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Sur les problèmes de la couverture minimale des
arêtes et de la partition minimale des sommets

d’un graphe par des quasi-cliques
Résumé : Un γ-quasi-clique, pour 0 < γ < 1, dans un graphe simple non-
orienté est un sous-ensemble de sommets dont le sous-graphe induit a une densité
d’arêtes supérieure ou égale à γ. Un ensemble de γ-quasi-cliques couvrant toutes
les arêtes d’un graphe est appelé une couverture par des γ-quasi-cliques. Le
problème de couverture minimale par des γ-quasi-cliques consiste à trouver une
couverture par des γ-quasi-cliques ayant le plus petit nombre de quasi-cliques.
Une partition des sommets d’un graphe par des quasi-cliques est un ensemble
de γ-quasi-cliques telle que chaque sommet du graphe appartient à un seul
quasi-clique de l’ensemble. Le problème de partition minimale par des γ-quasi-
cliques consiste à trouver une partition par des γ-quasi-cliques ayant le plus
petit nombre de quasi-cliques. Nous démontrons que les problèmes de décision
associés aux problèmes de couverture minimale et partition minimale par des
γ-quasi-cliques sont NP-complets pour tout γ satisfaisant 0 < γ < 1 fixé.

Mots-clés : clique, quasi-clique, couverture des arêtes, partition des sommets,
graphe nonorienté
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1 Introduction and definitions
Let G = (V,E) be an undirected simple graph and γ be a positive real less
than 1. A γ-quasi-clique or a γ-clique in G is a set S of vertices such that
|E[S]| ≥ γ

(|S|
2

)
where E[S] = {{u, v} ∈ E : u, v ∈ S}. A cover by γ-cliques is a

set C of γ-cliques that cover all the edges in G. In other words, for each edge
(u, v) ∈ E, there is at least one γ-clique C ∈ C such that u, v ∈ C. The minimum
cover by γ-cliques problem asks for a γ-clique cover of the minimum cardinality.
A partition by γ-cliques is a set C of γ-cliques such that each vertex v ∈ V
belongs to exactly one γ-clique C ∈ C. The minimum partition by γ-cliques
problem asks for a γ-clique partition of the minimum cardinality.

It has been shown that the decision version of the minimum cover by 1
2 -

cliques problem is NP-complete [6]. In this work, we show that the decision
versions of the minimum cover and partition by γ-cliques problems are NP-
complete for any fixed γ satisfying 0 < γ < 1.

Pattillo et al. [7] show that the problem of finding the maximum cardinality
γ-clique in a given undirected simple graph is NP-hard for any fixed γ satisfying
0 < γ < 1. In doing so, they first show that the associated decision problem
remains NP-complete, if γ is replaced by a rational number p

q for integers p
and q such that 1 ≤ p < q. Next they show [7, Corollary 1] how to find a p
and a q for a given γ so that any γ-clique is a p

q -clique and vice versa, thus
establishing the NP-completeness of the decision version of the maximum γ-
clique problem. This last result help us demonstrate the NP-completeness of
the decision versions of the minimum cover and partition by γ-cliques problems
in two steps. We show the NP-completeness results with p

q -cliques as the first
step. The NP-completeness for γ-cliques where 0 < γ < 1 follows by the cited
result of Pattillo et al. as the second step.

We define the notation used in what follows, though most are standard or
very intuitive. For a graph G = (V,E), we use V to refer to the set of its
vertices; when the graph is not clear from the context, we use V (G) to refer
to the vertex set. Similarly, we use E and E(G) to refer to the set of edges of
G. For a vertex u, we use adj(u) to denote the set of vertices it is connected
to, that is adj(u) is the set of neighbors of u. The number of neighbors of u is
denoted as degree(u). The maximum degree of a vertex in a graph G is denoted
by ∆(G). For a set S, we use |S| to denote its cardinality. For a nonnegative
number x, we use bxc to denote the largest integer smaller than or equal to x.

