
HAL Id: hal-00797595
https://hal.inria.fr/hal-00797595

Submitted on 6 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Timing Analysis of Mixed Music Scores
Léa Fanchon, Florent Jacquemard

To cite this version:
Léa Fanchon, Florent Jacquemard. Formal Timing Analysis of Mixed Music Scores. [Research Report]
2013, pp.10. �hal-00797595�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49810414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00797595
https://hal.archives-ouvertes.fr

FORMAL TIMING ANALYSIS OF MIXED MUSIC SCORES

Léa Fanchon, Florent Jacquemard

Ircam & INRIA, Paris, France

ABSTRACT

Interactive music systems coordinate in real-time an ar-
tificial perception of dynamics of human musicians with
timely execution of machine reactions. As every human
performance will differ from another, it is a challenging
task to be able to predict the behavior or such systems
in response to any possible performance, and prevent un-
wanted outcomes.

We present here the application of formal models and
methods from the real-time systems verification literature
to the static analysis of interactive music systems.We con-
sider in particular the good parameters problem, which
consists in synthesizing a set of timing parameter valua-
tions (representing performances here) guarantying a good
behavior of the system analyzed. The methods presented
have been applied to the system Antescofo, and are gen-
eral enough to apply to other interactive music systems.

1. INTRODUCTION

There are two dimensions in authoring time and interac-
tion for interactive music systems, corresponding to two
main processes [23]. The first process is the composi-
tion, or programming i.e. the specification of mixed scores
containing both instrumental and electronic parts and in-
structions for their synchronization. The second is the
performance: The real-time evaluation and synchroniza-
tion of the parts. We consider here the case of the score
follower Antescofo [10] which aims at addressing these
two processes, enabling live interactive performances of
written music between computers and human musicians.
It relies on two subsystems: on the one hand, a listen-
ing machine [11] tracks in real-time both the position of
a musician in the score and his current tempo, and on the
other hand a reactive engine, relying on a dedicated syn-
chronous language, ensures the real-time coordination of
the electronic part.

Such a system can be qualified as time critical. Like
in other embedded systems e.g. for transportation or com-
munication, time is not only a measure of efficiency but a
real semantical issue: The objective is not to compute as
fast as possible but to produce some actions at the right
moment [18]. Moreover, such a system is also reactive
and open: during a performance, it has to react in real-
time to triggering events (notes) coming from an unpre-
dictable environment (the musicians). Indeed, whereas
the duration of every note is specified precisely in a mu-
sic score, it is well known that two human interpretations

of the same piece can differ significantly, regarding tim-
ing values. Such a behavior is all fine artistically speaking
and is considered as a part of the definition of musical per-
formance [19]. But wrt computer science unfortunately, it
is called unpredictable and must be dealt with. For ex-
ample, some slight changes in the delays of the instru-
mental events may change the curse of electronic actions,
e.g. by swapping two actions whose ordering ought to be
preserved (see Example 3 below). In this context, it is a
particularly challenging task to be able to predict before
a concert how an interactive system system such as An-
tescofo with react as expected to any human performance.
Even intensive rehearsing cannot cover all cases and com-
puter assistance is required for a complete timing analysis.

As part of the effort that has been made for the de-
velopment of reliable embedded systems, several verifi-
cation approaches have been developed in the past years
for verifying statically that a system satisfies qualitative
and quantitative temporal properties [5, 6]. Timed au-
tomata (TA) [1] are a central abstract model of real-time
systems in these approaches. They are finite state au-
tomata extended with clocks. These clocks are real-time
variables increasing uniformly and which can be com-
pared to fixed timing delays in guards of the automata’s
transitions. Moreover, several TA can be composed in a
network (NTA), each component automaton modeling a
building block of a complex system. Synchronization of
automata is then performed by rendezvous on the symbols
of transitions.

In this paper, we present the application of TA based
formal methods to the timing analysis of mixed scores in
a language close to the one used in Antescofo (presented
in the next section). The similarity between augmented
scores and NTA is clear: each part of a mixed score can
be represented by a TA, and triggering events can be used
for synchronization by rendezvous. A procedure of com-
pilation of scores into NTA has been implemented and is
presented in Section 3.

Uncertainty on the timing delays in a human perfor-
mance can be modeled using parametric delays (i.e. un-
known constants) in the transitions’ guards of the TA mod-
eling the instrumental score. This corresponds to the model
of parametric timed automata (PTA) [2]. In Section 4, we
show how to apply to the analysis of mixed scores some
techniques of parameter synthesis for PTA originally de-
veloped for the verification telecommunication protocols
and asynchronous circuits, e.g. [3]. The good parameters
problem, consists, given a PTAA, in inferring a set of pa-
rameters values for whichA behaves well [16]. Such a set

is presented by a linear constraint on parameters.
Finally, we propose in Section 5 another approach which

can be used in a computer assisted composition process in
other to find appropriate timing values for the delays asso-
ciated to electronic actions. Assuming that the delays for
instrumental events have been fixed, and that a constraint
expresses the expected ordering of events and actions, a
valuation of the actions’ delays is chosen in a way that it
maximizes a measure of the robustness of the mixed score
to the timing variations in a musician’s performance.

2. MIXED SCORES SPECIFICATION LANGUAGE

Antescofo uses for the specification of mixed scores a tex-
tual language which is similar to synchronous languages
for programming real-time embedded systems such as Es-
terel [7]. Programs in this language describe both instru-
mental and electronic parts of the score and the instruc-
tions for their coordination during a performance. We
present in the following grammar the syntax of a simpli-
fied fragment of this language, highlighting aspects rele-
vant to the following automated verification techniques.

2.1. Mixed Score Syntax

A score is defined as an interleaving of instrumental events
to be recognized by the listening machine and of the ac-
tions or group of actions triggered by the former.

score := (event d) | (event d) score | (d comp) score
comp := action | group | loop
group := group ` {list}
loop := loop ` {list} until (event | action)
list := comp | comp list

Antescofo can handle several kinds of events: notes, chords,
trills, glissandi etc which are all abstracted here in sym-
bols denoted e0, e1,... in a an assumed predefined set E.
Actions correspond to specific commands sent to the au-
dio environment (a sound synthesis module or real-time
audio processing system such as Max/MSP [21] or Pure
Data [22]), and are represented as symbols a0,... in a set
A. We consider also a set L for group labels (` in the
grammar).

