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Spectral Techniques to Explore Point Clouds in Euclidean Space,

with Applications to Collective Coordinates in Structural Biology

F. Cazals∗and F. Chazal †and J. Giesen ‡

January 2009

Abstract

Life sciences, engineering, or telecommunications provide numerous systems whose description
requires a large number of variables. Developing insights into such systems, forecasting their evolution,
or monitoring them is often based on the inference of correlations between these variables. Given a
collection of points describing states of the system, questions such as inferring the effective number
of independent parameters of the system (its intrinsic dimensionality) and the way these are coupled
are paramount to develop models. In this context, this paper makes two contributions.

First, we review recent work on spectral techniques to organize point clouds in Euclidean space,
with emphasis on the main difficulties faced. Second, after a careful presentation of the bio-physical
context, we present applications of dimensionality reduction techniques to a core problem in structural
biology, namely protein folding.

Both from the computer science and the structural biology perspective, we expect this survey to
shed new light on the importance of non linear computational geometry in geometric data analysis in
general, and for protein folding in particular.
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1 Introduction

1.1 Geometric Data Analysis and Spectral Point Cloud Processing

Modeling the climate, understanding the interplay between proteins, metabolites and nucleic acids making
up a regulation network within a cell, or unraveling the connexions between spiking neurons are example
problems where a large number of variables interplay in a complex non linear way. Developing insights
into such systems, forecasting their evolution, or monitoring them is often based on the inference of
correlations between these variables. More precisely, learning such correlations from experiments is
paramount to model development, as theory and experimental inference are tightly coupled.

Consider a complex system, and assume we are given a number of observations describing different
states of the system. In such a setting, we are interested in the question of inferring the effective number
of independent parameters of the system (its intrinsic dimensionality) and the way these are coupled. To
meet these challenges, a set of new geometric methods, known as manifold learning, have been developed
in the machine learning community mainly over the past decade. These methods are based upon the
assumption that the observed data –a point cloud in some n dimensional space, lie on or are close to a
submanifold M in R

d.
Naturally, given the variety of situations, one cannot expect a single method to meet all needs.

Nevertheless, many of the most popular approaches boil down to spectral methods. Note that the term
spectral method is ambiguous and used differently within different communities, e.g., in numerical methods
for partial differential equations it often involves the use of the fast Fourier transform. Here we want to
use the term in the sense of data analysis similar as van der Maaten et al. did [25]. That is, for us in
a spectral method, a symmetric matrix is derived from the point cloud data and the solution to a given
optimization problem can be obtained from the eigenvectors of this matrix. We should mention that the
term spectral method is also used in mesh processing in the geometric modeling community where the
symmetric matrix is obtained from the connectivity of the mesh, see [31] for an overview. The geometric
optimization problems that lead to a spectral technique are mostly of a least squares nature and include
the following classical (and archetypical) problems:

(1) Find the k-dimensional subspace that approximates the point cloud best in a least squares sense.

(2) Find the embedding of the point cloud in k-dimensional space that preserves the distances between
the points best possible in a least squares sense.

The first problem is called principal component analysis (PCA) as it asks for the principal directions
(components) of the data. It essentially is a data quantization technique: every data point gets replaces by
its projection onto the best approximating k-dimensional subspace. The loss incurred by the quantization
is the variance of the data in the directions orthogonal the best approximating k-dimensional subspace.
As long as this variance is small PCA can also be seen as denoising the original data. Many machine
learning techniques including clustering, classification and semi-supervised learning [18], but also near
neighbor indexing and search can benefit from such a denoising.

The second problem is called multi-dimensional scaling (MDS). An important application of MDS
is visualization of the point cloud data: the data points get embedded into two- or three-dimensional
space, where they can be directly visualized. The main purpose of visualization is to use the human visual
system to get insights into the structure of the point cloud data, e.g., the existence of clusters or—for data
points labeled with discrete attributes—relations between this attributes. MDS visualization remains to
be a popular tool for point cloud data analysis, but of course a lot of information will get lost (and in
general cannot be restored by the human visual system) if the intrinsic dimension of the data points is
larger than three.

Recently the focus in point cloud data analysis shifted: more emphasis is put on detecting non-linear
features in the data, although processing the data for visual inspection still is important. What drives
this shift in focus is the insight that most features are based on local correlations of the data points, but
PCA and MDS both have only a global view on the point cloud data. The shift towards local correlations
was pioneered by two techniques called ISOMAP [24, 12] and Locally Linear Embedding (LLE) [22, 23].
It is important to note that focusing on local correlations does not mean that one loses the global picture:
for example the global intrinsic dimension of the data can be estimated from local information, whereas
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it is often (when the data are embedded non-linearly) not possible to derive this information from a
purely global analysis. ISOMAP and LLE and their successors (some of which we will also discuss here)
can be used both for the traditional purposes data quantization and data visualization. In general they
preserve more information of the data (than PCA and MDS) while achieving a similar quantization error
or targeting the same embedding dimension for data visualization, respectively.

1.2 Spectral Methods and Alternatives

Advantages of spectral methods. Consider a point cloud P sampled from a manifold M embedded
in R

d. In this survey, we focus on a set of quite famous methods following a common thread, as they
ultimately resort to spectral analysis. They all intend to find the best embedding of the dataset P into an
Euclidean space R

k with respect to some quadratic constraint reflecting different geometric properties of
the underlying manifold M . The embedding of the data that minimizes the quadratic constraint can then
be interpreted as the best k-dimensional embedding of the data with respect to the geometric property
we aim to preserve. In most cases, the quadratic minimization problem boils down to a general eigenvalue
problem ensuring to find a global minimum. Moreover, the embedding can be found by easy-to-implement
polynomial time algorithms.

This provides a substantial advantage over iterative or greedy methods based upon Expectation-
Maximization like algorithms that do not provide guarantees of global optimality. In particular, for quite
large data sets, the methods we consider still provide results when iterative and greedy methods fail due
to complexity issues. Another advantage of “spectral methods” is that the quadratic constraint leads to
a measurement of the quality of the embedding 1. At last, “spectral methods” have been widely used and
studied in many applications areas (graph theory, mesh processing [31],...) giving rise to a large amount
of efficient theoretical and algorithmic tools that can be used for dimensionality reduction.

Approaches not covered. As our focus is on spectral techniques, a number of dimensionality reduction
techniques are not covered in this paper. While the reader might consult [25] for a rather exhaustive
catalog, the following comments are in order about the missing classes:

• EM-based methods: a large set of manifold learning algorithms developed in the machine learning
community adopt a probabilistic point of view, so as to maximize a likelihood (Self Organizing
Maps, Generative Topographic Mapping, Principal curves, etc. See [4] for example.). Some of
them, like principal curves [17] or generative topographic mapping [5] for example, aim to fit the
data set by a parameterized low dimensional (in general 1 or 2) manifold. They usually assume
that the topology of the manifold is known and simple (simple curves, planes, discs) and do not
allow to deal with data sampled from more complicated shapes.

• Methods related to the Johnson-Lindenstrauss lemma: the Johnson-Lindenstrauss lemma addresses
the dimensionality reduction problem of a general point cloud (not necessarily sampled around a low
dimensional manifold) in the perspective of preserving the pairwise distances between the points.
An extension to points and flats and algebraic surfaces has been proposed in [1].

• Kernel methods: a number of methods, including some of the methods we shall discuss, can be
interpreted in the framework of kernel methods. See [16, 27] for example.

• Methods targeting non manifold shapes: more recently, some geometric inference methods have
been developed in the case where the shape underlying the data is not assumed to be a smooth
manifold. They lead to promising but preliminary results for dimensionality reduction of general
shapes [6, 7].

