
HAL Id: hal-00799100
https://hal.inria.fr/hal-00799100

Submitted on 10 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Log Design for Accountability
Denis Butin, Marcos Chicote, Daniel Le Métayer

To cite this version:
Denis Butin, Marcos Chicote, Daniel Le Métayer. Log Design for Accountability. DUMA13 - 4th
International Workshop on Data Usage Management - 2013, May 2013, San Francisco, United States.
�10.1109/SPW.2013.26�. �hal-00799100�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49809069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00799100
https://hal.archives-ouvertes.fr


Log Design for Accountability
Denis Butin, Marcos Chicote and Daniel Le Métayer

Inria, Université de Lyon
INSA-Lyon, CITI-Inria

F-69621, Villeurbanne, France
denis.butin@inria.fr; mchicote@dc.uba.ar; daniel.le-metayer@inria.fr

Abstract—Accountability is a requirement to be included in
the initial design phase of systems because of its strong impact
on log architecture implementation. As an illustration, the logs
we examine here record actions by data controllers handling
personally identifiable information to deliver services to data
subjects. The structures of those logs seldom consider require-
ments for accountability, preventing effective dispute resolution.
We address the question of what information should be included
in logs to make their a posteriori compliance analysis meaningful.
Real-world scenarios are used to show that decisions about log
architecture are nontrivial and should be made from the design
stage on. Four categories of situations for which straightforward
solutions are problematic are presented. Our contribution shows
how log content choices and accountability definitions mutually
affect each other and incites service providers to rethink up to
what extent they can be held responsible. These different aspects
are synthesized into key guidelines to avoid common pitfalls in
accountable log design. This analysis is based on case studies
performed on our implementation of the PPL policy language.

I. INTRODUCTION

As software presence in daily life increases, so does the
exchange of information between individuals, companies, gov-
ernment agencies and other entities. In particular, Personally
Identifiable Information (PII) is often shared by data subjects
(DS) in exchange for services. PII is also frequently transmit-
ted between companies for outsourcing purposes.

The flow of PII is of particular concern as the information
transmitted can be used to uniquely identify a single indi-
vidual. The illicit collection and reselling of PII can lead
to profitable business. Even more unpleasant consequences
such as stalking or identity theft can arise through criminal
obtainment of PII.

To address these threats, legislation on how PII can be
collected, distributed and accessed is becoming more specific,
especially in the EU where a Data Protection Regulation [1]
is expected later this year, building on the existing 1995
Directive [2]. Notably, in 2010, the Article 29 Data Protection
Working Party published an Opinion specifically about the
accountability principle [3], which is expected to influence
the upcoming regulation. Legislation in the US is less com-
prehensive, although the 1996 HIPAA [4], 1998 COPPA [5]
and 1999 GLBA [6] provide partial safeguards for the private
sector and the 1974 Privacy Act [7] does so for government
agencies.

In practice, the entities collecting the data — data con-
trollers (DCs) — address these issues in their privacy policies.
The traditional approach includes preventive techniques, such

as access control, encryption or anonymization. This modus
operandi however falls short in certain situations and has thus
lost part of its potency. Consider for instance the case of a
physician in presence of a patient who needs emergency as-
sistance, presented in [8]. Under these conditions, a preventive
approach would not allow the physician to access the patient’s
medical records.

In order to address the shortcomings of the traditional
approach, a posteriori compliance control has been proposed.
In this paradigm, DCs are allowed to manipulate data a priori
and are trusted to follow the rules, but must create a data
handling registry. In case a claim is held against a DC, the
information on how data was handled, available from the
registers, can help determine if a rule was breached. As a
result, accountability becomes one of the primary means to
implement policies.

A precise definition of accountability is needed for this
approach to have validity. Discussion of possible definitions
can be found in [9], [10], [11], [12]. Bennett [13] distinguishes
between accountability of policy, of procedures, and of prac-
tice. Accountability of practice is our focus: in this context, it
regards the actual, practical processing of data and the repre-
sentation of that processing. Another view of accountability,
due to Raab, focuses on the nature of the evidence that enables
accountability, which he calls the account. We investigate the
conditions that PII handling traces must meet to constitute
meaningful accounts.