Our NP-completeness proofs use a reduction from the classical problem
Clique [4, GT19]: Given a graph G = (V,E) and a positive integer k ≤ |V |,
does G contain a clique of size k or more? We assume |E| ≥

(
k
2

)
, as the other

case is not interesting.

2 NP-completeness

2.1 Minimum cover by p
q
-cliques problem

We consider the following decision problem associated with the minimum cover
by p

q -cliques problem.
CoverBy-pq -Cliques: Given a simple undirected graph G = (V,E), fixed
integers p and q satisfying 1 ≤ p < q, and an integer c, is there a cover of G

RR n° 8255



Minimum covering and partitioning by quasi-cliques 4

with c many p
q -cliques.

Theorem 1. The CoverBy-pq -Cliques problem is NP-complete for any pos-
itive integer constants p and q satisfying 1 ≤ p < q.

The proof, which is deferred to the end of this section, uses a reduction from
Clique problem. For any fixed 1 ≤ p < q, we will therefore construct a graph
G′ = (V ′, E′) and an integer c for a given G = (V,E) and k ≥ 2 such that
G has a clique of size k, assuming |E| ≥

(
k
2

)
, if and only if G′ has a cover by

p
q -cliques with c = |E|−

(
k
2

)
+1 many p

q -cliques. We will discuss a few important
properties of the constructed graph by a series of propositions before proving
Theorem 1.

For a given positive integer m satisfying 1 ≤ m ≤ |V |, we construct an
auxiliary graph Qm = (Vm, Em) with a technique similar to the one used by
Pattillo et al. [7]. Let z = (4qk+2)|V |2. We start with a set of |Vm| = qz−m =
q(4qk+2)|V |2−m vertices and enumerate them with indices 0, . . . , |Vm|−1. Then
we add |Em| = p

q

(
qz
2

)
−
(
m
2

)
= p

q

(|Vm|+m
2

)
−
(
m
2

)
edges in w =

⌊
|Em|
|Vm|

⌋
+ 1 passes.

In each pass r < w, using |Vm| edges we connect all vertex pairs vi, vj ∈ Vm
such that j = (i + r) mod |Vm|, that is vj comes as the rth vertex after vi
in the cyclic order. Hence, after pass w − 1, we obtain 2(w − 1) = 2

⌊
|Em|
|Vm|

⌋
regular graph Qm. In the final pass, if need be, we add (|Em| mod |Vm|)
different edges formed by arbitrary pairs of vertices vi, vj ∈ Vm satisfying the
constraint j = (i+ w) mod |Vm|. This construction guarantees that ∆(Qm) =

maxvi∈Vm
degree(vi) ≤ 2

⌊
|Em|
|Vm|

⌋
+ 2; because the difference in the degrees of

vertices can only occur in the last pass, in which each vertex can be connected
to at most two other vertices. Moreover, we have the following upper bound on
∆(Qm) for 2 ≤ m ≤ |V |:

∆(Qm) ≤ 2

⌊
|Em|
|Vm|

⌋
+ 2

≤ 2

⌊
p

q

(
qz

2

)
1

qz −m

⌋
+ 2

since 2bac ≤ b2ac for a ≥ 0

≤
⌊
pz(qz − 1)

qz −m

⌋
+ 2

=

⌊
pz(qz −m)

qz −m
+ (m− 1)

qz − (q − p)z
qz −m

⌋
+ 2

since the first term is an integer, q > p and z > m

∆(Qm) ≤ pz + (m− 2) + 2 = pz +m . (1)

In addition, the following inequalities also hold for any 1 ≤ m ≤ |V |:(
|Vm|

2

)
=

1

2
(qz −m)(qz −m− 1)

=
1

2

(
q2z2 − (2m+ 1)qz +m2 +m

)
>

1

2

(
qz(qz − 2m− 1)

)
RR n° 8255
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=
1

2

(
qz(pz + (q − p)z − 2m− 1)

)
>

1

2
(qpz2) >

p

q

qz(qz − 1)

2
−
(
m

2

)
(
|Vm|

2

)
>
p

q

(
|Vm|+m

2

)
−
(
m

2

)
. (2)

