
HAL Id: hal-00794778
https://hal.inria.fr/hal-00794778

Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genes and bacteria for automatic test cases optimization
in the .net environment

Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, Yves Le Traon

To cite this version:
Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, Yves Le Traon. Genes and bacteria for automatic
test cases optimization in the .net environment. Proceedings of ISSRE02 (International Symposium
on Software Reliability Engineering), Nov 2002, Annapolis, United States. �hal-00794778�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49812891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00794778
https://hal.archives-ouvertes.fr

Genes and Bacteria for Automatic Test Cases Optimization in the .NET
Environment

Benoit Baudry*, Franck Fleurey**, Jean-Marc Jézéquel* and Yves Le Traon*

* IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
{Benoit.Baudry, jezequel, Yves.Le_Traon}@irisa.fr

** IFSIC, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
** franck.fleurey@ifsic.univ-rennes1.fr

Abstract
The level of confidence in a software component is

often linked to the quality of its test cases. This quality
can in turn be evaluated with mutation analysis: faulty
components (mutants) are systematically generated to
check the proportion of mutants detected ("killed") by the
test cases. But while the generation of basic test cases set
is easy, improving its quality may require prohibitive
effort. This paper focuses on the issue of automating the
test optimization. We looked at genetic algorithms to
solve this problem and modeled it as follows: a test case
can be considered as a predator while a mutant program
is analogous to a prey. The aim of the selection process is
to generate test cases able to kill as many mutants as
possible. To overcome disappointing experimentation
results on the studied .Net system, we propose a slight
variation on this idea, no longer at the "animal" level
(lions killing zebras) but at the bacteriological level. The
bacteriological level indeed better reflects the test case
optimization issue: it introduces of a memorization
function and the suppresses the crossover operator. We
describe this model and show how it behaves on the case
study.

1. Introduction

Some specialists have claimed: “Programmers love
writing tests” [1]. One reason for this is that they can
incrementally build confidence in their code when it
passes their tests. The level of confidence one has into a
given software component is then linked to the quality of
its test cases. Conversely, one way to qualify the test cases
consists in deliberately introducing faults in the software
under test. The intuition of this technique, called mutation
analysis [2], is that the quality of the test cases is related
to the proportion of faulty programs (also called mutants)
it detects. Faulty programs are generated by systematic
fault injection in the original implementation. By
measuring the quality of test cases (the revealing power of
the test cases [3]), we seek to build trust in a component
passing those test cases. Mutation analysis has been

successfully applied to qualify unit test cases for OO
classes [4-6], and gives the programmer an interesting
feed-back on the “revealing power” of his/her test cases.
It also offers an estimate of how many new test cases are
needed to better test a given software component.

But while the generation of a set of basic test cases is
easy, improving its quality may require prohibitive effort.
Indeed, the test cases that are generally provided by the
tester easily cover 50-70 % of the mutants, but improving
this score up to 90-100 % is a time-consuming and a very
expensive task. This paper focuses on automating the test
improvement stage, i.e. test optimization.

The issue of improving test cases automatically is a
non-linear optimization problem, and the application of
genetic algorithms (GAs) looks like an interesting way to
solve it. Furthermore, a strong analogy exists between
natural selection and the process of generating new test
cases based on an initial set of test cases. Initial test cases
are of various efficiency, but each of them can participate
to the test optimization. In this paper we model the
optimization problem as follows: a test case can be
considered as a predator while a mutant program is
analogous to a prey. The aim of the selection process is to
generate test cases able to kill as many mutants as
possible, starting from an initial set of predators, that is
the test cases set provided by the tester. We present here
the adaptation of genetic algorithms to this context, and
analyze the results obtained with a case study: optimizing
test cases for a C# parser in the .Net framework [7, 8].
While it was quite disappointing to us that these
experimentation results were not as good as we expected,
we were suggested by biologist friends to try a slight
variation on this idea, no longer at the “animal” level
(lions killing zebras) but at the bacteriological level. The
bacteriological level indeed better reflects the test case
optimization issue: it mainly differs from the genetic one
by the introduction of a memorization function and the
suppression of the crossover operation. We describe this
original bacteriological model and show how it behaves
on the previous case study. The new results are very
encouraging since the model converges faster than the
first one, and is easier to tune and so, is more reusable.

The rest of this paper is organized as follows. Section 2
opens with a brief summary about mutation analysis, and
introduces how it is adapted to test generation and
optimization. A derived contribution of this paper
concerns the adaptation of the mutation approach to a
whole system. Section 3 presents a model for test
optimization that builds on genetic algorithms. Section 4
presents the case study that has been conducted with this
model, and discusses the results of these experiments.
That leads to section 5 which presents an adaptation of
the genetic model called the bacteriological model, new
results are given. In section 6 some related work are
discussed and section 7 gives several conclusions about
this work.

2. Mutation testing for OO domain

Mutation testing is a technique which was first
designed to create effective test data, with an important
fault revealing power [3, 9]. It has been originally
proposed in 1978 [2], and consists in creating a set of
faulty versions or mutants of a program with the ultimate
goal of designing a set of test cases that distinguishes the
program from all its mutants. In practice, faults are
modeled by a set of mutation operators where each
operator represents a class of software faults. To create a
mutant, it is sufficient to apply its associated operator to
the original program. When generating mutants from a set
of mutation operators, one might create equivalent
mutants. A mutant is said to be equivalent if no input data
can distinguish the output of the mutant from the output of
the original component.

A test cases set is relatively adequate if it distinguishes
the original program from all its non-equivalent mutants.
Otherwise, a mutation score(MS) is associated with the
test cases set to measure its effectiveness in terms of
percentage of the revealed non-equivalent mutants.