1For example, in [24], the quality of the embedding obtained is assessed resorting to the residual variance σk(k, d) defined
by:

σk(k, d) = 1 − R2(D̂k, Dd) (1)

with R(D̂k, Dd) the correlation coefficient taken over all entries of matrices D̂k and Dd. The closer to zero this variance,
the better the approximation.
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1.3 An Application in Structural Biology: Protein Folding

As an application of dimensionality reduction techniques in general, and of spectral methods in particular,
we shall give a detailed account of one of the core open problems in structural biology, namely protein
folding: how does a protein reach its folded-, i.e., its biologically active state, from the unfolded one?
As of October 2007, about 1,000 genomes have been fully sequenced or are about to be so, while the
Protein Data Bank contains (a mere) 40,000 structures. The question of understanding folding so as to
predict the structure of a protein from its sequence is therefore central 2, to foster the understanding of
central mechanisms in the cell, but also to perform protein engineering with applications ranging from
drug design to bio-technologies.

Aside these general incentives, a number of technical ones advocate this particular problem.
First, the question of folding is closely related to a specific d-dimensional manifold which associates an
energy to a conformation (the energy landscape), on which point clouds are sampled thanks to simula-
tions techniques like the prototypical molecular dynamics method. Thus, the underlying mathematical
structure is a manifold and not a (stratified) complex of arbitrary topology.
Second, assuming the folded and unfolded conformations correspond to (significant) local minima of the
energy landscape, the problem is tantamount to understand transitions on this landscape, i.e. paths
joining these minima. The difficulty of the problem is rooted in two facts: the high-dimensionality of the
landscape (d = 3n or d = 6n as argued below, with n the number of atoms), and its complex topogra-
phy which reflects the complex interactions (forces) between atoms. These intrinsic difficulties call for
dimensionality reduction techniques, so as to exhibit a small number of new variables (typically one or
two), called the reaction coordinates, accounting for the transition. These coordinates should match the
effective large amplitude - slow frequency degrees of freedom of the system, thus providing a simplified
view of the process, and easing its interpretation. Thus in essence, one wishes to quantize information
located on a non linear manifold, while retaining the essential features.
Third, as opposed to a large number of multi-dimensional data sets, folding features a stimulating inter-
play between modeling and experiments. The point clouds studied in folding are indeed closely related
to a number of experiments in bio-physics, so that one can precisely assess the quality and the interest
of dimensionality reduction procedures. Example such experimental methods are dynamic NMR, protein
engineering (φ-value analysis), laser initiated folding, etc. Describing these procedures is clearly beyond
the scope of this survey, and the reader is referred to [57, 48] for starting pointers.

1.4 Notations and Paper Overview

Throughout this paper we will be using the following notations:

P point cloud
n number of point is P
d dimension of the Euclidean space form which the points in P are drawn
k target dimension

The paper is organized as follows. Section 2 presents the two archetypical spectral methods used
to explore point clouds, namely PCA and MDS. The question of localizing neighborhoods is discussed
in section 3, while methods meant to accommodate non linear geometries are discussed in section 4.
The application of dimensionality reduction techniques to protein folding is discussed in section 5. To
conclude, section 6 discusses a number of research challenges.

2 PCA and MDS

In the following we assume that the points in P are centered at the origin, i.e.,
∑n

i=1 pi = 0. Note that
this can always achieved by a simple translation: let p̄ = 1

n

∑n

i=1 pi and p′i = pi − p, then
∑n

i=1 p′i = 0.
Principal component analysis (PCA) asks for the k-dimensional subspace of R

d that approximates
the point set P best possible in a least squares sense and projects P onto that subspace, whereas multi-
dimensional scaling (MDS) in its basic form aims for the k-dimensional embedding of P that preserves

2At least for proteins consisting of a single polypeptidic chain, as the formation of multimers also poses docking questions.
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the pairwise inner products of the points in P best possible in a least squares sense. In both cases k can
range from 1 to d − 1.

Though different in their motivation and objective, PCA and MDS are almost identical in a technical
sense: both can be formulated in terms of eigenvectors of some positive semi-definite matrix derived from
the point set P , which itself can be written as a (d × n)-matrix as follows:

P =







p11 . . . pn1

...
...

p1d . . . pnd






,

where pij is the j’th component of the point pi ∈ P . From the matrix P one canonically derives two
positive semi-definite matrices,

(1) the covariance matrix C = PPT , and

(2) the Gram matrix G = PT P .

The covariance matrix is a (d× d)-matrix and can also be written as C =
∑n

i=1 pip
T
i , whereas the Gram

matrix has dimension n× n and can also be written as G =
(

pT
i pj

)

. Both matrices are intimately linked
also via their eigenvectors and eigenvalues. We have the following observation.

Observation 1 The matrices C and G have the same non-zero (positive) eigenvalues (and thus the same
rank).

Proof. Let v ∈ R
d be an eigenvector of C with eigenvalue λ > 0, then PT v is an eigenvector of G also

with eigenvalue λ as can be seen from the following simple calculation:

GPT v = PT PPT v = PT Cv = λPT v.

Similarly, if u ∈ R
n is an eigenvector of G with eigenvalue µ > 0, then Pu is an eigenvector of C with

eigenvalue µ. �

One important issue with both PCA and MDS is how to choose/determine k (the intrinsic dimen-
sionality of the point cloud data). Sometimes there is a “large” gap in the eigenvalue spectrum of C or
G, respectively, and k is then often chosen as the number of eigenvalues above this gap.

2.1 PCA

As mentioned earlier PCA asks for the k-dimensional subspace of R
d that approximates the point set P

best possible in a least squares sense. Let us discuss this for the case k = d − 1 first. In this case we are
looking for a unit vector v ∈ R

d such that the sum of the squared lengths of the projections (vT pi)v is
minimized. Formally this can be written as

min vT PPT v
s.t. ‖v‖2 = 1

From the Lagrange multiplier theorem one derives the following condition for an optimal solution to this
optimization problem: λv = PPT v = Cv. That is, an optimal solution is the subspace orthogonal to an
eigenvector of the covariance matrix C and the value of the optimization problem at an optimal solution
is vT PPT v = vT Cv = λ‖v‖2 = λ. Hence we are looking for an eigenvector associated to the smallest
eigenvalue of C and the optimal solution is spanned by all eigenvectors of the covariance matrix C except
the one corresponding to the smallest eigenvalue.

Let λ1 ≥ . . . ≥ λd ≥ 0 be the eigenvalues of C, v1, . . . , vd ∈ R
d a corresponding orthonormal eigenbasis

and Pk =
∑k

i=1 viv
T
i , k = 1, . . . , d, the projector on the k’th invariant eigenspace, i.e., the eigenspace

spanned by the first k eigenvectors. Iteratively it follows that the best approximating k-dimensional
subspace of R

d in a least square sense is spanned by v1, . . . , vk. The k’th order PCA is then given as the
following transformation:

pi 7→ Pkpi = pi − (I − Pk)pi.

In a way Pkpi is seen as the signal conveyed with the point pi and (I − Pk)pi is seen as noise.
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2.2 MDS

Multi-dimensional scaling is aiming for a k-dimensional embedding of P that preserves the pairwise inner
products pT

i pj as well as possible in a least squares sense3. Note that all inner products are stored as
entries in the Gram matrix G. Let µ1 ≥ . . . ≥ µn ≥ 0 be the eigenvalues of G, let u1, . . . , un ∈ R

n be a
corresponding orthonormal eigenbasis and let Qk =

∑k

i=1 uiu
T
i , for k = 1, . . . , n, be the projector on the

k’th invariant eigenspace. We have the following observation:

Observation 2 The matrix QkG is the best rank k approximation of the Gram matrix G in the sense
that

‖QkG − G‖2 = argminQ: (n×n)-matrix of rank k‖QG − G‖2.

