
HAL Id: hal-00795027
https://hal.inria.fr/hal-00795027

Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting statechart synthesis with an algebraic
approach

Tewfic Ziadi, Loïc Hélouët, Jean-Marc Jézéquel

To cite this version:
Tewfic Ziadi, Loïc Hélouët, Jean-Marc Jézéquel. Revisiting statechart synthesis with an algebraic
approach. 26th International Conference on Software Engineering (ICSE 04), May 2004, Edinburgh,
United Kingdom. �hal-00795027�

https://hal.inria.fr/hal-00795027
https://hal.archives-ouvertes.fr

Revisiting Statechart Synthesis with an Algebraic Approach

Tew�k Ziadi� Lo�c H�lou�t� Jean�Marc J�z�quel

IRISA� Campus de Beaulieu� ��	
� Rennes Cedex� France

�tew�k�ziadi� loic�helouet� jezequel��irisa�fr

Abstract

The idea of synthesizing statecharts out of a collec�
tion of scenarios has received a lot of attention in re�
cent years� However due to the poor expressive power of
�rst generation scenario languages� including UML��x
sequence diagrams� the proposed solutions often use ad
hoc tricks and su�er from many shortcomings� The re�
cent adoption in UML��� of a richer scenario language�
including interesting composition operators� now makes
it possible to revisit the problem of statechart synthe�
sis with a radically new approach� Inspired by the way
UML��� sequence diagrams can be algebraically com�
posed� we �rst de�ne an algebraic framework for com�
posing statecharts� Then we show how to leverage the
algebraic structure of UML��� sequence diagrams to
get a direct algorithm for synthesizing a composition
of statecharts out of them� The synthesized statecharts
exhibit interesting properties that make them partic�
ularly useful as a basis for the detailed design pro�
cess� Beyond o�ering a systematic and semantically
well founded method� another interest of our approach
lies in its 	exibility
 the modi�cation or replacement of
a given scenario has a limited impact on the synthesis
process� thus fostering a better traceability between the
requirements and the detailed design��

�� Introduction

Scenario languages such as UML Sequence Diagrams
�SD� are often used to capture behavioral requirements
of a system� Requirements may contain usual behav�
iors expected from the system as well as exceptional
cases� Scenarios represent a global view of cooperations
inside a system� They are close to human understand�
ing and usually remain rather abstract and unprecise�
While it seems illusory to try to de�ne a system by
trying to design �all its scenarios�� the idea of synthe�

�This work has been partially supported by the FAMILIES

European project� Eureka
P

� ���� Program� ITEA project ip

������

sizing statecharts out of a collection of scenarios has
received a lot of attention in recent years� This is prob�
ably because designing a system behavior directly with
statecharts is not a intuitive process� as the notion of
state is often not natural in early stages of develop�
ment� As pointed out by 	
�� a sequence diagram is an
inter�object view of a system� i�e� an history implying a
cooperation of several objects to realize a functionality�
while a statechart can be considered as an intra�object
description� that includes several functionalities and is
closer to an implementation�

Due to the poor expressive power of �rst genera�
tion scenario languages� including UML��x sequence
diagrams� the proposed solutions for statechart synthe�
sis 	�� ��� ��� ��� often use ad hoc tricks and su�er from
many shortcomings� The recent adoption in UML�� of
a richer scenario language� including interesting com�
position operators� now makes it possible to revisit the
problem of statechart synthesis with a radically new
approach�

Inspired by the way UML�� sequence diagrams can
be algebraically composed� we �rst de�ne an algebraic
framework for composing statecharts� Then we show
how to leverage the algebraic structure of UML�� se�
quence diagrams to get a direct algorithm for synthe�
sizing statecharts� we propose to transform scenar�
ios given as a composition of sequence diagrams �as
de�ned in UML��� into a composition of state ma�
chines� Beyond o�ering a systematic and semantically
well founded method� another interest of our approach
lies in its �exibility� the modi�cation or replacement
of a given scenario has a limited impact on the synthe�
sis process� thus fostering a better traceability between
the requirements and the detailed design�

This paper is organized as follows� Section intro�
duces the main concepts and notations used through�
out the paper through the well known ATM �Auto�
matic Teller Machine� example 	�� ��� It goes on
by introducing our algebraic framework for compos�
ing statecharts� Section � describes our synthesis al�
gorithm and illustrates it on the ATM example� Sec�

tion � discusses the role and limitations of synthesis in
a development process� including the precise semantic
relationship existing between the scenarios and the syn�
thesized statecharts� Section � compares our approach
with related works�

�� Scenarios and statecharts

Scenarios are used to de�ne systems behavioral re�
quirements� They are close to users understanding and
they are often used to re�ne use cases and provide an
abstract view of a system� Several notations have been
proposed� among which UML sequence diagrams	���
message sequence charts�MSCs� 	��� and live sequence
charts 	��� In this paper we focus on scenarios repre�
sented as UML�� sequence diagrams �SDs�� Scenarios
are not the only way to capture behaviors of a system�
and a formalism like statecharts 	�� can also be used�
However� even if both views depict behavioral aspects
of a system� they have a very di�erent nature� While
scenarios capture interactions between a set of objects�
statecharts� represent the internal behavior of a sin�
gle object� As underlined in 	
�� scenarios are more an
inter�object view of system behaviors while statecharts
are an intra�object view of the same system�

An important question concerning synthesis is the
relationship between the initial scenario model and the
synthesized state machines� Should the synthesized be�
haviors be exactly the same� contain or be contained in
the original behaviors given by scenarios � Synthesizing
objects that do not even ful�ll initial requirements does
not really make sense� so the last option can be forgot�
ten� Because of the incompleteness of typical scenar�
ios� statechart synthesis should be more considered as a
step towards an implementation rather that as a de�ni�
tive bridge from user requirements to code� Hence� the
most sensible relation required between inter and intra
views is that requirement should be at least included
in the synthesized objects behaviors� Section � will
show that behavior equality or inclusion is only pos�
sible under certain assumptions about communication
between state machines� In addition to this� requiring
equivalence between inter and intra views behaviors is
only possible when reducing the expressive power of
the scenario language�

The approach proposed hereafter revisits the prob�
lem of statecharts synthesis with an algebraic approach
allowing to switch from an algebraic composition of SD
to an algebraic composition of statecharts� We have as�
sumed an asynchronous communication model between
communicating state machines� which allows systemat�
ically the inclusion of scenarios in synthesized behav�
iors� In the rest of this section� we �rst present UML��
SDs and their algebraic composition� and then intro�

duce an algebraic framework for statecharts composi�
tion�

2.1. UML2.0 Sequence Diagrams

UML�� 	�� Sequence diagrams greatly enhance the
previous versions of scenarios proposed in UML��x�
Basic Sequence diagrams describe a �nite number of
interactions between a set of objects� They are now
considered as collections of events �instead of ordered
collections of messages in UML��x�� which introduces
concurrency and asynchronism� and allows the de�ni�
tion of more complex behaviors� In addition to this�
sequence diagrams can now be composed by means of
operators to obtain more complex interactions�

Figure � shows �ve basic SDs de�ning possible sce�
narios for a well known example� the ATM �Automatic
Teller Machine�� We only work on a part of the ATM
behaviors de�ning the introduction of a card� its re�
moval� and the user identi�cation� A UML�� SD is
represented by a rectangular frame labeled by the key�
word sd followed by the name of the SD� The sequence
diagram EnterPassword of Figure � describes the in�
teractions of four objects User� ATM� Consortium and
Bank� The vertical lines represent life�lines for the
given objects� Interactions between objects are shown
as horizontal arrows called messages �like �enterPass�
word��� Each message is de�ned by two events� mes�
sage emission and message reception� which induces an
ordering between emission and reception� Events situ�
ated on the same lifeline are ordered from top to down�

De�nition � A basic Sequence diagram is a tuple
�E��� �� ��A� I� where E is a set of events� � is a
partial ordering imposed by lifelines and messages� A
is a set of actions �message emissions and receptions��
I is a set of objects participating to the interaction� and
� and � are mappings associating respectively an ac�
tion name and a location �i�e an object a�ected by the
event� to an event�

Sequence diagram UserCancel in Figure � shows
the interactions between an User and the ATM when
a transaction is cancelled� Note that interactions are
not mandatorily synchronous� as in UML��x� Hence�
messages EjectCard can be sent before reception of
message cancelledMessage�

Basic SDs only represent �nite behaviors without
branching �when executing a Sequence diagram� the
only branching is due to interleaving of concurrent
events�� but can be composed to obtain more complete
descriptions� UML�� basic SDs can be composed in a
composite SD called combined interaction using a set of
operators called interaction operators� The three fun�
damental operators are� seq� alt� and loop� The seq