Mutation Score. Let d be the number of dead
mutants after applying the test cases, m the total
number of mutants and equiv, the number of
equivalent mutants.
The mutation score MS for a test cases set T is
defined as follows:

 MS(T)=)m
d

(100 equiv−×

A benefit of the mutation score is that even if no error
is found, it still measures how well the software has been
tested giving the user information about the program test
quality. During the test selection process, a mutant
program is said to be killed if at least one test case detects
the fault injected into the mutant. Conversely, a mutant is
said to be alive if no test cases detect the injected fault.
We recall the definition of the mutation score:

In the following, we will first detail which mutation
operators were used for experiments. This choice has

been guided by the specific use of mutation analysis for
test cases at system level. Then, we describe the general
test selection process based on mutation analysis, and
pinpoint which part of the process we want to automate.

2.1. Mutation analysis for system testing
Mutation testing has mostly been applied at unit level.

In an object-oriented context, the class is often considered
as the unit for testing, and mutation analysis has been
successfully used to guide the generation of test cases for
a class ([4-6]).

When applying mutation analysis for system testing,
scale problems appear. In the following, we call a mutant
program, a software system in which an error has been
injected. A system is composed of several classes, and
each of them can generate many mutants (many faults can
be injected). For example, in [4, 5], a large number of
operators is used which generate large sets of mutants that
are necessary to have a precise evaluation of test cases for
one class. The number of mutant programs thus increases
with the size of the system under test. Moreover, since all
the test cases must be executed against all the mutants, the
execution time increases with the number of mutants.
Mutation analysis at system level can thus become very
time-consuming. At last, if mutant equivalence is often
decidable on a class, it is not possible for a tester to
decide system equivalence.

The solution we have chosen is to select two mutation
operators to avoid generating too much mutant programs.
This subset of operators is still efficient since we expect
classes to be tested at unitary level (so all operators have
been applied on the code separately). System testing then
focuses on the relationships between the classes in the
system. Since the purpose of unit and system testing is
different, mutation analysis also has to have a different
role. For this first study, we chose two mutation operators:

• LOR: each occurrence of one of the logical
operators (and, or, nand, nor, xor) is replaced by
each of the other operators; in addition, the
expression is replaced by TRUE and FALSE.

• NOR: suppresses a statement or a block of
statement.

Other solutions exist to avoid execution time expense.
For example, we could have selected the classes to be
mutated in the system in function of a criterion such as the
“distance” between interface classes and classes under
test. The strategy would inject faults only in classes that
are difficult to control from the system interfaces. Another
solution would consist in finding mutation operators more
specific to system testing. We could think about errors on
the UML model of the system under test, as Olsson and
Runeson did on SDL models in [10].

2.2. Test selection process

TestCase

Mutant
Generation

mutantA6
mutantA5

mutantA4
mutantA3

mutantA2
mutantA1

Test Execution

Diagnosis Equivalent mutant12

Enhance test case

Incomplete specification

3

mutantAj killed

Error detected

mutantAj alive

Error not detected

Automated process
Non automated process

Automated process
Non automated process

CUT

Figure 1 - The mutation process

The whole process for generating test cases with fault
injection is presented in Figure 1. First, a set of mutant
programs is automatically generated with the selected
mutation operators. Then, the test case is ran against each
mutant. An oracle function is used to determine if the test
case has killed the mutant. This oracle is specific to the
mutation analysis, and is based on the assumption that the
original program is correct. It consists in comparing the
behavior of the original program and the behavior of the
mutant program. Let Outo be the set of outputs when
running a test case with the original program, and Outm be
the set of outputs for the test case with a mutant program.
If Outm ≠ Outo, then the mutant is killed by the tests set.

If a mutant program is not killed by any test case, the
diagnosis step determines the reason of non detection.
The mutant may be alive because of a test case too weak,
because specification is incomplete, or because it is an
equivalent mutant. This diagnosis step is the only one in
the process that is not automated.

In this paper, we focus on the automation of the test
case enhancement phase after the diagnosis step. That is,
we focus on the test generation process to automatically
obtain the most efficient set of test cases both in terms of
fault revealing power (measured using mutation) and
execution time (this aspect being crucial for testing a
system). In Figure 2 an “optimizer” operation has
appeared that optimizes the initial test case to improve its
mutation score. As it will described in the following
sections, we have tried different strategies to automate the
“optimizer” operation : genetic algorithms (section 3) or
an adaptation of these algorithms that we have called
bacteriological algorithms (section 5).

TestCase

Mutant
Generation

mutantA6
mutantA5

mutantA4
mutantA3

mutantA2
mutantA1

Test Execution

DiagnosisDiagnosis Equivalent mutant12

Enhance test case

Incomplete specification

3

mutantAj killed
Error detected

mutantAj alive
Error not detected

CUT

OptimizerOptimizer

TestCase’TestCase’
Automated process

Non automated process
Automated process

Non automated process

Figure 2 - Automation the test enhancement

step in the mutation process

In [5], we had proposed a testing-for-trust
methodology based on an integrated design and test
approach for OO software components, particularly
adapted to a design-by-contract approach, where the
specification is systematically transformed to executable
assertions (invariant properties, pre/postconditions of
methods) [11]. Here we focus on test
generation/optimization and we can extract the
corresponding stages from the global methodology. Based
on the process of Figure 2, Figure 3 proposes an
incremental approach for testing and correcting software:
1. Write an initial test cases set
2. Automatically enhance the initial test cases set.
3. The tester checks if the tests do not detect errors in

the initial program. If errors are found, they must be
corrected. then go back to step 2 for regression
testing.