We note that p
q

(|Vm|+m
2

)
−
(
m
2

)
is integer, as |Vm|+m = q(4qk + 2)|V |2 is a

multiple of 2q. Starting with this, we continue to show the next inequality:

p

q

(
|Vm|+m

2

)
−
(
m

2

)
=

1

2

(p
q
qz(|Vm|+m− 1)−m(m− 1)

)
=

1

2

(
pz|Vm|+ pz(m− 1)−m(m− 1)

)
≥ 1

2

(
z|Vm|+ (m− 1)(z −m)

)
≥ 1

2
z|Vm| = (2qk + 1)|V |2|Vm| . (3)

With the inequality (2) we guarantee that Qm can accommodate the num-
ber of edges we desire to place. In inequality (3) we ensure that the number of
edges in Em is sufficient to construct a z = (4qk + 2)|V |2 regular graph among
all vertices in Vm (before we add the last |Em| mod |Vm| edges during the con-
struction of Qm). Therefore, each vertex vi ∈ Vm is connected to the preceding
z
2 and the next z

2 vertices in cyclic order.

Now we construct G′ = G ∪ Qk ∪
⋃|E|−(k

2)
i=1 Qi2 where each Qi2 is a separate

instance of Q2. Observe that the graphs G, Qk and Qi2 are not connected to
each other and that |Vk| < |V i2 | when k > 2. Also note that the inequality (1)
implies ∆(G′) = max(∆(G),∆(Q2),∆(Qk)) ≤ pz + k.

Proposition 1. In G′ there exists no p
q -clique with qz+2qk+1 or more vertices.

Proof. Consider the number of edges in a p
q -clique T with |V (T )| = t ≥ qz +

2qk + 1 vertices:

|E(T )| ≥ p

q

(
t

2

)
=

1

2

(p
q
t(t− 1)

)
≥ 1

2

(p
q
t(qz + 2qk)

)
=

1

2
t(pz + 2pk)

>
1

2
t(pz + k)

using the bound (1) on the maximum degree, we obtain

|E(T )| > 1

2
t∆(G′) . (4)

Hence, no subgraph of G′ with t ≥ qz + 2qk + 1 vertices can achieve the edge
density required to form a p

q -clique.

RR n° 8255
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Proposition 2. Let H = Qm ∪ Rt where Rt is an arbitrary graph with t ver-
tices whose vertex set V (Rt) is disjoint from V (Qm). Then, the following three
statements hold:

1. If 0 ≤ t < m, then H is a p
q -clique.

2. If t = m, then H is a p
q -clique if and only if Rt is a clique with t vertices.

3. If m < t ≤ |V |, then H is not a p
q -clique.

Proof. Let δ = m − t, in which case we obtain |V (H)| = qz − δ. Now we
consider the cardinality of E(H):

|E(H)| = |E(Qm)|+ |E(Rt)|

=
p

q

(
qz

2

)
−
(
m

2

)
+ |E(Rt)|

=
p

2q
(qz(qz − 1))−

(
m

2

)
+ |E(Rt)|

=
p

2q
((qz − δ)(qz − δ − 1) + 2δqz − δ(δ + 1))−

(
m

2

)
+ |E(Rt)|

=
p

q

(
qz − δ

2

)
+ 2δpz − p

2q
(δ(δ + 1))−

(
m

2

)
+ |E(Rt)|

If t < m as in the first case of the proposition, that is δ > 0, we obtain
|E(H)| > p

q

(
qz−δ

2

)
; because 2δpz > z = (4qk + 2)|V |2 > p

2q (δ(δ + 1)) +
(
m
2

)
−

|E(Rt)| trivially holds; hence H is a p
q -clique.

