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Abstract

The idea of synthesizing statecharts out of a collec�
tion of scenarios has received a lot of attention in re�
cent years� However due to the poor expressive power of
�rst generation scenario languages� including UML��x
sequence diagrams� the proposed solutions often use ad
hoc tricks and su�er from many shortcomings� The re�
cent adoption in UML��� of a richer scenario language�
including interesting composition operators� now makes
it possible to revisit the problem of statechart synthe�
sis with a radically new approach� Inspired by the way
UML��� sequence diagrams can be algebraically com�
posed� we �rst de�ne an algebraic framework for com�
posing statecharts� Then we show how to leverage the
algebraic structure of UML��� sequence diagrams to
get a direct algorithm for synthesizing a composition
of statecharts out of them� The synthesized statecharts
exhibit interesting properties that make them partic�
ularly useful as a basis for the detailed design pro�
cess� Beyond o�ering a systematic and semantically
well founded method� another interest of our approach
lies in its 	exibility
 the modi�cation or replacement of
a given scenario has a limited impact on the synthesis
process� thus fostering a better traceability between the
requirements and the detailed design��

�� Introduction

Scenario languages such as UML Sequence Diagrams
�SD� are often used to capture behavioral requirements
of a system� Requirements may contain usual behav�
iors expected from the system as well as exceptional
cases� Scenarios represent a global view of cooperations
inside a system� They are close to human understand�
ing and usually remain rather abstract and unprecise�
While it seems illusory to try to de�ne a system by
trying to design �all its scenarios�� the idea of synthe�
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sizing statecharts out of a collection of scenarios has
received a lot of attention in recent years� This is prob�
ably because designing a system behavior directly with
statecharts is not a intuitive process� as the notion of
state is often not natural in early stages of develop�
ment� As pointed out by 	
�� a sequence diagram is an
inter�object view of a system� i�e� an history implying a
cooperation of several objects to realize a functionality�
while a statechart can be considered as an intra�object
description� that includes several functionalities and is
closer to an implementation�

Due to the poor expressive power of �rst genera�
tion scenario languages� including UML��x sequence
diagrams� the proposed solutions for statechart synthe�
sis 	�� ��� ��� ��� often use ad hoc tricks and su�er from
many shortcomings� The recent adoption in UML�� of
a richer scenario language� including interesting com�
position operators� now makes it possible to revisit the
problem of statechart synthesis with a radically new
approach�

Inspired by the way UML�� sequence diagrams can
be algebraically composed� we �rst de�ne an algebraic
framework for composing statecharts� Then we show
how to leverage the algebraic structure of UML�� se�
quence diagrams to get a direct algorithm for synthe�
sizing statecharts� we propose to transform scenar�
ios given as a composition of sequence diagrams �as
de�ned in UML��� into a composition of state ma�
chines� Beyond o�ering a systematic and semantically
well founded method� another interest of our approach
lies in its �exibility� the modi�cation or replacement
of a given scenario has a limited impact on the synthe�
sis process� thus fostering a better traceability between
the requirements and the detailed design�

This paper is organized as follows� Section  intro�
duces the main concepts and notations used through�
out the paper through the well known ATM �Auto�
matic Teller Machine� example 	�� ��� It goes on
by introducing our algebraic framework for compos�
ing statecharts� Section � describes our synthesis al�
gorithm and illustrates it on the ATM example� Sec�



tion � discusses the role and limitations of synthesis in
a development process� including the precise semantic
relationship existing between the scenarios and the syn�
thesized statecharts� Section � compares our approach
with related works�

�� Scenarios and statecharts

Scenarios are used to de�ne systems behavioral re�
quirements� They are close to users understanding and
they are often used to re�ne use cases and provide an
abstract view of a system� Several notations have been
proposed� among which UML sequence diagrams	���
message sequence charts�MSCs� 	��� and live sequence
charts 	��� In this paper we focus on scenarios repre�
sented as UML�� sequence diagrams �SDs�� Scenarios
are not the only way to capture behaviors of a system�
and a formalism like statecharts 	�� can also be used�
However� even if both views depict behavioral aspects
of a system� they have a very di�erent nature� While
scenarios capture interactions between a set of objects�
statecharts� represent the internal behavior of a sin�
gle object� As underlined in 	
�� scenarios are more an
inter�object view of system behaviors while statecharts
are an intra�object view of the same system�

An important question concerning synthesis is the
relationship between the initial scenario model and the
synthesized state machines� Should the synthesized be�
haviors be exactly the same� contain or be contained in
the original behaviors given by scenarios � Synthesizing
objects that do not even ful�ll initial requirements does
not really make sense� so the last option can be forgot�
ten� Because of the incompleteness of typical scenar�
ios� statechart synthesis should be more considered as a
step towards an implementation rather that as a de�ni�
tive bridge from user requirements to code� Hence� the
most sensible relation required between inter and intra
views is that requirement should be at least included
in the synthesized objects behaviors� Section � will
show that behavior equality or inclusion is only pos�
sible under certain assumptions about communication
between state machines� In addition to this� requiring
equivalence between inter and intra views behaviors is
only possible when reducing the expressive power of
the scenario language�

The approach proposed hereafter revisits the prob�
lem of statecharts synthesis with an algebraic approach
allowing to switch from an algebraic composition of SD
to an algebraic composition of statecharts� We have as�
sumed an asynchronous communication model between
communicating state machines� which allows systemat�
ically the inclusion of scenarios in synthesized behav�
iors� In the rest of this section� we �rst present UML��
SDs and their algebraic composition� and then intro�

duce an algebraic framework for statecharts composi�
tion�

2.1. UML2.0 Sequence Diagrams

UML�� 	�� Sequence diagrams greatly enhance the
previous versions of scenarios proposed in UML��x�
Basic Sequence diagrams describe a �nite number of
interactions between a set of objects� They are now
considered as collections of events �instead of ordered
collections of messages in UML��x�� which introduces
concurrency and asynchronism� and allows the de�ni�
tion of more complex behaviors� In addition to this�
sequence diagrams can now be composed by means of
operators to obtain more complex interactions�

Figure � shows �ve basic SDs de�ning possible sce�
narios for a well known example� the ATM �Automatic
Teller Machine�� We only work on a part of the ATM
behaviors de�ning the introduction of a card� its re�
moval� and the user identi�cation� A UML�� SD is
represented by a rectangular frame labeled by the key�
word sd followed by the name of the SD� The sequence
diagram EnterPassword of Figure � describes the in�
teractions of four objects User� ATM� Consortium and
Bank� The vertical lines represent life�lines for the
given objects� Interactions between objects are shown
as horizontal arrows called messages �like �enterPass�
word��� Each message is de�ned by two events� mes�
sage emission and message reception� which induces an
ordering between emission and reception� Events situ�
ated on the same lifeline are ordered from top to down�

De�nition � A basic Sequence diagram is a tuple
�E��� �� ��A� I� where E is a set of events� � is a
partial ordering imposed by lifelines and messages� A
is a set of actions �message emissions and receptions��
I is a set of objects participating to the interaction� and
� and � are mappings associating respectively an ac�
tion name and a location �i�e an object a�ected by the
event� to an event�

Sequence diagram UserCancel in Figure � shows
the interactions between an User and the ATM when
a transaction is cancelled� Note that interactions are
not mandatorily synchronous� as in UML��x� Hence�
messages EjectCard can be sent before reception of
message cancelledMessage�

Basic SDs only represent �nite behaviors without
branching �when executing a Sequence diagram� the
only branching is due to interleaving of concurrent
events�� but can be composed to obtain more complete
descriptions� UML�� basic SDs can be composed in a
composite SD called combined interaction using a set of
operators called interaction operators� The three fun�
damental operators are� seq� alt� and loop� The seq



Figure 1. Sequence diagrams for the ATM example

operator speci�es a weak sequence between the behav�
iors of two operand SDs �all events in the �rst operand
situated on an object o must be executed before events
of the second operand situated on the same object��
The alt operator de�nes a choice between a set of in�
teraction operands� The loop operator speci�es an it�
eration of an interaction�

For all these operators� each operand is either a ba�
sic or a combined SD� The combined SD ATMPortion

in Figure � composes �ve basic SDs using operators�
References to SD are described by a rectangular frame
labeled by the keyword ref in the upper left corner
and containing the name of the referred SD� The com�
position operators are described by rectangles which
left corner is labeled by an operator �alt� seq� loop��
Operands for sequence and alternative are separated
by dashed horizontal lines� Sequential composition
can be also implicitly given by the relative order of
two frames in a diagram� For example� in the SD
ATMPortion the basic SD EnterPassword is referenced
before the SD BadPassword� This is equivalent to
the expression EnterPassword seq BadPassword�
Composition operators can be seen as de�ning regular
expressions on a set of sequence diagrams� that will be
called references expressions for SDs�

De�nition � A references expression for sequence di�
agrams �noted RESD hereafter� is an expression of the
form

E ��� SD � �E alt E� � �E seq E� � loop � E �

where SD is a reference to a basic sequence diagram
and seq� alt and loop are the SD operators mentioned
above�

Let us consider the SD ATMPortion of Figure �� This
SD can be represented by the following expression�

E � loop� UserArrives seq �loop�
EnterPassword seq BadPassword � seq
�EnterPassword seq �BadAccount alt
UserCancel�� alt UserCancel��

2.2. Algebraic framework for statecharts

We propose to de�ne an algebraic framework for
statechart composition in a similar way� We formalize
three operators allowing sequential composition� alter�
native and iteration of statecharts� We use reference
expressions for statecharts as an algebraic speci�cation



of statechart composition� So far� we do not consider
concurrency along an object�s lifeline in a SD� We will
not need high�level constructs in statecharts such as
hierarchy and concurrent states� We will only use 	at
statecharts�

De�nition � A �at statechart is a �tuple
hS� s�� E�A� �� Ji where S is a set of states� s� is
the initial state� E is a set of events� A is a set of
actions� � � S � E � A � S is the transition relation�
J � S is a set of junction states�

Junction states are close to the usual notion of �nal
states in classical automatas� but will have an addi�
tional role during statechart composition �they will be
a kind of �merging states� for some operators�� Tran�
sitions can be either�

� �s� �� a� s��� which corresponds to message emis�
sion� Transitions of this kind will be denoted by an
arrow from the starting state to the target state�
and labeled by �a�

� �s� e� �� s��� which corresponds to message recep�
tions� Transitions of this kind will be denoted by
an arrow from the origin state to the target state�
and labeled by e�

Note that we have not adopted the usual
event�reaction notation for transitions� as we think
that message emissions can result from internal choices
that are not represented in an interaction� and
can not be systematically depicted as reactions to
a message reception� However� compacting state�
charts transitions to obtain transitions of the kind
reception�emission�� emission�� ��� is surely possible
in many cases�

Figure  shows examples of �at statecharts� in which
junction states are represented by double circled states�
ST� refers to an empty statechart� containing a single
state which is at the same time an initial and a junction
state �see statechart ST� in Figure ��

Figure 2. Flat statecharts

2.3. Statecharts operators

We formalize three statechart operators� seqs�
loops and alts respectively for the sequential com�
position� the iteration and the alternative composition
of statecharts� Junction states that have been intro�
duced previously will be necessary to formalize these
operators� A statechart ST is a loop if the initial state
is a junction state� and if it is not an empty statechart
�i�e s� � J � ST �� ST��� Equality between statecharts
is de�ned as isomorphism between their de�nition�

Let ST� � hS�� s�
�
� E�� A�� ��� J�i and ST� �

hS�� s�
�
� E�� A�� ��� J�i be two �at statecharts�

Sequence �seqs�� The sequential composition of two
statecharts is a statechart that describes the behavior
of the �rst operand followed by the behavior of the
second one� ST� seqs ST� � hS� s�� E�A� �� Ji� where�

� The initial state of ST� seqs ST� is the initial
state of the �rst statechart if it is not empty and
of the second one otherwise�

s� �

�
s�
�
if ST� �� ST�

s�
�
otherwise

� S �

��
�

S� 	 S� 
 fs�
�
g if �s�

�
�� J� � ST� � ST��

S� if ST� � ST�
S� 	 S� otherwise

� E � E� 	 E�� A � A� 	 A�� events and actions
of ST� seqs ST� are the union of those in the two
operands�

� Sequential composition of two statecharts pre�
serves all transitions of its operands� except tran�
sitions from the initial state of ST� when ST� is
not a loop� For the concatenation of two state�
charts� new transitions are added from each junc�
tion state of the �rst statechart to all successors of
the initial state of the second one� This is de�ned
as� � � �� 	 ��� � S � E � A � S� 	 f�j� e� a� s� �
J� �E� �A� � S�j�s�

�
� e� a� s� � ���g

� J �

�
J� 	 J� if s�

�
� J�

J� otherwise

ST� is a neutral element for sequential composition�
i�e� for any statechart ST � ST seqs ST� � ST� seqs
ST � ST �

Loop �loops�� This operator de�nes the iteration of
a statechart� loops�ST�� � hS� s�� E�A� �� Ji� where�

� the initial state of the iterated statechart remains
unchanged� i�e� s� � s�

�
� S contains all states

excepting junction states� i�e� S � �S�
J��	fs�
�
g�



� E � E�� A � A��

� Iteration adds transitions from predecessors of
each junction state of the statechart to the initial
state� and removes transitions to junction states�
This is de�ned as� � � ��� � S � E � A � S� 	
f�s� e� a� s�

�
� j �s� e� a� j� � ��g

� the resulting statechart only contains the initial
state as junction state� i�e� J � fs�

�
g�

The iteration of the empty statechart is the empty
statechart itself i�e� loops �ST�� � ST��

Alternative �alts�� The statechart resulting from
the alternative composition describes a choice between
the behaviors of its operands� ST� alts ST� �
hS� s�� E�A� �� Ji� where�

� s� �

������������
�����������

a new state s if ST� and ST are loops�
i�e� �s�

�
� J� � s�

�
� J� � ST� �� ST��

ST� �� ST��

s�
�
if only ST� is a loop or empty�

i�e� �s�
�
� J� � ST� � ST�� � s�

�
�� J�

s�
�
otherwise

Note that we keep s�
�
as initial state by default�

but that we obtain a similar result when keeping
s�
�
�

� S �

��������������
�������������

S� if �ST� � ST� � ST� �� ST��
S� if �ST� � ST� � ST� �� ST��
fs�g if �ST� � ST� � ST� � ST��

S� 	 S� 	 fsg if �s�
�
� J� � s�

�
� J��

ST� �� ST� � ST� �� ST��

S� 	 S� 
 fs�
�
g if s�

�
�� J� � s�

�
�� J�

S� 	 S� otherwise

� E � E� 	 E�� A � A� 	 A��

� To specify a choice between the behaviors of the
two statecharts� new transitions are added from
the new initial state of to all successors of the ini�
tial states of the operands� This is de�ned as�

� � ��� � S �E �A� S�
	��� � S �E �A� S�
	f�s�� e� a� s� j �s��� e� a� s� � ��

��s�
�
� e� a� s� � ��g

� junction states are the union of junction states of
operands i�e� J � �J� 	 J�� � S�

ST� is a neutral element for choice� i�e ST alts
ST� � ST� alts ST � ST �

As for sequence diagrams� we describe algebraically
statecharts composition as reference expressions�

De�nition � A Reference expression for statecharts
�noted REST hereafter� is an expression of the form

E ��� ST � E seqs E � E alts E � loops �E�

The expression loops�ST� alts ST�� is an example
of REST� The �at statechart associated to this ex�
pression is obtained by applying alternative to ST�
and ST� and then the loop operator on the re�
sult� Note that the statecharts obtained after com�
position are not necessarily deterministic �see for ex�
ample� the statechart obtained from the expression
loops�ST�seqsST��seqsST� in Figure �� However�
they can be transformed into deterministic automata
using standard algorithms once the synthesis process is
accomplished�

�� Generating statecharts

This section proposes an algorithm generating �at
statecharts from UML�� SDs� First� we show how
basic statecharts are generated from basic SDs� Then�
we de�ne the generation of statecharts from combined
SDs as a mapping from RESD to REST�

3.1. Basic Sequence Diagrams

The generation of statechart for a given object from
a basic SD is based on the projection of the SD events
on the object�s life�line� Remember that events situ�
ated on the same lifeline are totally ordered�

De�nition 	 The projection �O�S� of a SD S on an
object O is the restriction of the order � to events
situated on O�s lifeline� As this restriction is a to�
tal order� we will consider the projection as the word
�O � e��e� � � � en such that fe�� � � � eng � ����O�� and
e� � e� � � � � en�

Let us denote by �m the sending of message m
and by �m the corresponding reception� The word
�displayMainScrean��insertCard��requestPassword
is the projection of the SD UserArrives of Figure �
on the �ATM� lifeline� Receptions in the SD become
events in the statechart and emissions become actions�
For a transition associated to a reception� the action
part will be empty� and for transitions associated to
actions� the event part will be empty�

The following algorithm shows how to generate a
�at statechart for a given object O from a basic SD



