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Abstract—Achieving accurate, cost-efficient, and fast anomaly
localization is a highly desired feature in computer networks. A
necessary and sufficient condition on the set of paths that need
to be monitored upon detecting a single link-level anomaly in
order to localize its source unambiguously have been established.
However, this paper demonstrates that this condition is sufficient
but not necessary. A necessary and sufficient condition that
reduces the localization overhead, cost and delay significantly, as
compared to the existing condition, is established. Furthermore,
an ILP algorithm that selects monitoring paths and monitor
locations which satisfy the established condition jointly, thereby
enabling a trade-off between the number and locations of mon-
itoring devices and the quality of monitoring paths, is devised.
The problem is shown to be NP-hard through a polynomial-
time reduction from the NP-hard facility location problem,
and therefore, a scalable near-optimal heuristic is proposed.
The effectiveness and the correctness of the proposed anomaly
localization scheme are verified through theoretical analysis and
extensive simulations.
Index Terms—Network monitoring, network diagnosis, anomaly
localization, anomaly detection, link-level anomalies.

I. INTRODUCTION

Anomaly localization aims at identifying unambiguously the
link that causes an anomalous behavior of the network (e.g.
excessive delay, high packet loss rate, etc.). Recent research
works argued that continuous anomaly localization results in
high overhead on the underlying network, and hence, is likely
to interfere with the network services . Subsequently, most
recent monitoring schemes proceed in two phases (e.g. [1]
[2] [3] [12] [13] [14] [15]). The first phase, the detection
phase, uses as few network resources as possible to only detect
anomalies. A necessary and sufficient condition to detect all
link-level anomalies is to cover all links of the network.
Upon detecting an anomaly, the detection phase returns a set
of suspect links. The localization phase is triggered then. It
aims at reducing the set of suspect links to the anomalous
link(s). Clearly, this reactive anomaly localization approach
reduces significantly the monitoring overhead compared to
the continuous anomaly localization approach. However it
presents a serious challenge: the localization must be as fast
as possible, in order to enable a fast recovery of the network.

Agrawal et al. [1] proposed an accurate link-level anomaly
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localization scheme that can localize all potential single link-
level anomalies in a given network. The key idea is to deploy
resources that enable the monitoring of a set of paths that
distinguishes all links of the network pairwise. Two links
are said to be distinguished from each other if we are able
to decide which one is anomalous when an anomaly occurs
on one of them. Whenever an anomaly is detected, this set
of paths is monitored in order to pinpoint the anomalous
link. This technique is suboptimal in that it considers all the
network links as suspect, ignoring the information provided by
the detection process, which generates unnecessary overhead
and delays the localization. More recently, Barford et al.
[2] proposed another scheme that selects paths that are to
be monitored during the localization phase. Although this
technique minimizes the localization overhead, because the
monitored paths distinguish only between the suspect links
pairwise, it suffers from two imperfections. The first is the
non-negligible time of computing the set of paths that are
to be monitored upon detecting an anomaly, which increases
the localization delay (i.e., time elapsed between the moment
when an anomaly is detected and the moment when the
anomalous link is pinpointed). The second is that there is
no guarantee to localize all potential anomalies, because the
deployed monitors ensure only the coverage of links 1. In this
paper, we demonstrate that 1) not all links of the network
need to be distinguishable pairwise for localizing any potential
anomaly, 2) all potential anomaly scenarios can be derived
offline from any detection solution that covers all the network
links. Thus, we compute full and cost-efficient localization
solutions, i.e., monitors that are to be activated and paths
that are to be monitored upon detecting an anomaly, for
all potential anomalies offline. Subsequently, we achieve an
important gain in the localization delay and overhead.

Multiple works propose to compute the set of paths that are
to be monitored dynamically upon detecting an anomaly (e.g.,
[4]-[10]). Practically, this means that one probe that maximizes
the information gain given the previous probe observations is
selected and sent in the network at a time. Such an approach
is practical for highly dynamic environments. However, it is
not practical for networks where anomalies are rare events,

1The monitors used for anomaly detection are deployed such that all the
network links are covered by at least one monitoring paths. They can not
necessarily localize all potential anomalies



especially, because it yields excessive delays.
Furthermore, most existing works consider only one crite-

rion for monitoring path selection that is the minimization
of the number of monitored paths, and only one criterion
for monitor location selection that is the minimization of
the number of deployed monitoring devices (e.g., [2] [1]).
However, these criteria do not reflect the localization cost
properly. Indeed, to reduce the localization delay and over-
head, monitoring of links that do not provide extra localization
information during the localization phase must be avoided.
Moreover, monitor locations must be selected carefully to-
wards minimizing the delay of communications between the
Network Operation Center (NOC) and the deployed monitors.
A novel anomaly localization cost model that considers the
infrastructure cost, the localization overhead and the local-
ization delay is, therefore, proposed. Besides, our anomaly
localization scheme selects monitor locations and monitoring
paths jointly, thereby enabling a trade-off between the number
and locations of deployed monitoring devices and the quality
of selected monitoring paths. We formulate the problem as an
ILP, and we show that it is NP-hard through a polynomial-
time reduction from the facility location problem.

Prior works on anomaly localization propose greedy ap-
proaches for computing localization solutions (e.g., [1], [2],
[11], [12]). In order to ensure the scalability, the number
of candidate monitoring paths should reduced to a small
subset of the network paths. Unfortunately, none of these
works described how candidate monitoring paths are selected,
however, the choice of candidate paths has a great impact
on the quality of the localization solution. In this work we
propose a heuristic that implements our anomaly localization
scheme. We devise an efficient algorithm for candidate path
computation that makes the heuristic scalable and near-optimal
at a time. The key idea is to use a mathematically proven
properties that enable us to find the best candidate monitoring
paths between two given monitor locations by exploring a very
small proportion of the network paths.

We verify the effectiveness of our anomaly localization
scheme through extensive simulations and by comparing it
with an hybrid anomaly localization scheme that combines
the strengths of the scheme proposed in [1] and the scheme
proposed in [2].

II. NETWORK MODEL AND PROBLEM STATEMENT

We model the network as an undirected graph G = (N , E)
comprising a set of nodes N connected by a set of undirected
links 2 in E . Let P be the set of all non-looping paths of
the network. Unless otherwise mentioned, without loss of
generality, we assume that all paths in P are candidate to be
monitored and all the network nodes are candidate to support
monitoring devices. We use the term monitoring paths to
designate paths that are monitored during the detection phase,
also referred to as detection paths, or during the localization
phase, also referred to as localization paths. We consider that

2This work can be easily applied for directed links. Each directed link is
duplicated into

a network path is a set of links, instead of a sequence of links,
and therefore, we apply set operations (e.g., ∩,∪) on paths. We
denote the anomaly detection solution by (Dm,Dp). Dm is the
set of monitor locations where to deploy monitoring devices.
Dp is a set of monitoring paths between the selected monitor
locations that covers all the network links, ∪p∈Dpp = E .
Furthermore, We note that we use the vertical bar notation
to denote both set cardinality and absolute value.

We consider separable anomalies (e.g., connectivity, high-
low loss model, delay spike model, etc) that satisfy the follow-
ing property: a path experiences an anomaly if and only if at
least one of its constituent links is anomalous [16]. According
to this property all links that are traversed by at least one
detection path not exhibiting an anomaly are not anomalous,
and all paths crossing an anomalous links exhibit the same
anomaly. The remaining links constitute the set of suspect
links. Anomaly localization aims at reducing the set of suspect
links, inferred upon detecting an anomaly from the detection
information, to the anomalous link. This requires monitoring
additional paths that can distinguish between suspect links
pairwise. Two links are said to be distinguishable from each
other if we are able to decide which one is anomalous when
an anomaly occurs on one of them.

The objective of this work is to come up with a localization
scheme that enables the localization of all potential link-level
anomalies accurately; while minimizing the cost of acquiring
and deploying monitoring devices, the localization overhead
and the localization delay. Our localization scheme infers all
potential anomaly scenarios from any detection solution that
covers all links of the network. This has two major benefits.
The first is that we do not need to monitor a set of paths
that can distinguish between every single pair of the network
links whenever an anomaly is detected. The second is that
we pre-compute full localization solutions for all anomaly
scenarios offline, thereby accelerating the localization process.
The inputs into our localization problem are an instance of the
graph G = (N , E) and a set of detection paths Dp that covers
all links in E , and the outputs are a set of monitor locations
whose monitors are to be activated and a set of paths that are
to be monitored for each potential anomaly. The localization
solution must achieve a good trade-off between the monitor
deployment cost, the localization overhead and the localization
delay. To this end, a novel cost model that measures these
three metrics is proposed. Also, our localization scheme selects
monitor locations and localization paths jointly; as opposed to
existing schemes that apply a two-step selection procedure,
therefore omitting the trade-off between the number and
locations of monitors and the quality of localization paths.