If m < t ≤ |V | as in the third case, that is −|V | ≤ δ < 0, we have 2δpz <
p
2q (δ(δ+1))+

(
m
2

)
−|E(Rt)|; therefore, |E(H)| < p

q

(
qz−δ

2

)
andH is not a p

q -clique.
When t = m as in the second case, we have δ = 0. It holds that |E(H)| =

p
q

(
qz
2

)
−
(
m
2

)
+|E(Rt)|; which implies that H is a p

q -clique if and only if |E(Rt)| ≥(
m
2

)
. Since Rt has t = m vertices, the constraint is satisfied only when Rt is a

complete graph.

Proposition 3. For any m ≥ 1, there exists no vertex separator S of Qm with
|S| < z

2 , which partitions Vm into disjoint vertex sets A,B, S with |A|, |B| > 0
so that there is no edge (va, vb) ∈ Em where va ∈ A and vb ∈ B.

Proof. We assume for the sake of contradiction that there exists such a vertex
partition of Vm where |S| < z

2 . Then, we pick any vp1 ∈ A as the first pivot ver-
tex. Next, we consider the set Np1 = {v(p1+1) mod (|Vm|), . . . , v(p1+z/2) mod (|Vm|)}
of next z

2 vertices in cyclic order connected to vp1 . Since |S| < z
2 = |Np1 |, we

have Rp1 = Np1 − S 6= ∅ which must only consist of vertices from A; since the
existence of any vertex in Rp1 ∩B contradicts S being a vertex separator. Next,
we pick another pivot vertex vp2 from Rp1 ⊂ A, then recursively apply the same
argument on vp2 , Np2 and Rp2 to scan the neighbors of vp2 in Np2 . We continue
this process until we eventually obtain a pivot vpt for which we get vp1 ∈ Npt ;
which implies the completion of a cyclic scan of all vertices of Vm. In other
words, we obtain Np0 ∪ Np1 ∪ . . . ∪ Npt = Vm. This can be seen by observing
that |Npi | = z

2 while |pi+1 − pi| ≤ z
2 for all 1 ≤ i < t. Therefore, in this case we

have (Np1 ∩ B) ∪ . . . ∪ (Npt ∩ B) = Vm ∩ B = B = ∅ which is a contradiction.
Hence, the assumption is false and |S| ≥ z

2 must hold.

RR n° 8255
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Proposition 4. In a cover by p
q -cliques of G′ with c = |E| −

(
k
2

)
+ 1 many p

q -
cliques, the vertices of each constituting subgraph Qk and Qi2 for i = 1, . . . , c−1
must reside in a separate p

q -clique.

Proof. Let C1, . . . , Cc be the set of pq -cliques in the cover so that C1∪ . . .∪Cc =

G′. Let Q ∈ {Q1
2, . . . , Q

c−1
2 , Qk} be a subgraph of G′ whose vertices are not

contained in a single p
q -clique. Let Si = Ci ∩Q be the subgraph of Ci partially

covering Q for 1 ≤ i ≤ c. Suppose that |V (St)| = max1≤i≤c |V (Si)|, i.e., Ct is
the quasi-clique which possesses the largest subgraph of Q. Then, we assume
contrary that there exists a quasi-clique cover of G′ in which |V (St)| < |V (Q)|.
Let Rt = Q − St be the edge-induced subgraph of Q containing the edges of
Q that are to be covered by the quasi-cliques except Ct. Clearly, we have
V (Rt), E(Rt) and V (Rt)− V (St) non-empty by our assumption.

We first analyze the case when |V (St)| ≥ z
2 . Consider the vertex set I =

V (St) ∩ V (Rt). If I = V (St), we have |I| = |V (St)| ≥ z
2 holds. Otherwise

we have I ⊂ V (St), which implies that V (St) − I and V (Rt) − I are disjoint
and non-empty sets. Moreover, there exists no edge (vs, vr) ∈ E(Q) such that
vs ∈ V (St)−I and vr ∈ V (Rt)−I; because, such an edge is contained neither in
St nor in Rt, which contradicts St∪Rt = Q. Hence we obtain a vertex partition
{V (St)− I, V (Rt)− I, I} of V (Q), where each set is non-empty and there is no
edge in E(Q) between the vertices in the first two sets. Therefore I is a vertex
separator and by Proposition 3 it has cardinality |I| ≥ z