The matrix QkG can also be interpreted as a matrix of inner products. To see this we use (a) the
projector property Q2

k = Qk, (b) symmetry QT
k = Qk, and (c) the commutator property QkG = GQk,

and get
QkG = Q2

kG = QkGQk = QkPT PQk = QT
k PT PQk = (PQk)T PQk,

which shows that QkG is the matrix of inner products of the columns of PQk = (QkPT )T . Here the
(n × d)-matrix QkPT is the projection of the rows of P onto the space spanned by u1, . . . , un. The k’th
order MDS maps the point pi to the i’th column QkPT , i.e., the i’th column of PQk. This column is
uniquely specified by its coefficients αi

1, . . . , α
i
k in the orthonormal basis u1, . . . , uk. Representing the

points pi by (αi
1, . . . , α

i
k) gives the thought for least squares optimal k-dimensional embedding of the

point set P .

3 Localization

3.1 Neighborhood Criteria

In using PCA and MDS, feature preserving data quantization and visualization can be enhanced by taking
only local relations among all the data points into account. Localization the relations means choosing
neighborhoods for each data point, i.e., building a (in general directed) neighborhood graph on the data
points. The right choice of neighborhood is crucial for the localized version of PCA and MDS to work
properly. Commonly used methods to define the neighborhoods are:

(1) κ nearest neighbors: connect every pi to its κ nearest neighbors (in terms of Euclidean distance) in
P .

(2) symmetric κ nearest neighbors: connect pi to its κ nearest neighbors and all points in this neigh-
borhood to each other.

(3) fixed neighborhood: given ε > 0, connect every pi to all points in P that have distance less than ε
to pi.

(4) relative neighborhood: given ρ > 1, connect every pi to all neighbors at distance ρ times the distance
of pi to its nearest neighbor.

An important observation is that (1) and (2), i.e., κ nearest neighbors and symmetric κ nearest
neighbors, respectively, do not automatically adapt to the intrinsic dimension of the point cloud data.
Intuitively, if the intrinsic dimension is large also κ needs to be large in order to cover a meaningful
neighborhood for a data point (we expect this neighborhood to grow exponentially in the intrinsic dimen-
sion), whereas if the intrinsic dimension is small, for the same value of κ one already covers data points
quite far away. Methods (3) and (4), fixed- and relative neighborhood, both automatically adapt to the
intrinsic dimension, but cannot—in contrast to the κ nearest neighbor methods—adapt to non-uniform
or anisotropic spacing of the data points. In practice a good choice for the value of the parameter ρ of
(4) may be easier to find than for the value of ε in (3).

More neighborhood graphs are discussed by Yang [30] who also provides experimental results.

3Observe that completely preserving the inner products allows us to recover P up to a rotation, i.e., completely preserving
the pairwise inner products also preserves the pairwise distances ‖pi − pj‖.
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3.2 Dimension Detection Using PCA

We have seen above that knowing the local dimension at a data point can guide the right choice of
parameter κ when computing the κ nearest neighbors neighborhood. On the other hand, using that
given p ∈ M , there exists a small neighborhood of p in which M is close to its tangent space at p, it is
appealing to use localized versions of PCA to infer the local intrinsic dimension of M at p from the point
cloud data P . With a good neighborhood N(p) ⊂ P of p ∈ P one can estimate the intrinsic dimension at
p by a localized version of PCA. The localized version uses the local covariance matrix Cp of the points

p′i = (pi − p) −
1

n

∑

pi∈N(p)

(pi − p) for pi ∈ N(p).

Intuitively, if the local dimension at p is k, then we expect a gap in the eigenvalue spectrum of Cp in
the sense that k’th largest eigenvalue is much larger than the (k + 1)’st eigenvalue and the k largest
eigenvalues are roughly of the same magnitude. That is, we expect a threshold θ such that

λj

λ1
≥ θ for j ≤ k and

λj

λ1
≤ θ for j > k.

Indeed, Cheng, Wang and Wu [8] were able to prove the existence of such a threshold θ under the
assumption that the data are sampled from a smooth manifold and obey a sampling condition. The
sampling condition rules out locally non-uniform or anisotropic spacing of the sample points. Under this
assumption fixed- and relative neighborhoods should work. Cheng et. al use the relative neighborhood
for their proof. Though their threshold parameter θ depends on parameters of the sampling condition
they report good results in practice using a threshold of θ = 1/4.

It is important to remark that when the sampling conditions are not fullfilled or when the size of
the neighborhoods are not well-choosen, the previous method usually leads to unclear and confusing
estimations. In particular the dimension estimation may depend on a “scale” (in the previous case the
size of the neighborhoods) at which the data is considered: assume that P samples a planar spiral with
gaussian noise in the normal direction to the curve. At a “microscopic” scale, P just looks like a finite
set of points and its dimension is 0. At a scale of the size of the standard deviation of the noise, P seems
to locally sample the ambient space and the localized PCA method will probably estimate M to be 2-
dimensional. At a higher, but not too big, scale the localized PCA will provide the right estimation and at
large scales, it will again provide a 2-dimensional estimation. Various notions of dimension (q-dimension,
capacity dimension, correlation dimension, etc...) have been introduced to define the intrinsic dimension
of general shapes (including non smooth shapes and fractal sets). They give rise to algorithmically simple
methods that simultaneously provide dimension estimations at different explicit scales allowing the user
to select the one which is most relevant for his purpose. An introduction to this subject may be found in
[20].

4 Turning Non-Linear

The linear and global aspects of PCA and MDS make them inefficient when the underlying manifold M
is highly non linear. Designing non-linear dimensionality reduction methods that lead to good results
for non linear smooth manifolds is an active research area that gave rise to a big amount of literature
during the last decade. In this section, we quickly present a set of quite famous dimension reduction
methods that take advantage of the localization techniques presented in the previous section and that
have interesting geometric interpretations. They also have the advantage of leading to easy to implement
polynomial time algorithms that prove more efficient with larger data sets than the ones usually involved
in iterative or greedy methods (like e.g. the ones involving EM or EM-like algorithms). We also discuss
the guarantees provided by these methods.

Recall that in the following the considered data sets P ⊂ R
d are assumed to be sampled on/around a

possibly unknown smooth manifold M of dimension k. The common thread of the few methods presented
below is that they all aim to find a projection P̂ ⊂ R

k of the data set minimizing a quadratic functional
φ(P̂ ) that intends to preserve (local) neighborhood information between the sample points.
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4.1 Maximum Variance Unfolding (MVU)

PCA and MDS perform poorly when data points are not close to an affine subspace, i.e., they are both
based on an inherent linearity assumption. Especially, both methods fail when the data points are close to
a “curled up” linear space—the most famous example is the so called Swiss roll data set, points sampled
densely from a curled up planar rectangle in R

3. The idea behind maximum variance unfolding (MVU),
introduced by Weinberger and Saul [26, 29, 28], is to unfold the data, i.e., to transform the data set
to a locally isometric data set, that is closer to an affine subspace. The unfolding aims at maximizing
the distance between non-neighboring points (after some choice of neighborhood) while preserving the
distances between neighboring points.