III. NOT ALL LINK PAIRS NEED TO BE DISTINGUISHABLE
FOR LOCALIZING ANY SINGLE LINK-LEVEL ANOMALY

In this section, we first establish a necessary and sufficient
condition to distinguish between two links. Then, we prove
that not all link pairs need to be distinguishable for localiz-
ing any potential single link-level anomaly accurately. This
excludes an already established condition claiming that it is



necessary to monitor a set of paths that can distinguish be-
tween all links of the network pairwise whenever an anomaly
is detected [1].

Theorem 1: The necessary and sufficient condition for two
links e1 and e2 to be distinguishable from each other is the
existence of a monitoring path that crosses either e1 or e2,
but not both.

Proof: We first demonstrate the sufficiency condition.
Assume that either e1 or e2 is anomalous. Let p be a path that
crosses e1 (interchangeably e2) but not e2 (interchangeably
e1). If p exhibits an anomaly, then the anomalous link must
be covered by p. We conclude that e1 is the anomalous link.
If, p does not exhibit an anomaly, then all its constituent links
are not anomalous. It follows that the anomalous link is e2.
Thus, p is sufficient to distinguish between e1 and e2.

The necessary condition can be proved as follows. Assume
that there does not exist any path that crosses only one of
the two links. Then, the monitoring path set can be divided
into two types of paths: paths that cross both e1 and e2, and
paths that neither cross e1 nor e2. An anomaly on a given link
affects all the monitoring paths that cross that link. Therefore,
the latter type of paths is not affected by the anomalies that
occur on any the two links, whereas the former type of paths
is affected by the anomalies that occur on any of the two
links. Thus, the set of monitoring paths that are affected by an
anomaly on e1 is exactly the same set of paths that is affected
by an anomaly on e2. This means that e1 and e2 cannot be
distinguished from each other.

Existing localization schemes (e.g., [1]) claim that all links
of the network must be distinguished pairwise in order to
localize any potential anomalies. According to Theorem 1,
this means that ∀e1, e2 ∈ E there exists a localization path
that crosses either e2 or e2, but not both. However, we will
demonstrate that this is a sufficient but not necessary condition,
and we show how to infer the minimal set of pair of links that
are to be distinguished from a given detection solution that
covers all the network links.

Consider a network link e ∈ E . We denote by De+ and
De− the set of detection paths that cross e and the set of
detection paths that do not cross e, respectively. The set of
suspect links associated to an anomaly on a link e is the set
of all links that cannot be distinguished from e using only the
detection information.

Theorem 2: The set of suspect links associated to an
anomaly on a given link e ∈ E equals ∩p∈De+

p− ∪p∈De−
p.

Proof: We prove this theorem by construction. The set of
detection paths can be divided into two sets:

• De+ : paths that cross link e.
• De− : paths that do not cross link e.

An anomaly on link e affects only paths that cross this link.
Subsequently, paths in De− do not exhibit an anomaly. It
follows that all the links that are traversed by paths in De− are
not suspect. Now, let L be the set of links that are traversed
by paths in De+ and that are not traversed by paths in De− ,
L = ∪p∈De+

p - ∪p∈De−
p . L can be divided into two subsets

of links:

• L1: links that do not belong to ∩p∈De+
p− ∪p∈De−

p
• L2: links that belong to ∩p∈De+

p− ∪p∈De−
p

We prove by contradiction that all links in L1 are not
suspect. Assume to the contrary that a link l ∈ L1 is
suspect. This means that there does not exist any path in De+

that distinguishes between l and e. It follows that for each
p ∈ De+ , p crosses e and l. Thus l ∈ ∩p∈De+

p − ∪p∈De−
p,

leading to a contradiction.
Likewise, we prove by contradiction that all links in L2

are suspect. Assume to the contrary that a link l ∈ L2 is not
suspect, then, there exists at least one path p ∈ De+ such that
p distinguishes between e and l. Since all paths in De+ cross
e, then p does not cross l. It follows that l /∈ ∩p∈De+

p −
∪p∈De−

p, leading to a contradiction.

Corollary 1: A sufficient and necessary condition for local-
izing any potential link-level anomaly is to distinguish each
link e ∈ E from links that belong to ∩p∈De+

p− {∪p∈De−
p ∪

{e}}.
Let S(e) denotes the set of suspect links associated to

anomalies on link e, S(e) = ∩p∈De+
p− {∪p∈De−

p ∪ {e}}.
Corollary 2: e1 ∈ S(e2) ⇔ S(e1) = S(e2), ∀e1, e2 ∈ E
Corollary 3: S(e1) ̸= S(e2) ⇔ S(e1) ∩ S(e2) = ∅
The properties presented in the above corollaries are demon-

strated in Appendix A.

IV. DERIVATION OF POTENTIAL ANOMALY SCENARIOS

(a)
Monitor locations nodes 0, 1 and 7
Detection Paths ⟨(0, 7)⟩

⟨(0, 1)⟩
⟨(0, 4), (4, 1)⟩
⟨(0, 2), (2, 3), (3, 1), (1, 7)⟩
⟨(0, 6), (6, 5), (5, 4), (4, 2), (2, 1)⟩
⟨(1, 5), (5, 0), (0, 3), (3, 2), (2, 6), (6, 7)⟩

(b)

Fig. 1: Illustrative network topology, (a), and an associated
detection solution, (b).

Theorem 2 states that the set of suspect links returned
at the end of the detection phase whenever an anomaly on
link e occurs is ∩p∈De+

p − ∪p∈De−
p. Therefore, instead of

computing monitors that are to be activated and paths that
are to be monitored during the localization phase whenever
an anomaly is detected, we propose to perform these compu-
tations for all potential anomalies only once offline. Having
a set of detection paths that cover all links of the network,
we infer the set of suspect links for all potential anomalies as
described in Theorem 2. Then, a single anomaly scenario is



TABLE I: Sets of suspect links for all potential anomalies

Anomalous link Set of suspect links
(0, 1) {(0, 1)}
(0, 2) {(0, 2), (1, 3), (1, 7)}
(1, 2) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 3) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(1, 3) {(0, 2), (1, 3), (1, 7)}
(2, 3) {(2, 3)}
(0, 4) {(0, 4), (1, 4)}
(1, 4) {(0, 4), (1, 4)}
(2, 4) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 5) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(1, 5) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(4, 5) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 6) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(2, 6) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
(5, 6) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
(0, 7) {(0, 7)}
(1, 7) {(0, 2), (1, 3), (1, 7)}
(6, 7) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

TABLE II: Anomaly scenarios

Anomaly scenario Set of suspect links
a1 Sa1 = {(0, 2), (1, 3), (1, 7)}
a2 Sa2 = {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}
a3 Sa3 = {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}
a4 Sa1 = {(0, 4), (1, 4)}

created for all links that have the same set of suspect links, i.e.,
an anomaly scenario is created for each distinct set of suspect
links. Let us denote by A the set of all anomaly scenarios,
and let Sa denotes the set of suspect links associated to the
anomaly scenario a ∈ A. Let dS = {Sa, ∀a ∈ A}. dS have
the following properties.

Corollary 4: ∪e∈ES(e) = ∪S(i)∈dSS(i) = E
Corollary 5:

∑
S(i)∈dS | S(i) | = | E |

Clearly, an upper bound of the number of anomaly sce-
narios, whatever the topology of network and whatever the
detection solution, is the number of the network links. It is easy
to show that when this bound is reached, the set of suspect
links for an anomaly on link e, ∀e ∈ E , is reduced to the
link e. In such case, the localization of all potential anomalies
is immediate from the detection information. According to
Corollary 2, we need to deploy monitors that enable the
monitoring of a set of paths distinguishing links of each
anomaly scenario pairwise in order to ensure the localization
of all potential anomalies.

To illustrate, consider the sample network topology depicted
in Figure 1(a). An associated anomaly detection solution that
covers all links of the network is depicted in Figure 1(b). We
use Theorem 2 to compute the set of suspect links for all
potential anomalies. The result is depicted in Table I. The sets
of suspect links associated to link (2, 3) and link (0, 7) are
unitary. When an anomaly occurs on one of these two links,
there is no need to trigger the localization phase because the
anomalous link is immediately pinpointed by intersecting the
detection paths that exhibit the anomaly. Furthermore, four
non-unitary anomaly scenarios (a1, a2, a3, a4) are created for
this topology (see table II). These are the four distinct non-
unitary sets of suspect links.

Let AllPairs denotes the number of all the network link
pairs. Clearly, AllPairs = (| E | (| E | −1))/2. Let dPairs

denotes the number of pair of links that need be distinguishable
for localizing any potential link-level anomaly.

Corollary 6: dPairs = AllPairs -
∑

S(i),S(j)∈dS:i<j

| S(i) || S(j) |

Corollary 6 confirms that we do not need to distinguish
between all the network link pairs unless the number of
detection paths equals 1, which is very unlikely.

The proofs of Corollary 4, Corollary 5 and Corollary 6 are
described in Appendix A.