11 22 33

Automated process

Write
initial test

cases

Optimize
the initial
test cases

Suppress equivalent mutants
Correct remaining errors
Suppress equivalent mutants
Correct remaining errors

If errors have been corrected

Figure 3 - Incremental process for software

testing

Figure 4 displays a UML class diagram for the global
architecture to apply our test generation methodology.
There is a central TestRunner class that manages the
relationship between the ComponentUnderTest (CUT)
and the mutation tool represented (Mutator class), or the
TestOptimizer. In this paper we are interested in a
particular type CUT : C# components. A CUT has a set of
associated test cases represented as an association
between ComponentUnderTest and TestCase.

Mutation

Mutator

Mutant

generatedMutants
1
*

Mutator

Mutant

TestOptimizer

TestOptimizer

TestRunner

TestCaseTestCase

ComponentUnderTestComponentUnderTest

*

TestOptimizer

1 1
1 1

1

Figure 4 - Global architecture for test

generation

This section detailed the mutation analysis and how it
is inserted in a global test generation process. Figure 2
shows the part of the process on which this paper focuses:
the automatic improvement of a test cases set for a
component under test. Next sections present two models
we have experimented for this purpose.

3. Test cases generation : Genetic
algorithms for test generation

In this paper, we argue that writing a first set of test
cases is easy, and most developers do such basic testing.
Our experiments showed that such test cases easily reach
60 % of test quality (see [12]). Improving test quality
implies a particular and specific supplementary testing
effort. In this section we investigate the use of genetic
algorithms as a pragmatic way to automatically improve
the basic test cases set in order to reach a better test
quality level with limited effort. Indeed, the basic test
cases set carries information that can be optimized to
create better test cases, by some cross-checking and
“mutation” of the test cases themselves. So, at the
beginning we have a population of mutants programs to
be killed and a test cases pool. We randomly combine
those test cases (or “gene pool”) to build an initial
population of test cases seen as predators of the mutant
population. From this initial population, we apply a
genetic algorithm to improve its ability to kill mutants
programs.

3.1. Genetic algorithms
Genetic algorithms [13] have been first developed by

John Holland [14], whose goal was to rigorously explain
natural systems and then design artificial systems based
on natural mechanisms. So, genetic algorithms are
optimization algorithms based on natural genetics and
selection mechanisms. In nature, creatures which best fit
their environment (which are able to avoid predators,
which can handle cold weather…) reproduce and thanks
to crossover and mutation, the next generation will fit
better. This is just how a genetic algorithm works: it uses
an objective criteria to select the fittest individuals in one

population, it copies them and creates new individuals
with pieces of the old ones.

This objective criteria used to go from one generation
to the other is one of the interesting points of genetic
algorithms, but there are others. As we will see, these
algorithms are computationally simple, they improve
rapidly and they work at the population level, not on a
single individual.

To apply genetic algorithms to a particular problem, it
has to be decomposed in atomic units that correspond to
genes. Then individuals can be build, corresponding to a
finite string of genes, and a set of individuals is called a
population. All the individuals in a given population have
the same size (the same number of genes). A second
criterion needs to be defined : a fitness function F which,
for every individual among a population, gives F(x), the
value which is the quality of the individual regarding the
problem we want to solve. This corresponds to the
function we want to maximize.

•choose an initial population
•calculate the fitness value for each individual

•reproduction
•crossover
•mutation on one or several individuals

•several stopping criteria : x number of
generations, a given fitness value reached …

Genetic
loop

Figure 5 - The global process of a genetic

algorithm

Moreover, a genetic algorithm uses three operators:
reproduction, crossover, mutation.
• Reproduction. This operator copies the individuals

which are going to participate in crossover: they are
chosen according to their F(x) value. The choice can
be seen as spinning a roulette wheel where each
individual has a slot proportional to its fitness value.
We spin the wheel as many times as the size of the
population, and so we have a new population which is
going to participate to crossover. This new population
is made of individuals of the old one, and the number
of each type of individual is proportional to its fitness
(there are many of the fittest and few of the ones with
a low fitness).

• Crossover. The members of the population after
reproduction are mated randomly, then every pair is
crossed, to create as many new pairs, like this : first,
you choose, at random, an integer value k between 0
and the size n of an individual less one. Secondly, you
create two new individuals A’ and B’ with a pair
(A,B), A’ is made of the k first genes of A and n-k last
genes of B, and B’ is made of the k first genes of B
and the n-k last genes of A.

• Mutation. The mutation operator modifies one or
several genes’ value. (e.g. if an individual is a bit
string, mutation means changing a 1 to 0 and vice
versa)

Once the problem is defined in terms of genes, and the
fitness function is available, a genetic algorithm is
computed following the process described Figure 5.

Next section presents a model to apply genetic
algorithms for automatic optimization of an initial tests
set. We present how genes are modeled for this particular
problem, as well as the three operators and the fitness
function.

3.2. Genetic algorithms for test optimization
TestOptimizer

TestOptimizer

Genetic

Individual

<<interface>>
Gene

m

TestCaseMutant

TestOptimizer

Genetic

Individual

Population

<<interface>>
Gene

p

n

mutants n

Figure 6 - Architecture for test optimization
using a genetic algorithm

Figure 6 presents a global architecture for test
optimization using a genetic algorithm. Genetic
algorithms present one way to automate test optimization,
the Genetic class is thus a specialization of
TestOptimizer. The decomposition of the problem as
presented in section 3.1 appears clearly: a population is a
set of individuals, and an individual is a set of genes. The
size of the population and the size of an individual are
constant values for a given run of the genetic algorithm.

The gene modeling is specific to the application of
genetic algorithms to a test optimization problem. In this
case a gene corresponds to a test case for the component
under test. This appears on the architecture as a
TestCase class that implements the Gene interface. The
gene model is strongly dependent of our case study: a
parser. For this particular system, the input data is a
source file that is parsed to build a syntactic tree. The
gene model is given in the following definition.