Technically MVU proceeds as follows: let D = (dij = ‖p−pj‖
2) be the symmetric (n × n)-matrix of

pairwise distances. Choose a suited neighborhood for each point in P (Weinberger and Saul choose the
symmetric κ-nearest neighbors) and let the indicator variable nij be 1 if either pi is in the neighborhood
of pj or pj is in the neighborhood of pi, and 0 otherwise. From D an unfolding, a positive semi-definite
(n×n)-matrix K = (kij) (interpreted as the Gram matrix of the unfolded point set) is computed through
the following semi-definite program (SDP)

Maximize the trace of K subject to

(1) K is positive semi-definite

(2)
n

∑

i,j=1

kij = 0

(3)
kii − 2kij + kjj = dij for all (i, j) with nij = 1

From K a lower dimensional embedding can be computed as described for MDS.

4.2 Locally Linear Embedding (LLE)

LLE is a method introduced in [22, 23] that intends to take into account the local linearity of the
underlying manifold M to perform the reduction of dimension. In a first step, LLE discards pairwise
distances between widely separated points by building a neighborhood graph G (see Section 3). The goal
of this first step is to connect only close points of P so that the neighbors of each vertex pi in G are
contained in a small neighborhood of pi which is close to the tangent space of the underlying manifold
M at pi. To take this local linearity into account, LLE computes for each vertex pi of the graph its best
approximation as a linear combination of its neighbors. More precisely, one computes a sparse matrix of
weights Wi,j that minimize the quadratic error

ε(W ) =

n
∑

i=1

‖pi −
∑

j∈N(pi)

Wi,jpj‖
2

where N(pi) is the set of the vertices that are connected to pi in G. This is a simple least square problem.
Solving it with the additional constraint

∀i,
∑

j∈Ngb(pi)

Wi,j = 1

makes the weights invariant to rescaling, rotations and translations of the data (the weights thus char-
acterize intrinsic properties of the data). The weights matrix is then used to perform the dimensionality
reduction: given k < d, the points pi are mapped to the points p̂i ∈ R

k that minimize the quadratic
function

Φ(p̂i) =
∑

i

‖p̂i −
∑

j

Wi,j p̂j‖
2
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This quadratic minimization problem classically reduces to solving a sparse n×n eigenvalue problem. As
for MDS, the LLE algorithm projects the data in a low dimensional space, no matter what the mapping
is. To provide satisfactory result, the data have to be sufficiently dense to insure that the neighbors
of a given point provide a good approximation of the tangent space of M . Moreover, even if the data
are dense enough, the choice of the neighbors may also be awkward: choosing a too small or too large
neighborhood may lead to very bad estimates of the tangent space.

4.3 ISOMAP

ISOMAP is a version of MDS introduced in [24, 12], where the matrix of inner products or Euclidean
distances, respectively, is replaced by the matrix of the geodesic distances between data points on M .
In a first step, ISOMAP builds a neighborhood graph such that the distances between points of P in
the graph are close to the geodesic distances on M . Once the geodesic distance matrix has been built,
ISOMAP proceeds like classical MDS to project P in R

k.
One of the advantage of ISOMAP is that it provides convergence guarantees. First, it can be proven that
if the data are sufficiently densely sampled on M , the distance on the neighbor graph is close to the one
on M [11, 21, 15]. Nevertheless, in practice robust estimation of geodesic distances on a manifold is an
awkward problem that requires rather restrictive assumptions on the sampling. Second, since the MDS
step in the ISOMAP algorithm intends to preserve the geodesic distances between points, it provides a
correct embedding if M is isometric to a convex open set of R

k. The convexity constraint comes from the
following remark: if M is an open subset of R

k which is not convex, then there exist a pair of points that
cannot be joined by a straight line contained in M . As a consequence, their geodesic distance cannot
be equal to the Euclidean distance. It appears that ISOMAP is not well-suited to deal with data on
manifolds M that do not fulfill this hypothesis. Nevertheless some variants (conformal ISOMAP [12])
have been proposed to overcome this issue. Note also that ISOMAP is a non local method since all
geodesic distances between pairs of points are taken into account. As a consequence ISOMAP involves
a non-sparse eigenvalue problem which is a main drawback of this method. To partly overcome this
difficulty some variant of the algorithm using landmarks have been proposed in [12].

4.4 Laplacian Eigenmaps

This method introduced in [3, 2] follows the following general scheme: first a weighted graph G with
weights Wi,j is built from the data. Here the weights measure closeness between the points: intuitively
the bigger Wi,j is, the closer pi and pj are. A classical choice for the weights is given by the Gaussian

kernel Wi,j = exp(−
‖pi−pj‖

2

4σ
), where σ is a user-defined parameter 4. Second the graph G is embedded

into R
k in such a way that the close connected points stay as close as possible. More precisely the points

pi are mapped to the points p̂i ∈ R
k that minimize

φ(P̂ ) =
∑

i,j

‖p̂i − p̂j‖
2Wi,j .

There is an interesting and fundamental analogy between this discrete minimization problem on the
graph G and a continuous minimization problem on M . Indeed, it can be seen that minimizing φ on the
functions defined on the vertices of G corresponds (in a discretized version) to minimizing

∫

M
‖∇f‖2 on

the space of functions f defined on M with L2 norm ‖f‖2
L2 =

∫

M
‖f‖2 = 1. From the Stokes formula,

this integral is equal to
∫

M
L(f)f , where L is the Laplace-Beltrami operator on M and its minimum

is realized for eigenfunctions of L. Similarly the minimization problem on G boils down to a general
eigenvector problem involving the Laplacian of the graph. Indeed the Laplace operator on G is the
matrix L = D−W , where D is the diagonal matrix Di,i =

∑

j Wi,j . It can be seen as an operator acting
on the functions f defined on the vertices of G by subtracting from f(pi) the weighted mean value of f
on the neighbors of pi. By a classical computation, one can see that φ(P̂ ) = tr(P̂T LP̂ ), where P̂ is the
n × k matrix with i-th row given by the coordinates of p̂i. It follows that, given k > 0, the minimum
of φ is deduced from the computation of the k + 1 smallest eigenvalues of the equation Ly = λDy (the

4To obtain a sparse matrix W the values of Wi,j that are smaller than some fixed small threshold are usually set to 0.
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smallest one corresponding to the eigenvalue 0 has to be removed). The analogy between the discrete

and continuous setting extends to the choice of the weights of G: choosing Wi,j = exp(−
‖pi−pj‖

2

4σ
), where

σ is a user-defined parameter, allows to interpret the weights as a discretization of the heat kernel on
M [3]. From the side of the guarantees, the Laplacian eigenmaps only involve intrinsic properties of G
so they are robust to isometric perturbations of the data. Moreover, the relationship with the Laplacian
operator on M provides a framework leading to convergence results of L to the Laplace operator on M
[2].

4.5 Hessian Eigenmaps (HLLE)

ISOMAP provides guarantees when the unknown manifold M is isometric to a convex open subset of
R

k. Although the hypothesis of being isometric to an open subset of R
k seems to be rather reasonable

in several practical applications, the convexity hypothesis appears to be often too restrictive. HLLE is
a method introduced in [14] intending to overcome this convexity constraint. The motivation of HLLE
comes from a rather elementary result stating that if M is isometric to a connected open subset of R

k

then the null-space of the operator defined on the space of C2-functions on M by

H : f →

∫

M

‖Hessf(m)‖2dm

where Hessf is the Hessian of f , is a (k + 1)-dimensional space spanned by the constant functions and
the “isometric coordinates” of M . More precisely, if there exists an open set U in R

k and an isometric
embedding φ : M → U then it can be proven that the constant functions and the functions φ1, · · ·φk,
where φi is the i-th coordinate of the map φ, are contained in the null-space of H. Moreover, the constant
functions span one dimension of this null-space and the k functions φi span the k other dimensions. It
is thus appealing to estimate this null space in order to recover these isometric coordinates to map M
isometrically on an open subset of R

k. To do this the algorithm follows the same scheme as LLE and
the estimation of the null-space of H reduces to an eigenvalue computation of a sparse n× n matrix. As
a consequence HLLE allows to process dimensionality reduction for a larger class of manifolds M than
ISOMAP. The quality of the reduction is obviously closely related to the quality of the approximation
of the kernel of the operator H. Nevertheless, it is important to notice that the algorithm involves the
estimation of second order differential quantities for the computation of the Hessian while LLE requires
only first order ones to approximate the tangent space of M . To be done efficiently this usually needs
a very dense sampling of M . At last, note that HLLE is the same as Laplacian Eigenmaps where the
Laplacian operator has been replaced by H.