Several frameworks for a posteriori compliance control
have been described, but little attention has been paid to the
design of logs supporting accountability. This paper provides
a general discussion on what information must be included in
logs to support a posteriori analysis. We present, by means of
examples, some of the challenges that need to be considered
and possible solutions. While it may initially be tempting to
simply require “exhaustive” logs, the solution is not as simple
as it may seem. Firstly, excessively detailed records go against
the requirements of data minimization and data sanitization.
Minimization helps reduce the tension that logging creates
with DS privacy. For instance, if compliance checking is
performed by a third party on the behalf of a DS, it is in his
interest to minimize trust requirements directed toward that
third party by including in the logs only information essential
for compliance checking. In addition, even if strong security
measures must obviously be applied for logs, log minimization
is also a sound policy to limit possible data leaks due to



potential security attacks since no solution provides absolute
protection. In the same spirit, logs provided to auditors should
not leak data linked to other DS than the one for which the
compliance checking is performed. On the other side, in some
cases the DC may require data sanitization to keep operational
details of his system confidential: by revealing only selected
data, less is known to auditors about the mechanisms of the
platform he operates. Let us note that a posteriori compliance
control ought to be distinguished from forensics to this respect
and their requirements in terms of logging are rather different.
Forensics applies in unexpected circumstances and must be
able to provide information on security attacks that were not
necessarily foreseen. Therefore, keeping as much information
as possible in the logs can be a reasonable strategy. By
contrast, a posteriori compliance verifications follow prede-
fined rules arising from contracts, which makes it possible to
tailor logs to the actual needs of the analysis. Comprehensive
logging, while it can be attractive for forensics, is hence
not necessarily the right approach to a posteriori compliance
control. Last but not least, the notion of “exhaustiveness” is
not clear in this context: as we will see in the next sections,
in some cases contextual information is necessary to decide
upon compliance. Therefore, a “compliance aware” log is not
merely a log recording all system events.

We first recall related work regarding a posteriori compli-
ance control frameworks and log design (§II). A discussion
of the main challenges of log design for accountability (§III)
and a number of guidelines to overcome them (§IV) follow.
Conclusions and prospects for future work complete the paper
(§V).

II. RELATED WORK

Several frameworks for a posteriori compliance control have
already been developed. Etalle and Winsborough [14] present
a logical framework for using logs to verify that actions taken
by the system are authorized. Cederquist et al. [15] introduce a
framework to control compliance of document policies where
users may be audited and asked to justify that an action was
in compliance with a policy. The reader can refer to [8], [16],
[17], [18], [19] for more information on accountability for
privacy with a posteriori compliance control frameworks.

Log design for accountability is not a topic much discussed
in the literature. Nonetheless, some work has been done,
mostly related to log architecture. For related work on log
design, the reader can refer to [20], [21], [22]. Work presented
in [23] proposes criteria for acceptable log architecture de-
pending on the features of the system and the potential claims
between the parties.

The general approach of enforcing PII privacy through pol-
icy languages appeared in the TAS3 project architecture[24],
where the PERMIS authorization infrastructure [25] and
XACML policy language [26] are supported. The related issue
of usability is tackled by the project through the automatic
translation of access control policies from a controlled natural
language interface into machine-processable formats [27]. An-
other part of the project, described in [28], discusses broadly

an accountability framework based on security policies. How-
ever, the focus of that discussion is the prevention of user
misconduct by making them accountable, not the DC.

III. LOG DESIGN PITFALLS

Our contribution is based on an effort to build a formal
definition of the PrimeLife Privacy Policy Language (PPL).
PPL, parts of which build on XACML, was first presented
in [29] and a specification appeared in May 2011 [30]. Its
purpose is to express access and usage control rules in a
symmetric way for the DS and the DC.

Following this work, we have defined an abstract version
of a subset of PPL, which serves as a basis for our account-
ability framework. We then formalized and implemented a log
compliance analyzer. Fig. 1 gives an overview of the relevant
components.

In the course of this work, several questions regarding what
information to include in the events definition arose. This
paper is the result of an effort to address those questions
and to derive general lessons applicable to any accountability
framework. In this section, we present four categories of log
design problems and corresponding examples.