2 . We thus have |I| ≥ z
2

satisfies whenever |V (St)| < |V (Q)| and |V (St)| ≥ z
2 . Now, we first note that

in a p
q -clique cover of G′, vertices of each subgraph in {Q1

2, . . . , Q
c−1
2 , Qk} must

appear at least once in any of the quasi-cliques; since they have nonzero vertex
degrees. Moreover, we have |V (St)| vertices of Q in Ct to cover St. In the rest
of the quasi-cliques, we similarly need at least |V (Rt)| = |V (Q)− V (St) + I| =
|V (Q)| − |V (St)|+ |I| vertices to cover Rt = Q− St. Thus, covering Q requires
at least |V (St)|+ |V (Rt)| = |V (Q)|+ |I| vertices; which implies at least |I| ≥ z

2
vertex repetitions. Hence, we have the total number of vertices in all quasi-
cliques, Vtot, lower-bounded by:

Vtot ≥
c−1∑
i=1

|V (Qi2)|+ |V (Qk)|+ |I|

≥
c−1∑
i=1

|V (Qi2)|+ |V (Qk)|+ z

2
(5)

=

(
|E| −

(
k

2

))
(qz − 2) + (qz − k) + (2qk + 1)|V |2

>

(
|E| −

(
k

2

)
+ 1

)
qz − 2

(
|E| −

(
k

2

))
− k + (2qk + 1)2|E|

>

(
|E| −

(
k

2

)
+ 1

)
qz + (2qk + 1)|E|

≥
(
|E| −

(
k

2

)
+ 1

)
(qz + 2qk + 1) = c(qz + 2qk + 1)

This requires the existence of a quasi-clique Ci with |V (Ci)| ≥ (qz+2qk+1),
which contradicts Proposition 1.

RR n° 8255
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Next, we consider the case when |V (St)| < z
2 . Now we have max1≤i≤c

{maxv∈V (Si) degree(v)} < z
2 ; since the cardinality of V (Si) is upper-bounded

by |V (St)| < z
2 . Note also that since Q is either Qk or an instance of Q2, we

have |E(Q)| ≥ min(|E2|, |Ek|) = p
q

(
qz
2

)
−
(
k
2

)
. As a result, we obtain T , the total

number of vertices used to cover all edges in E(Q) in all quasi-cliques, to be
lower-bounded by:

T >
2|E(Q)|
z/2

≥
2
(
p
q

(
qz
2

)
−
(
k
2

))
z/2

≥
2
(
pz(qz − 1)− k(k − 1)

)
z

≥
2
(
pz(qz − 2) + pz − k(k − 1)

)
z

> 2(qz − 2) > (qz − 2) +
z

2
≥ |V (Q)|+ z

2
.

That is, we need at least z
2 vertex repetitions to cover the edges of Q, which

yields to the same contradiction as in (5).

We are now ready to prove the main theorem of this section.

Proof of Theorem 1. We can easily show that the CoverBy-pq -Cliques ∈
NP. Let us consider an instance of Clique problem, that is a graph G and
an integer k. We build an instance of CoverBy-pq -Cliques with G′ and c as
defined at the beginning of this section. We now show that G has a clique of
size k if and only if G′ has a cover of size c by p

q -cliques. Suppose that G has a
clique of size k. We can then construct a cover by p

q -cliques of G
′ with c quasi-

cliques C = {C1, . . . , Cc} by putting the k-clique of G together with Qk in Cc,
and each of the remaining |E| −

(
k
2

)
edges (or cliques of two vertices) together

with an arbitrary Qi2 in Ci, for which each Ci and Cc becomes a p
q -clique by

Proposition 2. Suppose now that G′ has a cover of size c by p
q -cliques. We have

shown in Proposition 4 that in such a cover ofG′, each subgraphQi2 as well asQk
must reside in a separate p

q -clique. Proposition 2 implies that each quasi-clique
containing one of Qi2 can cover at most one edge (or 2-clique) from G, leaving
at least

(
k
2

)
edges for the remaining p

q -clique containing Qk. Since Proposition 2
also implies that any p

q -clique containing Qk cannot contain another subgraph
with vertex count k < t ≤ |V |, the remaining

(
k
2

)
edges of G must belong to a

subgraph with k vertices; hence form a clique of size k. This finalizes the proof
of NP-completeness for the CoverBy-pq -Cliques problem.

