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Abstract

We construct an hyperbolic approximation of the Vlasov equation in which the dependency on the velocity

variable is removed. The resulting model enjoys interesting conservation and entropy properties. It can be

numerically solved by standard schemes for hyperbolic systems. We present numerical results for one-dimensional

classical test cases in plasma physics: Landau damping, two-stream instability.

1 Introduction

The most precise models for plasma physics are based on a kinetic description of the charged particles. It is thus
important to provide e�cient numerical methods for solving such models. Generally, the particles are described by
a distribution function f . The quantity f(x, v, t)dx dv counts the particles having a position x and a velocity v at
time t in a small volume dx dv in the phase space. The distribution function is solution of the Vlasov equation.
The Vlasov equation is coupled with the Maxwell equations governing the electromagnetic �eld, or with the Poisson
equation when only the electric �eld is relevant.

The main di�culty of a kinetic model is that it is a time-dependent system of PDE, set in a six-dimensional space,
which leads to very heavy numerical simulations. In some physical con�gurations, with a strong e�ect of particles
collisions, it is possible to reduce the complexity and returning to a three-dimensional model, such as the MHD
model. But in many cases, when the collisions between particles are negligible, it is necessary to rely on the full
kinetic model. This is a key point for understanding turbulence inside tokamak plasmas, for instance.

The Particle-In-Cell (PIC) method (see for instance [3, 14]) is a popular method for computing collisionless plasma,
because it allows performing simulations in complex con�gurations with a relatively low amount of memory and CPU
ressource. However the PIC method is based on an initial random choice of the particles and thus presents numerical
noise. Also, it is di�cult to ensure the energy conservation. Therefore, Eulerian methods for solving kinetic
equations are becoming more and more popular. They allow a better control of the conservation and numerical
errors (for a review of eulerian methods, see [7]). We can mention for instance the semi-lagrangian approach, which
relies on a grid of the phase space. With this approach it is possible to perform realistic computations on tokamak
core plasmas [10].

In this paper, we propose a general Eulerian approach for solving the Vlasov equation. It is based on the semi-
discretization of the Vlasov equation with respect to the velocity variable. In this way, we construct a family
of reduced models, depending on the velocity discretization parameter P . For low values of P , we recover �uid
behavior, while high values of P allow precise approximation of the kinetic model. For a �xed velocity parameter
P , the approximate model is a linear hyperbolic system, with non-linear source terms. It is possible to establish in
a very simple way conservation and entropy properties. The unknown depends on space and time instead of the full
phase-space variables. These two features leads to a simpler reuse of existing solvers for hyperbolic equations. It is
possible to incorporate in this way plasma kinetic models into a general, highly optimized solver. The coupling to
other �uid plasma models is also simpli�ed.

We apply our approach to the simple case of the one-dimensional Vlasov-Poisson system. We present numerical
results for classical plasma physics test cases.
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2 Plasma mathematical model

In the following, we present our approach on the one-dimensional classical Vlasov-Poisson system. But it can
obviously be generalized to higher dimensions, relativistic cases and Vlasov-Maxwell systems.

2.1 Vlasov-Poisson 1D model

We consider the Vlasov equation
∂tf + v∂xf + E∂vf = 0. (1)

The �rst unknown is the distribution function f(x, v, t) that depends on the space variable x the velocity variable
v and the time t. It measures, for instance, the quantity of electrons in a plasma having a velocity v at point x
and time t. Therefore, it should be a non negative quantity. The second unknown is the electric �eld E(x, t). We
suppose that x ∈]0, L[ and we consider periodic boundary conditions at x = 0 and x = L

E(0, t) = E(L, t), f(0, v, t) = f(L, v, t).

In principle, we should assume that v ∈]−∞,+∞[ and that the distribution function vanishes at v = ±∞. But for
practical reasons, we have to bound the velocity space. We suppose that v ∈] − V, V [. The Vlasov equation (1) is
a transport equation, we have thus also to apply boundary conditions at v = −V or v = V depending on the sign
of E

E(x, t) > 0 ⇒ f(x,−V, t) = 0. (2)

E(x, t) < 0 ⇒ f(x, V, t) = 0. (3)

Assuming that the electric potential is also L−periodic, we can assume that the electric �eld has a zero mean value
ˆ

x

E = 0. (4)

It is solution of the one-dimensional Poisson equation

∂xE = −1 +

ˆ

v

fdv. (5)

The quantity ρ0 = 1 corresponds, for instance, to the charge density of the background ions.

We also call the systems (1), (5) the Vlasov-Poisson 1D model.