Gene modeling for test optimization. For the
problem of test optimization, a gene is modeled as
a test case. In the particular case of a parser a
gene is a source file for the particular language.
Each file contains several constructs from the
language (nodes from the syntactic tree). If there
are x nodes in the file a gene can be represented
as follows:

 G = [N1,…,Nx]

Another aspect of the genetic algorithm has to be
decided for the particular problem of test optimization:
the fitness function. We have chosen the mutation score
of an individual as the fitness function. The Genetic
class encapsulates a set of mutants that is used to compute
the fitness function for every gene.

Fitness function. The fitness value for an individual
is its associated mutation score. An individual is a
set of genes. Let I=[G1, …, Gn] be an individual
composed of n genes. Let Si be the set of mutants
detected by Gi. At last, let nbMutants be the total
number of mutants generated for the component
under test. The fitness function of individual I is
computed as follows:

100)tan
)(

()(1 ×= =

tsnbMu
Scard

IF

n

i
iU

The union set of all Si corresponds to the set of
mutants killed by the individual. The cardinal of
this union is thus the number of mutants killed by
the individual. Then the mutation score of the
individual is the percentage of the global set of
mutants it can kill.

Now, let us define the genetic operators for the
particular problem of test cases optimization.
• Reproduction : the slot for each individual in the

roulette wheel, is proportional to its mutation score.
• Crossover : let m be the size of individuals in a

population, and let’s select an integer i at random
between 1 and m-1, then from two individuals ind1
and ind2, we can create two new individuals ind3 and
ind4; one made of the i first genes of ind1 and the m-i
last genes of ind2, and the other made of the i first
genes of ind2 and m-i last genes of ind1. This operator
in the following figure.

ind1={G11, ... G1i, G1i+1, .. G1m} ind2={G21, ... G2i, G2i+1, .. G2m}

ind3={G11, ... G1i, G2i+1, .. G2m} ind2={G21, ... G2i, G1i+1, .. G1m}

⇒

• Mutation. Based on the gene modeling, the mutation

operator consists in replacing a syntactic node in a
source file (an individual) by another licit node. The
class hierarchy for the node types makes it easy to
build a compatible node, once the node to be mutated
has been chosen (cf. Figure 7). The mutation operator
thus chooses a gene at random in an individual and

replaces a node in that gene by another one as
illustrated in the following figure:

G=[N1,…, Ni,…, Nx] ⇒ Gmut = [N1,…, Nimut,…, Nx]
Concrete examples of a source file, and the how it is

mutated in are given in appendix A.

The problem when mutating one gene is to generate a
new test case which is syntactically correct. For our case
study (a parser for the C# language), this is made easy
thanks to the particular structure of the test cases.
Mutating a gene consists in replacing a node from the
syntactic tree by another one. Since these nodes are
hierarchically ordered (see Figure 7), a node must be
replaced by a node which is at the same level in the tree (a
brother node) to build a new correct test case. For
example, a method can be replaced by either a destructor,
a constructor, a field or a property.

Based on this model of the test case optimization
problem , next section proposes an experiment using a
genetic algorithm. It gives results of the application of a
genetic algorithm to automatically improve the quality of
test cases for a parser for the C# language.

4. Case study with genetic algorithms

This section describes a case study that has been
conducted to investigate the automation of test cases
optimization using a genetic algorithm. It applies a
genetic algorithm to optimize tests for a small system
written in C# in the .NET framework. This system
implements a simplified parser for the C# language. The
case study has been chosen to represent the category of
software that transforms input data in a given format into
a new format. For instance, the same modeling of GAs
can be directly used for testing software using the XML as
an exchange format.

4.1. Test data optimization : testing a .NET
component
To apply our test data optimization technique for system
testing, we chose as a case study a .Net component that
parses C# source files [8]. The UML class diagram for
this parser is given Figure 7. There are 32 classes in this
system that can be divided in three main parts. First, the
CSNodeBuilder class which is the main class for
building the syntactic tree. Second the inheritance
hierarchy under the CSNode corresponds to the different
types of nodes that can appear in the syntactic tree of a C#
program. The third part of the diagram is the
NodeVisitor interface and its different
implementations. These classes correspond to the
implementation of the Visitor design pattern [15], which
enables to implement different treatments on the syntactic
tree. For example, the TextCSPrettyPrinter class
implements a textual pretty printer for the tree. This
parser has been implemented in C#. This parser takes a
set of C# source files as an input and builds the
corresponding syntactic tree. To experiment genetic
algorithms on this system, we generated 500 mutant
programs, using only the NOR operator, we did not have
time to implement the LOR operator (cf. section 2.1).
Nevertheless the obtained results are still interesting since
the test cases generated against such mutants cover all
statements in the system. Most of the mutants were
created from the classes TextCSPrettyPrinter,
Tokenizer and CSNodeBuilder which process the
most complex operations in the system. The initial
population for the genetic algorithm application consisted
of 12 individuals of size 4, and its initial mutation score
was 56%. The results are given Figure 8.

TextCS PrettyPrinterHTMLPrettyPrinterS tatsVisitor

CS NodeBuilder
CSPrettyPrinter

<<interface>>
NodeVisitor

ParcoursVisitor
Tokenizer

1

Destructor

For

*
NamespaceCompileUnitInterfaceS tatement

RTFCS PrettyPrinter

S witch WhileIfForEachCode

*

CSNode

Member

Field

BlocDo

statements

Type Class

Constructor

1

*

Attributes

*

* *

Comment

Attribute

PropertyMethod

*

*

Figure 7 - Parser for the C# language

Genetic algorithm with a 2% mutation rate

50

55

60

65

70

75

80

85

90

0 50 100 150 200
generation

m
u

ta
ti

o
n

 s
co

re
 (

%
)

Genetic algorithm with a 10% mutation rate

50

55

60

65

70

75

80

85

90

0 50 100 150 200
generation

m
u

ta
ti

o
n

 s
co

re
 (

%
)

Figure 8 - Genetic algorithm application for

test optimization for a C# parser

4.2. Results and comments
This section summarizes several conclusions about the

application of a genetic algorithm to improve the quality
of test cases (Figure 8). First we focus on the benefits of
this approach, and how it helped improve the quality of
the CUT. Then, we explain the lack of efficiency of this
type of model for our particular problem. We tackle
different points and difficulties encountered when using
our genetic model: the irregular and slow growth of the
mutation score, the cost in terms of execution time, and
the problems of calibrating the model.

