
HAL Id: hal-00340779
https://hal.archives-ouvertes.fr/hal-00340779v2

Submitted on 13 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Algorithm for File Transfer Scheduling in Grid
Environments

Alexandra Carpen-Amarie, Mugurel Ionut Andreica, Valentin Cristea

To cite this version:
Alexandra Carpen-Amarie, Mugurel Ionut Andreica, Valentin Cristea. An Algorithm for File Transfer
Scheduling in Grid Environments. International Workshop on High Performance Grid Middleware
(HiPerGrid), Nov 2008, Bucharest, Romania. pp.33-40. �hal-00340779v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49808289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00340779v2
https://hal.archives-ouvertes.fr

An Algorithm for File Transfer Scheduling in Grid Environments

Alexandra Carpen-Amarie1,2, Mugurel Andreica1, Valentin Cristea1

1University “Politehnica” of Bucharest, 2INRIA/IRISA, Rennes, France
Alexandra.Carpen-amarie@irisa.fr, {mugurel.andreica,valentin}@cs.pub.ro

Abstract

This paper addresses the data transfer scheduling
problem for Grid environments, presenting a
centralized scheduler developed with dynamic and
adaptive features. The algorithm offers a reservation
system for user transfer requests that allocates them
transfer times and bandwidth, according to the
network topology and the constraints the user
specified for the requests. This paper presents the
projects related to the data transfer field, the design of
the framework for which the scheduler was built, the
main features of the scheduler, the steps for transfer
requests rescheduling and two tests that illustrate the
system’s behavior for different types of transfer
requests.

1. Introduction

Grid-based computing environments have become a
critical requirement in large-scale scientific and
engineering research and the access to distributed data
has become as important as access to distributed
computational resources. Data-intensive applications
require that massive datasets are transferred between
the machines involved in the computation. Examples of
such applications include experimental analysis and
simulations in scientific disciplines such as high-energy
physics, climate modeling, earthquake engineering.

The need for a file transfer scheduler emerges from
the data placement requirements of the data-intensive
applications, which deal with the transfer of large
datasets, necessary for the input or obtained as an
output of computation jobs. These transfers can have
different time constraints and priorities associated, that
show the scheduler the moment when they are needed
in order to optimize the cost of the running application.

The challenges raised by the need to guarantee a
certain quality of service in a Grid environment can be
summarized as follows[4]:

- Resource heterogeneity – data transfers are mainly
influenced by network heterogeneity, networks used to
interconnect resources being significantly different in
terms of bandwidth and latency.
- Resource Non-dedication – the available bandwidth
of network links can vary over time, especially when
the different sites are interconnected using simple
Internet links, that can be also employed for traffic
unrelated to the system.
- Dynamic behavior - in a Grid environment,
resources can dynamically join or leave the system, and
these changes have to be automatically detected.
- Dynamic scheduling – the system cannot use a static
scheduling algorithm, as the information regarding all
the tasks that have to be processed cannot be available
before the start of the first task. Therefore, a dynamic
algorithm is required, as a result of the need of a
permanently updated estimation of the system state and
of the necessity to make instant decisions when a new
task arrives.

There are only a few scheduling approaches
proposed for the file transfer problem, and most of
them use a very simple scheduling algorithm, a First
Come First Served policy, when dealing with new
transfer requests. The scheduler presented in this paper
offers a wider range of options for the transfer tasks,
from the different types of requests to the time
constraints that can be associated with them.

2. Related work

This section presents an overview of the projects
that address the data scheduling problem and iterates
through the main aspects they cover.

Stork[9] is a specialized scheduler for data
placement activities in Grid, which previously have
been done either manually or by using simple scripts.
They can be queued, scheduled, monitored and
managed in a fault tolerant manner. Stork relies on a
framework in which computational and data placement
jobs are treated and scheduled differently by their

corresponding schedulers, and the management and
synchronization of both types of jobs is performed by
higher level planners[9].