The equations (1), (5) are supplemented by an initial condition

E(x, 0) = E0(x), f(x, v, 0) = f0(x, v).

In our applications (Landau damping and two-stream instability), this initial condition also satis�es

1

L

ˆ

x

ˆ

v

f0 = 1,

ˆ

x

ˆ

v

vf0 = 0. (6)

Then, we can deduce that these two conditions remain true for all time1

1

L

ˆ

x

ˆ

v

f = 1,

ˆ

x

ˆ

v

vf = 0. (7)

Let us recall that property (7) is very speci�c to the test cases that we compute below. For other classical test
cases, such as the bump-on-tail instability test case [6], the property has to be adapted.

1In fact this result is true if f has compact support in v. In our applications, it is only an approximation. We suppose that we can

neglect f(x,±V, t).
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2.2 Vlasov-Ampère 1D Model

The simulation of the Vlasov-Poisson system requires the resolution of an elliptic equation for the electric potential.
In the one-dimensional framework, the equation reduces to (5), which is numerically solved by an FFT-based
algorithm. It is interesting to propose an equivalent equation for the electric �eld, which implies the simple numerical
resolution of a local di�erential equation.

We consider the Poisson equation (5) and take the derivative of f with respect to x. Suppose that f is a function
with compact support in v and that we can change the order of integration of f , then

∂t (∂xE) = ∂t
(
−1 +

´

v
f
)

⇔ ∂x∂tE =
´

v
∂tf

=
´

v
(−v∂xf − E∂vf)

= −∂x
(´

v
vf

)
− E
´

v
∂vf,

by hypothesis, f has a compact support in v, thus

E
´

v
∂vf = E. [f ]

v=+∞
v=−∞

= 0,

thus, �nally, we have

∂x∂tE = −∂x
(´

v
vf

)

⇒ ∂tE = −
´

v
vf + C(t).

(8)

We integrate now with respect to x the two sides of this equation for obtaining

ˆ

x

(∂tE) dx =

ˆ

x

(
−
ˆ

v

vf + C(t)

)
dx.

We have

ˆ

x

(∂tE) dx = ∂t

(
ˆ

x

Edx

)
= 0.

Finally, we deduce

C(t) =
1

L

ˆ

x

ˆ

v

vfdvdx = 0.

The equation (8) becomes

∂tE = −
ˆ

v

fvdv (9)

which we call the Ampère equation.

We also call the system (1), (9) the Vlasov-Ampère 1D model.

3 Velocity basis expansion

For each time t the Vlasov equation is set in a six-dimensional (x, v) space. We will perform a semi-discretization of
(1) with respect to the velocity v in order to obtain a system of PDE set only in the x space. We shall call this new
system of equations the reduced Vlasov model. We could expand the distribution function f on a basis of arbitrary
functions depending on v. See for instance [4] and included references. For practical numerical reasons, we decide
to choose a classical Lagrange �nite element interpolation basis, because it leads to a sparse matrix representation
of the hyperbolic system.
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3.1 Continuous interpolation by the �nite element method

First, we introduce some notations and recall how is constructed the �nite element basis. We consider an arbitrary
polynomial degree d. The reference element is de�ned by

Q̂ =]− 1, 1[.

We de�ne the d+ 1 reference nodes by

N̂i = −1 + 2
i− 1

d
, i = 1 · · · d+ 1.

We mesh the interval ]−V, V [ with N �nite elements (Qi)i=1···N and nodes (Nj)j=1···P . The total number of nodes
in this interval is P = d ·N + 1. In practice, we suppose that the nodes are equally spaced in ]− V, V [

Nj = −V +
2V

dN
(j − 1).

As usual, in our program, we have a connectivity array for detecting that node Nj is the kth local node of a given
element Qi

j = connec(k, i) = k + (i− 1)d, 1 ≤ k ≤ d+ 1, 1 ≤ i ≤ N.

We also use the notation
Nj = Nk,i

and then, element Qi has its support in the interval [N1,i, Nd+1,i].