Pattillo et al. [7, Corollary 1] discuss how to find a p and a q satisfying
1 ≤ p < q for a given γ so that any γ-clique is a p

q -clique and vice versa. Using
this result, the NP-completeness of the decision version of the minimum cover
by γ-cliques problem follows as a corollary to Theorem 1, which we give below
for completeness.

Corollary 1. The decision version of the minimum cover by γ-cliques problem
is NP-complete for any fixed γ satisfying 0 < γ < 1.

RR n° 8255
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2.2 Minimum partition by p
q
-cliques problem

We consider the following decision problem associated with the minimum par-
tition by p

q -cliques problem.
PartitionBy-pq -Cliques: Given a simple undirected graph G = (V,E), fixed
integers p and q satisfying 1 ≤ p < q, and a positive integer c, is there a partition
of V into a set C of c many p

q -cliques such that for each v ∈ V there exists a
unique C ∈ C such that v ∈ V (C)?

Theorem 2. The PartitionBy-pq -Cliques problem is NP-complete for any
positive integer constants p and q satisfying 1 ≤ p < q.

We use a similar technique to the one in the proof of Theorem 1 by con-
structing a graph G′′ = (V ′′, E′′) and an integer c for a given graph G = (V,E)
and 2 ≤ k ≤ |V | in a way that G has a clique of size k if and only if G′′ has a
partition of its vertices into c = (|V | − k + 1) many p

q -cliques.

We now similarly construct a graph G′′ = G∪Qk ∪
⋃(|V |−k)
i=1 Qi1. where each

Qi1 is a separate instance of Q1.

Proposition 5. In a vertex partition of G′′ into p
q -cliques C = {C1, . . . , Cc},

the total number of edges in all pq -cliques, Etot =
∑c
i=1 |E(Ci)|, is lower-bounded

by cpq
(
qz
2

)
.

Proof. First note the fact that |V ′′| = |V | + |Vk| +
∑c−1
i=1 |V1| = cqz. Let

si = |V (Ci)| denote the number of vertices in Ci. Since each Ci is a p
q -clique,

the total number of edges in all quasi-cliques is lower-bounded by:

Etot ≥ L =

c∑
i=1

p

q

(
si
2

)
.

Since V (C1)+· · ·+V (Cc) is a partition of V ′′, we also have
∑c
i=1 si = |V ′′| = cqz.

In this case, L is minimum when si = qz for all 1 ≤ i ≤ c by Cauchy-Schwarz
inequality, which yields

Etot ≥ L =

c∑
i=1

p

q

(
qz

2

)
= c

p

q

(
qz

2

)
.

hence completes the proof.

Proposition 6. Let va, vb be two vertices in Qm for any m ≥ 2 such that
{va, vb} ∈ Em. Then, there are at least z

2 − 1 vertices in adj(va) ∩ adj(vb).

Proof. Assume without loss of generality that va precedes its neighbor vb in
cyclic order, and that the vertices are enumerated in such a way that a < b.
Since {va, vb} ∈ Em, we have b − a ≤ z

2 + 1 as we add the edges {va, va+1},
{va, va+2}, . . . , {va, va+z/2} in the first

⌊
|Em|
|Vm|

⌋
passes of the construction, and

possibly add one more edge in the last pass. If {va, vb} is added to Em in the
last pass (where we add |Em| mod |Vm| 6= 0 edges), all vertices between va and
vb = va+z/2+1 are connected to both va and vb. The number of such vertices
is z

2 . If we did not add any edges containing va in the last pass, then vb is
among the vertices {va+1, . . . , va+z/2}, and therefore other vertices vu 6= vb for
a < u ≤ a+ z

2 are connected to both va and vb. There are z
2−1 such vertices.
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We note that z
2 − 1 in the proof above is tight and holds for a va and va+z/2

when we did not add the edge {va, va+z/2+1} in the last pass.