Every event (resp. action or group) is associated with
a duration (resp. a preceding delay) d specifying a num-
ber of beats (relative time). This value can be converted
into physical time (i.e. in seconds) using the tempo de-
tected in real-time by the listening machine as explained
in introduction. For now, let us assume rational valued
delays d ∈ Q+. The extension to delay expressions with
variables is discussed later.

2.2. Idealized Performance

Atomic actions can be sequentially composed into groups
which can be compared to staves in traditional scores. In-
tuitively, a group g is triggered by the last event e occur-
ring before g in the score S. If g occurs immediately after
e in S, and is associated a delay d (denoted (d g) in the

e1 1.0
0.0 group g1

{
(0.5 init)

}
0.25 group g3

{
(0.5 msg) (0.5 off)

}
e2 1.0
0.0 group g2

{
(0.5 on)

}
e2 1.0

Figure 1. A small mixed score.

e1 e2 e3

g1 init g2 on

• g3 msg off

δ1=1.0 δ2=1.0

0.5 0.5

0.25 0.50 0.5

Figure 2. Ideal performance for the score of Fig. 1.

score) then after the detection of e, the system will wait
for d time units (relatively to the detected tempo) before
launching the group g, which consist in playing the se-
quence of elements contained in the group in the speci-
fied order. If g is followed by a group g′ with delay d′ in
the score, then after launching g, the system waits d′ time
units and launch g′ concurrently. Groups can be nested,
and the above interpretation of successive elements in the
score is transposed recursively to nested sequences of el-
ements in groups.

There are several ways to define the termination of
loops in Antescofo language. Here, we assume for sim-
plifying that a loop is associated to a terminating event or
action κ. The loop’s body will be iterated until it is killed,
as soon as κ is received. The semantics of the execution
of groups and loops will be made formal in Section 3.4.
Let us illustrate this first in the following small example.

Example 1. We consider as a running example a trivial
score containing 3 events e1, e2, e3 and 3 groups g1, g2

and g3 (Figure 1). The groups g1 and g3 are triggered by
the event e1 and g2 by e2. Like g1, g2 is launched with-
out delay, and contains one atomic action (an initialization
message ”init” for the former and a command for switch-
ing the lights on for the second). The group g3 is launched
concurrently to g1 after a delay of 0.25 time unit, and con-
tains two elements: a message ”msg” and a command for
switching lights off.

This behavior is illustrated in Figure 2, assuming the
musician plays the events e1, e2 and e3 with delays con-
forming strictly to those specified in the score of Figure 1:
δ1 = δ2 = 1.0 time units (we call this an idealized per-
formance below). In this case, the lights are first switched
off at time unit 1.25 (by group g3), and switched back on
0.25 time units later (by g2). 3

2.3. Group Attributes

In the language of Antescofo, the groups can be assigned
attributes defining specific strategies of synchronization

e1 e2 e3

g1 init g2 on

• g3 msg off

δ1=0.7 δ2=0.9

0.5 0.5

0.25 0.50 0.5

Figure 3. Unexpected performance for the score of Fig. 1.

e1 1.0
0.0 group g[tight]

{
(0.5 init) (1.0 on)

}
0.25 group g3

{
(0.5 msg) (0.5 off)

}
e2 1.0
e3 1.0

Figure 4. Score equivalent to Fig. 1, with a tight group.

with events or for error handling, etc see [12]. For the sake
of conciseness, we shall shall consider here one option of
synchronization strategy: if a group has attribute ”tight”,
each of its elements is automatically realigned to the lat-
est event scheduled before it (instead of the latest event
occurring before it in the score, like for groups without
this attribute).

Example 2. The score of Figure 4 is almost1 equivalent
semantically to the one of Example 1: the ”tight” group
g is played as it was split in the two groups g1 and g2

triggered respectively by e1 and e2. Note that the delay of
0.5 associated to the action ”on” in group g2 corresponds
to the remaining after the occurrence of e2 of the original
delay 1.0 associated to ”on” in group g. 3

Using a ”tight” attribute permits to express that a large
group is implicitly split into smaller groups synchronized
to the nearest detected events, which is useful e.g. in
a context of automatic accompaniment, where the elec-
tronic (accompaniment) part has to follow closely the lead-
ing instrumental voice. This feature has been added to An-
tescofo in order to prevent the composer from the burden
of having to manually segment the accompaniment part in
small groups, keeping a high-level view of the grouping
structure of the score [12].

2.4. Musical Performances

By definition, in a musical performance (as opposed to
the idealized performance presented in Example 1), the
delays between events should always diverge from those
specified in the score. This may lead to unexpected be-
haviors for the execution of actions, like e.g. unwanted
inversions as illustrated in the next example.

Example 3. Let us come back to Example 1. If the musi-
cian plays e2 earlier than expected, e.g. with δ1 = 0.7
time units after e1 in Figure 3, then the lights are first

1The difference is explained in Example 6.

switched on (with no effect) and switched off 0.05 time
units after, and the concerts finishes in the dark.

One could fix this by putting the actions ”init” and
”on” in a same group g triggered by e1, i.e. by the group
of Example 2 without the attribute tight, or alternatively
by giving an attribute tight to the group g3. 3

The purpose of the rest of the paper is to present for-
mal methods for automatically analyze all possible behav-
iors of the system during musical performances. We use
for this purpose the model of timed automata, presented
in the next section, for a formal representation of mixed
scores, and then apply methods based on this formalism.

3. TIMED AUTOMATA MODEL

3.1. Parametric Timed Automata

A timed automaton [1] is a finite automaton extended with
a finite set of real-valued variables called clocks. We as-
sume given a set X of clocks denoted x, y,... Each clock
can be independently reset to 0 on a transition and keeps
track of the elapsed time since the last reset. Every tran-
sition of the automaton is guarded by a constraint on the
clock values: the transition may be taken only if the cur-
rent values of the clocks satisfy the associated constraint.
Note that all the clocks evolve at the same rate. This cor-
responds exactly to the behavior of Antescofo, where all
groups are synchronized on the tempo detected by the lis-
tening machine.