We construct a transformation τi that maps element Q̂ onto Qi. For this purpose we consider the Lagrange
polynomials on Ê, de�ned by

L̂k(v̂) =
∏

l 6=k

v̂ − N̂l

N̂k − N̂l

. (10)

The transformation is then given by

τi(v̂) =
d+1∑

k=1

L̂k(v̂)Nk,i. (11)

Because the nodes of the mesh are equally spaced in our application, in practice the transformation τi is linear. We
construct the interpolation basis in such a way that each basis function ϕj is associated to a node Nj of the mesh
and satis�es

ϕi(Nj) = δij ,

where δij denotes the Kronecker symbol. We recall how to compute the basis function ϕj . Let v ∈] − V, V [.
Necessarily, v belongs at least to one �nite element Qi. Two cases are possible

1. Node Nj belongs to �nite element Qi, i.e.
∃k,Nj = Nk,i.

Then
ϕj(v) = L̂k(v̂), v = τi(v̂). (12)

2. Node Nj does not belong to Qi, then
ϕj(v) = 0.

3.2 Application to Vlasov velocity discretization

We suppose that the distribution function is approximated by expansion on the basis {ϕj}j=1···P

f(x, v, t) =

P∑

j=1

wj(x, t)ϕj(v), (13)

we shall also use the convention of sum on repeated indices
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f(x, v, t) = wj(x, t)ϕj(v). (14)

Because of the interpolation property of the basis{ϕj}j=1···P

ϕi(Nj) = δij ,

we have

f(x,Ni, t) =

P∑

j=1

wj(x, t)ϕj(Ni) = wi(x, t).

Therefore, we can approximate the initial condition in the following way

wj(x, 0) = f(x,Nj , 0) = f0(x,Nj).

We now describe the weak formulation from which we construct the reduced model. Let f be a solution of the
Vlasov equation (1) with the boundary condition de�ned by (2), (3). We recall that

E+ = max(0, E), E− = min(0, E).

Then, for all basis function ϕi, we have

∂t

ˆ

v

fϕi + ∂x

ˆ

v

vfϕi + E

ˆ

v

∂vfϕi +
E+

2
f(·,−V, ·)ϕ(−V )− E−

2
f(·, V, ·)ϕi(V ) = 0. (15)

This weak form of the transport equation introduces an upwinding only at the boundaries v = ±V . The advantages
and drawbacks of this approach are discussed in [9].

If we introduce the expression (14) in the weak formulation (15), we obtain

∂twj

ˆ

v

ϕiϕj + ∂xwj

ˆ

v

vϕiϕj + Ewj

ˆ

v

ϕiϕ
′
j

+
E+

2
wjϕj(−V )ϕi(−V )− E−

2
wjϕj(V )ϕi(V ) = 0.

We can thus introduce the following matrices of dimension P × P

M = (

ˆ

v

ϕiϕj), A = (

ˆ

v

vϕiϕj).

B(E) =
E+

2E
ϕj(−V )ϕi(−V )− E−

2E
ϕj(V )ϕi(V ) +

ˆ

v

ϕiϕ
′
j .

We obtain the following equation
M∂tw +A∂xw + EB(E)w = 0, (16)

in which w is the vector of P components

w = (w1, w2, ..., wP )
T .

Obviously A and M are symmetric matrices and M is positive de�nite. It is then classical to prove that system
(16) is hyperbolic, i.e. that M−1A is diagonalizable with real eigenvalues [8].

On the other hand, thanks to an integration by part, we �nd that

Bij = −Bij if (i, j) 6= (1, 1) and (i, j) 6= (P, P ).

In other words the matrix B is �almost� skew-symmetric.

In addition

if E > 0, B11(E) = 0, BPP (E) =
1

2
(17)

and

if E < 0, B11(E) = −1

2
, BPP (E) = 0. (18)

Multiplying equation (16)by w and integrating in x, we can establish the following energy estimate

d

dt

ˆ

x

wTMw =
1

2
E−w2

1 −
1

2
E+w2

P ≤ 0. (19)

This estimate shows that it is essential to modify the source term matrix
(´

v
ϕiϕ

′
j

)
with the correction (17), (18)

in order to obtain a stable approximation.
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3.3 Practical computation of M,A,B

3.3.1 Gauss-Legendre integration

The (normalized) Legendre polynomials are de�ned, for n ≥ 0, by

ln(x) =

√
n+ 1

2

n!2n
dn

dxn
((x2 − 1)n).

The n zeros of ln are distinct and in ]− 1, 1[. We denote by (ξi)i=1···n the zeros of ln and by

ωi =
−
√
2n+ 1

√
2n+ 3

(n+ 1)l′n(ξi)ln+1(ξi)

the integration weights. Then, we have the quadrature formula

ˆ 1

−1

g(v)dv ≃
n∑

i=1

ωig(ξi).

The formula is exact if g is a polynomial of degree 2n− 1.

3.3.2 Computation

Firstly, we observe that M,A and B are sparse matrices. Indeed, with j1, j2 such that Nj1 , Nj2 are not in the same
element, we have

ϕj1(v).ϕj2(v) = 0, v ∈]− V, V [

thus
Mj1j2 = Aj1j2 = Bj1j2 = 0.