Figure 1. Sequence diagrams for the ATM example

operator speci�es a weak sequence between the behav�
iors of two operand SDs �all events in the �rst operand
situated on an object o must be executed before events
of the second operand situated on the same object��
The alt operator de�nes a choice between a set of in�
teraction operands� The loop operator speci�es an it�
eration of an interaction�

For all these operators� each operand is either a ba�
sic or a combined SD� The combined SD ATMPortion

in Figure � composes �ve basic SDs using operators�
References to SD are described by a rectangular frame
labeled by the keyword ref in the upper left corner
and containing the name of the referred SD� The com�
position operators are described by rectangles which
left corner is labeled by an operator �alt� seq� loop��
Operands for sequence and alternative are separated
by dashed horizontal lines� Sequential composition
can be also implicitly given by the relative order of
two frames in a diagram� For example� in the SD
ATMPortion the basic SD EnterPassword is referenced
before the SD BadPassword� This is equivalent to
the expression EnterPassword seq BadPassword�
Composition operators can be seen as de�ning regular
expressions on a set of sequence diagrams� that will be
called references expressions for SDs�

De�nition � A references expression for sequence di�
agrams �noted RESD hereafter� is an expression of the
form

E ��� SD � �E alt E� � �E seq E� � loop � E �

where SD is a reference to a basic sequence diagram
and seq� alt and loop are the SD operators mentioned
above�

Let us consider the SD ATMPortion of Figure �� This
SD can be represented by the following expression�

E � loop� UserArrives seq �loop�
EnterPassword seq BadPassword � seq
�EnterPassword seq �BadAccount alt
UserCancel�� alt UserCancel��

2.2. Algebraic framework for statecharts

We propose to de�ne an algebraic framework for
statechart composition in a similar way� We formalize
three operators allowing sequential composition� alter�
native and iteration of statecharts� We use reference
expressions for statecharts as an algebraic speci�cation

of statechart composition� So far� we do not consider
concurrency along an object�s lifeline in a SD� We will
not need high�level constructs in statecharts such as
hierarchy and concurrent states� We will only use 	at
statecharts�

De�nition � A �at statechart is a �tuple
hS� s�� E�A� �� Ji where S is a set of states� s� is
the initial state� E is a set of events� A is a set of
actions� � � S � E � A � S is the transition relation�
J � S is a set of junction states�

Junction states are close to the usual notion of �nal
states in classical automatas� but will have an addi�
tional role during statechart composition �they will be
a kind of �merging states� for some operators�� Tran�
sitions can be either�

� �s� �� a� s��� which corresponds to message emis�
sion� Transitions of this kind will be denoted by an
arrow from the starting state to the target state�
and labeled by �a�

� �s� e� �� s��� which corresponds to message recep�
tions� Transitions of this kind will be denoted by
an arrow from the origin state to the target state�
and labeled by e�

Note that we have not adopted the usual
event�reaction notation for transitions� as we think
that message emissions can result from internal choices
that are not represented in an interaction� and
can not be systematically depicted as reactions to
a message reception� However� compacting state�
charts transitions to obtain transitions of the kind
reception�emission�� emission�� ��� is surely possible
in many cases�

Figure shows examples of �at statecharts� in which
junction states are represented by double circled states�
ST� refers to an empty statechart� containing a single
state which is at the same time an initial and a junction
state �see statechart ST� in Figure ��

Figure 2. Flat statecharts

2.3. Statecharts operators

We formalize three statechart operators� seqs�
loops and alts respectively for the sequential com�
position� the iteration and the alternative composition
of statecharts� Junction states that have been intro�
duced previously will be necessary to formalize these
operators� A statechart ST is a loop if the initial state
is a junction state� and if it is not an empty statechart
�i�e s� � J � ST �� ST��� Equality between statecharts
is de�ned as isomorphism between their de�nition�

Let ST� � hS�� s�
�
� E�� A�� ��� J�i and ST� �

hS�� s�
�
� E�� A�� ��� J�i be two �at statecharts�

Sequence �seqs�� The sequential composition of two
statecharts is a statechart that describes the behavior
of the �rst operand followed by the behavior of the
second one� ST� seqs ST� � hS� s�� E�A� �� Ji� where�

� The initial state of ST� seqs ST� is the initial
state of the �rst statechart if it is not empty and
of the second one otherwise�

s� �

�
s�
�
if ST� �� ST�

s�
�
otherwise

� S �

��
�

S� 	 S�
 fs�
�
g if �s�

�
�� J� � ST� � ST��

S� if ST� � ST�
S� 	 S� otherwise

� E � E� 	 E�� A � A� 	 A�� events and actions
of ST� seqs ST� are the union of those in the two
operands�

� Sequential composition of two statecharts pre�
serves all transitions of its operands� except tran�
sitions from the initial state of ST� when ST� is
not a loop� For the concatenation of two state�
charts� new transitions are added from each junc�
tion state of the �rst statechart to all successors of
the initial state of the second one� This is de�ned
as� � � �� 	 ��� � S � E � A � S� 	 f�j� e� a� s� �
J� �E� �A� � S�j�s�

�
� e� a� s� � ���g

� J �

�
J� 	 J� if s�

�
� J�

J� otherwise

ST� is a neutral element for sequential composition�
i�e� for any statechart ST � ST seqs ST� � ST� seqs
ST � ST �

Loop �loops�� This operator de�nes the iteration of
a statechart� loops�ST�� � hS� s�� E�A� �� Ji� where�

� the initial state of the iterated statechart remains
unchanged� i�e� s� � s�

�
� S contains all states

excepting junction states� i�e� S � �S�
J��	fs�
�
g�

� E � E�� A � A��

� Iteration adds transitions from predecessors of
each junction state of the statechart to the initial
state� and removes transitions to junction states�
This is de�ned as� � � ��� � S � E � A � S� 	
f�s� e� a� s�

�
� j �s� e� a� j� � ��g

� the resulting statechart only contains the initial
state as junction state� i�e� J � fs�

�
g�

The iteration of the empty statechart is the empty
statechart itself i�e� loops �ST�� � ST��

Alternative �alts�� The statechart resulting from
the alternative composition describes a choice between
the behaviors of its operands� ST� alts ST� �
hS� s�� E�A� �� Ji� where�

� s� �

������������
�����������

a new state s if ST� and ST are loops�
i�e� �s�

�
� J� � s�

�
� J� � ST� �� ST��

ST� �� ST��

s�
�
if only ST� is a loop or empty�

i�e� �s�
�
� J� � ST� � ST�� � s�

�
�� J�

s�
�
otherwise

Note that we keep s�
�
as initial state by default�

but that we obtain a similar result when keeping
s�
�
�

� S �

��������������
�������������

S� if �ST� � ST� � ST� �� ST��
S� if �ST� � ST� � ST� �� ST��
fs�g if �ST� � ST� � ST� � ST��

S� 	 S� 	 fsg if �s�
�
� J� � s�

�
� J��

ST� �� ST� � ST� �� ST��

S� 	 S�
 fs�
�
g if s�

�
�� J� � s�

�
�� J�

S� 	 S� otherwise

� E � E� 	 E�� A � A� 	 A��

� To specify a choice between the behaviors of the
two statecharts� new transitions are added from
the new initial state of to all successors of the ini�
tial states of the operands� This is de�ned as�

� � ��� � S �E �A� S�
	��� � S �E �A� S�
	f�s�� e� a� s� j �s��� e� a� s� � ��

��s�
�
� e� a� s� � ��g

� junction states are the union of junction states of
operands i�e� J � �J� 	 J�� � S�

ST� is a neutral element for choice� i�e ST alts
ST� � ST� alts ST � ST �

As for sequence diagrams� we describe algebraically
statecharts composition as reference expressions�

De�nition � A Reference expression for statecharts
�noted REST hereafter� is an expression of the form

E ��� ST � E seqs E � E alts E � loops �E�

The expression loops�ST� alts ST�� is an example
of REST� The �at statechart associated to this ex�
pression is obtained by applying alternative to ST�
and ST� and then the loop operator on the re�
sult� Note that the statecharts obtained after com�
position are not necessarily deterministic �see for ex�
ample� the statechart obtained from the expression
loops�ST�seqsST��seqsST� in Figure �� However�
they can be transformed into deterministic automata
using standard algorithms once the synthesis process is
accomplished�

�� Generating statecharts

This section proposes an algorithm generating �at
statecharts from UML�� SDs� First� we show how
basic statecharts are generated from basic SDs� Then�
we de�ne the generation of statecharts from combined
SDs as a mapping from RESD to REST�

3.1. Basic Sequence Diagrams

The generation of statechart for a given object from
a basic SD is based on the projection of the SD events
on the object�s life�line� Remember that events situ�
ated on the same lifeline are totally ordered�

De�nition 	 The projection �O�S� of a SD S on an
object O is the restriction of the order � to events
situated on O�s lifeline� As this restriction is a to�
tal order� we will consider the projection as the word
�O � e��e� � � � en such that fe�� � � � eng � ����O�� and
e� � e� � � � � en�

Let us denote by �m the sending of message m
and by �m the corresponding reception� The word
�displayMainScrean��insertCard��requestPassword
is the projection of the SD UserArrives of Figure �
on the �ATM� lifeline� Receptions in the SD become
events in the statechart and emissions become actions�
For a transition associated to a reception� the action
part will be empty� and for transitions associated to
actions� the event part will be empty�

The following algorithm shows how to generate a
�at statechart for a given object O from a basic SD

S� Clearly� statecharts generated will be sequences
of states� and will contain a single junction state�
that corresponds to the state reached when all events
situated on an object lifeline have been executed�
Note that when an object does not participate in an
interaction� the projection of a SD on this object�s
lifeline is the empty word� noted 	� For this speci�c
case� the generated statechart is ST��

algorithm
 P �S�O�

Input
 A basic SD S� an object O
Output
 A statechart STO � �S� s�� E�A� �� J�
Create the initial state s�
currentState �� s�
E �� �� A �� �� S �� fs�g� J � �� � � �
ProjectedEvents �� �O�S�
if ProjectedEvents is empty then
return�ST��

else
for i � � to jProjectedEventsj do
ei �� ProjectedEvents	i

Create a new state s� S � S 	 fsg
if ei is a receiving event then
E �� E 	 feig
Tr �� �currentState� ei� �� s�
� �� � 	 fTrg

else
if ei is a sending event then
A �� A 	 feig
Tr �� �currentState� �� ei� s�
� �� � 	 fTrg

end if
end if
currentState �� s

end for
J � currentState
return�STO�

end if

Figure � shows the �at statecharts generated from
the �ve basic SDs for the �ATM� object�

3.2. Combined Sequence Diagrams

After building a collection of basic statecharts
through projections of basic SDs� the extension of the
method to SD reference expressions seems quite imme�
diate� Let E be a RESD depicting the interactions of
a set of objects O � fO�� � � � Okg� For each object Oi�
a REST Ei is constructed by replacing in the RESD
seq� alt� and loop respectively by statecharts opera�
tors seqs� alts� and loops� and each reference to a SD
S by the statechart P �S�Oi�� From the set of REST
fE�

�
� � � � � E�

k
g obtained� k statecharts can be built using

statechart composition operators�

Let us apply this construction method to the
combined SD ATMPortion Figure �� The �ATM� �s
REST is�

EATM � loops�P�UserArrives� ATM� seqs
�loops� P�EnterPassword� ATM� seqs
P�BadPassword� ATM� � seqs �P�EnterPassword�

ATM� seqs �P�BadAccount� ATM� alts
P�UserCancel� ATM��� alts P�UserCancel�ATM���

The synthesized statecharts from algebraic expres�
sions are not necessarily minimal� However� smaller
statecharts can be obtained by determinization� Fig�
ure � shows the determinized �ATM� statechart ob�
tained from this expression� Note that since a speci�c
object may not participate to interactions in one or
more basic SDs� its REST can refer several times to
the empty statechart ST�� This REST can be reduced
knowing that the empty statechart is a neutral element
for the sequential composition and for the alternative�
and idempotent for the loop�

�� Discussion

4.1. Coherence between inter-object and intra-
object views

De�ning statecharts generation from combined SDs
as a mapping from RESDs to RESTs gives a certain
�exibility to the synthesis process� After a modi�ca�
tion of the RESD �adding or removing a SD for ex�
ample� a part of the previous synthesis result can be
reused� However� this simple and immediate synthesis
method produces state machines whose behavior does
not necessarily exactly match the initial scenarios�

As already mentioned� synthesis must preserve a cer�
tain coherence between the inter�object view given by
scenarios� and the composition of intra�object views
given by statecharts� Within this context� the way
objects are supposed to communicate is not inno�
cent� As shown in 	��� some communication models
do not allow the implementation of even very simple
sequence diagrams� To illustrate our remark� let us
consider three communication models for statecharts
composition� broadcast� synchronous communications�
and asynchronous communications with bu�ers man�
aged by event dispatchers in a SDL�like style� Let us
consider the sequence diagram of Figure �� and the
statecharts obtained� If broadcast communication is
assumed between state machines� message b can be
broadcast before message a� and as O� needs to receive
b before sending c� O� and O� will be deadlocked� This

Figure 3. ATM basic statecharts

Figure 4. Full statechart for the ATM obtained from SDs of Figure 1

situation does not appear with synchronous or asyn�
chronous communication� It clearly shows that some
sequence diagrams cannot be implemented with broad�
cast communication�

Now� let us consider the example of Figure �� and
the corresponding statecharts synthesized in Figure
�
If object O� sends message a� nothing prevents object
O� from sending message d� This leads to an unavoid�
able deadlock� both in a framework with synchronous
and asynchronous communications� However� in SD
Deadlock� behaviors in SD� and SD� were supposed
to be exclusive� Clearly� synthesized machines allow
new behaviors� In fact� the choice of a too restrictive
communication model �such as broadcast� makes syn�
thesis impossible in some cases� while more permissive
communications may produce unexpected behaviors�

Hence� the choice of a communication model is very
important for synthesis and has a consequence on the
relation between initial requirements and behaviors al�
lowed by generated state machines� Furthermore� the
relation between initial requirements and generated

statecharts must be the same for all sequence diagrams
in order to allow a systematic use of synthesis in a de�
velopment process� If a communication model only al�
lows the implementation of a subset of the requirements
�the behaviors of state machines is systematically in�
cluded in the behaviors of scenarios�� then it may be
adequate for some veri�cation tasks� but not really as a
step towards an implementation� If the set of generated
behaviors is included in the requirements for some se�
quence diagrams� and contains the requirements for
some others� then statechart synthesis is not really us�
able in the development process �not as a model re�ne�
ment step nor for veri�cation purposes�� With respect
to this remark� assuming broadcast communication for
statecharts within the synthesis context is surely a bad
choice� A possible approach to deal with these prob�
lems is to constrain the use of scenarios in order to
ensure that the synthesis process produces state ma�
chines with exactly the same behaviors that were ex�
pressed in the requirements� We do not believe that
this approach is realistic in many cases� as scenarios

were more designed to express sample behaviors than
for exhaustively specifying a system� Reducing the ex�
pressivity of scenarios would result in a poor language
that would only allow direct implementation in trivial
cases� One good compromise is to keep the expressive�
ness of scenarios� while remaining aware of the gap that
still exists between inter and intra views of the system�

Figure 5. Example for broadcast

4.2. Conditions for behavior inclusion in UML2.0

For a framework such as UML�� with asynchronous
communications between statecharts� the relation be�
tween scenarios and the corresponding state machines
synthesized is clearly established� Let us call T �SD�
the set of runs depicted by a sequence diagram� and
T �ST � the set possible runs de�ned by a statechart�
For a given set of statecharts fSTig� i � ���K� let
us call

f

i����K

STi the parallel composition of state ma�

chines with an appropriate communication mechanism�
Let us also assume a very permissive event dispatcher
mechanism that associates a �fo bu�er to each pair of
objects in the system� and can consume the �rst mes�
sage needed in this bu�er without deleting preceding
messages �hence allowing some limited message cross�
ing�� Within this framework� it has been proved 	��
that T �SD�� � T �

f

o�O

P �SD� o��� Having behavior in�

clusion instead of equality has several consequences on
the role that statechart synthesis may play in the de�
sign process�

Figure 6. Example leading to deadlock

Figure 7. Statecharts generated from Figure 6

4.3. Consequences

First� scenarios cannot be used like a programming
language� if the code obtained from initial requirement
is not equivalent to what was designed� synthesis is not
a way for �executing� scenarios� To solve this problem�
	��� proposes to detect scenarios that appear in syn�
thesized model �called �implied scenarios��� and then
to enhance the set of requirements to include these
implied scenarios� This solution faces two intractable
problems� �rst� detecting if all runs of statecharts are
equivalent to runs in the set of requirements is in gen�
eral an undecidable problem 	�
�� Hence� the detection
of an implied scenario can only be obtained through
simulation� and some unspeci�ed runs can be missed�
Then� the number of implied scenarios can be in�nite�
so the set of requirements may never converge towards
a stable set of scenarios�

From this consideration� we see synthesis from sce�
narios as an entry point towards more operational mod�
els� If one considers sequence diagrams as sample be�
haviors of a system� then it is clear that each behavior
described must match �modulo a certain abstraction�
at least one run of an implementation of this system� If
the chosen communication model is adequate� synthe�
sis can ensure this property� The statecharts generated
from synthesis must be re�ned �if possible in a trace�
able way� to go towards code� Then� scenarios can be
used as tests to check that an implementation ful�lls
the initial requirements�

Note that the di�erence between the behaviors de�
�ned in the requirements and the behaviors of state
machines is often due to a loss of synchronization that
is implicit in some scenarios� So far� the synthesis ap�
proaches have focused more on the behaviors expressed
than on the mechanisms needed to implement them�
Consider again the example of Figure �� The imple�
mentation of a consensus mechanism between objects
O� and O� could ensure that both objects behave ex�
clusively as in scenario SD� or as in scenario SD �up to
consensus hiding�� Such situations can be detected au�
tomatically� and one can imagine that ad hoc solutions
�synchronizations� consensus� ���� could also be auto�
matically integrated into synthesized state machines to

ensure equality between inter and intra views of the
system�

� Related work

Due to the poor expressive power of UML��x se�
quence diagrams� the proposed solutions for statecharts
synthesis 	��� ��� ��� �� often use additional informa�
tion or ad hoc assumptions for managing several sce�
narios� Whittle et al propose in 	�� to augment mes�
sages in sequences diagrams with pre and postcondi�
tions given in the OCL �Object Constraints Language�
which refer to global state variables� State variables
identify identical states throughout di�erent scenarios
and guide the synthesis process� The drawback of this
approach is that causality between events in a SD is
not exploited by the synthesis process� except if it is
explicitely speci�ed by variables �but such a level of
detail is asking too much precision at the requirement
stage��

Figure 8. Simple sequence diagram

Consider the example of Figure �� The same mes�
sage is sent and received three times� With the ap�
proach proposed by Whittle et al� the generated stat�
echart would only have one transition corresponding
to message emission�reception� except if variables ex�
plicitly specify that the system�s state evolves� Our
approach does not use variables� and structures the
state machines and transitions thanks to information
provided by lifeline orderings and SD operators� How�
ever� the introduction of variables would probably be
necessary for state uni�cation in the case of statechart
synthesis from several RESD�

Koskimies et al describe a method in 	��� �� to gen�
erate �at statecharts from a set of scenarios� It uses
the Biermann�Krishnaswamy algorithm 	� which infers
programs from traces� This work establishes a corre�
spondence between traces and scenarios and between
programs and statecharts� Sending events de�ne states
while receiving events de�ne transitions� The main as�
sumption of the approach is that states are identical if
they are associated to the same sending event� Again�

this state identi�cation may lead to arbitrary merg�
ing when the same message can be sent several times�
The algorithm proposed by M�kinen et al 	��� is also
interactive� and generates �at statecharts from UML
sequences diagrams� The main advantage of this ap�
proach is to allow interaction with user to accept or to
refuse the generated statecharts� The work of Khriss et
al� 	��� also proposes an interactive algorithm to gen�
erate statecharts from multiples scenarios expressed as
UML collaborations� To integrate statecharts� the al�
gorithm interacts with users to add state names to the
generated statecharts�

Some works study state machines synthesis from
Message Sequence Charts �MSC� 	��� MSCs allows
composition of basic scenarios �bMSCs� with High�
Level Message Sequence Charts �HMSC�� This compo�
sition mechanism is very close to current SD in UML
��� Uchitel 	��� ��� proposes to synthesize labeled
transition systems from a HMSC� Communications be�
tween state machines are synchronous� As shown is
Section �� this can have an important impact on the
synthesis process� due to the shape of scenarios that
can be used to express requirements� and on the rela�
tion between inter object and synthesized intra object
views of the system�

Kruger 	��� proposes to generate statecharts from a
set of MSC� States of the synthesized statecharts are
identi�ed using conditions of MSCs� The same condi�
tion in several scenarios refers to the same state of a
statechart�

The approaches proposed by 	�� ��� are based on
projection of Message Sequence Charts to obtain SDL
code� No restriction is imposed on the initial scenar�
ios� and the SDL behaviors synthesized are not al�
ways comparable with the scenarios� A similar ap�
proach 	��� proposes a synthesis of roomcharts �a kind
of asynchronous statecharts� from High�Level Message
Sequence charts� This work imposes some strong re�
strictions on the shape of scenarios used in order to
ensure equality between requirements and behaviors of
synthesized machines� As discussed in �� we think that
restrictions to scenario often produce poor languages�

� Conclusion

This paper has proposed an algebraic framework
for synthesizing statecharts from UML �� sequence
diagrams� Assuming that the statecharts EventDis�
patcher semantics is that of very generic �fo queues�
we established that our synthesis framework ensures
the inclusion of initial scenarios in the behaviors of the
synthesized state machines� For the moment� our ap�
proach is limited to three main operator of UML ��

sequence diagrams� seq� alt� and loop� The extension
of this framework to include more UML �� operators
such as opt �the optional operator� or loops with ex�
plicit bounds is currently under study� A prototype of
the proposed approach has been implemented in Java�
It takes as input interactions speci�ed in textual for�
mat �close to 	���� and produces a statecharts for each
object� We have used our approach for a complete
ATM example including ten basic SDs� The prototype
tool is also used on a well known banking system case
study 	�� We are currently using this approach in the
context of product families�

References

��� M� Abdalla� F� Khendek� and G� Butler� New results
on deriving sdl speci�cations from mscs� In G� � Y� e�
R�Dssouli� editor� Proc� of �th SDL forum� pages ���
		� �

�

��� A� Biermann and Krishnaswamy�R� Constrcuting pro�
grams from example computations� IEEE Transaction
Software Engineering� ������������ September �
�	�

��� W� Damm and D� Harel� Lscs� Breathing life into
message sequence charts� Formal Methods in System
design� �
��������� �����

��� A� Engels� S� Mauw� and M� Reniers� A hierarchy of
communication models for message sequence charts� In
T� H� T� Mizuno� N� Shiratori and A� Togashi� editors�
Proc� of FORTE X and PSTV XVII� pages ���
�� Os�
aka� Japon� Novembre �

�� Chapman � Hall�

��� O� M� Group� Uini�ed modeling language speci�cation
version ���� Superstructure� Technical Report ptc����
������ OMG� �����

�	� D� Harel� Statecharts� A visual formalism for complex
systems� Science of Computer Programming� ��������
���� �
���

��� D� Harel and R� Marelly� Come� Let�s Play � Scenario�
Based Programming Using LSCs and the Play�Engine�
Springer� �����

��� L� H�lou�t and C� Jard� Conditions for synthesis of
communicating automata from hmscs� In �th Inter�
national Workshop on Formal Methods for Industrial
Critical Systems �FMICS	� April �����

�
� ITU�T� Z���� � Message sequence charts MSC��
november �

�

���� I� Khriss� M� Elkoutbi� and R� Keller� Automating
the synthesis of uml statechart diagrams from multiple
collaboration diagrams� In Proc� of UML��
� Beyond
the Notation� pages ������	� �

��

���� K� Koskimies� T� Syst�� J� Tuomi� and M�nnist��T�
Automated support for modeling oo software� IEEE
Software� ������
�� Janu �

��

���� K� M� Koskimies� T� Syst�� and J� Tuomi� Sced� A
tool for dynamic modeling object systems� Technical
Report A��

	��� University of Tampere� �

	�

���� I� Kr�ger� R� Grosu� P� Scholz� and M� Broy� From
mscs to statecharts� In F� J� Rammig� editor� Dis�
tributed and Parallel Embedded Systems� Kluwer Aca�
demic Publishers� �

�

���� S� Leue� L� Mehrmann� and M� Rezai� Synthesizing
room models from message sequence chart speci�ca�
tions� In Proc� of ��th IEEE Conference on Auto�
mated Software Engineering� Honolulu� Hawaii� Octo�
bre �

��

���� N� Mansurov and D� Zhukov� Automatic synthesis of
sdl models in use case methodology� In G� � Y� e�
R�Dssouli� editor� Proc� of �th SDL forum� pages ����
���� �

�

��	� E� M�kinen and T� Syst�� Mas�an interactive synthe�
sizer to support behavioral modeling� In Proc� of Inter�
national Conference on Software Engineering �ICSE
���	� �����

���� A� Muscholl and D� Peled� Message Sequence Graphs
and decision problems on mazurkiewicz traces� In
Proc� of MFCS���� LNCS �	��� �

�

���� S� Uchitel and J� Kramer� A workbench for synthesis�
ing behaviour models from scenarios� In Proc� of Inter�
national Conference on Software Engineering �ICSE
���	� �����

��
� S� Uchitel� J� Kramer� and J� Magee� Detecting implied
scenarios in message sequence chart speci�cations� In
proceedings of the �th European Software Engineering
Conferece and �th ACM SIGSOFT International Sym�
posium on the Foundations of Software Engineering
�ESEC�FSE���	� September �����

���� S� Uchitel� J� Kramer� and J� Magee� Synthesis of be�
havioral models from scenarios� IEEE Transaction on
Software Engineering� �
���

����� February �����

���� J� Whittle and J� Schumann� Generating statechart
designs from scenarios� In Proc� of International Con�
ference on Software Engineering �ICSE ���	� �����

���� T� Ziadi� Technical and additional material�
http���www�irisa�fr�triskell�results�ICSE����

