
HAL Id: hal-00695830
https://hal.inria.fr/hal-00695830v2

Submitted on 8 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Monitoring Approach for Dynamic Service-Oriented
Architecture Systems

Yufang Dan, Nicolas Stouls, Stéphane Frénot, Christian Colombo

To cite this version:
Yufang Dan, Nicolas Stouls, Stéphane Frénot, Christian Colombo. A Monitoring Approach for Dy-
namic Service-Oriented Architecture Systems. The Fourth International Conferences on Advanced
Service Computing, Jul 2012, Nice, France. �hal-00695830v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49809678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00695830v2
https://hal.archives-ouvertes.fr

A Monitoring Approach for Dynamic Service-Oriented Architecture Systems

Yufang Dan∗‡, Nicolas Stouls∗, Stéphane Frénot∗, and Christian Colombo†
∗Université de Lyon, INRIA, INSA-Lyon, CITI, F-69621, France – Email: first.second@insa-lyon.fr

†Department of Computer Science, University of Malta – Email: first.second@um.edu.mt
‡College of Computer Science Chongqing University, Chongqing, China

Abstract—In the context of Dynamic Service-oriented Ar-
chitecture(SOA), where services may dynamically appear or
disappear transparently to the user, classical monitoring ap-
proaches which inject monitors into services cannot be used.
We argue that, since SOA services are loosely coupled, monitors
must also be loosely coupled. In this paper, we describe an
ongoing work proposing a monitoring approach dedicated
to dynamic SOA systems. We defined two key properties of
loosely coupled monitoring systems: dynamicity resilience and
comprehensiveness. We propose a preliminary implementation
targeted at the OSGi framework.

Keywords-Monitoring; Dynamic SOA; OSGi; Larva.

I. INTRODUCTION

Service oriented architectures (SOA) is one of the current
approaches to develop well structured software. It is focused
on loosely coupled client-server through interfaces. The
client usually requests service access through a repository.
Subsequently, the client is bound to the service and is
allowed to invoke methods as long as the interface types
match. Among SOA approaches, we will focus on dynamic
SOA, such as OSGi [1], usually used in 24/7 systems, where
system may not be restarted when a service appears or dis-
appears. In dynamic SOA, each invocation (potentially with
the same client) must be considered as a completely new
context change since potentially new services may appear
and others disappear. From a dynamic SOA point of view,
binding a client to a service is a matter of interface matching,
but, neither the client nor the service has a guarantee that
the other part behaves as expected. For instance, each time
a client makes a request to a server, a formally specified
constraint can be checked to ensure whether the client is
authorized to perform that call or not.

Existing runtime monitoring tools such as JavaMOP [2]
or Larva [3] weave interception calls using aspect-oriented
programming techniques. These approaches work fine in
SOA since client-server bindings are usually generated upon
the first invocation and preserved throughout the entire client
life cycle. On the other hand, in dynamic SOA, bindings
may be reconsidered at runtime. Hence, any monitoring state
wove into the service implementation gets reset.

Fig. 1 illustrates an example needing a dynamicity re-
silient monitor. Let us consider a client embedded on a
mobile device based on a dynamic SOA platform and
needing to communicate with a distant system according

to a particular protocol. If two services S1 and S2 provide a
single dedicated interface for accessing this distant system,
but through different medium (WiFi, 3G, etc.), then the
system could need to substitute the use of S1 by S2 and con-
versely. We propose a monitoring approach allowing such
substitution without impacting the communication and then
the monitored property. Hence, if any behavioral property
has to be respected in the use of the distant system (such
as "after a call of A, a call of B must occur") then the
property is exactly the same in the whole system without any
modification, even if the intermediate service is substituted.

...Client

Service
1

Service
2

Dynamic SOA
Platform

Distant
System

access
Request

...

Figure 1. Example of Dynamic SOA System With Monitoring Restrictions

Our proposal is to bring a dynamic approach to runtime
monitoring systems. We suggest that monitors must not be
statically inserted into the observed system, but brought
dynamically at binding time between the client and the
service. Having a dynamic approach means that the service
bindings and the behavioral monitoring bindings must be
both considered as dynamic and loosely coupled. This article
stresses the use for a dynamic runtime monitoring tool, that
enables service substitution at runtime. This approach may
preserve the current behavioral states and check that old and
new service implementations are behaviorally compatible.