The genetic algorithm actually automatically improved
the mutation score of the initial set of test cases. The
optimized test cases were ran on the CUT (step 3 of
process Figure 3). Several errors were found and
corrected. We also studied alive mutants. We detected
some equivalent mutants, and dead code. Some mutants
were obviously not equivalent, but still alive, and they
actually corresponded to errors that had been injected in
dead code. However the experiments with genetic
algorithms were not satisfactory. Both because of the slow
convergence and the unusual proportions of crossover and

mutation operators. In the following, we draw conclusions
about these results and what is needed for a model more
adapted to test cases optimization.

To go from one generation to another, genetic
algorithms select the best individuals. These individuals
are then reproduced, crossed, and some of them are
mutated. This gives a new population. Information may be
present only in genes of individuals that have not been
selected for reproduction. In the same way, mutating a
gene may delete information. There may thus be some
information loss when passing from one generation to the
other. In that case, the best individual of the new
population may be worst than the best one of the previous
generation. This phenomenon implies a slow
convergence, or even troughs in the population evolution.
Memorizing the individuals before reproduction would
solve this problem.

The second limitation of this approach is the tuning of
the model. First, the size of an individual has to be
decided. Genetic algorithms look for an optimal
individual, not an optimal population. The individuals
must thus be big enough, from the beginning, to contain
enough genes (test cases) to reach the best fitness value
(mutation score). It is very difficult to predict how many
test cases will be necessary to kill every mutants for a
particular test cases set. So, we have to start with big
sizes, then tune this parameter, so that the final individual
(test cases set) has a good mutation score but is not too
big. Big sets are not interesting because running all the
test cases is too much time-consuming. The tuning has to
be done for every particular CUT. Even if this tuning is
mandatory when applying genetic algorithms for a
particular problem, it seems particularly constraining in
our case since our objective is to improve test cases and
not test cases set. Our goal, is to have a set of good test
cases, and not a good test cases set. Thus, we would need
a model, that does not constrain the size of the set when
improving the test cases.

The second important parameter that has to be tuned is
the mutation rate. We had to excessively increase the
mutation rate compared to usual application of genetic
algorithms. Figure 8 shows results with two different
mutation rates: 2% and 10%. For the lowest rate, the
mutation score reaches at most 80%, whereas the 10%
rate makes the mutation score grow up to almost 90%.
Actually, it appears that the mutation operation, when
running a genetic algorithm, is the one that creates
information since it is the only operation that modifies the
test data. So after mutation, the test case might cover
other parts of the CUT. For test optimization, this
represents an information saving.

At last, let’s look at the crossover operator. The
limitation of this operator is not so much the tuning, but
the lack of efficiency. Indeed, the way genes are modeled
as test cases implies that each gene can be run on the CUT
separately. The genes are thus independent from each

other. So the order in which they are run as no
importance. This makes the crossover operator useless,
since its only function is to create information by
reordering genes inside an individual.

As a conclusion about the case study, we can say that
GAs are not perfectly adapted to the test cases
optimization problem. A more adapted model should
provide memory and remove the notion of individual to
concentrate on the genes (test cases). This would avoid
some tuning when applying the model on different CUTs.
Nevertheless, things must be kept from this experience.
The gene modeling which is clearly defined corresponds
exactly to what has to be optimized. The mutation
operation seems to be a good way of creating new
information to solve our problem. The mutation score as
the fitness function guides the algorithm towards a good
solution. Next section proposes a new model and process,
adapted from the genetic algorithms and based on these
conclusions. It is called the bacteriological approach, and
is based on the bacteriological adaptation phenomenon.

5. An adaptive approach: Bacteriological
algorithms

Experiments described in section 4 have shown some
drawbacks of genetic algorithms for the problem of test
cases optimization. This section presents a specialization
of the genetic approach for this particular problem. The
adaptation consists in keeping track of the best individuals
from one generation to the other. It is then possible to
delete the mutants those individuals can kill from the set
of alive mutants. The time necessary to compute one
generation then decreases at each step of the genetic loop
with the size of the alive mutants set.

Even if the adaptation of the genetic model seems
based on very small changes, it actually completely
changes the idea of genetic algorithm which is to go
through the set of solutions looking for the optimal
individual. Here, the set of solutions changes from one
generation to the other since the goal of the search (killing
every alive mutant) changes at each generation.
Moreover, our new model does not generate the optimal
individual, but a set of individuals (the ones that have
been memorized during the whole process). This new
approach is thus fairly far from the genetic model. If we
keep the analogy with biological processes, this new
model is close to the “bacteriologic adaptation” [16].

5.1. The bacteriological model
The bacteriological approach is more an adaptive

approach than an optimization approach as genetic
algorithms. It aims at mutating the initial population to
adapt it to a particular environment. The adaptation is
only based on small changes on the individuals. The
individuals in the population are called bacteria and

correspond to atomic units. Unlike the genetic model the
bacteria can not be divided. The crossover operation can
not be used anymore. Bacteria can only be reproduced
and altered to improve the population.