A timed automaton recognizes timed words: sequences
of symbols associated with a timestamp (dates are ex-
pressed as real values). This formalism is well adapted
to the expression of the timing constraints appearing in
mixed scores. It is indeed a powerful model for describ-
ing both the logical ordering of the events and the timing
between the events.

In order to be able to handle all possible musical per-
formances, we are going to reason parametrically: the
event’s delays in a score are replaced by parameters δ1,
δ2,... from a given set ∆, as in Figures 2 and 3. The in-
stantiation of these parameters by real values defines then
a performance. The appropriate formalism for modeling
this are parametric timed automata (PTA) [2].

Before stating the formal definition of PTA, let us de-
scribe the constraints that we shall use. A constraint over
the clocks and the parameters is a conjunction of linear
inequalities of the form t < t′ or t ≤ t′, where t and t′

are linear terms over X and ∆:
∑
i aixi +

∑
i biδi + c

with xi ∈ X , δi ∈ ∆, and ai, bi, c ∈ Q+. The set of
constraints over X and ∆ is denoted C(X,∆).
A PTA is a tuple

A = 〈L, `0, F,Σ, inv , T 〉

where L is a finite set of locations, `0 ∈ L is the initial
location, F ⊆ L is the set of final (recognizing) locations,
Σ is a finite alphabet of symbols, inv : L→ C(X,∆) as-
signs an invariant to each location (condition on clocks
to be allowed to stay in this location), and T ⊆ L ×

C(X,∆) × Σ × 2X × L is a finite set of transitions. The
transition 〈`, g, a,R, `′〉 from the location ` to the location
`′ is guarded by the constraint g on clocks and parame-
ters, and specifies an observed symbol a and the subset of
clocks R ⊆ X to be reset when the transition is taken.
Such a transition will also be denoted `

g,a,R−−−→ `′.
Examples of PTA can be found in Section 3.4. PTA

without parameters correspond to standard timed automata
(TA) [1]. Given a PTA A and a valuation π : ∆ → Q+

defined on the parameters of A, the TA A[π] is defined
from A by replacing every parameter δ by its value π(δ).

3.2. Timed Traces and Languages

A run of a TA A = (L, `0, F,Σ, inv , T) is a finite se-
quence of the form

〈`0, v0〉
d1,a1−−−→ 〈`1, v1〉

d2,a2−−−→ . . .
dk,ak−−−→ 〈`k, vk〉

where for every 1 ≤ i ≤ k, `i is a location in L, vi : X →
Q+ is a clock valuation, di ∈ Q+ is a delay and every
ai ∈ Σ. Given d ∈ Q+, let us denote vi + d the clock
valuation x 7→ vi(x) + d. The conditions on the above
run are that v0 satisfies inv(`0), and for all 1 ≤ i ≤ k,
• for all 0 ≤ d′i ≤ di, vi−1 + d′i satisfies inv(`i−1),
• there exists a transition `i−1

gi,ai,Ri−−−−−→ `i in T such that:

◦ vi−1 + di satisfies gi,
◦ for all x ∈ X , vi(x) = 0 if x ∈ Ri and
vi(x) = vi−1(x) + di otherwise,
◦ vi satisfies inv(`i).

The run is recognizing if `k ∈ F , and v0(x) = 0 for
all x ∈ X . In this case, we say that the timed word
〈a1, t1〉, . . . , 〈ak, tk〉 ∈ (Σ × Q+)∗ is recognized, where
ti =

∑i
j=1 di for all 1 ≤ i ≤ k. Its projection a1, . . . , ak

over Σ∗ is called the associated untimed word. The (un)timed
language of A is the set of recognized (un)timed words.

3.3. Automata Networks and Synchronization

It is convenient to use a parallel composition operator for
PTA when modeling a system made of several subsys-
tems for verification. This approach is particularly rele-
vant for modeling polyphonic mixed scores, where voices
(in our case the instrumental part and each of the elec-
tronic groups) evolve concurrently and each of them can
be represented by a PTA.

A network of parametric timed automata (NPTA) is a
set of PTA, denoted with the operator ‖ of parallel compo-
sition. The automata of the network are supposed to have
disjoint sets of clocks and locations, but they may share
alphabet’s symbols which are used for synchronization.
The synchronized product of a NPTA A0 ‖ · · · ‖ Am,
with Ai = 〈Li, `0,i, Fi,Σi, inv i, Ti〉 for each 0 ≤ i ≤ m,
is the PTA

〈 m
"
i=0

Li, 〈`0,0, . . . , `0,m〉,
m

"
i=0

Fi,

m⋃
i=0

Σi, inv , T
〉

where inv
(
〈`0, . . . , `m〉

)
=

m∧
i=0

inv i(`i) and T is the set

of all transitions 〈`0, . . . , `m〉
g,a,R−−−→ 〈`′0, . . . , `′m〉 such

that for all 0 ≤ i ≤ m, if a ∈ Σi, then there exists gi and
Ri such that `i

gi,a,Ri−−−−→ `′i ∈ Ti, and otherwise `′i = `i,
and g =

∧
a∈Σi

gi, R =
⋃
a∈Σi

Ri.

The notions defined above for PTA (language, [π]...)
are extended to NPTA using this synchronized product.

3.4. Compilation of Scores into Automata

The translation of the simplified mixed scores of Section 2
into NPTA is quite straightforward. Roughly, it returns
one PTA representing the instrumental part of the score
and one PTA for each group.

The events and actions become the symbols in transi-
tions, and the guards are used to enforce the delays spec-
ified in the score. Instead of giving a complete definition
of the translation process, we illustrate it on Example 4.
A detailed translation procedure is described in [14] for
a more complete fragment of the Antescofo language, in
order to describe operational semantics for this language.

Example 4. The NPTA N = A0 ‖ A1 ‖ A2 ‖ A3 asso-
ciated to the mixed score of Example 1 is presented in Fig-
ure 5. It has an alphabet Σ = {e1, e2, e3, init,msg, on, off}.
Note that the guards involve equalities constraints only.
All the bounds of guards in the instrumental automaton
A0 are parameters, and they are real values for the other
PTAs A1, A2, A3 (which are hence all standard TA).