We will show how some of the examples could be modeled
in PPL. PPL provides a mechanism called obligations which
allows the DS to define a series of obligations with which
the DC should comply once the PII is sent. Obligations are
defined in terms of triggers and actions. This means that upon

Data 
Subject

LogPII
Sticky 

Policy

Accountability 

Analyzer

Sticky Policy 

Breached

Sticky Policy 

Compliant

PPL 

Logger

Data Controller

Fig. 1. PPL accountability analysis framework



the occurrence of a specific event, a particular action must take
place within a defined period of time. Many trigger events are
defined in PPL, including the deletion of a PII, its update
by the DS, the sending of a PII from a DC to a third party
(also called downstream data controller), the DS accessing
his own PII remotely and the use by the DC of a PII for
a specific purpose. Two other trigger events that will feature
in our illustrative scenarios below are TriggerAtTime and
TriggerPeriodic. While TriggerAtTime is used to
define actions that must happen at least once, between a
specified starting time and a deadline, TriggerPeriodic
is used for obligations where a given action must occur several
times with a set periodicity (and a periodic deadline).

Furthermore, authorizations are used to declare whether PII
can be transmitted to downstream data controllers and for
which specific purposes it may be used. Purposes are codified
by standardized URIs.

The DC also initially defines obligations and authorizations
with which it is willing to comply. Obligations and authoriza-
tions defined by the DS (data handling preferences) and the
DC (data handling policies) are then matched automatically
by the PPL engine, resulting in an agreed-upon sticky policy
if a match can be found. In case of a mismatch, the process
can only continue if either the data handling policies or data
handling preferences are changed first and a new matching
succeeds.

A. Example Scenario

Let us consider the example of data handling events for a
private bank account. The bank’s customer is the DS, and the
bank is the DC. The PII may consist of the DS’ name, address,
phone number and email address. Let us also consider a
downstream data controller: the company managing the credit
cards of the bank’s customers.

The following Fig. 2 is an example of a possible sticky
policy expressed in PPL:

Obligation 1:
TriggerAtTime [2013-05-23, 7]
==> ActionNotifyDS [post, 335 Powell Street]

Obligation 2:
TriggerAtTime [2013-05-25, 3]
==> ActionNotifyDS [post, 335 Powell Street]

Obligation 3:
TriggerPeriodic [2013-05-24, 2014-05-24, 2, 5]
==> ActionNotifyDS [sms, 555-2106]

Authorizations:
AuthorizationForPurpose [marketing]
AuthorizationDownStreamUsage [False]

Fig. 2. Example PPL sticky policy

Even though our code formatting is slightly different, the
parameters of Fig. 2 strictly follow the PPL specifications. The
motivations for the obligations in Fig. 2 are the following:

the bank should send its customer a notification via postal
mail once his new credit card is available for retrieval at the
branch, which is assumed to take place no later than May
30th. Additionally, the bank has a second obligation to send
the customer another notification by postal mail within three
days from May 25th; this time, the letter should contain the
PIN code for the new card. The sticky policy also requires the
bank to send the customer a notification by text message every
five days. The text message should contain the client’s current
balance, and should be sent periodically every five days with a
maximal delay of two days for each period. Those notifications
should be sent for a total duration of one year.

Note that the PPL sticky policy arising from these informal
obligations does not include all the parameters one may expect,
such as the body of the notifications. It was our goal to
base our analysis on an actual policy language, without any
extension or deviation, so as to root the resulting synthesis
in reality. The definition in of Fig. 2 is the closest way to
translate the above obligations from natural language into PPL.
The fact that this definition does not feature full detail merely
showcases a limitation of policy languages in general (PPL is
not an exception in this respect).

Two tables present the PPL trigger events (see Table I)
and action events (see Table II) appearing in the subsequent
example log. Other events also exist in PPL, but are not used
in our running example.

Now, consider an example log of the PII handling events
between the customer, the bank managing the customer’s
account and the credit card company (see Fig. 3). In the
remainder of this section, we investigate a number of issues
that can arise when analyzing this kind of log.

B. Insufficient Event Information

The first set of issues we address comes from the ambiguity
that can arise from missing parameters in the log entries for
given events.

Consider the reception of a new credit card by the DS. The
DS has provided the bank with PII and expects the bank to
send the card’s PIN number by post within a week from May
25th. The DS also expects the DC to send a letter stating the
availability of the new card at the bank’s branch, within a week
from May 23rd. The DC has agreed to these obligations, as
shown in the sticky policy earlier (see Fig. 2).

The log listing (see Fig. 3) shows that both triggers for
Obligation 1 and Obligation 2 have been fired. Ad-
ditionally, a notification has been sent to the DS’ address by
postal mail.