V. ANOMALY LOCALIZATION COST

Consider a set of candidate monitor locations, M, a set of
network paths that are candidate to be monitored, P , and a
set of anomaly scenarios A. The anomaly localization cost
includes two costs:
• Monitor cost: it includes the effective cost of acquiring
hardware and software monitoring devices and the cost
of their maintenance. In addition, it includes the cost of
communications between the monitors and the NOC. For
instance, the cost of communications between a monitor and
the NOC can be expressed as a function of the number of
routing hops that separates them. Let us denote by Cn the
cost of deploying a monitor on node n. Let Yn be a binary
variable that indicates whether node n is selected to hold
a monitoring device. The monitor cost can be expressed as
follows: ∑

n∈M

CnYn (1)

• Probe cost: it expresses the overhead of monitoring flows
on the underlying network. Measurements of links that
do not provide localization information should be avoided
in order to minimize the monitoring overhead. Clearly,
measuring links that do not belong to the set of suspect
links of an anomaly scenario does not provide any ex-
tra localization information. Furthermore, measurement of
links that belong to the set of suspect links might be
useless. Revisit Figure 1 and table I to illustrate. Con-
sider an anomaly on link (6, 7). The associated set of sus-
pect links is Sa3 = {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}. Con-
sider now the set of localization paths {p1:⟨(1, 5)(5, 6)(2, 6)⟩;
p2:⟨(1, 5)(0, 5)(0, 2)⟩; p3:⟨(1, 7)(6, 7)(2, 6)⟩} that distinguishes
between all the links of Sa3 pairwise. Path p1 divides Sa3 into
two subsets: S1

a3
{(1, 5), (2, 6)} and S2

a3
{(0, 5), (0, 3), (6, 7)}. p1

distinguishes each link of S1
a3

from each link of S2
a3

. Link
(5, 6) that is traversed by p1 does not belong to Sa3 , and there-
fore, it does not provide any localization information. Path
p2 divides S1

a3
into two subsets: S11

a3
{(1, 5)} and S12

a3
{(2, 6)},

and divides S2
a3

into two subsets: S21
a3
{(0, 5), (6, 7)} and

S22
a3
{(0, 3)}. Finally, p3 distinguishes between (0, 5) and (6, 7).

However, it crosses (2, 6) that is already distinguished from
all the other suspect links. Thus, measuring (2, 6) by p3
does not provide extra localization information, although it
belongs to Sa3 .

Let us denote by Ce the cost of measuring link e. Ce should
be proportional to the load of link e, in order to avoid multiple
measurements of the most overloaded links of the network.



Consider an anomaly scenario a ∈ A. Let us denote by Sa

the set of suspect links associated to the anomaly scenario a.
Let Xpa be a binary variable that specifies whether path p
is part of the localization solution of a. Let δpe be a binary
input parameter that indicates whether path p crosses link
e. The probe cost of the localization solution of a reads as
follows: ∑

e∈E,p∈P′

CeδpeXpa (2)

VI. ILP FORMULATION

The objective of the ILP is to find a localization solution for
each anomaly scenario in A such that the anomaly localization
cost is minimized. Let δpn be a binary parameter that indicates
whether node n is an end-node of path p. For simplicity of
notation, we define the following sets:

• δPE = {δpe; p ∈ P, e ∈ E}
• δPM = {δpn; p ∈ P, n ∈ M}
• CM = {Cn; n ∈ M}
• CE = {Ce; e ∈ E}
Let α be the weight associated to the monitor cost, and

let β be the weight associated to the probe cost. α, β ∈ R.
The input into the ILP is an instance of the graph G =
(E ,M,P,A, δPE , δPM, CE , CM, α, β). The objective func-
tion minimizes the sum of the monitor cost and the probe
cost. It reads as follows:

α
∑
n∈M

CnYn + β
∑

a∈A,e∈E,p∈P

CeδpeXpa (3)

The ILP is subject to two constraints. The first constraint
ensures that either end node of each selected monitoring paths
is selected as monitor location. It reads as follows:

Yn ≥ δpnXpa; ∀n ∈ M, ∀p ∈ P, ∀a ∈ A (4)

The second constraint ensures that the suspect links asso-
ciated to each anomaly scenario are distinguishable pairwise.
To this end, according to Theorem 2, the constraint ensures
that for each anomaly scenario a and for each pair of suspect
links (e1, e2) : e1, e2 ∈ Sa there exists at least one monitoring
path that crosses either e1 or e2, but not both. This constraint
reads as follows:∑

p∈P(δpe1 + δpe2 − 2δpe1δpe2)Xpa > 0; ∀a ∈ A;∀e1, e2 ∈ Sa (5)

We show that the above inequality is sufficient to distinguish
between all the link pairs of each anomaly scenario using the
argument of the following theorem.

Theorem 3: Let P1 be the subset of paths of P that cross ei-
ther e1 or e2, but not both.

∑
p∈P(δpe1 + δpe2 − 2δpe1δpe2) =| P1 |.

Proof: Refer to Appendix B.

Corollary 7: If
∑

p∈P(δpe1 + δpe2 − 2δpe1δpe2)Xpa > 0,
then there exists at least one path in P that crosses either e1
or e2 but not both, then there exists at least one path in P
that distinguishes between e1 and e2.

VII. THE ANOMALY LOCALIZATION PROBLEM IS
NP -HARD

Theorem 4: The anomaly localization problem presented in
the previous section is NP-Hard.

Proof: Our formulation of the anomaly localization prob-
lem can be reduced from the NP-Hard facility location
problem.

Facility location problem [17]: consider a set of potential
facility locations F , and a set of clients D. Opening a facility
at location i incurs a non-negative cost that is equal to fi. The
cost of servicing client j ∈ D by a facility installed at location
i ∈ F is dij . The problem is to find an assignment of each
client to exactly one facility such that the sum of the facility
opening costs and the service costs is minimized.

We denote by f the set of facility opening costs, f =

{fi, i ∈ F}, and by d the set of service costs, d =

{dij ; i ∈ F , j ∈ D}. Given an instance I = (D,F , f, d)
of the facility location problem, we produce an instance
R(I) = (E ,M,P,A, δPE , δPM, CE , CM, α, β) of the local-
ization problem as follows. For each client j ∈ D, we create:

• Three nodes labeled by nj1, nj2, and nj3.
• One link connecting nj1 to nj2, labeled by ej1.
• One link connecting nj2 to nj3, labeled by ej2.
• An anomaly scenario aj such that Saj = {ej1, ej2}.
For each facility location i ∈ F , we create two nodes

labeled by mi1 and mi2. For each i ∈ F and for each
j ∈ D, we create one link connecting mi1 to nj1, labeled
by e1ij , and one link connecting mi2 to nj2, labeled by e2ij .
We obtain a graph G = (E ,N ), where N = {nik; i ∈ D, k ∈
[1; 3]} ∪ {mjk; i ∈ F , k ∈ [1; 2]}, and E = {ejk; j ∈ D, k ∈
[1; 3]}∪{ekij ; i ∈ F , j ∈ D, k ∈ [1; 2]}. An example of a graph
constructed out of a facility location instance with four facility
locations and four clients is shown in Figure 2.

Fig. 2: Example of a graph constructed out of a facility location instance
with four facility locations and four clients

The candidate monitor location set is M = {mjk; i ∈
F , k ∈ [1; 2]}. The set of anomaly scenarios is A =
{aj ; j ∈ D}. The set of candidate localization paths is
P = {pij ; i ∈ F , j ∈ D}, where pij is the non-looping
path between mi1 and mi2 that crosses the links e1ij , ej1
and e2ij . The monitor deployment costs are defined as follows:
Cmi1 = Cmi2 = fi/2. The link measurement costs are defined
as follows: Cei1 = Cei2 = 0, Ce1ij

= Ce2ij
= dij/2. The

remaining input parameters can be inferred easily from G, M,
A and P as follows:



• δajej′k =

{
1 if j = j

′

0 otherwise
; ∀j, j′ ∈ D, k ∈ [1; 2]

• δajekij
= 0; ∀i ∈ F , j ∈ D, k ∈ [1; 2]

• δpijmi′k =

{
1 if i = i

′

0 otherwise
; ∀i, i′ ∈ F , k ∈ [1; 2]

• δpijej1 = δpije1ij
= δpije2ij

= 1; ∀i ∈ F , j ∈ D
• δpijej2 = 0; ∀i ∈ F , j ∈ D
• α = β = 1

It can be easily shown that the time complexity of the
above reduction is O(| F | × | D |), and therefore, it can be
carried out in polynomial-time. In the sequel, we show that
there is an optimal solution to the Instance I of the facility
location problem if and only of there is an optimal solution
to the instance R(I) of our anomaly localization problem.

Let us start by demonstrating that if there is an optimal
solution to the facility location instance, then there is a
feasible solution to the anomaly localization instance. Let
the facility location solution assign each client j to a facility
installed at location i. Consider the anomaly localization
solution that selects for each anomaly scenario aj the path
pij and the monitor locations mi1 and mi2. Then, let us fix
an anomaly scenario aj . By construction, path pij crosses
three links that are ej1 and e1ij and e2ij . It follows, according
to Theorem 1, that pij distinguishes between ej1 and ej2.
Constraint (4) states that if pij is selected to be monitored,
then, its end nodes must be selected to hold monitoring
devices. Thus, the solution that selects for each anomaly
scenario aj the path pij to be monitored, and its end nodes,
mi1 and mi2, as monitor locations is a feasible solution to
the anomaly localization instance.