Each of the three automata A1, A2, A3 for electronic
parts starts with a unguarded transition labeled by the event
triggering the group. According to the semantics of the
synchronized product of this NPTA presented in Section 3.3,
this permits to synchronize the start of the groups with the
transitions of the instrumental automaton. Let us consider
for instance the PTAA1 associated to the first group g1. It
has three locations g0

1 , g1
1 , g2

1 . Starting in the initial loca-
tion g0

1 , it waits for the detection of e1. Note that the guard
of the transition between g0

1 and g1
1 is empty (i.e. equal to

true): there are no condition on clock values to fire this
transition. Once e1 is detected,A1 enters g1

1 and waits for
0.5 time units (as expressed by the guard y1 ≤ 0.5), sends
the message ”init”, before entering the final state g2

1 . 3

The translation of a group gn nested in a group g fol-
lows the same principle, using the group label `n of gn,
instead of an event ei, as triggering symbol. In the outer
group g, a transition labelled with `n will trigger the nested
group gn. The nested group gn is compiled in a separate
PTA An, which starts with a transition labelled with `n
and without guard, exactly like A1, A2, A3 in Ex. 4.

For a loop, we use just the same construction as for a
group, except for an additional unguarded backward tran-
sition from the final location to the first one (actually the
target location just after the triggering transition). More-
over, for stopping the loop when the terminating event or

e0 e1

x≤δ1

e2

x≤δ2

e3
e1, x:=0 x=δ1, e2, x:=0 x=δ2, e3

g0
1 g1

1

y1≤0.5

g2
1

e1, y1:=0 y1=0.5, init

g0
2 g1

2

y2≤0.5

g2
2

e2, y2:=0 y2=0.5, on

g0
3 g1

3

y3≤0.75

g2
3

y3≤0.5

g3
3

e1, y3:=0 y3=0.75, msg, y3:=0 y3=0.5, off

Figure 5. Automata network for Example 1, Fig. 1.

`0 `1
y≤0.1

`2
y≤0.2

`3 stop
e1, y:=0 y=0.1, a, y:=0 y=0.2, b

y<0.1, κ

y<0.2, κ

ε, y:=0

Figure 6. PTA for a loop (Example 5).

action κ is received, we add a transition labelled with κ
from every non-final state to the final state.

Example 5. Figure 6 presents the PTA corresponding to
the following loop, with triggering event e1 and terminat-
ing event or action κ.

0.0 loop `
{

(0.1 a) (0.2 b)
}

until κ

Note the guards y2 < 0.1 and y2 < 0.2 in the transitions
labeled with the terminating κ, aiming at the stop state. 3

The construction for groups with an attribute ”tight”
is illustrated in the next example.

Example 6. The translation of the score of Example 2
(Figure 4) is presented in Figure 7. The group g with at-
tribute ”tight” is compiled into one PTA with 5 locations
g0 to g4. Note the transition labeled with e2 between the
transitions labeled with ”init” and ”on”. The behavior of
this PTA is be the following: after the detection of event
e1, it enters location g1, waits for 0.5 time units, sends the
message init, enters g2 and waits for the detection of the
event e2. After the detection of e2, it enters g3. However,
if e2 arrives before the expiration of the delay of 0.5, then
init is skip and the PTA jumps to g3 (transition with the
guard y < 0.5). This is the difference between the ”tight”
group g of Figure 4 and g1, g2 of Figure 1 (other options
are possible in Antescofo [12, 14]). Once in g3, the PTA
waits for 0.5 time units and send the message ”on”. 3

Example 7. The following is a run of the TA A1 of Ex-
ample 4 (Figure 5):

〈g0
1 , y1 = 0〉 0.1,e1−−−−→ 〈g1

1 , y1 = 0〉 0.5,init−−−−→ 〈g2
1 , y1 = 0.5〉

g0 g1

y≤0.5

g2

g3

y≤0.5

g4

e1, y:=0 y=0.5, init

y<
0.5, e

2 , y:=
0

e
2
,
y
:=

0
y=0.5, on

Figure 7. PTA for a tight group (Ex. 2, Fig. 4).

Let A be the synchronized product of N and let π0 =
{δ1 7→ 1.0, δ2 7→ 1.0}. The following run corresponds
to the timed trace of A[π0] depicted in Figure 2 (with an
additional delay of 0.1 before e1).〈

〈e0, g
0
1 , g

0
2 , g

0
3〉, x=y1=y2=y3=0

〉
0.1,e1−−−−→

〈
〈e1, g

1
1 , g

0
2 , g

1
3〉, x=y1=y3=0,y2=0.1

〉
0.5,init−−−−→

〈
〈e1, g

2
1 , g

0
2 , g

1
3〉, x=y1=y3=0.5,y2=0.6

〉
0.25,msg−−−−−→

〈
〈e1, g

2
1 , g

0
2 , g

2
3〉, x=y1=0.75,y2=0.85,y3=0

〉
0.25,e2−−−−→

〈
〈e2, g

2
1 , g

1
2 , g

2
3〉, x=y2=0,y1=1.0,y3=0.25

〉
0.25,off−−−−→

〈
〈e2, g

2
1 , g

1
2 , g

3
3〉, x=y2=0.25,y1=1.25,y3=0.5

〉
0.25,on−−−−→

〈
〈e2, g

2
1 , g

2
2 , g

3
3〉, x=y2=0.5,y1=1.5,y3=0.75

〉
0.5,e3−−−−→

〈
〈e3, g

2
1 , g

2
2 , g

3
3〉, x=y2=1.0,y1=2.0,y3=1.25

〉
.