4.6 Diffusion Maps

Diffusion maps [9] provide a method for dimensionality reduction based upon Markov random walks on
a weighted graph G reflecting the local geometry of P . The graph G is built in a similar way as for
Laplacian Eigenmaps: the larger is the weight of an edge, the “closer” are its endpoints. In particular G
can be built using the discretization of the heat kernel on M (see section 4.4). From the weights matrix
W one constructs a Markov transition matrix Π by normalizing the rows of W

Πi,j =
Wi,j

d(pi)
where d(pi) =

∑

k

Wi,k is the degree of the vertex pi

Πi,j can be interpreted as the probability of transition from pi to pj in one time step. The term Πt(i, j)
of the successive powers Πt of Π represent the probability Πt(pi, pj) of going from pi to pj in t steps. The
matrix Π can be seen as an operator acting on the probability distributions supported on the vertices

of G. It admits an invariant distribution φ0 defined by φ0(pi) = d(pi)
P

j d(pj)
. The idea of diffusion maps is

thus to define a metric between the points of P which is such that at a given t > 0 two points pi and pj

are close if the conditional distributions of probability Πt(pi, .) and Πt(pj , .) are close. The choice of a
weighted L2 metric between the conditional distributions allows to define a diffusion metric between the
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points of P

D2
t (pi, pj) =

∑

k

(Πt(pi, pk) − Πt(pj , pk))2

φ0(pk)

which is closely related to the spectral properties of the random walk on G given by Π. Intuitively,
two points pi and pj are close if there are many paths connecting them in G as illustrated on Fig. 1.
Note that the parameter t representing the “duration” of the diffusion process may be interpreted as
a scale parameter in the analysis. Given k and t > 0, the diffusion map provides a parameterization
and a projection of the data set which performs a dimensionality reduction that minimizes the distortion
between the Euclidean distance in R

k and the diffusion distance Dt. The diffusion map is obtained from
the eigenvectors of the transition matrix Π and the eigenvalues to the power t of the transition matrix.
The diffusion maps framework reveals deep connections with other areas (such as spectral clustering,
spectral analysis on manifolds,...) that open many questions and make it an active research area. For
a more detailed presentation of diffusion maps and its further developments the reader is referred to
[9, 10, 19].

Figure 1: An example of a graph G (the weights are given by the heat kernel approximation, see text)
with points that are close or far to each other with respect to the diffusion metric: the points x and y are
close to each other while the points x and z are far away because G is “pinched” between the two parts
containing x and z. So there are few paths connecting x to z.
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5 Applications in Structural Biology: the Folding Problem

In this section, we first recall the intrinsic difficulty of folding proteins on a computer –section 5.1,
and bridge the gap between folding and dimensionality reduction –section 5.2. We then proceed with
a detailed account of the bio-physical context by discussing the question of cooperative motions within
a protein –section 5.3, and make the connexion to Morse theory and singularity theory along the way.
Finally, we review techniques to derive meaningful so-called reaction coordinates –section 5.4.

5.1 Folding: from Experiments to Modeling

Anfinsen was awarded the 1972 Nobel prize in chemistry for his work on ribonuclease, especially con-
cerning the connection between the amino acid sequence and the biologically active conformation 5. Since
then, Anfinsen’s dogma states that for (small globular) proteins, the sequence of amino-acids contains
the information that allows the protein to fold i.e. to adopts its (essentially unique) native structure, or
phrased differently, the 3d structure that accounts for its function. At room temperature, the folding of
a protein typically requires from millisecond to seconds, while the time-scale of the finest (Newtonian)
physical phenomena involved is the femtosecond.

When compared to femtoseconds, folding times are rather slow, which points towards a process more
complex than a mere descent towards a minimum of energy. On the other hand, such folding times are
definitely too fast to be compatible with a uniform exploration of an exponential number conformations
6. This observation is known as Levinthal’s paradox [63], and scales the difficulty of folding from a
computational perspective.

Entropy

Similarity

Unfolded

Folded

Partially folded to native state

conformations

conformations

ie native state

Energy

Coordinates

(cartesian, internal)

Figure 2: Folding funnel.The variability of conformations encodes the entropy of the system, while its
energy level encodes the proximity to nativeness. Adapted from [40].

5See http://nobelprize.org/nobel_prizes/chemistry/laureates/1972/index.html
6Recall that the side-chains of the amino-acids take conformations within finite sets –the so-called rotamers [59, 46],

whence a priori an exponential number of conformations.
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Figure 3: Crossing the Transition State on a rugged energy landscape: the system moves from one
watershed (state U) to a neighboring watershed (state F ) by crossing the energy landscape pass. Adapted
from [42].
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Figure 4: Folding process down a folding funnel: fraction of native contacts Q increases, free energy F (Q)
crosses a barrier, pfold increases. Adapted From [42].

5.2 Energy Landscapes and Dimensionality Reduction

5.2.1 Potential and Free Energy Landscape

Consider a system consisting of a protein and the surrounding solvent, for a total of n atoms. Each
atom is described by 3 parameters for the position and 3 for its velocity (momentum). In the following,
depending on the context, we shall be interested in a parameter space of dimension d = 3n (positions) or
d = 6n (positions+velocities), the latter being called the phase space. As the system is invariant upon
rigid motions, one could work with d − 6 degrees of freedom, but we skip this subtlety in the following.
From this d-dimensional parameter space, one defines the the energy landscape [70], i.e. the d dimensional
manifold obtained by associating to each conformation of the system an energy (potential energy or free
energy 7). Since the water molecules are critical to model appropriately the electrostatic interactions, n
typically lies in the range 104 to 105 for a system consisting of a protein and its aqueous environment.

5.2.2 Enthalpy-Entropy Compensation, Energy Funnel, Ruggedness and Frustration

Energy funnels. Folding may be seen as the process driving a heterogeneous ensemble of conformations
populating the unfolded state to a homogeneous ensemble of conformations populating the folded or native
state. To intuitively capture one major subtlety of folding, it is instructive to examine the variation of the
enthalpy H and entropy S of the system protein+solvent. While the protein folds, more native contacts

7As will be shown with Eq. (2), a free energy landscape is obtained from the potential energy landscape by projecting
onto selected coordinates.
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between atoms get formed, whence an enthalpy decrease. On the other hand, two phenomena account for
an entropic drop down: first, the conformational variability of the protein decreases; second, the structure
of the solvent around the protein changes. This latter re-organization, known as the hydrophobic effect,
corresponds to the fact that water molecules line-up along the hydrophobic wall formed by the molecular
surface of the protein. Overall, the variations of the enthalpy and entropy almost cancel out, resulting
in a small variation of the free energy G = H − TS of the system. This phenomenon is known as the
enthalpy-entropy compensation [48], and can be illustrated using energy landscapes, as seen from Fig. 2.
On this figure, the vertical axis features the free energy, and the horizontal one the entropy: while the
folding process progresses, the free energy (slightly) decreases and the landscape becomes narrower—the
entropy decreases. Such a landscape is generally called a folding funnel [40].