As the genetic model, a fitness function is necessary to
choose bacteria for reproduction. With this function we
can draw a global iterative process to adapt an initial
population (Figure 9). Starting from this population, the
fitness function allows the algorithm to select the best
bacteria. Then these bacteria are saved and reproduced to
generate a new population. Several bacteria in this
population are mutated, then the best ones are selected
again to produce another generation. This process stops
after a number of generation or when the memorized
population has reached an optimum fitness value.

•choose an initial set of individuals

•compute the fitness value for each individual
•memorization of the best individuals
•reproduction
•mutation

•several stopping criteria : x number of
generations, a given fitness value reached …

Bacteriological
loop

Figure 9 - The bacteriological process

5.2. The model for test optimization
Figure 10 displays a UML class diagram for the new

model. The bacteriological approach is another technique
for test optimization, thus it specializes the
TestOptimizer class. A bacterium is modeled as a test
case which structure is given in section 3.2.

TestCase

TestOptimizer

TestOptimizer

Bacteriologic

Memory

<<interface>>
Bacterium1 n

1

1

*

MutantMutant

TestOptimizer

Bacteriologic

Memory

<<interface>>
Bacterium

1 1

** aliveMutantskilledMutants

1 n

1

Figure 10 - Architecture for bacteriological test

optimization

The mutation operator is still present in the new
model. Since the structure chosen for bacteria is the same
as the one chosen for genes, the mutation operator is also
the same. On the other hand, since this approach only
manipulates bacteria which correspond to genes in the
previous approach, the notion of individual disappears.
The reproduction and crossover operators have thus also

disappeared. The removal of the crossover operation is
one major difference with the genetic model. This
corresponds to an evolution we thought was necessary
when looking at the result of genetic algorithms, since this
operator did not help converging towards the optimal
solution (see discussion in section 4.2).

This approach, as the previous one, needs a fitness
function to select bacteria that are memorized from one
generation to the other. Since the bacterium model is the
same as the gene model, the fitness function can be kept.
Bacteria are thus selected according to their mutation
score.

The two other differences are the emergence of the
Memory class, and the two associations towards Mutant
instead of one. The Bacteriologic class useses a
Memory that is the set of the best bacteria that have been
saved in previous generations.

On the other hand, a new association towards the
Mutant class has appeared. In the genetic approach, the
algorithm computed the mutation score of individuals on
every mutants at each generation. The Genetic class thus
had only one association towards the Mutant class
corresponding to the set of all mutants generated from the
CUT. Conversely the bacteriological approach aims at
avoiding this expensive mutation score computation by
saving bacteria from one generation to the other. The
mutation score is computed only on mutants that have not
been killed in previous generations. This approach thus
keeps track of mutants that have been killed and the ones
still alive. This explains the presence of two associations
from the Bacteriologic class towards the Mutant
class corresponding to the two different sets of mutants.

5.3. New results
Figure 11 shows results of our bacteriological

approach for the case study presented in section 4. For
this type of experiment, only two parameters need to be
tuned: the number of bacteria saved to pass from one
generation to the other, and the minimal size of the
bacteria. Since the initial bacteria pool was small
(between 3 and 10 bacteria), the experiments were
conducted by saving only the best bacterium for a given
generation. The size of a bacterium is defined as follows:

Size of a system test case. Let B=[N1,…,Nx] be a
test case for a parser, containing language
constructs (nodes of the syntactic tree). The
number x of nodes is the size of this bacterium.

The size of a bacterium is an important parameter. The
bigger a bacterium (test case) the longer it takes to run a
test case. On the other hand, if bacteria are too small they
can not kill mutants, or they kill so few mutants that we
need a very large set of bacteria to reach a good mutation
score. We conducted several experiments to tune the size
of the bacteria. We do not have enough space here to

display the results of these experiments. We looked for a
size small enough so that it is not too long to run a test
case, but big enough so that a bacteria can contain enough
information to kill mutants. We finally chose 15 as a good
size for bacteria.

50

55

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30
generations

m
u

ta
ti

o
n

 s
co

re
(%

)

Figure 11 - Results of a bacteriological

approach for system test data optimization

This approach converges faster than the previous one.
Table 1 summarizes results of both approaches for the C#
parser. This table gives the number of generations needed
to reach the score given in the second column. The
bacteriological algorithm converges much faster than the
genetic one: 30 generations instead of 200. However,
since the computation done to go from one generation to
the other is not the same in both approach, we give more
comparable figures in the column of the table. It gives the
number of time a mutant program has been executed.
This is a better estimation than the number of generation
for the complexity since executing a mutant is as much
time-consuming in both approaches.

Table 1 - Comparison between genetic and
bacteriological algorithms for the C# parser

Algorithm # generation
mutation
score (%)

mutants
executed

Genetic 200 85 480000
Bacteriologic 30 96 46375
Other interesting results come out of these new

experiments. First the memory avoids troughs in the
convergence curve and thus speeds up the convergence. A
second point is the saving about the tuning effort thanks
to the removal of several parameters (size of an
individual, selection of individuals for reproduction). This
makes the bacteriological approach more reusable for test
generation/optimization problems. Removing parameters
also makes the model more controllable since there is less
random in the algorithm’s evolution. The approach is thus
more stable than the genetic one.

Two remarks can be made about this model. First, the
final set of all the memorized bacteria may not be
minimum, for example at the end of the process 9 bacteria

were memorized for the C# parser (this size was 4 in the
first model). Second, since the algorithm only saves the
best bacterium from one generation to the other, it may
miss some information that is present only in weaker
bacteria. The minimization can be done in a separate
phase after the algorithm has been ran. This step consists
in building a boolean matrix which rows are the test cases
and the columns the mutants. A 1 in the matrix means that
the test case kills the mutant, and a 0 means that it does
not. This matrix is called the coverage matrix of the
mutants by the test cases. This matrix can be minimized to
remove redundant information: for example, if the set of
mutants killed by a test case is included in the set of
another test case, then remove the first test case. This
minimizes the result set of test cases. Now, looking at the
loss of information due to the memorization of the only
best bacteria, a solution could consist in taking a
bacterium in the memory set and reinserting it in the new
population. For example, one could decide to do this
when the mutation score does not improve any more.