Let π = {δ1 7→ 0.7, δ2 7→ 0.9}. The following run corre-
sponds to the timed trace of A[π] depicted in Figure 3.〈

〈e0, g
0
1 , g

0
2 , g

0
3〉, x=y1=y2=y3=0

〉
0.1,e1−−−−→

〈
〈e1, g

1
1 , g

0
2 , g

1
3〉, x=y1=y3=0,y2=0.1

〉
0.5,init−−−−→

〈
〈e1, g

2
1 , g

0
2 , g

1
3〉, x=y1=y3=0.5,y2=0.6

〉
0.2,e2−−−−→

〈
〈e2, g

2
1 , g

1
2 , g

1
3〉, x=y2=0,y1=y3=0.7

〉
0.05,msg−−−−−→

〈
〈e2, g

2
1 , g

0
2 , g

2
3〉, x=y2=0.05,y1=0.75,y3=0

〉
0.45,on−−−−→

〈
〈e2, g

2
1 , g

2
2 , g

2
3〉, x=y2=0.5,y1=1.2,y3=0.45

〉
0.05,off−−−−→

〈
〈e2, g

2
1 , g

2
2 , g

3
3〉, x=y2=0.55,y1=1.25,y3=0.5

〉
0.35,e3−−−−→

〈
〈e3, g

2
1 , g

2
2 , g

3
3〉, x=y2=0.9,y1=1.6,y3=0.85

〉
. 3

The NPTA obtained from a mixed score is the basis of
verification procedures presented in the next section.

4. VERIFICATION OF MIXED SCORES

Given a NPTA model N of a mixed score, we will show
how to infer a linear constraint K on the parameters ofN
guaranteeing an acceptable behavior of the automata net-
work (referred as the good parameters problem in [16]).
In other words, K is such that if a valuation π : ∆→ Q+

defined on the parameters of N satisfies K, then all the
timed words recognized by A[π] belongs to an accept-
able set (whereA is the synchronized product ofN). The
constraint K hence represents a range of human perfor-
mances π for which the system is guaranteed to behave as
expected, from a discrete point of view. We shall present
below two notions of acceptable sets of behavior, and de-
fine first the crux tool for inferring the expected constraint
K: Symbolic semantics of PTA.

4.1. Symbolic States and Traces

A constrained PTA is a pair, denoted as A(K), made of a
PTA A and a constraint over parameters K ∈ C(∆).

The symbolic semantics of a constrained PTA A(K)
with p clocks is a transition system over Σ denoted byAς .
It has a set of states of the form 〈`, C〉, with ` ∈ L andC ∈
C(X,∆), initial state 〈`0, C0〉 with C0 = K ∧ inv(`0) ∧∧p−1
i=1 xi+1 = xi, and transitions 〈`, C〉 a−→ 〈`′, C ′〉 such

that there exists a transition `
g,a,R−−−→ `′ ofA andC ′(x′) =

∃x, d C(x) ∧ g(x) ∧
∧
xi∈R

x′i = 0 ∧
∧
xi /∈R

x′i = xi ∧

inv(`′)(x′)∧ inv(`′)(x′+ d) where x = x1, . . . , xp, and
x′ = x′1, . . . , x

′
p.

The formula C ′(x′) can be transformed into a constraint
of C(X,∆) using for instance Fourier-Motztkin elimina-
tion of existentially quantified variables. It expresses the
condition in the definition of runs in Section 3.2, applied
to a TA A[π] such that the parameter valuation π satis-
fies K. A symbolic trace is a sequence of symbolic states
corresponding to a run of Aς .

4.2. Depth First Symbolic State Exploration

In this first approach, we assume given a finite state au-
tomaton B over Σ and say that a timed word w recognized
by the NPTA N is acceptable if its projection on Σ∗ is
recognized by B. Hence, B represents the acceptable dis-
crete behavior ofN , restricting e.g. the ordering on which
some actions should be played. The automaton B can be
seen as a special case of TA whose guards and invariants
are all set to true. Therefore, it can be composed with N ,
to restrict (i.e. control) the language of the network.

The procedure for the inference of a constraint K as
expected consists in a depth-first exploration of the sym-
bolic states reachable by Aς , whereA is the synchronized
product of N ‖ B. The synchronized product is not com-
puted a priori but on the fly, at each step of the explo-
ration. Note that the tree T of partial symbolic traces of
Aς is finite in the case of mixed scores without loops, or
with loops terminated by an event or action occurring in
the score. In this case, the depth of T is the length of
the instrumental score. Its size can be exponential though.
In order to avoid state space explosion, on can prune a
search branch as soon as the constraint of the current sym-
bolic state is unsatisfiable. It is correct since the sequence
of symbolic constraints in a symbolic trace is monotonic.
The expected constraint K is then defined as the disjunc-
tion of the constraints on the leaves of T whose state con-
tains a final location.

Example 8. Let us come back to the NPTA N described
in Example 4, and let Σ0 = Σ \ {on, off}. The automaton
B of Figure 8 recognizes the words in which both ”off”
and ”on” occur exactly once, and in this order. The com-
plete exploration of the symbolic traces of (N ‖ B)

ς is
presented in Appendix. Let us see two examples of traces.

The untimed word e1, e2, init, msg, off leads to an
unsatisfiable constraint (hence this branch is pruned). In-

c0 c1 c2

Σ0

off

Σ0

on

Σ0

Figure 8. Control automaton B (Example 8, § 4.2).

deed, the constraint reached after e1, e2 contains δ1 ≤ 0.5,
because of the invariant y1 ≤ 0.5 associated to the loca-
tion g1

1 in A1. Furthermore, it also contains 1.25 − δ1 ≤
0.5, because of the invariant y2 ≤ 0.5 for location g1

2

and the guards in the transition of A3 with msg and off.
Hence, we have a contradiction.

On the other hand, the branch corresponding to the
idealized untimed word e1, init, msg, e2, off, on leads to
the constraint 0.75 ≤ δ1 ≤ 1.25 ∧ 0.5 ≤ δ2. This word
can be obtained only for these values of parameters. 3

Despite the pruning, the state space remain large, and
this naive approach (not implemented) should be tractable
only for small excerpts of scores. It makes sense however
for problems like the inversion of ”off” and ”on” in Ex. 1:
The verification can be narrowed to a window delimited
by the triggering events (e1 and e2 in the example) and
the end of the groups (g3 and g2) containing these actions.

4.3. Inverse Method

A more efficient approach is to focus on the original score
for defining the acceptable behavior. This corresponds to
the purpose of the inverse method (IM), implemented in
the system IMITATOR [3]: Given with a NPTA N (with
synchronized product A), it starts with a good parame-
ter instantiation π0, and generalizes it. More precisely,
it synthesizes a constraint K0 ∈ C(∆) such that π0 sat-
isfies K0 and for all parameter instantiation π satisfying
K0, the untimed languages of A[π] and A[π0] coincide.
In other words, IM can be applied when the acceptable set
contains the timed words whose projection are in the un-
timed language of A[π0], i.e. the (unique) untimed word
corresponding to an idealized performance in our case.