More precisely, we can state that M,A and B are band matrices. The bandwidth is equal to the degree d of the
local polynomial interpolation. We only have to take care of the non-zero terms of these matrices.

In order to achieve exact numerical integration, we consider d + 1 Gauss-Legendre integration points ξ̂i on the
reference element Q̂ with weights ω̂i. It ensures the correct integration of a polynomial of degree 2d + 1. Such
polynomials arise in the terms

´

v
vϕi(v)ϕj(v)dv. The algorithm for assembling the matrices is then the following:

1. We loop on the elements of the mesh, we loop on the local nodes of each element. Using the connectivity
array, we construct the shape of the sparse matrices. More precisely, if

j1 = connec(k1, i) and j2 = connec(k2, i)

then the corresponding (j1, j2) elements in the matrices are 6= 0.

2. We loop again on the elements of the mesh. For each element Qi we perform the following algorithm

do k1=1,d+1

do k2=1,d+1

j1=connec(k1,i)

j2=connec(k2,i)

M(j1,j2)=M(j1,j2)+
´

v∈Qi
ϕj1ϕj2

A(j1,j2)=A(j1,j2)+
´

v∈Qi
vϕj1ϕj2

B(j1,j2)=B(j1,j2)+
´

v∈Qi
ϕj1ϕ

′
j2

enddo

enddo
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Of course, in this algorithm, the matrices M,A and B are stored in a sparse way, for saving computer memory.
The �rst and last terms of the diagonal of B have also to be corrected according to (17) and (18).

For computing the integrals over Qi, we use the geometric transformation τi and Gauss numerical integration.

For M , we obtain

ˆ

v∈Qi

ϕj1ϕj2 =

ˆ 1

v̂=−1

L̂k1
L̂k2

dv

dv̂

=

ˆ 1

v̂=−1

L̂k1L̂k2τ
′
i(v̂)

=
d+1∑

l=1

ω̂lL̂k1
(ξ̂l)L̂k2

(ξ̂l)τ
′
i(ξ̂l).

For A, we obtain

ˆ

v∈Qi

vϕj1ϕj2 =

ˆ 1

v̂=−1

vL̂k1L̂k2

dv

dv̂

=

ˆ 1

v̂=−1

τ i(v̂)L̂k1L̂k2τ
′
i(v̂)

=

d+1∑

l=1

ω̂lL̂k1(ξ̂l)L̂k2(ξ̂l)τ i(ξ̂l)τ
′
i(ξ̂l).

For B, we obtain

ˆ

v∈Qi

ϕj1ϕ
′
j2 =

ˆ 1

v̂=−1

L̂k1

d

dv
L̂k2

dv

dv̂

=

ˆ 1

v̂=−1

L̂k1

d

dv̂
L̂k2

=

d+1∑

l=1

ω̂lL̂k1
(ξ̂l)

d

dv̂
L̂k2

(ξ̂l).

We observe that we can compute and store the values and derivatives of the reference basis functions at the reference
Gauss points at the beginning of the computation. In the same way, we can compute the upwind and downwind
convection matrices

A± = (

ˆ

v

v±ϕiϕj),

where
v+ = max(v, 0), v− = min(v, 0).

These matrices are used in the upwind scheme below.

In Appendix 1 we give additional details on the storage and assembly of the sparse matrices M,A and B.

4 Finite volume schemes

We have replaced the original Vlasov equation, written in the (x, v)-space by an hyperbolic system written in the
x-space only. The new representation (16) is called the reduced Vlasov system. We can solve this system by any
e�cient numerical method for hyperbolic systems. In the sequel, we compare the �rst order upwind Godunov
scheme and a second order centered scheme. In the future we intend to switch to a more general, high order,
Discontinuous Galerkin (DG) approach.
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4.1 Vlasov equation

We consider a �nite volume approximation. We assume that the spatial domain ]0, L[ is split into Nx cells. The
cell Ci is the interval

]
x

i−1/2
, x

i+1/2

[
, i = 1..Nx. For practical reasons, we also consider two virtual cells C0 and

CNx+1 for applying the periodic boundary condition. At the beginning of a time step, we copy the values of the
cell CNx to the cell C0, and the values of the cell C1 to the cell CNx+1. The center of the cell Ci is xi = i△x− △x

2 .
The space step is △x = L

Nx
. We also consider a sequence of times tn, n ∈ N, such that t0 = 0 and tn = n△t, where

△t satis�es the following CFL condition

△t = α
△x

V
, 0 < α ≤ 1.