Now consider a compliance check for this log on May 29.
At this stage, the analyzer cannot conclude whether the log is
compliant or not. The undecidability comes from the fact that
it is not possible to tell whether the notification was related to
Obligation 1 or Obligation 2. What was included in
the notification to the DS? The PIN, or the card availability
confirmation? If we assume that the notification corresponds
to Obligation 1, the log is noncompliant because no



TABLE I
PPL TRIGGER EVENTS

Trigger event name Parameter 1 Parameter 2 Parameter 3 Parameter 4
TriggerAtTimeEvent Start date Maximal delay 7 7
TriggerDSAccess URL for PII accessed by DS 7 7 7
TriggerPersonalDataAccessedPurpose Purpose Maximal delay 7 7
TriggerPeriodic Start date End date Maximal delay Period
TriggerPersonalDataSent Downstream DC identifier Maximal delay 7 7
TriggerUpdate Maximal delay 7 7 7

1 2013-05-23T16:23 TriggerAtTimeEvent [2013-05-23, 7d]
2 2013-05-23T20:15 TriggerDSAccess [https://mybank.net/johndoe/pii1729]
3 2013-05-24T10:47 TriggerPersonalDataAccessedPurpose [marketing, 2d]
4 2013-05-24T14:52 TriggerPeriodic [2013-05-24, 2014-05-24, 2d, 5d]
5 2013-05-24T14:53 ActionNotifyDS [sms, 555-2106]
6 2013-05-25T17:01 TriggerAtTimeEvent [2013-05-25, 3d]
7 2013-05-26T23:32 ActionNotifyDS [post, 335 Powell Street]
8 2013-05-27T12:07 ActionAnonymizePersonalData
9 2013-05-28T03:18 TriggerPersonalDataSent [Mastercard, 5d]

10 2013-05-29T14:51 TriggerPeriodic [2013-05-24, 2014-05-24, 2d, 5d]
11 2013-05-29T14:51 ActionNotifyDS [email, johndoe@comcast.net]
12 2013-05-29T14:54 ActionNotifyDS [sms, 555-2106]
13 2013-06-02T08:21 TriggerUpdate [60m]
14 2013-06-02T21:50 ActionNotifyDS [sms, 555-2106]

Fig. 3. Example PPL PII events log

TABLE II
PPL ACTION EVENTS

Action event name Parameter 1 Parameter 2
ActionNotifyDS Media Address
ActionAnonymizePersonalData 7 7

notification was sent for Obligation 2. Assuming that
it corresponds to Obligation 2, the log is compliant,
because the deadline for Obligation 1 is May 30th.

Ambiguity due to the lack of explicitness of the action event
propagates to the level of the compliance analysis. The issue
is that the relationship between action events and the triggers
they relate to is not reflected by the log. A solution is to add
new parameters to both trigger and action events. Every trigger
event should carry a unique TriggerID, and action events
should feature a TriggerReference parameter that refers
explicitly to the trigger it satisfies. This additional information,
which eliminates the aforementioned undecidability, illustrates
the notion of “compliance aware” logs. It illustrates the
fact that simply recording all the events of the system is
not necessarily sufficient: extra information can be required
depending on the policies the system has to comply with.

C. Incomplete Support for Third Party Interaction

In this subsection, we consider situations for which contex-
tual information needs to be taken into account.

Consider Obligation 3 in the sticky policy of Fig. 2.
This obligation requires the bank to notify the customer with
the account’s balance by text message periodically, every five
days, with a maximal delay of two days. The obligation also
expires after one year.

In case the customer does not receive the text message in
due time, he should rightfully consider that the agreement was
breached. However, the message may indeed have been sent
by the bank but never reached its destination due to a SMS
gateway malfunction on the telecommunications operator side.

Logging of this communication should therefore not be
limited to an event stating that the DC attempted to send a
text message. Communication between the DC and a third
party, in this case a telecommunications operator, should be
included in the log so the event history is expressive enough
to pinpoint the issue.

Such situations also raise the question of the DC’s account-
ability under these conditions and how errors are handled.
Depending on the precise legal terms defining the liability of
the DC (obligation of means or obligation of performance),
the bank could be held accountable or not.

There is an additional issue. Note that the third party is
actually a downstream data controller since PII (the account’s
balance) is shared with the telecommunications operator. The
security policy language (PPL in our case study) lacks ex-
pressiveness for the definition of downstream PII handling: a
global switch, AuthorizationDownStreamUsage, has a
boolean value. Authorizing downstream usage for a whitelist
of entities to the exclusion of others is unsupported. It is only
possible to globally enable downstream usage and then define
triggers for specific downstream data controllers. Stronger
accountability calls for more fine-grained downstream usage
parametrization.