A dynamic runtime monitor must have two significant
characteristics: dynamicity resilience and comprehensive-
ness. The former refers to the preservation of the behavior
flow: in case of substitution of the monitored service, we
want to keep alive the monitoring and the current state of the
property. Hence, the property cannot be hard-linked to the
code. The latter characteristic means that we cannot allow
services to restrict what is observable by the monitor: if we
want to check a property, we need to ensure that all the
relevant events are monitored. We are not assuming that
every service provides its authorized behaviors, but only
that if an authorized service want to check the respect of
a property on the framework, then no service can bypass

this observation. The architecture relies on a generic event
interception mechanism and a dynamic, loosely coupled,
wiring mechanism for automaton verification. The verifica-
tion automaton is extracted from Larva.

Section 2 of the article presents some runtime verification
approaches and proposes a classification of them, showing
the gap we propose to fill. Section 3 expresses the architec-
ture model for a dynamic runtime verification tool. Section
4 illustrates our OSGi reference implementations. Section
5 shows our initial conclusions, and Section 6 our future
works.

II. RELATED WORKS

We can classify existing runtime verification approaches
according to the monitor configuration with respect to the
monitored service. Property may be: manually written inside
the code (Hard-Coding), automatically injected inside the
code (Soft-Coding) and kept out of the code (Agnostic-
Coding). For each of these families, we will discuss the
resilience to dynamicity and the monitoring comprehensive-
ness.

A. Hard-coding

In this category, where properties are manually injected
at source time, we can cite all annotation techniques, like
JML [4] or Spec# [5]. In both cases, the monitor is not
resilient to dynamic code loading. If the monitored system
is substituted, then its monitor is also substituted, since it is
inlined code. However, this approach is interesting in terms
of comprehensiveness, since we can observe anything in the
program. A limitation of this approach is the dispersion
of the monitor throughout the code, requiring significant
intervention to write the property or to check its description
is correct.

B. Soft-Coding

In this category, where properties are injected at compi-
lation time, we can cite Larva [3] or JavaMOP [2]. These
tools need a standalone description of a property and inject
the synthesized monitor inside the code. Advantages are
then the same as in the previous case, but specifying the
monitor is easier, since the description of the property is
centralized. However, this approach is still not resilient to
dynamicity; at best, the tool may inject the property at first-
time binding, but once injected, the property is hard-coded
within the service.

C. Agnostic-Coding

In this last category, where the monitor is kept out of the
code, we include any trace analyzes approach, such as intru-
sion detection systems [6] or liability by logs approaches [7].
The main advantage of the approach is the loose linking
between the property and the monitored system. Hence, if
a package is substituted, the monitor can observe it inside

the logs and the monitored properties are still the same for
the whole system. Moreover, the description of the property
is located into a single location, which facilitates property
management. However, such a system can be bypassed, since
it can only observe what services accept to push or what
it can pull from observation points. If a package provides
a service without writing sufficient logs, then the monitor
does not have sufficient information to check a particular
property [8].

In this paper, we propose a comprehensive and dynamicity
resilient monitoring approach for dynamic SOA. The kind
of system we target, sits between the Soft-Coded and the
Agnostic-Coded approaches.

III. AN ARCHITECTURE ENABLING DYNAMIC AND
COMPREHENSIVE RUNTIME MONITORING

In this section, we describe an abstract architecture of a
monitoring system supporting specific features of dynamic
SOA systems. After that, we will discuss about the resilience
to dynamicity and the comprehensiveness of the proposed
architecture.

Our proposition consists in dynamically inserting a mon-
itoring proxy in front of each service, and externalizing
monitors in some autonomous services. When an event
occurs, a notification is sent to each monitor, which checks
the event against its property.

Since services are treated as black boxes from the running
environment’s point of view, such architecture is designed
to consider only interface properties. It corresponds to prop-
erties expressing the normal/authorized use of a service. We
then address behavioral properties.

In this architecture, the scope of properties is not restricted
to the use of a single service. Indeed, there is no restriction
to add a monitor in front of several services, in order to
observe a global property on the system.

Dynamic SOA Framework

 Dynamic SOA monitor

Call of methodCall of method
Monitored Events

Property Checking
SystemDynamic Observer Proxy

Client Server

Figure 2. Monitor Abstract Architecture

Fig. 2 describes the whole abstract architecture, where we
now detail the two main principles.

Resilience to Dynamicity: Since the monitoring system
is not inlined inside the monitored service, but is exter-
nalized in an autonomous service, monitors are separated
from the code. When changes occur in the framework,

the observation mechanism and its properties may remain
unaffected.