As a conclusion about the new experiments, it seems
that the adaptations that had been detected as necessary at
the end of section 4.2 were actually good heuristics for
our problem. This guided us towards a new model, we
have called the bacteriological model, based more on an
adaptive approach than on the optimization approach.
This model seems more stable and reusable for the type of
problems we are interested in. It should now be
experienced in more details.

6. Related work

While electronic devices have set of measures
characterizing their quality (reliability, performance, use-
domain, speed scale), no real consensus exists to measure
such quality characteristics for software components.
Binder details the existing analogy between hardware and
OO software testing and suggests an OO testing approach
close to the “built-in-test” and “design-for-testability”
hardware notions [17]. In this paper, we go even further
than Binder suggests, and detail how to create self-
testable OO components, with an explicit analogy with the
“built-in-self-test” hardware terminology. Moreover, an
original measure of the quality of components has been
defined based on the quality of their associated tests
(itself based on fault injection). For measuring test
quality, the presented approach differs from classical
mutation analysis [9, 18] by the chosen reduced set of
mutation operators.

Besides, the test problem may be seen from a
pragmatic point of view, and some simple-to-apply
methodology can be found in the literature, which are
based on an explicit test philosophy [1]. In this paper, the
proposed methodology is based, on a first step, of
pragmatic unit test generation and aims at bridging the
existing gap between unit and system dynamic tests. In a

second step, advanced test optimization techniques, such
as genetic algorithms, may help for automatically
improving test quality and, consequently, component
trustability. To achieve a complete design-for-trust
process, the notion of structural test dependencies has
been developed for modeling the systematic use of self-
testable components for structural system test. In [12], the
design-for-testability main methodology is outlined.

Several studies have used genetic algorithms to
improve software quality. The Aristotle research group
has developed a tool to automatically generate test data
based on a genetic algorithm [19]. The tool generates test
data that cover a given statement, path, or def-use pair.
This work compares genetic algorithms and random
process for the test data generation. In [20], genetic
algorithms are used in a control-flow coverage-oriented
way: test sets are improved to reach such a predefined test
adequacy criterion. In [21], genetic algorithms are used to
perform some kind of reliability assessment. In this paper,
the application of genetic algorithm is coherent with the
application of mutation analysis for test qualification.
This conceptual continuity, due to the constant analogy of
the test selection problem with a “Darwinian” analogy,
appears if we consider that the mutation tool allows both
the mutation of programs and the mutation of genes (part
of a test “individual”) via the domain perturbation
mutation operator.

Olsson and Runeson tackled the problem of validating
system test cases with mutation analysis in [10]. This
work focuses on state-based descriptions of software
systems. The authors propose mutation operators that can
be applied at an abstract level on SDL specifications.
These operators model errors that appear because of
interactions between elements in the model. These errors
can be detected during system testing. The proposed
mutation operators can thus validate test cases for system
testing.

7. Conclusion

The general assumption for this work is to measure the
quality of test cases (the revealing power of the test cases
[3]), to build trust in a component passing those test
cases. We thus propose a measure of the quality of test
cases based on the number of injected faults the test cases
can find. Experiments have shown that it is easy to write a
set of mean test cases, but that improving this initial set is
very difficult and time-consuming. The work presented in
this paper tackled the particular issue of automating the
improvement of an initial test case that detects around
60% of injected faults so that it can detect more than
90%.

We presented a general framework for faults injection.
The qualification of test cases based on faults injection is
called mutation analysis and it has been adapted to system

test cases qualification. Based on mutation analysis to
estimate the quality of a tests cases set, we experimented
two different models for test optimization. First we
computed genetic algorithms to improve an initial set. We
modeled the test optimization problem so that it could fit
genetic algorithms and ran experiments on a C# case
study. The results of these experiments were deceiving
because the test cases quality increased very slowly and
did not reach very high values. A new model, called
bacteriological model, simulates the bacteriological
adaptation phenomenon. Conversely to genetic
algorithms, this approach optimizes test cases and not a
test cases set, and this new model memorizes efficient test
cases from one generation to the other. We ran new
experiments on the same case study to investigate the
improvement of test cases quality.

Acknowledgment Many thanks to Françoise Burel,
director of the “Ecosystem Functioning and Conservation
Biology” lab of Rennes I University, for her helpful
remarks and suggestions in the definition of the
bacteriological algorithm

References

[1] K. Beck and E. Gamma, "Test-Infected: Programmers Love
Writing Tests". Java Report. Vol, 1998.

[2] R. DeMillo, R. Lipton, and F. Sayward, "Hints on Test Data
Selection : Help For The Practicing Programmer". IEEE
Computer. Vol.11(4), p. 34-41, 1978.

[3] J.M. Voas and K. Miller, "The Revealing Power of a Test
Case". Software Testing, Verification and Reliability.
Vol.2(1), p. 25-42, 1992.

[4] S.-W. Kim, J.A. Clark, and J.A. McDermid, "Investigating
the effectiveness of object-oriented testing strategies
using the mutation method". Software Testing,
Verification and Reliability. Vol.11(4), p. 207-225,
2001.

[5] B. Baudry, Y. Le Traon, J.-M. Jézéquel, and V.L. Hanh.
"Trustable Components: Yet Another Mutation-Based
Approach". in proceedings of 1st Symposium on
Mutation Testing, San Jose, CA, October 2000.

[6] I. Moore. "Jester - a JUnit test tester". in proceedings of
XP'2001, Villasimius, Sardinia2001.