S� Clearly� statecharts generated will be sequences
of states� and will contain a single junction state�
that corresponds to the state reached when all events
situated on an object lifeline have been executed�
Note that when an object does not participate in an
interaction� the projection of a SD on this object�s
lifeline is the empty word� noted 	� For this speci�c
case� the generated statechart is ST��

algorithm
 P �S�O�

Input 
 A basic SD S� an object O
Output 
 A statechart STO � �S� s�� E�A� �� J�
Create the initial state s�
currentState �� s�
E �� �� A �� �� S �� fs�g� J � �� � � �
ProjectedEvents �� �O�S�
if ProjectedEvents is empty then
return�ST��

else
for i � � to jProjectedEventsj do
ei �� ProjectedEvents	i

Create a new state s� S � S 	 fsg
if ei is a receiving event then
E �� E 	 feig
Tr �� �currentState� ei� �� s�
� �� � 	 fTrg

else
if ei is a sending event then
A �� A 	 feig
Tr �� �currentState� �� ei� s�
� �� � 	 fTrg

end if
end if
currentState �� s

end for
J � currentState
return�STO�

end if

Figure � shows the �at statecharts generated from
the �ve basic SDs for the �ATM� object�

3.2. Combined Sequence Diagrams

After building a collection of basic statecharts
through projections of basic SDs� the extension of the
method to SD reference expressions seems quite imme�
diate� Let E be a RESD depicting the interactions of
a set of objects O � fO�� � � � Okg� For each object Oi�
a REST Ei is constructed by replacing in the RESD
seq� alt� and loop respectively by statecharts opera�
tors seqs� alts� and loops� and each reference to a SD
S by the statechart P �S�Oi�� From the set of REST
fE�

�
� � � � � E�

k
g obtained� k statecharts can be built using

statechart composition operators�

Let us apply this construction method to the
combined SD ATMPortion Figure �� The �ATM� �s
REST is�

EATM � loops�P�UserArrives� ATM� seqs
�loops� P�EnterPassword� ATM� seqs
P�BadPassword� ATM� � seqs �P�EnterPassword�

ATM� seqs �P�BadAccount� ATM� alts
P�UserCancel� ATM��� alts P�UserCancel�ATM���

The synthesized statecharts from algebraic expres�
sions are not necessarily minimal� However� smaller
statecharts can be obtained by determinization� Fig�
ure � shows the determinized �ATM� statechart ob�
tained from this expression� Note that since a speci�c
object may not participate to interactions in one or
more basic SDs� its REST can refer several times to
the empty statechart ST�� This REST can be reduced
knowing that the empty statechart is a neutral element
for the sequential composition and for the alternative�
and idempotent for the loop�

�� Discussion

4.1. Coherence between inter-object and intra-
object views

De�ning statecharts generation from combined SDs
as a mapping from RESDs to RESTs gives a certain
�exibility to the synthesis process� After a modi�ca�
tion of the RESD �adding or removing a SD for ex�
ample� a part of the previous synthesis result can be
reused� However� this simple and immediate synthesis
method produces state machines whose behavior does
not necessarily exactly match the initial scenarios�

As already mentioned� synthesis must preserve a cer�
tain coherence between the inter�object view given by
scenarios� and the composition of intra�object views
given by statecharts� Within this context� the way
objects are supposed to communicate is not inno�
cent� As shown in 	��� some communication models
do not allow the implementation of even very simple
sequence diagrams� To illustrate our remark� let us
consider three communication models for statecharts
composition� broadcast� synchronous communications�
and asynchronous communications with bu�ers man�
aged by event dispatchers in a SDL�like style� Let us
consider the sequence diagram of Figure �� and the
statecharts obtained� If broadcast communication is
assumed between state machines� message b can be
broadcast before message a� and as O� needs to receive
b before sending c� O� and O� will be deadlocked� This



Figure 3. ATM basic statecharts

Figure 4. Full statechart for the ATM obtained from SDs of Figure 1

situation does not appear with synchronous or asyn�
chronous communication� It clearly shows that some
sequence diagrams cannot be implemented with broad�
cast communication�

Now� let us consider the example of Figure �� and
the corresponding statecharts synthesized in Figure 
�
If object O� sends message a� nothing prevents object
O� from sending message d� This leads to an unavoid�
able deadlock� both in a framework with synchronous
and asynchronous communications� However� in SD
Deadlock� behaviors in SD� and SD� were supposed
to be exclusive� Clearly� synthesized machines allow
new behaviors� In fact� the choice of a too restrictive
communication model �such as broadcast� makes syn�
thesis impossible in some cases� while more permissive
communications may produce unexpected behaviors�

Hence� the choice of a communication model is very
important for synthesis and has a consequence on the
relation between initial requirements and behaviors al�
lowed by generated state machines� Furthermore� the
relation between initial requirements and generated

statecharts must be the same for all sequence diagrams
in order to allow a systematic use of synthesis in a de�
velopment process� If a communication model only al�
lows the implementation of a subset of the requirements
�the behaviors of state machines is systematically in�
cluded in the behaviors of scenarios�� then it may be
adequate for some veri�cation tasks� but not really as a
step towards an implementation� If the set of generated
behaviors is included in the requirements for some se�
quence diagrams� and contains the requirements for
some others� then statechart synthesis is not really us�
able in the development process �not as a model re�ne�
ment step nor for veri�cation purposes�� With respect
to this remark� assuming broadcast communication for
statecharts within the synthesis context is surely a bad
choice� A possible approach to deal with these prob�
lems is to constrain the use of scenarios in order to
ensure that the synthesis process produces state ma�
chines with exactly the same behaviors that were ex�
pressed in the requirements� We do not believe that
this approach is realistic in many cases� as scenarios



were more designed to express sample behaviors than
for exhaustively specifying a system� Reducing the ex�
pressivity of scenarios would result in a poor language
that would only allow direct implementation in trivial
cases� One good compromise is to keep the expressive�
ness of scenarios� while remaining aware of the gap that
still exists between inter and intra views of the system�

Figure 5. Example for broadcast

4.2. Conditions for behavior inclusion in UML2.0

For a framework such as UML�� with asynchronous
communications between statecharts� the relation be�
tween scenarios and the corresponding state machines
synthesized is clearly established� Let us call T �SD�
the set of runs depicted by a sequence diagram� and
T �ST � the set possible runs de�ned by a statechart�
For a given set of statecharts fSTig� i � ���K� let
us call

f

i����K

STi the parallel composition of state ma�

chines with an appropriate communication mechanism�
Let us also assume a very permissive event dispatcher
mechanism that associates a �fo bu�er to each pair of
objects in the system� and can consume the �rst mes�
sage needed in this bu�er without deleting preceding
messages �hence allowing some limited message cross�
ing�� Within this framework� it has been proved 	��
that T �SD�� � T �

f

o�O

P �SD� o��� Having behavior in�

clusion instead of equality has several consequences on
the role that statechart synthesis may play in the de�
sign process�

Figure 6. Example leading to deadlock

Figure 7. Statecharts generated from Figure 6

4.3. Consequences

First� scenarios cannot be used like a programming
language� if the code obtained from initial requirement
is not equivalent to what was designed� synthesis is not
a way for �executing� scenarios� To solve this problem�
	��� proposes to detect scenarios that appear in syn�
thesized model �called �implied scenarios��� and then
to enhance the set of requirements to include these
implied scenarios� This solution faces two intractable
problems� �rst� detecting if all runs of statecharts are
equivalent to runs in the set of requirements is in gen�
eral an undecidable problem 	�
�� Hence� the detection
of an implied scenario can only be obtained through
simulation� and some unspeci�ed runs can be missed�
Then� the number of implied scenarios can be in�nite�
so the set of requirements may never converge towards
a stable set of scenarios�

From this consideration� we see synthesis from sce�
narios as an entry point towards more operational mod�
els� If one considers sequence diagrams as sample be�
haviors of a system� then it is clear that each behavior
described must match �modulo a certain abstraction�
at least one run of an implementation of this system� If
the chosen communication model is adequate� synthe�
sis can ensure this property� The statecharts generated
from synthesis must be re�ned �if possible in a trace�
able way� to go towards code� Then� scenarios can be
used as tests to check that an implementation ful�lls
the initial requirements�

Note that the di�erence between the behaviors de�
�ned in the requirements and the behaviors of state
machines is often due to a loss of synchronization that
is implicit in some scenarios� So far� the synthesis ap�
proaches have focused more on the behaviors expressed
than on the mechanisms needed to implement them�
Consider again the example of Figure �� The imple�
mentation of a consensus mechanism between objects
O� and O� could ensure that both objects behave ex�
clusively as in scenario SD� or as in scenario SD �up to
consensus hiding�� Such situations can be detected au�
tomatically� and one can imagine that ad hoc solutions
�synchronizations� consensus� ���� could also be auto�
matically integrated into synthesized state machines to



ensure equality between inter and intra views of the
system�

� Related work

Due to the poor expressive power of UML��x se�
quence diagrams� the proposed solutions for statecharts
synthesis 	��� ��� ��� �� often use additional informa�
tion or ad hoc assumptions for managing several sce�
narios� Whittle et al propose in 	�� to augment mes�
sages in sequences diagrams with pre and postcondi�
tions given in the OCL �Object Constraints Language�
which refer to global state variables� State variables
identify identical states throughout di�erent scenarios
and guide the synthesis process� The drawback of this
approach is that causality between events in a SD is
not exploited by the synthesis process� except if it is
explicitely speci�ed by variables �but such a level of
detail is asking too much precision at the requirement
stage��

Figure 8. Simple sequence diagram

Consider the example of Figure �� The same mes�
sage is sent and received three times� With the ap�
proach proposed by Whittle et al� the generated stat�
echart would only have one transition corresponding
to message emission�reception� except if variables ex�
plicitly specify that the system�s state evolves� Our
approach does not use variables� and structures the
state machines and transitions thanks to information
provided by lifeline orderings and SD operators� How�
ever� the introduction of variables would probably be
necessary for state uni�cation in the case of statechart
synthesis from several RESD�

Koskimies et al describe a method in 	��� �� to gen�
erate �at statecharts from a set of scenarios� It uses
the Biermann�Krishnaswamy algorithm 	� which infers
programs from traces� This work establishes a corre�
spondence between traces and scenarios and between
programs and statecharts� Sending events de�ne states
while receiving events de�ne transitions� The main as�
sumption of the approach is that states are identical if
they are associated to the same sending event� Again�

this state identi�cation may lead to arbitrary merg�
ing when the same message can be sent several times�
The algorithm proposed by M�kinen et al 	��� is also
interactive� and generates �at statecharts from UML
sequences diagrams� The main advantage of this ap�
proach is to allow interaction with user to accept or to
refuse the generated statecharts� The work of Khriss et
al� 	��� also proposes an interactive algorithm to gen�
erate statecharts from multiples scenarios expressed as
UML collaborations� To integrate statecharts� the al�
gorithm interacts with users to add state names to the
generated statecharts�

Some works study state machines synthesis from
Message Sequence Charts �MSC� 	��� MSCs allows
composition of basic scenarios �bMSCs� with High�
Level Message Sequence Charts �HMSC�� This compo�
sition mechanism is very close to current SD in UML
��� Uchitel 	��� ��� proposes to synthesize labeled
transition systems from a HMSC� Communications be�
tween state machines are synchronous� As shown is
Section �� this can have an important impact on the
synthesis process� due to the shape of scenarios that
can be used to express requirements� and on the rela�
tion between inter object and synthesized intra object
views of the system�

Kruger 	��� proposes to generate statecharts from a
set of MSC� States of the synthesized statecharts are
identi�ed using conditions of MSCs� The same condi�
tion in several scenarios refers to the same state of a
statechart�

The approaches proposed by 	�� ��� are based on
projection of Message Sequence Charts to obtain SDL
code� No restriction is imposed on the initial scenar�
ios� and the SDL behaviors synthesized are not al�
ways comparable with the scenarios� A similar ap�
proach 	��� proposes a synthesis of roomcharts �a kind
of asynchronous statecharts� from High�Level Message
Sequence charts� This work imposes some strong re�
strictions on the shape of scenarios used in order to
ensure equality between requirements and behaviors of
synthesized machines� As discussed in �� we think that
restrictions to scenario often produce poor languages�

� Conclusion

This paper has proposed an algebraic framework
for synthesizing statecharts from UML �� sequence
diagrams� Assuming that the statecharts EventDis�
patcher semantics is that of very generic �fo queues�
we established that our synthesis framework ensures
the inclusion of initial scenarios in the behaviors of the
synthesized state machines� For the moment� our ap�
proach is limited to three main operator of UML ��



sequence diagrams� seq� alt� and loop� The extension
of this framework to include more UML �� operators
such as opt �the optional operator� or loops with ex�
plicit bounds is currently under study� A prototype of
the proposed approach has been implemented in Java�
It takes as input interactions speci�ed in textual for�
mat �close to 	���� and produces a statecharts for each
object� We have used our approach for a complete
ATM example including ten basic SDs� The prototype
tool is also used on a well known banking system case
study 	�� We are currently using this approach in the
context of product families�
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