Comprehensive Monitoring: One of the main concepts
of dynamic SOA is to have a framework which allows
dynamic loading and unloading of loosely coupled ser-
vices. Since the framework is in charge of providing an
implementation to each service request, the framework adds
a proxy between the client and the service to observe
communications. This observation is comprehensive and no
communication can bypass this proxy, since the client and
the service do not know directly each other.

IV. OSGILARVA — A MONITORING TOOL FOR OSGI

In this section, we present OSGiLarva, an implementation
of the proposed abstract architecture, using the OSGi frame-
work. Our implementation integrates two existing tools:
Larva [3] and LogOS [9]. LogOS is a special logging tool
based on the OSGi framework, developed at CITI Lab during
the LISE project [7]. We will use it as a hooking mechanism
to observe services’ interactions. Larva is a compiler which
generates and injects a verification monitor into Java code.
We will use an adaptation of Larva to enable property
verification. Fig. 3 describes the OSGiLarva implementation
of the abstract architecture we proposed.

Hello()Hello()

Monitored Events

Larva Property
Checking

Automaton

Client Server

User

AnalyzedReport

Figure 3. OSGiLarva Implementation

Currently, we use strictly the larva property description
language. The addressed properties are the one that can be
described by automaton.

We describe the monitor implementation with three key
parts: we first present our adaptation of LogOS to inter-
cept service interactions; Next, we give some details about
our modifications of Larva and how it communicates with
LogOS; Finally, we describe how the registration process
of a service under OSGi will take into account an existing
property monitor to insert it between the service consumer
and the service itself.

A. LogOS: a Hook to Intercept Service Interactions

LogOS is a transparent toolkit for the OSGi architecture.
As soon as the LogOS bundle is started, each registration
of a service is observed by the system — thanks to the
OSGi hooking mechanism — and a LogOS proxy is gen-
erated between the service and its consumer. Hence, every

method call, including parameters and returned value, are
automatically intercepted.

Each time such an event is captured, a corresponding
LogOS event-description is forged and propagated to listen-
ers. While the standard LogOS listener stores each event-
description in a file, we have developed another listener that
propagates events-description to the Larva monitor.

Finally, we have extended LogOS annotations, such that
registered service interfaces may indicate at the deployment
time their associated monitoring class. Interfaces and mon-
itors can be provided separately from any implementation.
In order to minimize the execution time of OSGiLarva, only
registered events are notified to monitors.

B. Larva: a Property-Checking Monitor

Larva is a tool which injects monitoring code in a Java
program to check a property described in a Larva script file.
Upon compiling a script, the Larva Compiler generates two
main outputs: (i) a Java class coding the property, and (ii) an
aspect which links the monitoring code and source code. The
aspect statically injects some calls to the monitor inside the
Java software by using the AspectJ compiler. The Java code
describing the property is then called each time an expected
event occurs.

We keep the generation of the Java description of the
property, which is the core of the monitor. However, we
replace the static injection of the aspect into target services
by an event-description propagation from LogOS to the
monitor, based on dynamic proxy injection.

The new Larva provides a method accepting LogOS
event-descriptions, which is dynamically called each time
LogOS gets an event. Next, the Larva monitor starts analyz-
ing this new event-description in the verified property.

C. Registration of a Service Providing Specification

In order to launch the monitoring of a service, we need
to have a behavioral property to monitor. We propose to
accept this property as a part of the OSGi bundle. An OSGi
bundle provides three kinds of elements: a collection of
interfaces, a collection of services implementations and a
bootstrap code which is called when loading or unloading
the bundle. Thanks to OSGi architecture, service interfaces,
service implementations and bundles may have different life-
cycles depending on the deployment scheme, since interfaces
may be deployed with another bundle than service imple-
mentation.

As such, we keep the same philosophy, when providing
properties that can be provided by the same bundle as
implementation or by another one. Since interfaces are
typing specifications of services, it makes sense to map the
life cycle of properties to the one of interfaces. We then bind
property monitor at the same time as interfaces and we keep
monitoring until interfaces are removed.

In the current implementation of OSGiLarva, the property
load is done by an explicit declaration referring to a, Larva-
compiled, Java monitor in the manifest of the interfaces
bundle. When this declaration is processed, LogOS is called.
It loads the Larva property, generates a proxy between the
new service and its consumer, and injects the given monitor
inside the proxy.

V. CONCLUSION

In this paper, we have presented an approach to monitor
dynamic SOA systems based on two main requirements: (i)
resilience to dynamicity and (ii) comprehensiveness. The first
one means that if a monitored service is substituted in the
framework, the monitoring state is not reset. The compre-
hensiveness feature means that all services’ interactions are
monitored, i.e., it does not rely on the acceptance of the
service designer or on the correct instrumentation of the
service.