While the previous discussion provides a thermodynamic overview of the folding process, Levinthal’s
paradox deals with a kinetic problem—how come the folding process is so fast? Travelling down the
folding funnel 8 provides an intuitive explanation: the protein is driven towards the minimum of energy
corresponding to the native state by a steep gradient along the energy surface. This intuitive simplified
view, however, must be amended in several directions.

Ruggedness and frustration. Two important concepts which help to describe landscapes are rugged-
ness or roughness and frustration. Ruggedness refers to the presence of local minima, which in a folding
process may correspond to partially folded states. Frustration refers to the presence of several equally
deep minima separated by significant barriers, which may prevent the system from reaching the deepest
one. The fact that most proteins seem to have a single native state 9 seems to advocate a minimal
frustration principle. Yet, even for non frustrated landscapes, several levels of ruggedness may exist. In
particular, on the easy side of the spectrum, one finds proteins folding with a two-states kinetics, i.e.
without any intermediates [58].

Ruggedness / frustration may actually come from two sources, namely from the interaction energy
between atoms of the protein, and/or from the conformational entropy [41]. The enthalpic frustration
comes from local minima of the interaction potential energy. For the entropic frustration, observe that
the folding process is accompanied by a loss of conformational entropy (of the protein). If this loss is
heterogeneous and larger than the energetic heterogeneity, the corresponding free energetic landscape
becomes frustrated.

5.2.3 Cooperativity and Correlated Motions

Another concept related to minimally frustrated folding funnels is that of cooperative motions between
atoms. Cooperativity stipulates that when one atom is moving, atoms nearby must move in a coherent
fashion. This is rather intuitive for condensed states where local forces (repulsion forces as atoms cannot
inter-penetrate, hydrogen bonding) are prominent. At a more global scale, cooperation is likely to also
be important, e.g. due to electrostatic interactions. From a technical point of view, simple illustrations
of correlated motions are provided by normal modes studies 10, as well as correlations between positional
fluctuations 11.

Having mentioned correlated motions of atoms, the fact that dimensionality reduction techniques play
a key role in modeling folding (and more generally the behavior of macro-molecular systems) is expected.
First, the d degrees of freedom are certainly not equivalent, as different time-scales are clearly involved:
from small amplitude - high frequency vibrations apart from chemical bonds, to large amplitude - slow
frequency deformations of the protein. Second, the constraints inherent to the large amplitude motions

8The fact that the kinetic pathway follows the thermodynamic one is non trivial, and in general unwarranted, see [48,
Chapter 19].

9As opposed to many polymers which exist under a number of energetically equivalent inter-convertible states.
10Assuming the system is at a minimum of its potential energy V , the dominant term in the Taylor series expansion of V

is the quadratic one. Diagonalizing the corresponding quadratic form yields the so-called normal modes, whose associated
eigenvectors are collective coordinates. See for example [69].

11Given a molecular dynamics simulation, one may investigate the correlations between the atomic fluctuations —with
respect to a reference conformation. Both PCA and MDS have been used for this problem: in [51, 32], the average
covariance matrix of the positional fluctuations is resorted to, while [56] computes the average Gram matrix. See also [62]
for a characterization of pairwise atomic correlations based of Pearson’s coefficients and relatives.
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are such that one expects the effective parameters to lie on some lower-dimensional manifold representing
the effective energy landscape, that is the one accounting for transitions.

5.3 Bio-physics: Pre-requisites

5.3.1 Molecular Dynamics Simulations

The simulation data we shall be concerned with are essentially molecular dynamics (MD) data. (The
reader is referred to [50] for alternate simulation methods, such as Monte Carlo simulations or Langevin
dynamics.) A MD simulation is a deterministic process which evolves a system according to the New-
tonian laws of motion. Central in the process is the force field associated to the system, or equivalently
the potential energy stemming from the interactions between atoms. A typical potential energy involves
bonded terms (energies associated to covalent bonds), and non bonded terms (Van der Waals interactions
and electrostatic interactions). From the potential energy V associated to two atoms, one derives an as-
sociated force. Given these forces, together with the positions and momenta of the atoms, one determines
the configuration of the system at time t + ∆t. Practically, ∆t is of the order of the femtosecond, so that
in retaining one conformation every 10, long simulations (beyond the nanosecond) result in a number of
conformations > 100, 000.

5.3.2 Models, Potential Energy Landscapes and their Ruggedness

As exploring exhaustively the energy landscape of large atomic models is not possible, a number of
coarse models mimicking the properties of all atoms models have been developed. We may cite the
united residues model [47]; the BLN model [36] which features three types of beads only (hydrophilic,
hydrophobic, neutral); the 20 colors beads model [44], which accommodates anisotropic interactions
between residues so as to maximize packing of side chains.

Such coarse models deserve a comment about the ruggedness of potential energy landscapes. Rugged-
ness and frustration are indeed clearly related to the complexity of the force field governing the system,
since non local interactions between atoms are likely to yield local minima of the landscape —cf the
Go models thereafter. On the other hand, non local interactions are likely to help the protein to over-
come local energy barriers (to escape the local minima of the rugged landscape) due to solvent collisions,
non-native contacts, etc. See for example [65].

Having mentioned energy landscapes and MD simulations, a crucial remark is in order. Following the
gradient vector field of the energy on the potential energy surface amounts to a mere energy minimization.
But MD simulations are more powerful, since a system evolved by a MD can cross energy barriers thanks
to its kinetic energy 12. Another way to cross barriers is to resort to a Monte Carlo simulation [50].

5.3.3 Morse Theory and Singularity Theory

As outlined above, the properties of a system are described by its energy landscape. To investigate
transitions of our macro-molecular system, the topographical features of the landscape i.e. its minima,
maxima, and passes are of utmost importance [70]. These features are best described in terms of Morse
theory [64] as well as singularity theory [13], which in our setting amounts to studying the gradient vector
of the energy function on the manifold.

Following classical terminology, a critical point of a differentiable function is a point where the gradient
of the function vanishes, and the function is called a Morse function if its critical points are isolated and
non-degenerate. For a critical point p of such a function, the stable (unstable) manifold W s(p) (Wu(p))
is the union of all integral curves associated to the gradient of the function, and respectively ending
(originating) at p. Locally about a critical point of index i (the Hessian has i negative eigenvalues), the
(un-)stable manifold is a topological disk of dimension i (d − i). The stable and unstable manifolds are
also called the separatrices, as they partition the manifold into integral curves having the same origin and
endpoint. In a more prosaic language, they are also called watersheds, by analogy with water drainage.
In particular, under mild non degeneracy assumptions of the energy landscape, a transition between two

12If the internal (potential+kinetics) energy remains constant along the MD simulation, the system is Hamiltonian, and
a large number of mathematical results apply [66]. We shall get back on this issue in the outlook.
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adjacent minima is expected to correspond to the stable manifold of index one saddle joining the minima
–a result known as the Murrell-Laidler theorem in bio-physics [70].

If Morse theory provides a powerful framework to describe energy landscapes, the pieces of information
provided should be mitigated by the relative energies associated to critical points of various indices. As
already noticed at the end of section 5.3.2, the thermal energy of the system indeed allows barrier crossing.