Stork deals with data placement jobs originating
from the necessity to move data sets into and out of
data processing applications. This model implies the
existence of dependencies between data transfer tasks.
These are managed by DAGMan (Directed Acyclic
Graph Manager), a meta-scheduler that submits the
data transfer jobs to Stork, scheduling them according
to an user defined input file where one can specify all
input data transfers, output data transfers, data
processing, and dependencies. In conclusion, Stork
does not address dynamic scheduling (data transfer
jobs are known at the beginning of the scheduling
process, being specified in the input file needed by
DAGMan).

The open source Globus® Toolkit[11][12] is a
fundamental enabling technology for the Grid, letting
people share computing power, databases, and other
tools securely online across corporate, institutional, and
geographic boundaries without sacrificing local
autonomy. The Globus Toolkit provides a number of
components for doing data management: GridFTP[13]
for high-performance and reliable data transport; RFT
(Reliable File Transfer)[5] - for managing multiple
transfers. The Reliable Transfer Service (RFT) is a web
service that provides interfaces for controlling and
monitoring third party file transfers using GridFTP
servers.

The File Transfer Service (FTS)[7] is the lowest-
level data movement service defined in the gLite
architecture. It is responsible for moving sets of files
from one site to another, allowing participating sites to
control the network resource usage. It is designed for
point to point movement of physical files.

Globus RFT and gLite[8] FTS both offer reliable
and robust management of data movement in a grid
environment, and represent a significant advance over
direct client management of data transfers[10]. FTS
and RFT use a First Come First Served policy when
processing transfer tasks, according to submission
times. The user does not have the possibility to specify
more options regarding the scheduling process or to
state different constraints associated with the transfer
requests. The scheduler proposed in this paper
addresses these issues, enabling the user to specify
different parameters for his transfers, like the needed
bandwidth and the desired start moment, but also
giving him the opportunity to leave these options
unspecified and let the scheduler decide their optimal
values.

There are other data transfer schedulers that address
the following data transfer scheduling issues:
scheduling for transfers with time constraints and
bandwidth reservations[1][6], and dynamic bandwidth
resizing for running requests, based on their
priorities[1]. These schedulers do not tackle
rescheduling issues when a transfer request cannot be
fulfilled or when a transfer takes longer than its
allocated time period, and they force the user to state
the bandwidth that his transfer will use, without the
system’s possibility to choose a suitable bandwidth.
The system presented in this paper brings an
improvement from this point of view, offering a
rescheduling algorithm that allows a rejected transfer to
modify other, less important transfers in order to fit
into the desired time period.

The dynamic bandwidth resizing method[1]
involves the bandwidth resizing for all the running
requests, in spite of their priorities (every running
request gets a slice of the available bandwidth directly
proportional with the request’s priority). This feature is
modified in this paper in the following way: a request
that does not fit into its user specified position can only
modify or reschedule requests that have a lower
priority. This approach prevents the system from
resizing all the requests when a low priority transfer
cannot be scheduled.

3. The Scheduling Framework

The framework is conceived as a set of distributed
services, which are loosely coupled and have well
defined roles[1]. The whole system revolves around
MonALISA[2][3], and is using different components of
the framework in order to collect the monitoring data,
to store it, to access and visualize it (Figure 1).

Figure 1. System architecture
The monitoring and controlling services are

distributed throughout the system, on each end point
where requests are actually executed, or close to
intermediate points in the network that can provide
monitoring information or that can be controlled. The

interactions between the optimizer and the distributed
services are assured by an advanced communication
platform that, besides transporting monitoring and
controlling messages, provides registration and
discovery functions.