We are looking for an approximation of the vector w in the cell Ci

wn
i ≃ w(x, t), x ∈ Ci, t = tn

We consider the initial conditions E0 = E(·, t = 0), and f0 = f(·, ·, t = 0). We recall that the jth component of the
initial condition is given by

(w(x, 0))j = f0(x,Nj)

for each j = 1 · · ·P .
We consider the reduced Vlasov model (16), we have

M∂tw +A∂xw + EB(E)w = 0
⇒ M∂tw = −A∂xw − EB(E)w

If we denote S = −EB(E)w, we obtain the following evolution equation

M∂tw = −A∂xw + S. (20)

We consider a �nite volume approximation of (20). We denote by wi(t) a piecewise constant approximation of w in
each cell

wi(t) ≃ w(x, t), x ∈ Ci.

The numerical �ux is denoted by (wa, wb) 7→ F (wa, wb). We obtain the following semi-discrete (in space) approxi-
mation

M∂twi = −F (wi, wi+1)− F (wi−1, wi)

△x
+ S(wn

i ).

Of course we have also to introduce a time discretization in order to compute

wn
i ≃ wi(tn), x ∈ Ci.

4.1.1 First-order Euler method

For the time integration we can consider the classical explicit Euler method, which is of order 1. It reads

M
wn+1

i −wn
i

△t = −F (wn
i ,wn

i+1)−F (wn
i−1,w

n
i )

△x + S(wn
i )

⇒ wn+1
i = wn

i − △t
△x

(
M−1F (wn

i , w
n
i+1)−M−1F (wn

i−1, w
n
i )
)
+△tM−1S(wn

i )
(21)

4.1.2 Second order improved Euler method

A time second order scheme is given by the following algorithm

M
w

n+1/2
i − wn

i

△t/2
,= −F (wn

i , w
n
i+1)− F (wn

i−1, w
n
i )

△x
+ S(wn

i ),

M
wn+1

i − wn
i

△t
,= −

F (w
n+1/2
i , w

n+1/2
i+1 )− F (w

n+1/2
i−1 , w

n+1/2
i )

△x
+ S(w

n+1/2
i ). (22)
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4.1.3 Numerical �ux

We consider the centered or upwind numerical �ux. The centered �ux is given by

F (wL, wR) = A
wL + wR

2
− εV

2
(WR −WL).

The upwind �ux is given by
F (wL, wR) = A+wL +A−wR.

Of course, the �rst order explicit Euler integration cannot be used with the centered �ux, because the resulting
scheme is always unstable.

4.1.4 Implementation aspects

In practice, for saving CPU time and memory, we use two subroutines for computations with the sparse matrices
in skyline format. The �rst one computes the product of a sparse matrix and a vector. The other one is used to
solve the linear system (by the LU method)

Mw = s,

where M is also a sparse matrix.

4.2 Ampère equation

We have explained how we evolve the reduced Vlasov equation. We have also to evolve the electric �eld. We have
implemented two methods. The simplest method consists in solving the Ampère equation (9). The other method
is based on a resolution of the Poisson equation (5).

We �rst consider the Ampère equation

∂tE = −
ˆ

v

fvdv.

From the representation (14) for f , we have

´

v
fvdv =

∑P
j=1 wj(x, t)

´

v
vϕj(v)dv

=
∑P

j=1 wj(x, t)ζj ,

where

ζj =

ˆ

v

vϕj(v)dv.

The vector (ζj)j=1···P is computed with an assembly algorithm and Gauss numerical integration as described in
Section 3.3.

For the time integration we use, as for w, the �rst order scheme or the second order improved Euler scheme.
Actually, as it is explained in Section 5.2, we have to modify a little bit the time integration in order to obtain
precise results.

4.3 Poisson equation

We can also compute the electric �eld by solving the Poisson equation (5). As in many other works, we use the
FFT (Fast Fourier Transform) algorithm.

We consider the cell-centered electric �eld approximation (E0, E1, ..., ENx−1). We denote by Êk its DFT (Discrete
Fourier Transform, we denote by I =

√
−1)

Êk =

N−1∑

j=0

Eje
−2Iπjk

N , k = 0 · · ·N − 1,

9



and the inverse DFT is given by

Ej =
1

N

N−1∑

k=0

Êke
2Iπjk

N , ∀k = 0..N − 1.

We consider the Poisson equation (5)

∂xE = −1 +
´

v
fdv

= −1 +
∑P

j=1 wj(x, t)
´

v
ϕj(v)dv

= −1 +
∑P

j=1 wj(x, t)̺j

in which ̺j =
´

v
ϕj(v)dv. We can compute ̺j over each element Qi by the assembly algorithm of Section 3.3. We

use the notation

σ(x) = −1 +

ˆ

v

f(x, v, ·)dv.