Conversely, we demonstrate that if there is an optimal
solution to the anomaly localization instance, then there is a
feasible solution to the facility location instance. An optimal
solution to the facility location problem selects exactly
one path for each anomaly scenario. This is because, by
construction, for each anomaly scenario ai ∈ A | Sai |= 2.
Thus, monitoring one path that crosses exactly one of the
two links is sufficient to distinguish between them. Let
the optimal anomaly localization solution selects for each
anomaly scenario aj the path pij , and naturally, the monitor
locations mi1 and mi2. Trivially, the solution that assigns
to each client j ∈ D the facility installed at location i is a
feasible solution to the facility location instance.

We now prove that the constructed anomaly localization
solution has the same cost as its corresponding optimal
facility location solution (the proof holds in the converse
case). Let Wi be a binary variable that indicates whether
a facility is installed at location i, and let Zij be a binary
variable that indicates whether client j is serviced by a
facility installed at location i. Using the arguments that
Zij = Xpijaj and Wi = Ymi1 = Ymi2

3, we show
that the cost of the localization solution, denoted by
Cost(SR(I)), is equal to the cost of its corresponding

3Recall that Xpa is a binary variable that indicates whether path p is part
of the localization solution of the anomaly scenario a, and Yn is a binary
variable that indicates whether node n is selected as a monitor location

facility location solution, denoted by Cost(SI), as follows:
Cost(SR(I)) = α

∑
mik∈M

Cmik
Ymik

+ β
∑

aj∈A,e∈E,pij∈P

CeXpijaj

=
∑

mik∈M
Cmik

Ymik
+

∑
aj∈A,pij∈P

(Ce1ij
+ Ce2ij

)Xpijaj

=
∑

mi1∈M
fiYmi1 +

∑
aj∈A,pij∈P

dijXpijaj

=
∑
i∈F

fiWi +
∑

j∈D,i∈F

dijZij

= Cost(SI)
Now, we show that the solution to the anomaly localization

instance, denoted by SR(I), that is constructed out of an
optimal solution to the facility location instance, denoted by
S∗
I , is optimal. Assume to the contrary that SR(I) is not

optimal. Let S
′∗
R(I) be an optimal solution to the anomaly lo-

calization instance, and let S
′

I be the facility location solution
constructed out of S

′∗
R(I). We have Cost(S∗

I ) = Cost(SR(I)) <

Cost(S
′∗
R(I)) = Cost(S

′
I), leading to a contradiction. Using the

same arguments, we can show that the solution to the facility
location instance constructed out of an optimal solution to the
anomaly localization instance is optimal.

VIII. HEURISTIC SOLUTION

In this section, we provide a monitor location and path
selection algorithm for localizing single link-level anomalies.
The inputs of the algorithm are a network graph G = (N , E),
a set of anomaly scenarios A, a set of candidate monitor
locations M, the costs of deploying monitoring devices on
the network nodes CM = {Cn; n ∈ M}, and the costs
of monitoring the network links CE = {Ce; e ∈ E}. The
outputs are a set of monitor locations, SMa, and a set of
monitoring paths, SPa, that can distinguish between all links
of Sa pairwise, for each a ∈ A.

Similarly to the ILP, the heuristic solution aims at min-
imizing the infrastructure cost, the communication cost and
the probe cost jointly. To this end, we use a nested
greedy approach that selects monitor locations jointly with
monitoring paths. Algorithm 1 describes the pseudo-code.
ProbeCost(p, CE ) is a function that returns the probe cost
incurred by monitoring path p. This cost is computed as
described in section V. ms stores the best current candidate
monitor location. SM stores the monitor locations selected
at the previous iterations. Pcostmin stores the current lowest
probe cost, and lcmax stores the current largest localization
capacity, i.e., the number of link pairs that can be distinguished
by monitors in SM∪{ms}. CP stores paths selected by the
current best solution. In the sequel, we define the criteria of
monitor location selection and monitoring path selection.

A detailed description of how monitor locations and
monitoring paths are selected, and how candidate localization
paths are computed is provided in the following subsections.
A. Selection of monitor locations

The algorithm starts by selecting one candidate monitor
location randomly. Alternatively, the candidate monitor loca-
tion with the smallest monitor cost (sum of the infrastructure
cost and the communication cost) can be selected. However,
we advocate random selection for two reasons. The first is



Algorithm 1: Monitor location and path selection algo-
rithm for single anomaly localization

1 nbPairs =
∑
a∈A

|Sa|−1∑
k=1

k; Pcostmin ← INT MAX; lcmax

← 0; CP ← ∅;
2 SM← {selectRandomElement(M)}; Remove the

selected monitor location from M;
3 while (M ̸= ∅) do
4 Reset ms ← Null;
5 foreach (m ∈M) do
6 if (( lcmax = nbPairs and βPcostmin ≤ αCm))

then Jump to line 5;
7 Reset lc ← 0; Reset Pcost ← 0;
8 for (a ∈ A) do
9 Clear Pa; Clear Ma;

10 j ← 1; s(0) ← 1; S(0)1
a ← Sa;

11 while (s(j) > 0) do
12 S(j)

a ← {S(j)1
a , ... S(j)k

a ,S(j)k+1
a ...,S(j)s(j)

a };
13 pa(j) ← CandidatePathSelection(m,SM,G,S(j)

a , CP);

lc +=
∑

1≤k≤s(j)
lc(pa(j),S(j)k

a );
14 Pcost += ProbeCost(pa(j), CE);
15 l← 1;
16 for (1 ≤ k ≤ s(j)) do
17 if (| pa(j) ∩ S(j)k

a |> 1) then
S(j+1)l
a ← pa(j) ∩ S(j)k

a ; l← l + 1;
18 if (| S(j)k

a − {pa(j) ∩ S(j)k
a } |> 1) then

S(j+1)l+1
a = S(j)k

a − {pa(j) ∩ S(j)k
a };

l← l + 1;
19 end
20 s(j) ← l − 1;
21 if (lcmax = nbPairs and (αCm + β(PCost

+
s(j+1)∑
l=1

ThMinPCost(S(j+1)l
a ) +∑

a
′∈A,a

′
>aThMinPCost(Sa′ )) ≥

22 αCms + βPcostmin)) then
23 /*Stop the exploration of the current

candidate monitor location*/
24 Jump to line 5;
25 end
26 Add the end nodes of pa(j) to Ma;
27 Add pa(j) to Pa;
28 j ← j + 1;
29 end
30 end
31 if (lc > lcmax or (lc = lcmax and

αCm + βPcost < αCms + βPcostmin)) then
32 ms ← m; lcmax ← lc;
33 Pcostmin ← PCost; SPa ← Pa; SMa ←Ma;
34 end
35
36 end
37 if (ms = Null) then return ({SPa,SMa}; ∀a ∈ A)
38 Update CP ←

∪
a∈A

SPa;

39 Add ms to SM; Remove ms from M;
40 end
41 return ({SPa,SMa; ∀a ∈ A});

that the monitor location with the smallest monitor cost does
not necessarily incur the smallest probe cost. The second is
that selecting the starting point randomly enlarges the space

of explored solutions over multiple runs of the algorithm.
Monitor locations are, then, added to the solution greedily until
all link pairs of all the anomaly scenarios are distinguished. At
each greedy iteration (lines 5-36), all the remaining candidate
monitor locations are explored. Let us fix a candidate monitor
location m. A set of monitoring paths whose end nodes are
in SM ∪ {m} is selected greedily (lines 7-35). The path
selection procedure is described in details in section VIII-B.
The candidate monitor location whose associated monitoring
paths can distinguish between the largest number of link pairs
over all the anomaly scenarios is selected (line 31). In case of
a tie, a monitor location that incurs the smallest localization
cost (α× monitor cost + β× probe cost, where the probe
cost is the summation of the probe costs of the associated
monitoring paths) is selected.

When a solution that distinguishes between all the link
pairs of all the anomaly scenarios is found, the algorithm
continues the exploration of the remaining candidate monitor
locations, if any, towards reducing the probe cost. However, a
filter is applied on these locations before exploring them (line
6). Only candidate locations whose monitor cost is smaller
than the probe cost of the current best solution are explored.
Clearly, the localization cost of any solution that selects a
monitor location not satisfying this filter would be larger
than the localization cost of the current best solution. The
algorithm ends when the set of candidate monitor locations
gets empty, i.e., all candidate monitor locations have been
selected, or when remaining candidate monitor locations can
neither improve the localization capacity nor the probe cost
of the current best solution.
B. Selection of localization paths

Given a candidate monitor location m and a set of already
selected monitor locations SM, the procedure of selecting an
associated set of monitoring paths, (lines 7-35), is as follows.
Let us fix an anomaly scenario a. A set of monitoring paths
that maximizes the number of distinguished pair of links of
Sa while minimizing the probe cost is selected greedily as
follows. First, one path that can distinguish between the largest
number of link pairs of Sa is selected. We refer to the number
of pair of links of a set of suspect links Sa that can be
distinguished by a path p as the localization capacity of p with
respect to Sa, denoted by lc(p,Sa). It can be easily shown that:

lc(p,Sa) =| p ∩ Sa | (| Sa |− | p ∩ Sa |) (6)

In case of a tie, a path that minimizes the probe cost
is selected. The algorithm used for computing the candidate
monitoring path is described in section VIII-C. Let pa(1) be
the selected path. Two subsets of suspect links are generated:
S(1)1
a = Sa ∩ pa(1) and S(1)2

a = Sa−{Sa ∩ pa(1)}. According
to Theorem 1, pa(1) distinguishes between every pair of links
(e1, e2) such that e1 ∈ S(1)1

a and e2 ∈ S(1)2
a . At the next step,

we need to distinguish between the links of S(1)1
a pairwise

and between the links of S(1)2
a pairwise. Hence, a path that

maximizes lc(p,S(1)1
a ) + lc(p,S(1)1

a ) is selected. Ties are
broken by selecting a path that minimizes the probe cost.



Let pa(j) be the monitoring path selected at step (j).
Let s(j−1) be the number of non-unitary subsets of suspect
links generated at step (j − 1). pa(j) is selected such that∑

1≤k≤s(j−1)
lc(p, S(j−1)k

a ) is maximized. In case of a tie,
a path that minimizes the probe cost is selected. For each
S(j−1)k
a , 1 ≤ k ≤ s(j−1), two subsets of suspect links are gen-

erated: S(j−1)k
a ∩pa(j) and S(j−1)k

a −{S(j−1)k
a ∩pa(j)}. Each

link of the former subset is distinguished from each link of the
latter subset. Only non-unitary subsets, whose links need to be
distinguished from each other, are considered at the next step.
This greedy process is re-iterated until all the generated subsets
of suspect links are unitary or until no candidate localization
path can distinguish between the pair of links of non-unitary
subsets. For each selected path pa(j), the localization capacity
of m is incremented by lc(pa(j),S

(j)
a ) (line 13), and its probe

cost is incremented by probeCost(pa(j), CE) (line 14). The
above procedure is applied on the all the anomaly scenarios
in A. Then, the localization capacity and the probe cost of
m are evaluated (line 31). If the localization capacity of m is
greater than lcmax, or if the localization capacity of m equals
lcmax and its probe cost is less than Pcostmin; then lcmax is
set equal to the localization capacity of m, Pcostmin is set
equal to the probe cost of m and ms is set equal to m.

Furthermore, using the argument of the following theorem,
we can compute a lower bound of the probe cost of the
explored monitor location at any step in the path selection
procedure.

Theorem 5: The theoretical minimal probe cost relative to
a set of suspect links S denoted by ThMinPcost(S) reads
as follows:

ThMinPcost(S) =
∑
e∈S

Ce −max
e∈S

Ce (7)

Proof: Refer to Appendix C.
The lower bound of the probe cost of a candidate monitor

location after path pa(j) is added to the set of its associated
monitoring paths reads as follows:

Pcost +

s(j)∑
k=1

ThMinPcost(S(j)k
a ) +

∑
a′∈A,a′>a

ThMinPcost(S
′

a) (8)

where Pcost is the summation of the probe costs of the
already selected paths.

When the algorithm finds a solution that can distinguish
between all link pairs of all the anomaly scenarios, it continues
exploring the remaining candidate monitor locations that sat-
isfy the monitor cost filter (line 6) towards reducing the probe
cost. Using (8), we propose an optimization of the exploration
process of these candidate monitor locations. The idea is to
update the lower bound of the probe cost of the explored
monitor location whenever a monitoring path is selected, and
to infer a lower bound of the localization cost (line 21). The
exploration of the considered candidate monitor location is
abandoned if, at any step of the path selection procedure, the
calculated lower bound of the localization cost dominates the
localization cost of the current best solution.

Procedure 2: candidatePathSelection(m,SM,G,S(j)
a ,

CP)
1 pc ← newPath();
2 limin ←

∑
S(j)k
a ∈S(j)

a
| S(j)k

a | /2− 1; Pcostmin ←
∑

e∈E Ce;

3 foreach q ∈ CP do
4 li =

∑
S(j)k
a ∈S(j)

a
| S(j)k

a | /2− | S(j)k
a ∩ q |;

5 if (li < limin or (li = limin and
probeCost(pc, CE) < Pcmin)) then

6 limin = li; Pcmin = probeCost(pc, CE); ps = q;
7 end
8 end
9 add-node-to-path(m, pc);

10 depthFirst (m, pc){
11 foreach (n ∈ children(m,G) and (m,n) /∈ pc) do
12 add-node-to-path(n, pc);
13 li(pc,S(j)

a ) =
∑

S(j)k
a ∈S(j)

a
|| S(j)k

a | /2− | S(j)k
a ∩ pc ||;

14 if (n ∈ SM) then
15 if (li(pc,S(j)

a ) < limin or (li(pc,S(j)
a ) = limin

and probeCost(pc, CE) <= Pcmin)) then
16 ps ← pc; limin ← li(pc,S(j)

a );
Pcmin = probeCost(pc, CE);

17 if (limin = 0 and Pcmin = 0) then
18 /*Stop the algorithm*/ Jump to line 31;
19 end
20 end
21 else
22 if

((limin = 0 and (probeCost(pc, CE)+li(pc,S(j)
a )−

limin >= Pcmin or ∃ S(j)k
a ∈ S(j)

a such that
23 | S(j)k

a ∩ pc |>| S(j)k
a | /2)) or (li(pc,S(j)

a ) >

limin and ∀ S(j)k
a ∈ S(j)

a | S(j)k
a ∩ pc |>| S(j)k

a |
/2)) then

24 do not explore the descendants of n;
25 else
26 Recursively call depthFirst (n, pc);
27 end
28 end
29 end
30 }
31 return ps;

C. Candidate path selection algorithm

This section describes the procedure candidatePathSelec-
tion called by Algorithm 1 at line 13. The inputs into
this procedure are the network graph, the currently explored
monitor location m, the subsets of suspect links generated
at the current step of the path selection procedure S(j)

a =

{S(j)1
a , ... S(j)k

a ,S(j)k+1
a ...,S(j)s(j)

a }, the set of the already
selected monitor locations SM, and the set of monitoring
paths selected by the current best solution CP . The output
is one monitoring path, whose end nodes are in SM∪ {m},
that maximizes the localization capacity while minimizing the
probe cost.

The main difficulty of this procedure is the computation
of the set of candidate paths. Generally, the smaller the set
of candidate paths is, the worst the quality of the heuristic is.
This is because good paths might be missed when reducing the
number of candidate paths. However, this reduction is imper-



ative to ensure the scalability of the heuristic. The procedure
candidatePathSelection implements an algorithm for candidate
localization path computation. The algorithm considers all
the network paths whose end nodes belong to {m} × SM
as candidate to be monitored. However, computing this set
of paths is computationally expensive, because it requires
exploring all the network graph. Moreover, since Algorithm
1 explores all remaining candidate monitor locations at each
iteration, the graph would be explored multiple times; which
makes the heuristic non-scalable and non-practical for dense
networks. An alternative solution is to compute and store all
paths traveling between all candidate monitor locations offline,
thereby reducing the number of times the network graph is
explored to one. Clearly, this solution is impractical due to
memory issues. We conclude, based on the above discussion,
that our candidate path computation algorithm must minimize
the number of paths that are to be explored, while guaranteeing
that good candidate paths are not missed. To this end, we make
use of the argument of the following theorem:

Theorem 6:
let lc(S(j)

a , p) =
∑

S(j)k
a ∈S(j)

a
lc(S(j)k

a , p) be the localization
capacity of p with respect to S(j). We have,

max
p∈P

lc(S(j)
a , p) = min

p∈P

∑
S(j)k
a ∈S(j)

a

|| S(j)k
a | /2− | S(j)k

a ∩ p || (9)

Proof: Refer to Appendix D.

We refer to
∑

S(j)k
a ∈S(j)

a
|| S(j)k

a | /2− | S(j)k
a ∩ p ||

as the localization indicator of path p with respect to S(j)
a ,

and we denote it by li(p,S(j)
a ). According to Theorem 6,

the smaller li(p,S(j)
a ) is, the higher the localization capacity

of p with respect to S(j)
a is. The localization indicator is

used along with the probe cost to avoid exploring all the
network graph, while guaranteeing that good candidate paths
are not missed. Procedure 2 provides an overview of the
pseudo-code. ps stores the current best candidate path, limin

stores the localization indicator of ps, and Pcmin stores its
probe cost. ps, limin and Pcmin are initialized to Null,∑

S(j)k
a ∈S(j)

a
| S(j)k

a | /2 − 1 and
∑

e∈E Ce, respectively.
Note that the least upper bound of the localization indicator
is

∑
S(j)k
a ∈S(j)

a
| S(j)k

a | /2, which corresponds to a path that

does not provide any localization information (i.e., ∀S(j)k
a ∈

S(j)
a ,S(j)k

a ∩ p = ∅ or ∃S(j)k
a ∈ S(j)

a such that p = S(j)k
a )4;

whereas the least upper bound of the probe cost is
∑

e∈E Ce,
which corresponds to a path that crosses all the network nodes
and does not provide any localization information. However,
if CP is not empty, then ps is set equal to the best path
in CP , i.e., the path that maximizes the localization capacity
(in case of a tie, a path that minimizes the probe cost); and
limin and Pcmin are initialized to the localization capacity and
the probe cost of that path, respectively. The rational behind
considering paths in CP is to avoid re-exploring all candidate
paths traveling between the already selected monitors.