The algorithm IM can be described roughly as fol-
lows. Starting with K := true , it iteratively computes a
set S of reachable states ofA(K)

ς . When a π0-incompatible
state 〈`, C〉 is found in S (i.e. such that π0 does not satisfy
∃xC(x)) thenK is refined as follows: A π0-incompatible
inequality on parameters J is selected in (the normal form
of) ∃xC(x) and ¬J is added to K. This way, in the next
iteration, A(K)

ς will avoid the counterexample. The al-
gorithm stops when the state set S reaches a fix point, and
returns the intersection of the constraints of the states in
the final set S. Note there are 2 non-deterministic choices
in IM: the selection of the π0-incompatible state 〈`, C〉
and of J , and in general IM is non-confluent: several ap-
plication may lead to different results.

Example 9. When run on the NPTA of Example 4, Fig-
ure 5, IMITATOR reaches a fixpoint after 6 iterations and
returns the constraint K = 0.75 < δ1 ≤ 1.0 ∧ 1.25 <
δ1 + δ2, which defines a smaller domain than the naive

approach. Moreover, the application of the algorithm is
deterministic in this case. 3

4.4. Discussion

Reachability is undecidable for PTA hence in general, the
algorithms presented in the two previous sections can di-
verge. The problem however becomes decidable on NPTA
associated to scores without loops.

IMITATOR has given good results for the verification
of case studies including circuits and communication pro-
tocols [4]. The associated models typically contained few
(less than a dozen) parameters and locations. As we asso-
ciate one parameter to every instrumental event in a mixed
score, our models can be much larger, in term of num-
ber of parameters and locations. In counterpart, they have
also a simpler structure. A traditional bottleneck for the
verification of automata models equipped with clocks or
registers is the occurrences of some control locations in
more than one simple cycle [9]. This situation is generally
avoided in mixed scores and the experiment conducted so
far have given satisfying results. Another originality of
our approach is that the PTA models are not constructed
manually but obtained by compilation of mixed scores.

In the literature on the verification of embedded or
cyber-physical systems, the uncontrollable environment
is generally related to physical phenomena: stabilization
time in circuits, temperature in a nuclear core, linear ac-
celeration and angular velocity returned by sensors in a
plane, GPS... The case of interactive music systems brings
a human in the computation loop, possibly opening new
application perspectives in this research field, see [13].

5. COMPOSITION ASSISTANCE

We briefly describe in this last section another applica-
tion of the parametric approach presented above. The ob-
jective is to provide assistance to a composer by propos-
ing appropriate delays for some actions, according to a
given ordering constraint on actions and events. More pre-
cisely, let us consider an unfinished mixed score S where
all the delays of the instrument events e1, . . . , en are set
values d1, . . . , dn, but some actions’ delays are still pa-
rameters α1, . . . , αm ∈ ∆ (we note α = {α1, . . . , αm}).
Moreover, we assume that the expected behavior of S is
specified by a linear constraint K ∈ C(α ∪ δ), where
δ = {δ1, . . . , δn} ⊂ ∆ is a set of parameters associated
to the events’ delays. We show below that we can propose
a valuation π of α satisfying K[δi := di, 1 ≤ i ≤ n] and
maximizing the robustness of S to the timing variations in
the instrumental performance (K[π] denotes the replace-
ment in K of parameters by their value defined by π).

Definition of Robustness. For 1 ≤ i ≤ n, let σi be the val-
uation defined on δ\{δi} by σi(δj) = dj for all j 6= i, and
for π defined on α, let inf [π]i and sup[π]i be the lower
and upper bounds for δi defined by K[π ∪ σi]. We let
robS(K,π, ei) = min(|di − inf [π]i|, |di − sup[π]i|) and
robS(K,π) = min1≤i≤n

(
robS(K,π, ei)

)
. Intuitively,

the smaller this robustness value is, the closer to the delays
di the musician must play in order to satisfy K.

Total Ordering Constraint. When K is defined by a to-
tal ordering < on the events and actions of S (i.e. the
expected untimed word), then a valuation π of α maxi-
mizing the above robustness can be defined, after some
variable renaming, from the following instantiationof the
delays between consecutive actions wrt < (see [15]).
Let 1 ≤ i ≤ n, and assume ei < a1

i < . . . < ani
i < ei+1,

where there are no actions or events between successive
elements in this sequence (wrt <).

For all 1 ≤ j < ni, if the actions aji and aj+1
i are

triggered by the same event, then the delay between them
is set to the smallest delay supported by the system (let
us call ε this value). Otherwise, the delay between aji and
aj+1
i is set to di+1−pi×ε

ni+1−ci , where pi is the number of pairs
of successive actions in a = {a1

i < . . . < ani
i } triggered

by the same event, and ci is the number of sets of succes-
sive actions in a triggered by the same event. Moreover,
the delay between ei and a1

i and between ani
i and ej+1 is

also set to the same value. Intuitively, successive actions
triggered by the same event must be as close as possible
and other successive actions must be as far as possible.

Regular Constraint. The constraint K can also defined
from a set of acceptable untimed words, e.g. presented by
a FSA B as in Section 4.2. In this case, we can pick an un-
timed word w recognized by B and propose one optimal π
for the total ordering defined by w, using the above tech-
nique. Finding one word w recognized by B such that the
associated π maximizes robustness is an open question.

6. CONCLUSION

In general, the purpose of verification procedures such as
model checking [5] is to ensure (e.g. with a formal proof
destined to a certification authority), that a critical embed-
ded system satisfies some correctness property in every
possible execution. The approaches presented in Section 4
for the timing analysis of mixed scores aim rather at char-
acterizing precisely the range of instrumental executions
(performances) for which the reactive engine of Antescofo
will behave as expected. This seems more appropriate in
the context of interactive music systems. To our knowl-
edge, it is the first time that such methods are applied to
of interactive music systems. The outcome of the verifi-
cation procedures can be exploited in several ways, for in-
stance for warning performers about sensible parts of the
score, or to assist the composer in adjusting the delays of
electronic actions in these parts. The CAC approach pro-
posed in Section 5 follows the same idea. A user friendly
presentation of the outcome (currently linear constraints),
directly in the score, is under study.