Proposition 7. In a p
q -clique vertex partition of G′′ with c many p

q -cliques, the
vertices of each constituting subgraph Qi1 for i = 1, . . . , (|V | − k) and Qk must
reside in a separate p

q -clique.

Proof. Proposition 6 implies that in case a Qm is split, there are at least z
2 − 1

edges in the cut between split sets of vertices. By definition, no vertex can
belong to more than one quasi-clique in a p

q -clique vertex partition of G′′. This
implies not only that the cut-edges cannot belong to any Ci ∈ C, but also for
each of the remaining |E′′| − z

2 + 1 edges there can be at most one quasi-clique
Ci containing it; otherwise the corresponding vertices need to appear more than
once in quasi-cliques. Therefore, in this case the total number of edges in all
quasi-cliques, Etot is upper-bounded by:

Etot ≤ |E|+ |Ek|+
c−1∑
i=1

|E1| −
z

2
+ 1

= |E|+ p

q

(
qz

2

)
−
(
k

2

)
+

c−1∑
i=1

p

q

(
qz

2

)
− z

2
+ 1

since the negative terms are strictly larger in absolute value than |E|+1

Etot < c
p

q

(
qz

2

)
which contradicts Proposition 5. Thus, no Qm may be split into different quasi-
cliques in a p

q -clique vertex partition of G′′ with c many quasi-cliques.

Now we continue with the proof of Theorem 2.

Proof of Theorem 2. We can easily show that PartitionBy-pq -Cliques ∈
NP. Now we consider an instance of Clique problem with a graph G and an
integer k, and construct an instance of PartitionBy-pq -Cliques with G′′ and
c as described. We claim that G has a clique of size k if and only if G′′ has
a p
q -clique vertex partition C = {C1, . . . , Cc} of size c. Suppose that G has a

clique of size k. In this case, we can construct c many p
q -cliques which cover

V ′′ by putting the vertices in k-clique of G together with Qk in a quasi-clique
Cc, and each of the remaining |V | − k vertices together with an arbitrary Qi1
in Ci. Proposition 2 implies that each Ci constructed this way is a p

q -clique,
and clearly they partition V ′′. Now suppose that G′′ has a vertex partition by
c many p

q -cliques. Proposition 5 implies that each Qi1 must be contained in a
separate quasi-clique, say Ci, and Proposition 2 implies that each such Ci can
contain at most one vertex from V , thereby leaving at least t ≥ k vertices for the
last quasi-clique, say Cc, which contains Qk. Since Proposition 2 also implies
that Cc cannot contain a graph with k < t ≤ |V | vertices, not only t must equal
to k but also these t vertices must form a complete graph by Proposition 2,
which finalizes the proof of Theorem 2.

Using again the result of Pattillo et al., the NP-completeness of the decision
version of the minimum partition by γ-cliques problem follows as a corollary to
Theorem 2, which we give below for completeness.
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Corollary 2. The decision version of the minimum partition by γ-cliques prob-
lem is NP-complete for any fixed γ satisfying 0 < γ < 1.

3 Conclusion
We have shown that the decision versions of the minimum cover and parti-
tion by γ-quasi-cliques problems are NP-complete for any fixed γ satisfying
0 < γ < 1. Kaya et al. [5] discuss an application of the minimum cover by
quasi-cliques problem in sparse matrix ordering methods. Matsuda et al. [6]
discuss and Blanchette et al. [3] mention the use of quasi-clique covers in bioin-
formatics applications. Cliques and quasi-cliques also arise in various problems
of network analysis (see, for example [1, 2]), where the parameter γ is used to
identify similar entities with a guaranteed coherence. The associated covering
and partitioning problems treated in this work can therefore find applications
in such settings. We leave the investigation of the use of covers and partitions
by quasi-cliques in network analysis as a future work.
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