4By construction,
∩

k S(j)k
a = ∅

The network graph is, then, explored in depth-first order
starting from the candidate monitor location m. It is worth
noting that we believe that a breadth-first search can find can-
didate paths faster. However, the depth-first search approach
requires much less memory.

We now introduce the optimizations made to avoid ex-
ploring all the network graph, which speeds up the search
and ensures the scalability of the algorithm. Let n be the
currently explored node and pc the current path to that node.
ps , limin and Pcmin are set equal to pc, li(pc,S(j)

a ), and
probeCost(pc, CE), respectively, if the following condition is
true:

n ∈ SM and(li(pc,S(j)
a ) < limin or (li(pc,S(j)

a ) = limin and

probeCost(pc, CE) < Pcmin)) (10)

The above condition implies that the path selection criterion
is the minimization of the localization indicator, which is
equivalent to the maximization to the localization capacity, and
that ties are broken by minimizing the probe cost. Moreover,
it ensures that the end nodes of the selected path are in
SM∪ {m}.

Now, the most important feature of the algorithm is that
it is able, using Theorem (6), to decide whether all paths
having a given prefix are not good. A good path is a path
that dominates the current best path, i.e., a path that satisfies
Condition (10). In fact, all paths having as prefix the current
path pc are undoubtedly inefficient if one of the following
conditions is true:

limin = 0 and ∃ S(j)k
a ∈ S(j)

a such that | S(j)k
a ∩ pc |>| S(j)k

a | /2 (11)

limin = 0 and ∀S(j)k
a ∈ S(j)

a | S(j)k
a ∩pc |≤| S(j)k

a | /2 and

probeCost(pc, CE) + min
e∈E

Celi(pc,S(j)
a ) ≥ Pcmin (12)

li(pc,S(j)
a ) > limin and ∀S(j)k

a ∈ S(j)
a | S(j)k

a ∩ pc |≥| S(j)k
a | /2 (13)

Whenever a node that is not in SM is explored, the current
path to that node is examined. If it satisfies one of the above
conditions, then the descendant nodes of the current node will
not be explored, i.e., all paths having as prefix the current
path will be discarded without exploring their suffixes. This
achieves great savings in terms of the number of explored
paths and in terms of time. The accuracy of conditions (11),
(12) and (13) is demonstrated in Appendix E.

IX. PERFORMANCE EVALUATION

Extensive simulations are conducted on network topologies
built using the BRITE generator [18] (Waxman model [19]:
α = β = 0.4, random node placement 5). We use Cplex11.2
[20] to solve ILPs and we implement our algorithms using
C++. All the numerical results presented in this section are the
mean over 30 simulations on random simulations. Our exper-
iments indicate that the results are almost the same for larger
number of simulations. Table III depicts a summary of the
topologies considered. Our localization scheme takes as input

5These parameters are not to be confused with the monitor cost weight (α)
and the probe cost weight (β) introduced in Section VI. Their values equal
the values used by Waxman to generate network topologies [19].



any detection solution that covers all links of the network. For
small topologies, i.e., TOP(8, 18), optimal detection solutions
are computed using the detection scheme proposed in [13];
whereas the anomaly detection heuristic proposed in [14] is
used to compute detection solutions for larger topologies. Note
that the anomaly detection problem is NP-Hard, therefore,
optimal detection solutions could not be computed for large
topologies.

TABLE III: Summary of the topologies considered in the
evaluation

Topology Nb. of nodes Nb. of links
TOP(8, 18) 8 18

TOP(10, 31) 10 31
TOP(12, 41) 12 41
TOP(15, 59) 15 59
TOP(20, 80) 20 80

The evaluations are performed on a PC equipped with a
2,992.47 MHz Intel(R) Core(TM)2 Duo processor and 3.9
GB of RAM. We assume that every nodes of the network is
candidate to support a monitoring device and all paths of the
networks are candidate to be monitored. We set Cn = Ce =
1, ∀n ∈ N and ∀e ∈ E .

A. Comparing our Anomaly Localization Scheme with Exist-
ing Schemes

We compare our anomaly localization scheme with an hy-
brid anomaly localization scheme that combines the strengths
of the schemes proposed in [1] and [2]. As proposed in [2],
a set of paths that distinguishes only between the suspect
links is monitored during the localization phase. However,
to guarantee that all potential anomalies can be localized
uniquely, a set of monitors that can distinguish between all
pairs of the network links is deployed [1]. Such a scheme can
be formulated as two ILPs. The first ILP computes a minimal
subset of monitor locations that enables the localization of all
potential anomalies. This ILP is run only once offline. It reads
as follows:

Minimize
∑

n∈M Yn

Subject to:∑
p∈P(δpe1 + δpe2 − 2δpe1δpe2)Zp > 0; ∀e1, e2 ∈ E ;∀p ∈ P

δpnYn ≥ Zp; ∀p ∈ P, ∀n ∈ N
The second ILP is run whenever an anomaly is detected. The

input is the set of monitor locations selected by the first ILP,
M′

, and a set of suspect links S. The output is a minimal set
of monitoring paths that can distinguish between the suspect
links pairwise. This ILP reads as follows:

Minimize
∑

p∈P Zp

Subject to:∑
p∈P(δpe1 + δpe2 − 2δpe1δpe2)Zp > 0; ∀e1, e2 ∈ S; ∀p ∈ P

Zp ≤ δpnYn; ∀p ∈ P, ∀n ∈ M′

We refer to this hybrid anomaly localization scheme as HLS.
Only small topologies for which the ILPs can deliver

solutions in tractable time are considered. We set the weight
associated to the probe cost β = 1, and we vary the weight
associated to the monitor cost, α ∈ [1, 2, 4] and α ≥ 6.
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Fig. 3: Average number of monitoring paths per anomaly for TOP(8,
18). The first histogram to the left presents results for solutions
computed using the hybrid localization scheme (HLS), and the other
histograms present results for the solutions computed using our
anomaly localization ILP with different values of α (β = 1).

We define three metrics for the comparison. The first
metric is the time of computing the localization solution, i.e.,
monitors that are to be activated and paths that are to be
monitored when an anomaly is detected. This metric reflects
the speed of the localization scheme. The better is to avoid
online computations, i.e., computations done upon detecting
an anomaly, in order to shorten the localization delay.

TABLE IV: Average ILP computation time for TOP(8, 18)

Hybrid scheme Our scheme
Offline Computation Time 64.16 s 6.67 s
Online Computation Time 25.7 10−3 s 0 s

Table IV depicts the online computation time and the offline
computation time for the hybrid localization scheme and for
our localization scheme. Intuitively, as shown in the table, the
online computation time is zero for our localization scheme.
This is because we compute full localization solutions for all
potential anomalies offline. In contradiction, the hybrid scheme
leaves the selection of monitoring paths upon detecting an
anomaly, thereby achieving a non-negligible online computa-
tion time. This time can be relatively high for large topologies
where the number of candidate monitoring paths is large. For
the offline computation time, the table shows that our scheme
is about 10 times faster than the hybrid scheme, although, it
computes full localization solutions for all potential anomalies.
We explain this result by the fact that, unlike the hybrid
scheme, our scheme does not distinguish between every pair
of the network links.

The second metric is the localization cost. Figure 4 plots the
total number of deployed monitors (Figure 4c), the average
number of monitors activated per anomaly (Figure 4b), and
the average overhead (4a), i.e., the number of links monitored
that provide no localization information, per anomaly for the
hybrid localization scheme and for our localization scheme
with different values of α. Three conclusions can be drawn
from the numerical results. The first is that there is an interplay
between the monitor location cost and the probe cost. The
different results for the different values of α illustrate this
conclusion. Indeed, the larger the value of α is, the fewer
the number of monitors is and the larger the localization
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Fig. 4: Localization costs for TOP(8, 18)

overhead is. For instance, for α = 1, we have localization
solutions with zero overhead and 7 monitors, i.e., 7 of the
8 nodes of the network hold monitoring devices. The second
is that the existing localization scheme that deploys monitors
offline and selects monitoring paths online does not take into
consideration this interplay, and therefore, delivers sub-optimal
localization solutions. Using the same number of monitors, for
α ≥ 6, our localization scheme can localize any potential
anomaly with about 65% less overhead than the existing
localization scheme.