5.3.4 Free Energy Landscapes and Reaction Coordinates

In classical chemistry, a chemical systems moves from one minimum of energy to another following
the minimum energy path, which, as just discussed is expected to go through index one saddles and
intermediate minima. For complex systems such as a protein in its aqueous solution, things are more
involved [45, 38, 42]. The different parameters have different relaxation times: fast parameters are those
describing the solvent, as well as the variables accounting for the fast vibrations apart from covalent bonds
of the protein; slow ones account for the large amplitude motions of the protein. Because the system
equilibrates faster for some coordinates than others, we may partition the parameters as x = (q, s). Denote
V (x) the potential energy of the system. By focusing on q and averaging out the other parameters, one
defines the free energy landscape, which is the kinetically relevant one, by:

W (q) = −kT ln

∫

exp[−
V (q, s)

kT
]ds. (2)

Coordinates q which provide kinetically relevant informations on transitions are called reactions coor-
dinates. Finding such coordinates is challenging, even on simple systems. We illustrate these difficulties
with a two dimensional system corresponding to a two states folding protein, whose unfolded and folded
states are respectively denoted A and B. If q is the reaction coordinate sought, obvious requirements are
(i) q takes different values qA and qB for these states, and (ii) q is such that the free energy W has a
maximum at some value q∗ in-between qA and qB . When these conditions are met, q is called an order
parameter. If q provides in addition informations about the kinetics of the transitions, it is called a
reaction coordinate. As illustrated on Fig. 5(a,b), these are different notions. In particular, Fig. 5(b)
features a parameter q which is a good order parameter but not a reaction coordinate. For example, the
dashed trajectory passes through q∗ but does not correspond to a transition. In the ideal setting, for a
reaction coordinate, the unstable manifold of the index one saddle joining the two minima separates the
points which are committed to one state or the other, and thus determines the so-called Transition State
Ensemble (TSE).

Practically, dealing with reaction coordinates poses several problems. First, for a system such as a
protein and its solvent, one does not know a priori which variables are the slow ones. This issue is further
discussed at the end of section 5.4.3. Second, if there is not a unique coordinate which is slower than the
remaining ones, a multi-dimensional analysis must be carried out. Third, computing a free energy profile
from Eq. (2) requires the coordinates over which the integration is performed to be equilibrated.

5.3.5 Folding Probability pfold

To probe the relevance of a parameter as a reaction coordinate, one resorts to the committor probability,
i.e. the probability of being committed to a given state [45]. More precisely, for any state x in the system,
this is the probability of arriving say at B before before arriving at A within some time ts. If the potential
energy depends on positions and momenta, averaging is understood w.r.t. momenta. By studying this
probability along a given path, one locates points near the TSE, since such points are equally committed
to both states. Denote Dirac’s delta function δ, and let < z >E the average of quantity z over an ensemble
E. To probe the interest of an order parameter as a reaction coordinate, one studies the distribution of
the committor probability at q = q∗, that is

P (pB) =< δ[pB(x, ts) − pB ] >q∗ , pB ∈ [0, 1].

For a good reaction coordinate, one expects P (pB) to be sharply peaked at pB = 1/2. This is the case
on Fig. 6(a), but not on Fig. 6(b) where P (pB) is bimodal, meaning that the orthogonal coordinates
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are such that commitment to the two states occurs. The reader is referred to [45, 39, 38] for example
physical systems featuring various committor’s distributions.

The notion of transition state is also closely related to that of transition path [55, 37]. Define a
transition path TP as a path in phase space that exits a region about the unfolded state, and reaches
a region about the folded state. A collection of transition paths determines a conditional phase space
density p(x | TP ), and one has

p(TP | x) =
p(x | TP )p(TP )

peq(x)
, (3)

with peq(x) the equilibrium probability of state x and p(TP ) the fraction of time spent on transition
paths. Transition states are naturally defined as points maximizing p(TP | x). Moreover, denoting x a
point with same position and reversed momentum, and pA(x) the probability of reaching state A before
state B from x, it can be shown [55] that

p(TP | x) = pA(x)pB(x) + pA(x)pB(x). (4)

An important property of this equation is that one can project x onto a lower dimensional space –see
section 5.4. Denoting r = r(x) such a coordinate, it can be shown [55] that

p(TP | r) =
p(r | TP )p(TP )

peq(r)
. (5)

Practically, the difficulty with pfold and related quantities are several [42]. First, the concept is bound
to simple landscapes corresponding to two states folding processes. Most importantly, estimating pfold

requires sampling the TSE, which either requires long simulations –usually out of reach, or some form of
importance sampling to favor the rare events corresponding to crossings of the TSE.

5.4 Inferring Reaction Coordinates

In the following, we review some of the most successful techniques to analyze transitions. We focus on
the methodological aspects, and refer the reader to the original papers for a discussion of the insights
gained, including connexions with experimental facts. As it can be seen from [42] for example, assessing
the relevance of a particular coordinate can be rather controversial.

5.4.1 Reaction Coordinates?

In order to prove efficient to investigate folding, funnels such as that of Fig. 2 must be made quantitative,
that is, one needs to specify what the axis account for. The variables parameterizing the axis are called
reaction coordinates, and a quantitative energy landscape is displayed on Fig. 3. We now discuss several
ways to design such coordinates.

5.4.2 Contacts Based Analysis

Following the work of Go [53], a natural way to tackle Levinthal’s paradox consists of introducing a
bias in the energy function towards native contacts, i.e. contacts observed in the folded state. More
precisely, two residues which are not adjacent along the primary sequence of the protein form a native
contact if they are spatially close in the protein’s native state. Such pairs of residues are associated a
favorable interaction energy, while the remaining ones are associated a repulsive, neutral or less attractive
interaction energy. Figure 4 illustrates a folding process down a funnel, described using the fraction of
native contacts. On one hand, energy landscapes obtained with Go models are generally minimally
frustrated. On the other hand, as discussed in section 5.2, removing non local contacts may impair the
folding process. At any rate and regardless of the energy model used, the fraction of native contacts
Q can be used as reaction coordinate. Alternative empirical reaction coordinates, also exploiting the
resemblance of a particular conformation with the native state, are being used: the radius of gyration
(the root mean square distance of the collection of atoms from their center of mass), the effective loop
length and the partial contact order [41]. In particular, the latter two coordinates are used in [41] to
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measure the fraction of conformations that are actually accessible amongst the conformations with the
same degree of nativeness Q. Such measures are directly related to the entropy of the system along the
folding route, and thus allow one to assess the entropic ruggedness of the free energy landscape.

The native contacts can be used in a more elaborate fashion. Following [37], denote Q the matrix
such that Qij = 1 if the distance between residues i and j is less than some cutoff (e.g. 12Å), and 0
otherwise. Using a weight matrix W = (wij), the contact matrix is projected onto a reaction coordinate
defined by r =

∑

ij wijqij . Starting from a random initialization of matrix W , the weights are optimized
so as to maximize a Gaussian fit of p(TP | r) –see Eq. (5). In doing so, one ensures that all reactive
configurations are condensed in a single peak.

5.4.3 Dimension Reduction Based Analysis

If one discards the momenta of the points, an important question is to come up with a simplified represen-
tation of the 3n dimensional energy landscape. Not surprisingly, PCA and MDS have been used for this
purpose 13. A typical illustration is provided by [35], where a PCA analysis of the conformations is first
performed. Using the two most informative eigenvectors, an approximation of the landscape termed the
energy envelope is computed. Fine informations on barriers between watersheds of minima might be lost
–the ruggedness observed on a landscape computed from two PCA coordinates is at best questionable,
but one expects to retain the overall shape of the watersheds. In [60], a PCA analysis is carried out on
the critical points of an energy landscape, rather than on the whole point cloud. This analysis yields new
coordinates, which can be plugged into the potential energy function.