As possible extensions, one could use (linear) expres-
sions over parameters for expressing delays in transitions’
guards of PTA (instead of a single parameter), e.g. for
specifying mixed scores with variables [24, 20]. The gen-
eralization of IM to this case could be interesting. Another

application target could be non linear scores (aka open
scores), in which the instrumental part contains branches,
the direction in these branches being chosen by the per-
former at real-time. Our framework could be extended to
this case with a straightforward translation of the branches
as non-deterministic transitions in the instrumental PTA
(automaton A0 in Example 4).

Other applications of the TA model of Section 3 could
also be worth investigating. For instance reachability anal-
ysis or timed model checking [17] over the unparametric
TA model could be used for verifying temporal properties
of the idealized performance. We are also planing to use
approaches based on timed games theory [8] for giving
a quantitative estimate of the robustness (upper bound on
the time deviation guarantying expected behaviour) of a
mixed score to timing variations in performances.

Acknowledgements.

The authors wish to thank Romain Soulat and Laurent Fri-
bourg for valuable discussions and their precious assis-
tance on using the tool IMITATOR.

7. REFERENCES

[1] R. Alur and D. L. Dill. A theory of Timed Automata.
Theoretical Computer Science, 126:183–235, 1994.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Para-
metric Real-Time Reasoning. In Proc. of 25th ACM
symp. on Theory of computing (STOC), ACM, 1993.

[3] É. André, Th. Chatain, E. Encrenaz, and L. Fribourg.
An Inverse Method for Parametric Timed Automata.
International Journal of Foundations of Computer
Science, 20(5):819–836, Oct. 2009.

[4] E. André and L. Fribourg. Behavioral Cartography
of Timed Automata. In Proc. of the 4th Int. Conf. on
Reachability problems, Springer-Verlag, 2010.

[5] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2008.

[6] B. Berard et al. Systems and Software Verification:
Model-Checking Techniques and Tools. Springer-
Verlag, 2001.

[7] G. Berry and L. Cosserat. The Esterel synchronous
programming language and its mathematical seman-
tics. In Seminar on Concurrency, Carnegie-Mellon
University, pages 389–448, Springer-Verlag, 1985.

[8] P. Bouyer, N. Markey, and O. Sankur. Robust Reach-
ability in Timed Automata: A Game-based Ap-
proach. In Proc. of the 39th Int. Colloquium on Au-
tomata, Languages and Programming (ICALP), vol-
ume 7392 of LNCS, Springer-Verlag, 2012.

[9] H. Comon and Y. Jurski. Multiple Counters Au-
tomata, Safety Analysis and Presburger Arithmetic.

In Proc. of the 10th Int. Conf. on Computer Aided
Verification (CAV), Springer-Verlag, 1998.

[10] A. Cont. Antescofo: Anticipatory Synchronization
and Control of Interactive Parameters in Computer
Music. In Proc. of ICMC, 2008.

[11] A. Cont. A Coupled Duration-Focused Architec-
ture for Realtime Music to Score Alignment. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 32(6):974–987, 2010.

[12] A. Cont, J. Echeveste, J.-L. Giavitto, and F. Jacque-
mard. Correct Automatic Accompaniment Despite
Machine Listening or Human Errors in Antescofo.
In Proc. of ICMC, 2012.

[13] A. Cont, J.-L. Giavitto, and F. Jacquemard. From au-
thored to produced time in computer-musician inter-
actions. In CHI Workshop on Avec le Temps! Time,
Tempo, and Turns in Human-Computer Interaction,
ACM, 2013.

[14] J. Echeveste, A. Cont, F. Jacquemard, and J.-L. Gi-
avitto. Antescofo: A Domain Specific Language for
Realtime Musician-Computer Interaction. Discrete
Event Dynamic Systems, 2013. To appear.

[15] L. Fanchon. Temporal Analysis of
Mixed Intrumental/Electronic Music Scores.
http://articles.ircam.fr/textes/Fanchon12a/index.pdf

[16] G. Frehse, S. K. Jha, and B. H. Krogh. A
Counterexample-Guided Approach to Parameter
Synthesis for Linear Hybrid Automata. In Proc. of
the 11th Int. workshop on Hybrid Systems: Compu-
tation and Control (HSCC), Springer-Verlag, 2008.

[17] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in
a Nutshell. Int. Journal on Software Tools for Tech-
nology Transfer, 1(1–2):134–152, Oct. 1997.

[18] E. A. Lee. Computing needs time. Communications
of the ACM, 52(5):70–79, May 2009.

[19] P. Manoury. Considérations (toujours actuelles) sur
l’état de la musique en temps réel. Etincelle, le jour-
nal de la création à l’Ircam, November 2007.

[20] J. McCartney. Supercollider: a new real time syn-
thesis language. In Proceedings ICMC, 1996.

[21] M. Puckette. Combining event and signal processing
in the MAX graphical programming environment.
Computer Music Journal, 15:68–77, 1991.

[22] M. Puckette. Pure Data. In Proc. of ICMC, 1997.

[23] R. Rowe. Interactive Music Systems: Machine Lis-
tening and Composing. MIT Press, 1992.

[24] B. Vercoe and D. Ellis. Real-time Csound: Software
Synthesis with Sensing and Control. In Proceedings
ICMC, 1990.

Appendix
We present in Figure 9 a depth-first-search of the trace tree
for the NPTA of Example 4, Figure 5 (score of Example 1,
Fig. 1).

In this exploration, we give for each (partial) trace
the constraint of the symbolic state reached, decomposed
in four columns corresponding to the four clocks of the
automaton: x, y1, y2 and y3. Note that the constraints
reached at the different prefix of a trace are accumulated
(one should consider a conjunction of all the constraints
reached at prefixes). The symbol / indicates that the con-
straint reached is unsatisfiable and that a backtrack is nec-
essary. The column ”delay” presents the delay elapsed for
performing the last step of the trace.

(1− 4) these partial traces lead to unsatisfiable constraints
containing both δ1 ≤ 0.5 and δ1 ≥ 0.75.