A centered �nite-di�erence approximation of the Poisson equation reads

∂xE(xi) ≃
Ei+1 − Ei−1

2△x
= σ(xi). (23)

Taking the DFT of the two sides of (23) we obtain

Êk =
△x

Isin 2πk
Nx

σ̂k, k 6= 0.

And, when k = 0, we have

Ê0 =

N−1∑

j=0

Ej = 0, (because of condition (4)).

Of course, we use the e�cient FFT algorithm (see [12]) for computing the DFT.

4.4 Electric energy

The electric energy is de�ned by

Ξ(t) =

√
ˆ L

0

E(x, t)2dx.

We approximate it by

Ξ(tn) ≃

√√√√△x

Nx∑

i=1

(En
i )

2

5 Test cases

For testing our solver, we consider several test cases. The �rst two tests are designed in order to validate the pure
transport in the x or v direction. In particular, we will show that the correction (17), (18) is essential in order
to obtain correct results. In our numerical experiments, the discretization parameters are N = 20, d = 5 and
Nx = 128.
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Figure 1: The v-transport for the Vlasov equation after T = 5, we compare the exact solution (green curve) and
the numerical solution (red curve). Left: without the correction on B(E). Right: with correction.

5.1 The transport equation

Consider the Vlasov equation
∂tf + v∂xf + E∂vf = 0.

If we suppose that ∂xf = 0 and the electric �eld is constant with respect to t, namely E(x, t) = E(x, t = 0) = E0(x),
thus the Vlasov equation becomes

∂tf + E(x)∂vf = 0, (24)

which is a v-transport equation.

If we suppose that the electric �eld vanishes at any time and any position, we obtain the x-transport equation

∂tf + v∂xf = 0 (25)

5.1.1 The v-transport equation

Consider the v-transport equation (24) with a given initial condition f0. Thanks to the method of characteristics,
the exact solution is given by

f(x, v, t) = f0(x, v − E(x)t).

Suppose that the initial conditions is given by

• The distribution function

f0(x, v) = (1 + ǫcos(kx))
1√
2π

e−
v2

2 ,

• The electric �eld
E0(x) = 1,

• The domain L = 2π
k .

Let us take the values of parameter k = 0.2 and ǫ = 5 × 10−2. The results are given on Figure (1). We compare
the numerical solution of the v−transport equation and the exact solution. We can see that without the correction
(17), (18) the numerical solution is wrong.

11



Figure 2: The x-transport test for the Vlasov equation after T = 20. The exact and numerical curves are superim-
posed.

5.1.2 The x-transport equation

We consider also the x-transport equation (25) with a given initial condition f0. The exact solution of this transport
equation is given by

f(x, v, t) = f0(x− vt, v).

With the same initial condition f0 as in the v-transport test, we obtain the result of Figure 2.

5.2 The Landau damping

In this test case, we consider the following initial data

• The distribution function

f0(x, v) = (1 + ǫcos(kx))
1√
2π

e−
v2

2 ,

• the electric �eld
E0(x) =

ǫ

k
sin(kx),

• the domain size L = 2π
k .

For small ǫ, thanks to a linear approximation of the non-linear Vlasov-Poisson system, it is possible to compute an
approximate analytic solution of the electric �eld. The details of the computation are given in [13]. The electric
�eld is given by

E(x, t) = 4ǫreωit sin(kx) cos(ωrt− ϕ), (26)

where ωi, ωr are the real part and the imaginary part of ω, respectively. The numerical values of ω, r and ϕ are
given in the following table

k ω reIϕ

0.5
0.4
0.3
0.2

±1.4156− 0.1533I
±1.2850− 0.0661I
±1.1598− 0.0126I

±1.0640− 5.510× 10−5I

0.3677e±I0.536245

0.424666e±I0.3357725

0.63678e±I0.114267

1.129664e±I0.00127377

12



Figure 3: The distribution function of the Landau damping test case at time t = 0. Left: reduced Vlasov-Poisson
method. Right: the PIC method.

Figure 4: The distribution function of the Landau damping test case at time t = 10. Left: reduced Vlasov-Poisson
method. Right: the PIC method.

In addition, the distribution function can be computed by a well validated method, such as the PIC method. We
compare our numerical results with the PIC results and also with the analytic solution.

Firstly, we compare the distribution function of the reduced Vlasov-Poisson method and of the PIC method (taken
from [5]). The value of the parameters are k = 0.2 and ǫ = 5× 10−2. We plot the distribution function computed
by the two methods at di�erent times t = 0, t = 10, t = 20, t = 30 and at t = 100. The results are on Figure 3, 4,
5, 6 and 7.