We have instantiated the approach in the context of the
OSGi framework through a preliminary implementation,
OSGiLarva, which integrates an adaptation of two existing
tools: Larva and LogOS. Similar to Larva, OSGiLarva
accepts the Larva property description language as input,
hence inheriting all its features, including its expressiveness
and its readability for non-expert users.

Our approach based on an OSGi hook to observe all
occurring events seems to be inefficient when compared to
injection-based monitoring tools, like Larva. However, this
functionality is required to be resilient to the dynamicity
of the system. Hence, we have to compare the OSGiLarva
efficiency with that of other systems with the same features,
such as classical log analyzes systems. In this context, our
approach seems to have reasonable efficiency, since (i) we
can configure filters in LogOS to push only the relevant
events to Larva and (ii) we do not need to make hard drive
accesses to read and write logs.

Finally, an interesting element of this approach is its non-
intrusive aspect. Indeed, in contrast to the aspect oriented
approach, we keep the original byte-code unchanged. This
property can be interesting if we want to remove a monitor
or always be able to check the binary signature of the code
as an authentication credential [10].

VI. FUTURE WORK

At this point, we allow properties to take into consider-
ation interface invocation events. In the future, we aim to
introduce in the property description language the notion
of loading/unloading of a bundle and the substitution of a
service in order to express behaviors including such events.

Larva property description language allows timed proper-
ties, by the use of clocks. In the case of OSGiLarva, where a
single service can be used by several consumers at the same
time, we could want to introduce two levels of clocks: global
to the service or associated to a consumer use. It seems

that the foreach operator from Larva property description
language could help us.

The current implementation of OSGiLarva is not finished
according to our requirements. Indeed, the current declara-
tion of events to log is done in the Java source file. In the
future we aim to use the result of the Larva compilation to
automatically define the list of events to observe. Finally, in
a next version of the tool, we could make some propositions
to reduce the OSGiLarva time cost. For instance, we could
make OSGiLarva asynchronous, by exporting monitors in
separated threads, or we can imagine that the use of a service
need to be monitored only during a fixed time. If the property
is respected during one week by a given consumer, we can
consider that it will still respect it afterwards. In OSGiLarva,
the removing a monitor is straightforward since it is non-
intrusive.

REFERENCES

[1] Open Service Gateway Initiative (OSGi), http://www.osgi.org/
[retrieved: June, 2012].

[2] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu,
“An Overview of the MOP Runtime Verification Framework,”
International Journal on Software Techniques for Technology
Transfer, 2011.

[3] C. Colombo, G. J. Pace, and G. Schneider, “Larva - safer
monitoring of real-time java programs,” in SEFM, 2009.

[4] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and
B. Jacobs, “JML: notations and tools supporting detailed
design in Java,” in OOPSLA 2000 COMPANION. ACM,
2000, pp. 105–106.

[5] M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M.
Leino, W. Schulte, and H. Venter, “The Spec# Programming
System: Challenges and Directions,” in VSTTE, ser. LNCS,
vol. 4171. Springer, 2005, pp. 144–152.

[6] C. Simache, M. Kaaniche, and A. Saidane, “Event log based
dependability analysis of windows nt and 2k systems,” in
International Symposium on Dependable Computing, 2002,
pp. 311 – 315.

[7] D. Le Métayer, M. Maarek, E. Mazza, M.-L. Potet, S. Frénot,
V. Viet Triem Tong, N. Craipeau, R. Hardouin, C. Al-
leaune, V.-L. Benabou, D. Beras, C. Bidan, G. Goessler,
J. Le Clainche, L. Mé, and S. Steer, “Liability in Software
Engineering Overview of the LISE Approach and Illustration
on a Case Study,” in ICSE’10. ACM/IEEE, 2010, p. 135.

[8] H. R. M. Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,
“Event correlation for process discovery from web service
interaction logs,” VLDB J., vol. 20, no. 3, pp. 417–444, 2011.

[9] S. Frénot and J. Ponge, “LogOS: an Automatic Logging
Framework for Service-Oriented Architectures,” in SEAAA,
2012, p. to appear.

[10] P. England, “Practical Techniques for Operating System At-
testation,” in 1st international conference on Trusted Com-
puting and Trust in Information Technologies, ser. Trust ’08.
Springer-Verlag, 2008, pp. 1–13.