D. No Support for Break-glass Situations

Break-glass [31] situations (referring to the breaking of
glass to trigger an alarm) refer to circumstances under which
exceptional access to data should be granted to an entity
that does not possess the required privileges. Situations that
fall under this category, like the one presented in Section I
about a physician in need of a patient’s medical records in a
life-threatening situation, need to be taken into consideration
when building accountability mechanisms. In particular, they
must be considered when designing log architecture for such
mechanisms. Feigenbaum et al. [8] present the case of military
information classification systems, for which this requirement
applies.

Returning to our running example of a DS interacting with
a bank, let us consider the situation in case of credit card
fraud. In uneventful circumstances, customers do not want
banks to share their PII with third parties. In case of suspicious
activity, however, the bank may need to contact the company
managing the customer’s credit card and share the customer’s
contact information with it. This is logged through the event
TriggerPersonalDataSent [Mastercard, 5d] in
our example log, which models the sharing of PII with a
downstream DC. Since one of the authorizations in the sticky
policy (AuthorizationDownStreamUsage [False])
forbids downstream usage, this event breaches the predefined
data-handling agreements.

Another example is illegal activity that would prompt the
bank to contact law enforcement authorities. This example
raises the more general issue of how laws interact with user
defined obligations negotiated with the DC. In most states,
the law would take precedence over particular obligations and
should be taken into consideration during the a posteriori
compliance control. For this process to be automatic, the DC
should include evidence in the log that explains why the
obligation agreed upon with the DS was breached. In terms of
accountability, the DC answers to two entities simultaneously:
the DS and the state.

While it may be possible to include the analysis of some
break-glass situations in automatic compliance analyzers, in
general this kind of actions require human analysis. Current
usage policy languages such as PPL lack expressiveness for
this type of situations.

E. No Integration With Manual Verification

While both the sticky policy and log used in our running
example include notifications in obligations and action events,
they do not carry comprehensive information such as the actual
contents of the notification messages. Other obligations may
require DCs to perform actions that cannot be integrated in
the log available to the auditor because they are by essence
informal or defined too vaguely and thus cannot be formalized
in a policy language. In such situations, complementary checks
must be performed by human agents in addition to the mecha-
nized compliance analysis. Two main issues have to be solved
to ensure a proper integration of the manual and automatic
phases: (i) the policy language (and thus the logs) must

integrate links to documents defining (e.g. in natural language)
the informal requirements to be checked by the human auditor
and (ii) the analyzer must account for the complementary
manual verifications (either through an interactive mode or
by outputing all verifications to be carried out by the auditor
in a second stage).

IV. GUIDELINES FOR ACCOUNTABLE LOG DESIGN

Four major guidelines for log design emerged on the basis
of our work with PPL:

a) Log architecture and precise definitions of account-
ability are intertwined. Their joint design constitutes an iter-
ative process: Log design is not a purely technical activity.
Managers, lawyers and functional analysts should be involved.
This principle is illustrated in Section III-C. Changing circum-
stances can define or alter the extent of responsibility for the
activities of the DC, making it accountable for actions that
were not part of the initial scope.

In addition, log design should be seen as an iterative process
because as the definition of accountability for the business
under consideration changes, new log definition issues may
emerge, requiring a review of initial design choices. As a
result of such review, accountability definition might require
changes, restarting the cycle. The issue of downstream data
controllers is also relevant to this point. Policy languages often
allow agreements between the DC and the DS on how third
parties can handle PII. It is the responsibility of the DC to
forward those agreements to the third party. The DC can be
responsible for the third party complying with them, depending
on previously agreed-upon liabilities. Again, log architecture
goes hand-in-hand with accountability definitions: it may be
necessary for part of the third party’s event logs to be available
for inspection, or even incorporated in the DC’s logs.

b) Log architecture should reflect full policy language
semantics: Log designers ought to consider all aspects of
policy language semantics. Explicitness is paramount. Lan-
guages tend to express more than what is explicitly stated.
Everything that can be expressed with a policy language is
potentially a claiming point. Logs should therefore feature
enough expressiveness to elucidate whether a policy has
been breached, which includes its full semantic content. The
need for this guideline is illustrated by the PPL obligations
discussed earlier (§III-B). PPL obligations not only include
semantics for triggers and actions, but also for the causal
relationship between them. This relationship must be reflected
by logs. Contextual conditions not explicitly described by an
obligation should also be taken into consideration in this light.