[7] MSDN. ".NET homepage"

http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.
asp?contentid=28000519
[8] MSDN. "C# Introduction and Overview"
http://msdn.microsoft.com/vstudio/techinfo/articles/upgrade/Csh
arpintro.asp
[9] A.J. Offutt, J. Pan, K. Tewary, and T. Zhang, "An

experimental evaluation of data flow and mutation
testing". Software Practice and Experience. Vol.26(2),
1996.

[10] T. Olsson and P. Runeson. "System Level Mutation
Analysis Applied to a State-Based Language". in
proceedings of International Conference and Workshop
on the engineering of Computer Based Systems
(ECBS'01)2001.

[11] B. Meyer, "Object-oriented software construction",
Prentice Hall, 1992.

[12] Y. Le Traon, D. Deveaux, and J.-M. Jézéquel. "Self-
testable components: from pragmatic tests to a design-
for-testability methodology". in proceedings of TOOLS'
Europe, Nancy, France, June 1999.

[13] D.E. Goldberg, "Genetic Algorithms in Search,
Optimization and Machine Learning", Addison-Wesley,
1989.

[14] J.H. Holland, "Adaptation in Natural and Artificial
Systems", University of Michigan Press, 1974.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design
Patterns: Elements of Reusable Object-Oriented
Software". Professional Computing, Addison-Wesley,
1995.

[16] M.L. Rosenzweig, "Species Diversity In Space and Time",
Cambridge University Press, 1995.

[17] R.V. Binder, "Testing Object-Oriented Systems: Models,
Patterns and Tools", Addison-Wesley, 1999.

[18] R. DeMillo and A.J. Offutt, "Constraint-Based Automatic
Test Data Generation". IEEE Transactions on Software
Enginnering. Vol.17(9), p. 900-910, 1991.

[19] R. Pargas, M.J. Harrold, and R. Peck, "Test-Data
Generation Using Genetic Algorithms". Journal of
Software Testing, Verifications, and Reliability. Vol.9,
p. 263-283, 1999.

[20] B.F. Jones, H.-H. Sthamer, and D.E. Eyres, "Automatic
Structural Testing Using Genetic Algorithms". Software
Engineering Journal. Vol.11(5), p. 299-306, 1996.

[21] S.A. Wadekar and S.S. Gokhale. "Exploring Cost and
Reliability Tradeoffs in Architectural Alternatives Using
a Genetic Algorithm". in proceedings of ISSRE
(International Symposium on Software Reliability
Engineering), Boca Raton, Florida, November 1999.

Appendix A : example for C#

Figure 12 gives an example of bacterium (or gene)
written in C#. This is an example of C# source file that
can be passed as an input to the C# parser. This file
contains 20 nodes from the syntactic tree (C# constructs).

The figure also illustrates the mutation operator. The bold
foreach node in the left source file has been chosen for
mutation. A new source file has been created (right hand-
side) in which the node has been replaced by a while
node (bold in the right source file).

using System;
namespace Id_1 {

using System;
protected class Id_2 {

[AnAttribute1; AnAttribute2]
public string aField;

public ~Id_2() {} //~Id_2

[AnAttribute1; AnAttribute2]
public Id_2() {} //Id_2

[AnAttribute]
public virtual returnType aMethod (Type1 param1, Type2 param2) ;

[AnAttribute]
static Type aProperty {

get {}
set {

aVariable = aValue + 3;
for (int i=0 ; !Id_6||Id_8!=Id_3 ; i++)
{

foreach (nodes n in the_tree)
{anObject.aMethod (param3, param4);}

}
}

}

public returnType1 aMethod2 (Type3 param5) {} //aMethod2
} //Id_2

}

using System;
namespace Id_1 {

using System;
protected class Id_2 {

[AnAttribute1; AnAttribute2]
public string aField;

public ~Id_2() {} //~Id_2

[AnAttribute1; AnAttribute2]
public Id_2() {} //Id_2

[AnAttribute]
public virtual returnType aMethod (Type1 param1, Type2 param2) ;

[AnAttribute]
static Type aProperty {

get {}
set {

aVariable = aValue + 3;
for (int i=0 ; !Id_6||Id_8!=Id_3 ; i++)
{

while(cond1){
aVariable1++;}

}
}

}

public returnType1 aMethod2 (Type3 param5) {} //aMethod2
} //Id_2

}

using System;
namespace Id_1 {

using System;
protected class Id_2 {

[AnAttribute1; AnAttribute2]
public string aField;

public ~Id_2() {} //~Id_2

[AnAttribute1; AnAttribute2]
public Id_2() {} //Id_2

[AnAttribute]
public virtual returnType aMethod (Type1 param1, Type2 param2) ;

[AnAttribute]
static Type aProperty {

get {}
set {

aVariable = aValue + 3;
for (int i=0 ; !Id_6||Id_8!=Id_3 ; i++)
{

foreach (nodes n in the_tree)
{anObject.aMethod (param3, param4);}

}
}

}

public returnType1 aMethod2 (Type3 param5) {} //aMethod2
} //Id_2

}

using System;
namespace Id_1 {

using System;
protected class Id_2 {

[AnAttribute1; AnAttribute2]
public string aField;

public ~Id_2() {} //~Id_2

[AnAttribute1; AnAttribute2]
public Id_2() {} //Id_2

[AnAttribute]
public virtual returnType aMethod (Type1 param1, Type2 param2) ;

[AnAttribute]
static Type aProperty {

get {}
set {

aVariable = aValue + 3;
for (int i=0 ; !Id_6||Id_8!=Id_3 ; i++)
{

while(cond1){
aVariable1++;}

}
}

}

public returnType1 aMethod2 (Type3 param5) {} //aMethod2
} //Id_2

}
Figure 12 - example of a bacterium (or a gene) for C# parser

