NS 7.1 - Positioning System – Country A
This system provides information on location of Country A resources, using a SOAP RPC
protocol. It uses CDP as Discovery Protocol.

5.1.6.1 Interfaces

Figure 9: Positioning system interface

getPosition() – get the last positions of actors on the fields.

5.1.6.2 Affordance
This service has the functional concept "PositioningSourceSOAP" that is a sub class of
"PositioningSource". A client asking for a "PositioningSource" will then be able to connect to
this service.

systema

PositioningSystemA

+getPosition(): String

CONNECT 231167 46

<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="PositioningSOAPSystem" ontology="connect-gmes-uc.draft5.owl"
middleware="SOAPBinding.xml">
 <Affordance name="PositioningSOAPSystemAff" kind="provided">

 <FunctionalConcept>http://www.connect.com/ontology/media#PositioningSourceSOAP</Function
alConcept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>
 </Outputs>
 </Affordance>
</Affordances>

5.1.6.3 Behaviour

Figure 10: Positioning system A Behaviour

5.1.7 NS 7.2 - Positioning System – Country B
This system provides information on Country resource location using an AMQP
publish/subscribe. It uses CDP as Discovery Protocol.

5.1.7.1 Interfaces

Figure 11: Positioning System B interface

read() – get the last positions of actors on the fields.

5.1.7.2 Affordance
This service has the functional concept "PositioningSourceAMQP" that is a sub class of
"PositioningSource". A client asking for a "PositioningSource" will then be able to connect to
this service.
<?xml version="1.0" encoding="UTF-8"?>
<Affordances name="PositioningAMQPSystem" ontology="connect-gmes-uc.draft5.owl"
middleware="AMQPBinding.xml">
 <Affordance name="PositioningAMQPSystemAff" kind="provided">

 <FunctionalConcept>http://www.connect.com/ontology/media#PositioningSourceAMQP</Function
alConcept>
 <Inputs>
 <Input>http://www.connect.com/ontology/media#Void</Input>
 </Inputs>
 <Outputs>
 <Output>http://www.connect.com/ontology/media#Void</Output>

systemb

PositioningSystemB

+read(): String

CONNECT 231167 47

 </Outputs>
 </Affordance>
</Affordances>

5.1.7.3 Behaviour
This service is relatively simple. It can respond to any operation "subscribePositioning" or
"publishPosition".

Figure 12: Positioning system B Behaviour