c) It should be possible to model break-glass situations in
logs: Exceptional situations occur in almost every system and
should therefore be supported from the start in systems, and
therefore in logs. Even if complementary human analysis is
required for such cases, logs should still be able to reflect their
existence. This implies preliminary planning to decide how
unusual circumstances should be dealt with, increasing the
soundness of future compliance analysis. In practical terms,
logs ought to support the specification of conjunctions of



trigger events and contextual data so more expressiveness
can be achieved. Indeed, break-glass situations are generally
characterized by unusual combinations of circumstances that
need to be precisely describable in the logs.

d) Links between formal specifications and policies re-
quiring human verification are needed: Some obligations
expressed by policy languages may entail events that cannot
be checked mechanically, for instance because they entail
physical realization and are therefore beyond the scope of
formal semantics. Checking these obligations involves human
intervention. Verification tools can still partially integrate this
aspect by outputting instructions to be followed by human
agents to carry out manual compliance checking, or providing
a semi-interactive mode prompting the auditor for information
about the informal assumptions during the audit. Compliance
can then be justified more strongly through a complete argu-
mentation that ties in formal and manual verification.

V. CONCLUSION

In this position paper, we discuss the issues raised by log
design for accountability and address the question of which
information should be included in logs for meaningful a pos-
teriori compliance control. Real-world examples are analyzed
to demonstrate how log design for accountability is not a trivial
task and should be taken into consideration from the design
stage on. These examples are generalized and categorized
under four classes of situations that need to be addressed
to design “compliance aware” logs. Key guidelines to avoid
common pitfalls are presented.

In future work, we plan to provide a formal framework
for the verification of properties of accountability architec-
tures. This framework would make it possible to characterize
precisely the guarantees provided by a posteriori compliance
checking and the underlying assumptions. Another avenue for
research is the study of the minimality of the logs with respect
to the policies to be checked and the application of data
sanitization techniques to remove sensitive information that
is not crucial for accountability. It would also be interesting
to be able to reason about the comprehensiveness of the logs
(with respect to the policies) when requirements of the DC
have to be taken into account: for example, is it still possible
to decide upon compliance if a certain type of action or data
cannot be kept in the logs?

ACKNOWLEDGMENT

The authors thank Slim Trabelsi and Francesco Di Cerbo at
SAP Research for clarifications about PPL. This work was par-
tially funded by the European project FI-WARE / FP7-2012-
ICT-FI and the Inria Project Lab CAPPRIS (Collaborative
Action on the Protection of Privacy Rights in the Information
Society).

REFERENCES

[1] European Commission, “Proposal for a Regulation of the European
Parliament and of the Council on the Protection of Individuals with
Regard to the Processing of Personal Data and on the Free Movement
of such Data (General Data Protection Regulation),” 2012.

[2] European Parliament and the Council of the European Union, “Directive
95/46/EC of the European Parliament and of the Council of 24 October
1995 on the Protection of Individuals with Regard to the Processing of
Personal Data and on the Free Movement of such Data,” 1995.

[3] Article 29 Data Protection Working Party, “Opinion 3/2010 on the
principle of accountability,” 2010.

[4] United States Congress, “Health Insurance Portability and Accountabil-
ity Act,” 1996.

[5] ——, “Children’s Online Privacy Protection Act,” 1998.
[6] ——, “Gramm-Leach-Bliley Act,” 1999.
[7] ——, “Privacy Act,” 1974.
[8] J. Feigenbaum, J. Hendler, A. D. Jaggard, D. J. Weitzner, and R. N.

Wright, “Accountability and deterrence in online life (extended ab-
stract),” in ACM WebSci’11, June 2011, pp. 1–7.

[9] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler,
and G. J. Sussman, “Information accountability,” Commun. ACM,
vol. 51, no. 6, pp. 82–87, Jun. 2008.

[10] S. Eriksén, “Designing for accountability,” in Proceedings of the second
Nordic conference on Human-computer interaction, ser. NordiCHI ’02.
New York, NY, USA: ACM, 2002, pp. 177–186.