The third metric is the number of monitoring paths. Re-
call that this is the path selection criterion for the existing
localization scheme. We do not consider this criterion in our
localization scheme for two reasons. The first is that, upon
detecting an anomaly, the set of paths that distinguish between
the suspect links are monitored simultaneously. Therefore, the
minimization of the number of monitoring paths does not
reduce the localization delay. The second reason is that this
metric is tightly correlated to the number of monitors and the
localization overhead. Indeed, if we relax the constraint on
the localization overhead, this would allow long monitoring
paths that cross a large number of links. Therefore, the number
of monitoring paths that can distinguish between the suspect
links would decrease. Similarly, if we relax the constraint on
the number of monitors, we would deploy more monitors in
the network, thus, the monitoring paths would get shorter.
Therefore, the number of monitoring paths that can distinguish
between the suspect links would increase. Figure 3 validates
these claims. Hereby, we can observe that the larger α is, the
more monitoring paths we have. Not surprisingly, for α ≥ 6,
our localization scheme monitors only 8% more paths than the
hybrid localization scheme, while deploying the same number
of monitors and incurring 65% less overhead.

B. Evaluating the Scalability and Quality of the Heuristic

In this section, we evaluate the performance of our anomaly
localization heuristic. We set α >> β. For each network
topology, we run the heuristic n times, where n is the number
of the network nodes. The first monitor location that is
selected randomly must be different for each run. Then, we
consider the solution with the smallest localization cost. For
TOP(8, 18), we compare the results obtained using the heuristic

with the results obtained using our anomaly localization ILP
(α ≥ 6), and the results obtained using the hybrid localization
scheme. Furthermore, we evaluate the evolution of resource
consumption and computation time with respect to the network
size to evaluate the performance of the heuristic on larger
topologies.

Table V depicts the heuristic computation time (this is
the time of the n runs of the heuristic) and the average
percentage of the network paths explored in one execution
of Procedure 2 for all the topologies considered. For TOP(8,
18) the heuristic computation time is about 29.103 times
faster than our ILP, and about 27.104 times faster than the
hybrid localization scheme. Recall that all computations are
done offline. For TOP(10, 31), TOP(12, 41) and TOP(15, 59)
the heuristic computation time is in the order of few seconds
(< 25 s), while it was infeasible to obtain the ILP results
for these topologies in tractable time. For TOP(20, 80), whose
number of paths is in the order of hundreds of billions, it
was impossible to run the ILPs due to memory insufficiency.
However, the heuristic succeeded to compute solutions in less
than one hour for these topologies. This confirms the efficiency
of our candidate path computation algorithm that minimizes
the number of the networks paths that are to be explored. For
instance, we found that only 0.007% of the network paths are
explored in one execution of Procedure 2 for TOP(20, 80).

TABLE V: Heuristic computation time (all computations are done
offline) and percentage of paths explored in one execution of Proce-
dure 2

Topology Heuristic computation % of paths explored in one
time execution of Procedure 2

TOP(8, 18) 0.00023 s 1.22%
TOP(10, 31) 0.08 s 0.21%
TOP(12, 41) 0.78 s 0.07%
TOP(15, 59) 24.11 s 0.02%
TOP(20, 80) 3525.52 s 0.007%

We now investigate the quality of the solutions delivered
by the heuristic. Figure 5 plots the total number of monitors
deployed (5c), the average number of monitors activated per
anomaly (5b), and the average overhead per anomaly for the
topologies considered in the evaluation5a.

First, we notice that two monitors are sufficient to localize
all potential anomalies for all topologies, except TOP(20, 80)
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Fig. 6: Impact of the number and the quality of candidate monitoring paths on the quality of the localization solution. RProc means random procedure
(numerical results for TOP(15, 59))

for which the average number of monitors deployed and the
average number of monitors activated per anomaly are slightly
larger than two. This is expected, since we set α >> β, which
means that the heuristic minimizes in priority the number of
monitors that are to be deployed. A comparison of Figure
5 with Figure 4 shows that, for TOP(8, 18), the solutions
computed using our ILP (α ≥ 6) is very close to the solutions
computed using the heuristic: the heuristic solution gnenerates
about 9% more overhead, however, the two solutions deploy
the same number of monitors and activate, in average, the same
number of monitors when an anomaly occurs. This confirms
that the candidate path computation algorithm that avoids
exploring all paths of the network does not miss good paths.
Moreover, the overhead of the heuristic solutions for TOP(10,
31), TOP(12, 41) and TOP(12, 59) is smaller than the overhead
of the hybrid localization scheme solutions for TOP(8, 18). It is
worth to recall that the hybrid localization solutions for TOP(8,
18) are exact solutions. This confirms that i) the heuristic
succeeds to minimize the localization costs, i.e., the monitor
cost and the probe cost, jointly; ii) the heuristic outperforms
the hybrid localization scheme, since the former can localize
anomalies in large topologies using less resources that those
used by the latter to localize anomalies in smaller topologies.

We finally evaluate the impact of the number and the
quality of candidate monitoring paths on the quality of the
localization solution. To this end, we compare the localization
solutions obtained using the proposed heuristic, i.e., Algorithm

1 and Procedure 2, to the localization solutions obtained using
Algorithm 1 and a procedure that computes candidate paths
randomly (instead of Procedure 2). In the latter case, we
variate the number of paths explored per one execution of
the random candidate path computation procedure (0.015%,
0.03%, 0.15%, 0.3%). We report the results for TOP(15, 59)
when α >> β in Figure 6 (The results are essentially the same
for the other topologies). Not surprisingly, Figure 6 shows
that, when candidate paths are explored randomly, the larger
the number of paths explored is the smaller the localization
overhead is. Furthermore, it shows that the proposed heuristic
achieves smaller overhead than the random approach, thought
it explores more than 15 times less paths as shown in Table
V. This validates our claim on the correlation between the
number and quality of monitoring paths and the quality of the
localization solution.

X. DISCUSSION

The anomaly localization solution must be updated when-
ever the detection solution changes. However, the detection
solution changes in rare cases where a persistent anomaly
makes a network link unavailable for a long period of time, or
where the network topology is modified voluntary (e.g., add
and/or removal of network equipments).

Usually, in the first case, the detection solution is updated
partially. Only the detection paths that are affected by the
anomaly are re-computed. The anomaly scenarios are updated
accordingly, and the localization solution is re-computed,



partially, for the affected anomaly scenarios. The evaluation
results show that, for instance, the average computation time
of the localization solution for one anomaly scenario using
the heuristic is in the order of 5 minutes for TOP(20, 80).
Knowing that anomalies are rare events, we assert that it is
rather unlikely that anomalies occur before the localization
solution is updated. However, in case an anomaly occurs
before the localization solution is updated, the localization
process could be executed for the current solution, though,
not all anomalies could be localized accurately. The best
solution for such situation is to provide backup detection and
localization solutions. However, this issue is out of the scope
of this paper.

Furthermore, voluntary network changes are usually
planned in advance. Thus, detection and localization updates
could be computed offline before voluntary network changes
are made.

XI. CONCLUSION

In this paper, we addressed the problem of localizing
single link-level anomalies. Two findings were presented and
demonstrated: 1) Not all pairs of the network links need to be
distinguishable for localizing all potential link-level anomalies,
2) All potential anomaly scenarios can be derived offline from
any detection solution that covers all the network links. These
findings were exploited to develop an anomaly localization
scheme that computes full localization solutions offline. In
order to achieve a good trade-off between the number and
locations of monitoring devices and the quality of monitoring
paths, monitor locations and monitoring paths are selected
jointly. A novel anomaly localization cost model is proposed,
and the localization scheme is formulated as an ILP. However,
it is demonstrated that the problem is NP-hard. Therefore,
an efficient heuristic is proposed. The proposed scheme is
compared with an hybrid anomaly localization scheme that
combines the strengths of two existing schemes through
extensive simulations. Results demonstrate the superiority of
the proposed anomaly localization scheme, and the efficiency
of the heuristic solution. Our ongoing work is on extending
the proposed scheme to localize multiple link-level anomalies.

APPENDIX A

This section presents the proofs of corollaries 2, 3, 4, 5 and
6.

Corollary 2. e1 ∈ S(e2) ⇔ S(e1) = S(e2), ∀e1, e2 ∈ E
Proof: e1 ∈ S(e2) ⇔ (according to Theorem 1) there

does not exist any path that crosses either e1 or e2, but not
both ⇔ for each p ∈ P , p crosses both e2 and e1, or p neither
crosses e1 nor e2 ⇔ De1+ = De2+ and De1− = De2− ⇔
(according to Theorem 2) S(e1) = S(e2)

Corollary 3. S(e1) ̸= S(e2) ⇔ S(e1) ∩ S(e2) = ∅
Proof: We prove the direct implication by contradiction.

Assume to the contrary that S(e1) ̸= S(e2) and S(e1) ∩
S(e2) ̸= ∅. Let e3 ∈ S(e1) ∩ S(e2). According Corollary
2, S(e3) = S(e1) and S(e3) = S(e2). thus, S(e1) = S(e2),
leading to a contradiction. The indirect implication is trivially
true.

Corollary 4. ∪e∈ES(e) = ∪S(i)∈dSS(i) = E
Proof: According to Theorem 2, e ∈ S(e), ∀e ∈ E . Thus,

∪e∈ES(e) = E . Obviously, ∪e∈ES(e) = ∪S(i)∈dSS(i).
Corollary 5.