The reduced Vlasov approximation satis�es only an L2 stability estimate (19). Such estimate does not ensure the
positivity of f . Indeed, in our simulations we observe at some points slightly negative values of f . But the numerical
results are anyway very satisfactory. We explain in Appendix 2 how we could avoid negative values of f.

We also plot the logarithm of the electric energy in order to compare the reduced Vlasov-Poisson method with the
PIC method on Figure 8.

Figure 5: The distribution function of the Landau damping test case at time t = 20. Left: reduced Vlasov-Poisson
method. Right: the PIC method.
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Figure 6: The distribution function of the Landau damping test case at time t = 30. Left: reduced Vlasov-Poisson
method. Right: the PIC method.

Figure 7: The distribution function of the Landau damping test case at time t = 100. Left: reduced Vlasov-Poisson
method. Right: the PIC method.

Figure 8: The electric energy of the Landau damping test case up to time t = 20, the green curve is computed by
the PIC method and the red curve is computed with the reduced Vlasov-Poisson method (second order scheme).

14



Figure 9: The electric energy of the Landau damping test case up to time t = 20, the green curve �asymptotic� is
computed with the formula (26) and the red curve �energy� is computed with the reduced Vlasov-Poisson method.
Left: Euler scheme with the upwind �ux. Right: Rung-Kutta scheme with the centered �ux.

Figure 10: The electric energy of the Landau damping test case up to time t = 20, the green curve �asymptotic� is
computed with the formula (26) and the red curve �energy� is computed with the reduced Vlasov-Ampère method.
Left: semi-implicit scheme. Right: explicit scheme.

Now, we take the parameters k = 0.5 and ǫ = 5 × 10−3. In Figure 9, we plot the logarithm of the electric energy
computed by reduced Vlasov-Poisson method and by the formula (26). We compare the �rst and second order
schemes. We can see that the second order scheme is more precise than the �rst order scheme.

We have also tested the reduced Vlasov-Ampère resolution. We have observed that it is not possible to use a fully
explicit time integration for the Ampère equation (9). If we compute En+1

i from wn
i by the �rst order explicit time

integration, for instance, the results are not very precise and we observe an error increase as time goes by. We
obtain better results if we use wn+1

i for estimating ∂tE(xi, tn). This is a kind of semi-implicit scheme. The results
are compared on Figure 10.

5.3 Two-stream instability

In this test case, the initial distribution function is given by

f0(x, v) = (1 + ǫcos(kx))
1

2
√
2π

(
e−

(v−v0)2

2 + e−
(v+v0)2

2

)
,

in which the velocity v0 is given. The value of parameters for this test case are k = 0.2, ǫ = 5× 10−3 and v0 = 3.

The distribution function is plotted at times t = 0, t = 20, t = 25 and t = 50 in Figures 11, 12, 13 and 14. We
compare the PIC method and the reduced Vlasov-Poisson method.
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Figure 11: The distribution function of the two-stream test case at time t = 0. Left: reduced Vlasov-Poisson
method. Right: the PIC method.

Figure 12: The distribution function of the two-stream test case at time t = 20. Left: reduced Vlasov-Poisson
method. Right: the PIC method.

Figure 13: The distribution function of the two-stream test case at time t = 25. Left: reduced Vlasov-Poisson
method. Right: the PIC method.

Figure 14: The distribution function of the two-stream test case at time t = 50. Left: reduced Vlasov-Poisson
method. Right: the PIC method.
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At time t = 50, we observe small numerical oscillations in the reduced Vlasov-Poisson method. These oscillations
are maybe due to the fact that we have almost no upwind mechanism in the resolution of the transport equation.
Further investigations are necessary in order to control this phenomenon. For instance, we intend to implement
an upwind Discontinuous Galerkin (DG) method in order to introduce more dissipation in the numerical method,
while keeping high order.

In order to provide a better understanding of the dissipation, we also introduce in Appendix 2 a non-linear version
of the reduced Vlasov approach. The non-linear approach allows to replace the energy estimate by an entropy
estimate. It also allows to construct natural dissipative source term, which can be used for stabilizing the numerical
method or for introducing a physical dissipative mechanism, such as collisions e�ect.

6 Conclusion

In this paper, we have constructed a new method for approximating the Vlasov equation. We �rst performed
an approximation in the velocity direction. The resulting system is a �rst order system of hyperbolic equations.
Its convective part is linear while the nonlinearity is concentrated into the source term, which couples the kinetic
equation and the electromagnetic �eld. The solutions satisfy natural conservation and energy estimates. We are
also able to provide a nonlinear version of the model, where the distribution function is positive and satis�es a
natural entropy estimate.