One step towards a finer analysis is made in [43], where an adaptation of ISOMAP is used to derive
new coordinates. The adaptions w.r.t. the standard ISOMAP algorithm are threefold. First, the
computation of the nearest neighbors is done resorting to the least RMSD (lRMSD) 14. Second, following
[12], landmarks are used to alleviate the pairwise geodesic distance calculations. Third, the point cloud is
trimmed to get rid of redundancies, which are expected in particular near the minima of potential energy.
These conformations are later re-introduced into the low-dimensional embedding, which is important in
particular to recover statistical averages. To assess the performance of the dimensionality reduction, a
residual variance calculation is performed. For a two states folding protein, the transition state identified
from the maximum of the free energy profile W (x1) associated to the first embedding coordinate x1 is in
full agreement with pfold. (A result also holding for the reaction coordinate Q in this case.)
Motivated by the fact that 95% of the running time is devoted to the calculation of nearest neighbors,
a further improvement is proposed in [67]. Assume m landmark conformations have been selected.
Following the strategy used by the General Positioning System, each conformation (a point R

3n) is
represented as a m-dimensional point whose coordinates are the lRMSD distances to the m landmarks.
In the corresponding m-dimensional space, the l > k nearest neighbors of a point can be computed using
the Euclidean distance, from which the k nearest ones according to the lRMSD are selected.

To finish up this review, one should mention methods which do not provide a simplified embedding of
the landscape, but resort instead to a clustering of the nodes in parameter space [54, 52]. Nodes within
the same watershed should belong to the same cluster, from which a Configuration Space Network (CSN)
can be built. In some cases, quantitative informations (e.g. free energies) can even be retrieved.

Remark 1 Having discussed dimensionality reduction techniques, one comment is in order. If one does
not know a priory which are the slow variables, integrating Eq. (2) is not possible. This accounts for a
three-stage strategy which consists of performing a simulation, performing a dimensionality reduction to
infer candidate reaction coordinates, and probing them using pfold.

5.4.4 Morse Theory Related Analysis

Energy landscapes govern the folding process of proteins, but also the behavior of a number of physical
systems such as clusters of atoms, ions or simple molecules [40, 70]. For some of these systems which
exhibit a small number of stable crystalline geometries and a large number of amorphous forms, exploring

13Notice this analysis is different from the investigation of positional fluctuations mentioned in section 5.2.
14The Root Mean Square Deviation computed once the two structures have been aligned.
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the landscape exhaustively is impossible. Yet, a qualitative analysis can be carried out by focusing on
selected critical points. In [61, 33, 36], sequences of triples minimum - saddle - minimum are sought, and
super-basins are built from their concatenation. In a related vein, the relative accessibility of potential
energy basins associated to minima is investigated in [34], so as to define the so-called disconnectivity
graph (DG). More precisely, two constructions are performed in [34]. The first one, based on the canonical
mapping, focuses on the relative height of energy barriers, which governs transitions between states, thus
encoding the kinetic behavior of the system. The second one, based on the canonical mapping, probes the
potential energy surface at pre-defined values of the energy, thus encoding global topological properties of
the landscape. Mathematically, constructing either DG is tantamount to tracking the topological changes
of the set V −1(]∞, v]) when increasing v. As such changes occur at critical values only [64], the graph
built when all critical values are available is called the contour tree 15. In [34], a discrete set of energies
are used to probe the topological changes of the level sets, though.

If one focuses on the relative accessibility of basins, one problem arising is that the DG built does
not have any privileged embedding —the vertical axis encodes an energy, but the horizontal one does
is meaningless. To complement the topological information by a geometric one, the following is carried
out in [68]: first, similarly to [60], a PCA of critical points is carried out, from which a two-dimensional
embedding of these critical points is derived; next, the DG is rendered as a three-dimensional tree, the
z coordinate corresponding to the potential energy. Interestingly, such representations convey the (lack
of) frustration of BLN models [36], depending on the interaction energy used.
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6 Outlook

Algorithms. Exploring a high-dimensional point cloud with the methods discussed and mentioned
raises critical issues which should be kept in mind. First, it is usually assumed that the data points lie
on a manifold. But for complex data corresponding e.g. to physical phenomena featuring bifurcations, a
stratified complex might actually be the true underlying structure. Even in the manifold case, since the
underlying manifold M is unknown, the geometric quantities we aim to preserve have to be estimated
from the data set. Coming up with robust estimators poses difficult questions, especially since noisy

15Consider the level sets of a Morse function f , and call a connected component of a level set f−1(h) a contour. Further
contract every contour to a point. The graph encoding the merge/split events between these contours is called the Reeb
graph, or the contour tree if the domain is simply connected [49].

19



data (i.e. not exactly sampled on M) has to be accommodated from a practical standpoint. Worse, the
sampling conditions insuring that the geometry can be correctly inferred from the data usually depend on
some assumptions on M ... which is unknown! These questions have been widely studied in computational
geometry, in particular for the three dimensional surface reconstruction problem, but remain largely open
in a broader setting.

Closely related to the previous questions are those concerning the convergence and theoretical guar-
antees. As discussed earlier, dimensionality reductions methods are not well suited for all situations. It is
thus important to identify the necessary assumptions on M so as to ensure satisfactory results. We have
seen in section 4 that one can answer this question for some of the methods (ISOMAP, HLLE). It is also
interesting to have informations on the asymptotic behavior of the considered methods when the samples
become denser and denser and converge to M . In this way, Hessian eigenmaps and diffusion maps reveal
interesting asymptotic connections with classical operators defined on the underlying manifold M that
need to be further explored.

Protein folding. In spite of three decades of intense research, the problem of protein folding is still
open. In the context of energy landscapes and dimensionality reduction, a number of further developments
are called for.

A variety of (molecular dynamics) simulations are being performed: depending on the system stud-
ied (all atoms/coarse, explicit/implicit/no solvent), either the temperature, the pressure or the internal
energy of the system are kept constant. For example, if the temperature is held constant using a ther-
mostat —for example the Nose-Hoover, part of the internal energy of the system is dissipated into the
thermostat. If the internal energy of the system is conserved, then, the system is Hamiltonian.

For Hamiltonian systems, a large number of mathematical results exist. For example, using the
geometrization of Hamiltonian dynamics, a trajectory of the system corresponds to a geodesic of a suitable
Riemannian manifold [66]. This point of view is not really used in recent folding studies, which focus
on Morse related analysis of potential and free energy surfaces. The study of the relationship between
folding properties inferred from energy landscapes on the one hand, and from Hamiltonian dynamics on
the other hand deserves further scrutiny.

Practically, one or two reaction coordinates are usually dealt with, a rather stringent limitation.
Methods based on manifold learning are appealing in this perspective, since the dimensionality of the
embedding can be estimated. But a critical step for these methods is that of the neighborhood selection.
On one hand, the samples are generally processed in a uniform way since the same number of neighbors
is used for all points. On the other hand, Morse theory tells us that the local density of samples about
a critical point is related to its index. Therefore, a segmentation of the point cloud might be in order
before resorting to dimensionality reduction techniques. Doing so might allow one to bridge the gap with
Morse theory related methods, whose focus has been on the decomposition of the landscape into basins
–as opposed to the design of new coordinates accounting for transitions.

Another key problem is that of stability, in the context of rugged / frustrated landscapes. Ideally,
multi-scale analysis of landscapes should be developed, so as to asses what is significant and what is not
at a given scale. Topological persistence and more generally tools developed in computational topology
might be helpful here. Such analysis might also allow one to spot cascades of minor events in the folding
process, such cascades triggering major events –cf phase transitions.

Finally, an improved analysis of landscapes would have another dramatic impact, namely on the
simulation processes themselves. Should a finer understanding of cooperative motions be available, steered
simulations favoring these coordinates should allow one to move faster along a (rugged) landscape.

Hopefully, a finer geometric and topological analysis of non linearities arising on energy landscapes
will help in making simulation able to cope with biologically relevant time scales.

Acknowledgments. F. Cazals wishes to acknoledge Benjamin Bouvier, Ricardo Lima, Marco Pettini
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