[11] D. Le Métayer, “A formal privacy management framework,” in Formal
Aspects in Security and Trust, ser. Lecture Notes in Computer Science,
P. Degano, J. D. Guttman, and F. Martinelli, Eds., vol. 5491. Springer,
2008, pp. 162–176.

[12] ——, “Formal methods as a link between software code and legal
rules,” in Proceedings of the 9th international conference on Software
engineering and formal methods, ser. SEFM’11. Berlin, Heidelberg:
Springer, 2011, pp. 3–18.

[13] Colin J. Bennett, “Implementing Privacy Codes of Practice,” Canadian
Standards Association, 1995.

[14] S. Etalle and W. H. Winsborough, “A posteriori compliance control,” in
Proceedings of the 12th ACM symposium on Access control models and
technologies, ser. SACMAT ’07. New York, NY, USA: ACM, 2007,
pp. 11–20.

[15] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog,
and G. Lenzini, “Audit-based compliance control,” Int. J. Inf. Secur.,
vol. 6, no. 2, pp. 133–151, Mar. 2007.

[16] J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Towards a formal
model of accountability,” in Proceedings of the 2011 workshop on New
security paradigms workshop, ser. NSPW ’11. New York, NY, USA:
ACM, 2011, pp. 45–56.

[17] J. Cederquist, R. Corin, M. Dekker, S. Etalle, and J. den Hartog, “An
Audit Logic for Accountability,” in Proceedings of the Sixth IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks,
A. Sahai and W. Winsborough, Eds. Los Alamitos, California: IEEE
Computer Society Press, 2005, pp. 34–43.

[18] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a theory
of accountability and audit,” in Proceedings of the 14th European
conference on Research in computer security, ser. ESORICS’09. Berlin,
Heidelberg: Springer, 2009, pp. 152–167.

[19] R. Thion and D. Le Métayer, “FLAVOR: a Formal Language for A
posteriori Verification of Legal Rules,” in Proceedings of the 2011
IEEE International Symposium on Policies for Distributed Systems and
Networks, ser. POLICY ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 1–8.

[20] B. Schneier and J. Kelsey, “Secure Audit Logs to Support Computer
Forensics,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 2, pp. 159–176,
1999.

[21] M. Bellare and B. S. Yee, “Forward integrity for secure audit logs,”
University of California at San Diego, Tech. Rep., 1997.

[22] B. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an
encrypted and searchable audit log,” in The 11th Annual Network and
Distributed System Security Symposium, 2004.

[23] D. Le Métayer, E. Mazza, and M.-L. Potet, “Designing log architectures
for legal evidence,” in SEFM, J. L. Fiadeiro, S. Gnesi, and A. Maggiolo-
Schettini, Eds. IEEE Computer Society, 2010, pp. 156–165.

[24] “TAS3: Trusted Architecture for Securely Shared Services,” http://
vds1628.sivit.org/tas3/, 2011.

[25] D. W. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su, and T.-A.
Nguyen, “Permis: a modular authorization infrastructure,” Concurrency
and Computation: Practice and Experience, vol. 20, no. 11, pp. 1341–
1357, 2008.

http://vds1628.sivit.org/tas3/
http://vds1628.sivit.org/tas3/


[26] The OASIS technical commitee, “XACML: eXtensible Access Con-
trol Markup Language,” https://www.oasis-open.org/committees/xacml/,
2005.

[27] L. L. Shi and D. W. Chadwick, “A controlled natural language interface
for authoring access control policies,” in SAC, W. C. Chu, W. E. Wong,
M. J. Palakal, and C.-C. Hung, Eds. ACM, 2011, pp. 1524–1530.

[28] N. Zannone, M. Petkovic, and S. Etalle, “Towards data protection com-
pliance,” in SECRYPT, S. K. Katsikas and P. Samarati, Eds. SciTePress,
2010, pp. 213–216.

[29] S. Trabelsi, A. Njeh, L. Bussard, and G. Neven, “PPL Engine: A
Symmetric Architecture for Privacy Policy Handling,” W3C Workshop
on Privacy and data usage control, 2010.

[30] S. Trabelsi, G. Neven, and D. Raggett, PrimeLife Deliverable D5.3.4:
Report on design and implementation, 2011.

[31] Joint NEMA/COCIR/JIRA Security and Privacy Committee (SPC),
“Break-glass: An approach to granting emergency access to healthcare
systems,” 2004.

https://www.oasis-open.org/committees/xacml/