(5− 6) these traces are possible only if δ1 = 0.75, δ2 = 0
(i.e. e2 and e3 are simultaneous) and off and on are
simultaneous. Hence it is neither a realistic nor a
desirable solution.

(7) this trace is possible under the constraint 0.75 ≤
δ1 ≤ 0.75, δ2 ≤ 0.5 and δ1 + δ2 ≥ 1.25, i.e. only
for δ1 = 0.75 and δ2 = 0.5.

(8) this trace is possible under the constraint 0.75 ≤
δ1 ≤ 0.75, 0.25 ≤ δ2 ≤ 0.5 and δ1 + δ2 ≥ 1.25,
i.e. only for δ1 = 0.75 and δ2 = 0.5.

(9) this trace is possible under the constraints 0.75 ≤
δ1 ≤ 1.25, δ2 ≤ 0.5, δ1 + δ2 ≤ 1.25, and 0.25 ≤
δ1 − 2δ2.

(10) this traces is possible under the constraints 0.75 ≤
δ1 ≤ 1.25, and δ2 ≤ 0.5, 1.25 ≤ δ1 + δ2.

(11) this corresponds to the ideal trace, defined by δ1 =
δ2 = 1.0. This trace is possible under the con-
straints 0.75 ≤ δ1 ≤ 1.25, 0.5 ≤ δ2 and 1.25 ≤
δ1 + δ2.

trace delay x = y1 = y2 = y3 =

e1 0 0 0 0
e1 e2 δ1 0 δ1 ≤ 0.5 0 δ1 ≤ 0.75
e1 e2 e3 δ2 δ1 + δ2 ≤ 0.5 δ2 ≤ 0.5 δ1 + δ2 ≤ 0.75
e1 e2 e3 init 0.5− δ1 − δ2 0.5 0.5− δ1 ≤ 0.5 0.5
e1 e2 e3 init msg 0.25 0.75− δ1 ≤ 0.5 0

(1) e1 e2 e3 init msg off / 0.5 1.25− δ1 ≤ 0.5 0.5
e1 e2 init 0.5− δ1 0.5− δ1 ≤ δ2 0.5 0.5− δ1 ≤ 0.5 0.5
e1 e2 init e3 δ2 − 0.5 + δ1 δ2 δ2 ≤ 0.5 δ1 + δ2 ≤ 0.75
e1 e2 init e3 msg 0.75− δ1 − δ2 0.75− δ1 ≤ 0.5 0

(2) e1 e2 init e3 msg off / 0.5 1.25− δ1 ≤ 0.5 0.5
e1 e2 init msg 0.25 0.75− δ1 ≤ δ2 0.75− δ1 ≤ 0.5 0

e1 e2 init msg e3 δ2 − 0.75 + δ1 0 δ2 ≤ 0.5
δ2 − 0.75
+δ1 ≤ 0.5

(3) e1 e2 init msg e3 off / 1.25− δ2 − δ1 1.25− δ1 ≤ 0.5 0
(4) e1 e2 init msg off / 0.5 1.25− δ1 ≤ δ2 1.25− δ1 ≤ 0.5 0

e1 init 0.5 0.5 ≤ δ1 0 0.5
e1 init e2 δ1 − 0.5 0 0 δ1 ≤ 0.75
e1 init e2 e3 δ2 0 δ2 ≤ 0.5 δ1 + δ2 ≤ 0.75
e1 init e2 e3 msg 0.75− δ1 − δ2 0.75− δ1 ≤ 0.5 0
e1 init e2 e3 msg off 0.5 1.25− δ1 ≤ 0.5 0

(5) e1 init e2 e3 msg off on δ1 − 0.75 0
e1 init e2 msg 0.75− δ1 0.75− δ1 ≤ δ2 0.75− δ1 ≤ 0.5 0

e1 init e2 msg e3 δ2 − 0.75 + δ1 0 δ2 ≤ 0.5
δ2 − 0.75
+δ1 ≤ 0.5

e1 init e2 msg e3 off 1.25− δ2 − δ1 1.25− δ1 ≤ 0.5 0
(6) e1 init e2 msg e3 off on δ1 − 0.75 0

e1 init e2 msg off 0.5 1.25− δ1 ≤ δ2 1.25− δ1 ≤ 0.5 0
e1 init e2 msg off e3 δ2 − 1.25 + δ1 0 δ2 ≤ 0.5

(7) e1 init e2 msg off e3 on 0.5− δ2 0
e1 init e2 msg off on δ1 − 0.75 0.25 ≤ δ2 0

(8) e1 init e2 msg off on e3 δ2 − 0.25 0
e1 init msg 0.25 0.75 ≤ δ1 0
e1 init msg e2 δ1 − 0.75 0 0 δ1 − 0.75 ≤ 0.5

e1 init msg e2 e3 δ2 0 δ2 ≤ 0.5
δ1 − 0.75
+δ2 ≤ 0.5

e1 init msg e2 e3 off δ2 − δ1 + 0.75 0
2δ2 − δ1
+0.75 ≤ 0.5

0

(9) e1 init msg e2 e3 off on
0.5− 2δ2
+δ1 − 0.75

0 0

e1 init msg e2 off 1.25− δ1 1.25− δ1 ≤ δ2 1.25− δ1 ≤ 0.5 0
e1 init msg e2 off e3 δ2 − 1.25 + δ1 0 δ2 ≤ 0.5

(10) e1 init msg e2 off e3 on 0.5− δ2 0
e1 init msg e2 off on δ1 − 0.75 0.5 ≤ δ2 0

(11) e1 init msg e2 off on e3 δ2 − 0.5 0

Figure 9. Symbolic traces (Example 8). Delay is from
previous parent in the trace tree.

	1 Introduction
	2 Mixed Scores Specification Language
	2.1 Mixed Score Syntax
	2.2 Idealized Performance
	2.3 Group Attributes
	2.4 Musical Performances

	3 Timed Automata Model
	3.1 Parametric Timed Automata
	3.2 Timed Traces and Languages
	3.3 Automata Networks and Synchronization
	3.4 Compilation of Scores into Automata

	4 Verification of Mixed Scores
	4.1 Symbolic States and Traces
	4.2 Depth First Symbolic State Exploration
	4.3 Inverse Method
	4.4 Discussion

	5 Composition Assistance
	6 Conclusion
	7 References