It is then possible to apply to the reduced Vlasov model the whole range of numerical methods that have been
developed for hyperbolic systems. In this paper we compare two classical methods: the upwind �rst order scheme
and a centered second order scheme. We obtain good results on two classical test cases in plasma physics: Landau
damping and two-stream instability.

In the future, we plan to extend our method to higher dimensional problems, relativistic particle beams, gyrokinetic
plasma approximations and weak collisions models.
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Appendix 1: skyline storage of the matrices

For storing a sparse matrix M (or A or B) of size nnoe×nnoe in the skyline format, we use the following arrays:
mdiag(1:nnoe) for storing the diagonal, msup(1:nsky) and mlow(1:nsky) for storing the upper and lower parts.
The integer nsky is unknown at the beginning. We need also an additional array mkld(1:nnoe+1) for locating the
beginning of each column (row) in msup (mlow). We use the convention mkld(1)=1 and mkld(nnoe+1)=nsky+1.
In practice, for constructing mkld, we use an intermediate array prof(1:nnoe). prof(i) contains the number of stored
elements of M in column (row) i in msup (mlow). Thus prof(1)=0. For building prof, we use the following algorithm

prof=0

do k=1,nel

do ii=1,d+1

do jj=1,d+1

i=connec(ii,k)

j=connec(jj,k)

prof(j)=max(prof(j),j-i)

prof(i)=max(prof(i),i-j)

enddo

enddo

enddo

Once prof is known, mkld is built with the following algorithm

mkld(1)=1

do i=1,nnoe

mkld(i+1)=mkld(i)+prof(i)

enddo

At the end of this algorithm, we know nsky=mkld(nnoe+1)-1, we can thus allocate the memory for msup and mlow.

Finally, let (i, j) corresponds to a non-zero element of matrix M (it means that we can �nd an element index k and
two local node indices ii and jj such that i = connec(ii, k) and j = connec(jj, k). We can recover Mij from the
arrays mdiag, mlow, msup, mkld by the following algorithm

if (i.eq.j) then

Mij = mdiag(i)

else if (j.gt.i) then

Mij = msup(l) with l=mkld(j+1)-j+i
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else

Mij = mlow(l) with l=mkld(i+1)-i+j

endif

The structure of the matrices A,B and M are the same. We have to compute mkld only once.

Appendix 2: Non-linear Vlasov reduction

For improving the dissipation, we consider now a source term in the Vlasov equation. It can represent collisions
between particles. The Vlasov equation (1) becomes

∂tf + v∂xf + E∂vf = Q(f), (27)

where Q(f) is a source term, which we denote by the collision kernel. We also consider an entropy S(f). The entropy
is supposed to be a smooth strictly convex function of f . In practice, we will consider the following entropies

(a) S(f) =
f2

2
, (b) S(f) = f(ln f − 1), (c) S(f) =

f2

2
− ε ln f, ε > 0.

The entropy variable is
g = S′(f).

Considering S∗, the Legendre transform of S

S∗(g) = max
f

(gf − S(f)),

we also have
f = S∗′

(g).

In the previous sections, we expanded f on an interpolation basis. Now, we expand the entropy variable g in the
Legendre basis. A �rst advantage is that if S∗′

is positive, the distribution function is automatically positive. It
is the case with choice (b) and (c). With choice (a) we recover the reduced Vlasov model of the previous sections
because then S′(f) = g = f.

Suppose that

g(x, t, v) =

P∑

k=1

gk(x, t)ϕk(v). (28)

We denote by Π the orthogonal projection of g on a subspace V0 of the interpolation space V = span {ϕi, 1 ≤ i ≤ P}.
For a given constant λ > 0, we can then consider the collision kernel

Q(f) = λ (Πg − g) . (29)

If f has a compact support in v, we can prove the following results

•
´

v
Q(f)ϕdv = 0, ∀ϕ ∈ V0. In particular, if v → vm is in the space V0 then the m−moment of f is conserved

in the sense that
ˆ

x

ˆ

v

fvmdvdx = Cst.

• The total entropy Σ =
´

v
S(f)dv is decreasing

∂tΣ+ ∂xG(Σ) ≤ 0, with G(Σ) =

ˆ

v

vS(f).

The proof is an immediate adaptation of techniques presented in many works on non-linear hyperbolic systems and
Boltzmann theory. We refer for instance to [2, 11, 8].

The collision kernel (29) can be used of course for introducing a physical phenomenon. But we can also use it as a
numerical tool for damping numerical oscillations. We will investigate this kind of tools in forthcoming works.
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