∑
S(i)∈dS | S(i) | = | E |

Proof: According to Corollary 4, | ∪S(i)∈dSS(i) |=| E |,
and according to Corollary 2, ∩S(i)∈dSS(i) = ∅. Thus,∑
S(i)∈dS

| S(i) | = | E |.

Corollary 6. dPairs = AllPairs -
∑

S(i),S(j)∈dS:i<j

| S(i) || S(j) |

Proof: According to Corollary 1, only links that belong
to same set of suspect links need to be distinguishable pair-
wise. Therefore, the set of link pairs that are to be distin-
guished can be expressed as {{(ei, ej); ei, ej ∈ E} - {(ei, ej);
S(ei) ̸= S(ej)}}. We conclude that dPairs = AllPairs -∑
S(i),S(j)∈dS:i<j

| S(i) | ∗ | S(j) | . Clearly, the number of pair

of links that need to be distinguishable equals the number of all
link pairs of the network if and only if the number of distinct
sets of suspect links equals 1, i.e. the number of detection
paths equals 1.

APPENDIX B

This section presents the proof of Theorem 3.

Proof: Paths in P ′
can be divided into three subsets of

paths.
• P1: paths that cross either e1 or e2, but not both.
• P2: paths that cross both e1 and e2.
• P3: paths that neither cross e1 nor e2.
On the one hand, we have

∀p ∈ P2, δpe1 = 0 and δpe2 = 0.
Thus, ∀p ∈ P2, (δpe1 + δpe2 − 2δpe1δpe2) = 0.
Contributing to

∑
p∈P2

(δpe1 + δpe2 − 2δpe1δpe2) > 0.
On the other hand, we have ∀p ∈ P3, δpe1 = 1 and δpe2 = 1.
Thus, ∀p ∈ P3, (δpe1 + δpe2 − 2δpe1δpe2) = 0.
Contributing to

∑
p∈P3

(δpe1 + δpe2 − 2δpe1δpe2) = 0.
Subsequently,

∑
p∈P′ (δpe1 + δpe2 − 2δpe1δpe2) =∑

p∈P1
(δpe1 + δpe2 − 2δpe1δpe2).

Now, we have ∀p ∈ P1 δpe1 + δpe2 = 1 and δpe1δpe2 = 0.
Thus, δpe1 + δpe2 − 2δpe1δpe2 = 1.
Therefore,

∑
p∈P1

(δpe1 + δpe2 − 2δpe1δpe2) =| P1 |.
We conclude that

∑
p∈P′ (δpe1 + δpe2 − 2δpe1δpe2) =| P1 |.

APPENDIX C

This section presents the proof of Theorem 5.

Proof: Let P ′
be a set of paths that can distinguish

between all links of S. According to Theorem 1, for each
e1, e2 ∈ S ∃p ∈ P ′

such that p crosses either e1 or e2, but
not both. Thus, at most one link of S is not traversed by
paths in P ′

. We conclude that any localization solution must
imperatively monitor | S | −1 links of S in order to distinguish
between all links. It follows that the localization solution that
incurs the minimal probe cost is a solution that monitors ex-
actly | S | −1 links of S whose have the lowest measurement
costs. Thus, ThMinPcost(S) =

∑
e∈S Ce − maxe∈S Ce.

Note that such a solution is feasible only if each link of the



| S | −1 links is monitored separately, which requires to have
monitors deployed on the end nodes of each of these links.

APPENDIX D

This section presents the proof of Theorem 6.

Proof: We have maxp∈P lc(S(j)
a , p) =∑

S(j)k
a ∈S(j)

a
maxp∈P lc(S(j)k

a , p), where lc(S(j)k
a , p) =|

p∩S(j)k
a | ∗ (| S(j)k

a | − | p∩S(j)k
a |). Consider the variations

of lc(S(j)k
a , p) with respect to the values of | p ∩ S(j)k

a |. It
can be easily shown that:

• lc(S(j)k
a , p) is increasing for | p ∩ S(j)k

a |<| S(j)k
a | /2,

and decreasing for | p ∩ S(j)k
a |>| S(j)k

a | /2
• ∀ p1, p2 ∈ P , if || S(j)k

a | /2− | p1 ∩ S(j)k
a || = || S(j)k

a |
/2− | p2 ∩ S(j)k

a ||, then, lc(S(j)k
a , p1) = lc(S(j)k

a , p2)

• The global maximum of lc(S(j)k
a , p) is achieved at | p ∩

S(j)k
a |=| S(j)k

a | /2
It follows that maxp∈P lc(S(j)k

a , p) = minp∈P || S(j)k
a |

/2− | p2 ∩ S(j)k
a ||. Subsequently, maxp∈P lc(S(j)

a , p) =

minp∈P
∑

S(j)k
a ∈S(j)

a
|| S(j)k

a | /2− | S(j)k
a ∩ p ||

APPENDIX E

This appendix demonstrates the correctness of conditions
(11), (12) and (13).

Let q be a path, and let pc be a prefix of q. We have:
(i) ∀S(j)k

a , | S(j)k
a ∩ q |≥| S(j)k

a ∩ pc |
(ii) ∃S(j)k

a ∈ S(j)
a such that | S(j)k

a ∩ pc |>| S(j)k
a | /2 ⇒

li(q,S(j)
a ) > 0

Proof: It is clear that li(q,S(j)
a ) = 0 ⇐⇒ ∀S(j)k

a ∈
S(j)
a absval(| S(j)k

a | /2− | q ∩ S(j)k
a |) = 0 ⇐⇒ ∀S(j)k

a ∈
S(j)
a | q ∩ S(j)k

a |=| S(j)k
a | /2. However, according to (i),

∀S(j)k
a | S(j)k

a ∩ pc |>| S(j)k
a | /2 ⇒| S(j)k

a ∩ q |>| S(j)k
a | /2.

Therefore, (ii) is true.
(iii) ∀S(j)k

a | S(j)k
a ∩ pc |>| S(j)k

a | /2 ⇒ li(q,S(j)
a ) =

li(pc,S(j)
a ) +

∑
S(j)k
a ∈S(j)

a
| S(j)k

a ∩ pc | − | S(j)k
a ∩ q |

Proof: ∀S(j)k
a | S(j)k

a ∩ pc |>| S(j)k
a | /2 ⇒ ∀S(j)k

a

| S(j)k
a ∩ q |>| S(j)k

a | /2 ⇒ li(q,S(j)
a ) =

∑
S(j)k
a ∈S(j)

a
|

S(j)k
a | /2− | S(j)k

a ∩ q |= li(pc,S(j)
a )−

∑
S(j)k
a ∈S(j)

a
| S(j)k

a ∩
q | +

∑
S(j)k
a ∈S(j)

a
| S(j)k

a ∩ pc |.
(iv) ∀S(j)k

a | S(j)k
a ∩ pc |>| S(j)k

a | /2 ⇒ ProbeCost(q) ≤
probeCost(pc) +mine∈ECe ∗ li(q,S(j)

a )− li(pc,S(j)
a )

Proof:
We have ProbeCost(q) =

∑
e∈p Ce =

∑
e ∈ pcCe +∑

e∈e∈q\pc
Ce = probeCost(pc) +

∑
e∈q\pc

Ce ≤
probeCost(pc) + mine∈ECe∗ | q | − | pc |
By construction,

∩
k S

(j)k
a = ∅. Therefore,

∀p ∈ P | p |≤
∑

S(j)k
a ∈S(j)

a
| S(j)k

a ∩ p |. Hence,
ProbeCost(q) ≤ probeCost(pc)+mine∈ECe ∗

∑
S(j)k
a ∈S(j)

a
|

S(j)k
a ∩ q | − | S(j)k

a ∩ pc |. Further, ∀S(j)k
a | S(j)k

a ∩ pc |>|
S(j)k
a | /2, thus, according to (iii), ProbeCost(q) ≤

probeCost(pc) +mine∈ECe ∗ li(q,S(j)
a )− li(pc,S(j)

a )

(v) ∀S(j)k
a ∈ S(j)

a | S(j)k
a ∩ pc |≥| S(j)k

a | /2 ⇒
li(q,S(j)

a ) ≥ li(pc,S(j)
a )

Proof: According to (i),
∑

S(j)k
a ∈S(j)

a
| S(j)k

a ∩ q |≥∑
S(j)k
a ∈S(j)

a
| S(j)k

a ∩ pc |. Therefore, according to (iii), (v) is
true.

The correctness proof of Conditions (11), (12) and (13) is
based on (ii), (iv) and (v). According to (10), when minli = 0,
a good path must have a zero localization indicator and a probe
cost that subordinates minPc. Therefore, according to (ii),
all paths having a prefix that satisfies (11) are not good; and
according to (iv), all paths having a prefix that satisfies (12)
are not good. Further, according to (v), regardless the value of
minli, the localization indicator of any path having a prefix
that satisfies (13) dominates minli. Subsequently, according
to (10), any path having a prefix that satisfies (13) is not good.
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