In general, a monitoring and controlling service is
responsible for discovering the local network topology
and retrieve monitoring information about the local
nodes and links. It makes this information available to
the optimizer through the flow of monitoring data. The
optimizer, by retrieving this information from all the
existing services, can infer the entire topology. The
underlying details of each administrative domain are
hidden from the optimizer, making the whole
framework flexible and extensible. The optimizer
service coordinates the entire system based on the
monitoring information received from the other
services and on the users’ requests. The optimizer
service is a high level client for the services below. It
connects to the communication platform and discovers
the available services. Then, using the monitoring and
controlling interface, it receives the information about
topology, requests, end hosts and issues the necessary
commands for pursuing users’ requests.

3.1. Network topology

The real network topology is abstracted as a graph
within the optimizer, based on the available network
segments reported by all the distributed services. This
graph includes a set of nodes, interconnected through a
number of links with additional information. The
algorithms implemented in the optimizer run over this
abstracted topology.

Among the parameters specific for each link the
following are the most important, from the scheduler’s
point of view: name, source and destination nodes,
bandwidth, ID.

3.2. Service requests

There are two fundamental scenarios in which a user
interacts with the system: bandwidth reservation and
data transfer. When a user wants to submit a transfer
request, he has to select the type of request and its
specific parameters. The system discovers one or more
paths between the specified source and destination
nodes and passes the paths on to the scheduler.

The scheduler must assign a start time, a duration
and an allocated bandwidth (or just the ones that are
not specified by the user) for every request, taking into
account all the other requests previously added to the
system (already running transfers and scheduled

requests). Then, it returns to the user one or more
offers obtained for the request in the scheduling
process and the user must select the one that meets his
needs.

For every type of request, a set of common
attributes can be identified: source and destination
nodes, status, user and priority, time constraints, path
(the list of links chosen for the execution of this
request), bandwidth (the maximal bandwidth used by
the request. It can be either given by the user, or
computed by the system, based on the individual
bandwidth of each link in the path), duration,
monitoring parameters (used bandwidth and finish
status).

The possible statuses for a transfer request are:
offered – an allocated, but not yet confirmed system
response to user’s request; scheduled – the system’s
response was accepted by the user and the request is
scheduled for execution; running – the request is
currently running; finished – the request has finished
successfully; error – there was an error while setting up
the path, or when running the request.

The user can specify for every request a desired
time constraint:
- NONE: the request has no time constraints.
- ASAP: the request has to be scheduled as soon as
possible - the scheduler finds the first time interval
where the bandwidth needed by the request is available.
- NOT AFTER: the request cannot be scheduled after
a specified time. The scheduler tries to add the request
at the specified moment, provided that its bandwidth
need is acceptable in the list of requests. If the request
cannot fit at the desired time moment, it is rescheduled
ASAP - the scheduled offer is returned to the client, if
the begin time of the request is not after the user
specified time.
- NOT BEFORE: the request cannot be scheduled
before a user specified time moment. The system tries
to schedule the request using as the transfer begin time
the time specified by the user. If the request does not fit
into the queue, it is rescheduled using a best fit policy
at a moment after the one stated by the user.

4. The Transfer Scheduler

The scheduler keeps track of all the requests in the
system. There is only one instance of the scheduler that
is called when a user wants to make a transfer and it
records all the paths used by the system, their allocated
reservations, available bandwidths and available
bandwidths per link.

The scheduler records all the paths that have
associated transfer requests or running transfers. For

every path, the system has to keep a list of the transfers
scheduled on that path. Moreover, for every path, the
system has to remember the available bandwidth, in
order to know how much bandwidth it can allocate to a
new request.

Initially, the bandwidth is computed as the minimum
bandwidth of all the links contained in the path. When
a new request is scheduled, the available bandwidth
decreases during the time period allocated to the
request. The outcome is that the scheduler has to record
the different maximum available bandwidths over time.

The scheduler creates a list of time intervals where
the bandwidth is constant. Every element of the list
records the beginning and the end time, the bandwidth
and a list of requests linked to this time interval.

When there are no requests, the maximum
bandwidth of a path is computed as the minimum
bandwidth of all the contained links. However, if one
of these links also belongs to another path where there
are scheduled requests, the link’s bandwidth changes in
time. As a result, every link needs to have a list of time
intervals where the bandwidth is constant just like paths
do. When a new request is added to the path, the
available bandwidth of every link in the path changes
as well. The links keep only the list of time intervals
and associated bandwidths, and not the list of requests
for every element. The request list is not necessary, as
the list associated to a link is not used to schedule new
requests, but only to compute the maximum available
bandwidth for different paths that use the link.

5. Adding a new request

For every request type, the user can input different
requirements for the scheduler: the desired bandwidth,
the duration of the reservation, several types of time
constraints. Each type of transfer goes through different
steps on its way to being scheduled and then executed.

5.1. File Transfers

When a request for a simple transfer is submitted,
the user has to provide the following information: the
source node, the destination node, the source file and
the file size. The scheduler handles in a different way
the transfers with a specified bandwidth requirement
and the transfers with an unspecified bandwidth.

The first case is when the user specifies a
bandwidth for the transfer. The new transfer receives
a prediction for the duration of the transfer, based on
its size and the specified bandwidth. After that, the time
constraint selected is checked. There can be four
different configurations:

a) The user selected ASAP
The system selects from the list of time intervals the

first subset of consecutive intervals where the request
can fit given its bandwidth needs and duration. Next,
the scheduler assigns a begin time to the request – the
same as the begin time of the first interval in the
selected list.
b) The user selected the NOT AFTER constraint and
specified a begin time for the transfer

The transfer begin time is set to the moment
specified by the user. Now the request has a begin time,
a duration and a specified bandwidth. The system only
finds the time interval that contains the begin time of
the request and checks if enough bandwidth is available
for the request for every interval in the list covered by
the duration of the request, starting with the selected
one.

If the required amount of bandwidth is available, the
request is scheduled (added to the path's list) using
these settings. Otherwise, the system tries to find a
scheduling time for the request using an ASAP
approach, provided that the begin time set by this
method does not break the user specified time
constraint (the begin time set is not after the time
specified by the user).
c) The user selected the NOT BEFORE constraint and
specified a begin time for the transfer

The transfer begin time is set to the moment
specified by the user. The system attempts to find an
appropriate place for the request in the same way it
does for the NOT AFTER constraint. If this approach
fails, the request is scheduled using the same method as
for a request with no time constraints, checking that the
selected start time complies with the constraint
specified by the user (the start time is after the user
specified time).
d) The user selected NONE – no time constraint

The system selects from the list of time intervals the
last subset of consecutive intervals where the request
can fit given its bandwidth needs and duration
(excepting the last interval that always has the
maximum bandwidth). Next, the scheduler assigns a
begin time to the request – the same as the begin time
of the first interval in the selected list.

The second type of file transfer is when the user
does not specify a bandwidth amount for his
transfer. The scheduler assigns the maximum possible
bandwidth to the request. The request is scheduled like
a request having a bandwidth specified by the user,
according to the same four time constraint
configurations. The estimated begin and end time are
saved and the scheduler assigns a new bandwidth value
for the request, equal to half of the initial value. The

scheduling process is restarted and the two estimated
finish times are compared. If the first result's end time
is after the one from the second result, the latter is kept
and scheduling process is once again repeated with a
new, smaller value for the bandwidth. Otherwise, the
first result is assigned to the request and offered to the
user.

5.2. Bandwidth reservation transfers
For these transfers no actual data is transferred, but

the user only wants to make sure that the selected link
will have the required available bandwidth for the
required duration. During that period, the user can use
the link in any way as long as he does not exceed the
specified amount of bandwidth. In contrast with the
other transfer types, the user does not specify a certain
file and file size. He just has to specify the source and
destination nodes, the start and finish times and the
amount of bandwidth he would like to have available in
that period.

The scheduler's behavior is exactly the same as
when a transfer request is placed using a NOT AFTER
time constraint, because all the parameters are set by
the user: bandwidth, start time and duration. The
system tries to add the request at the specified time
moment and, if the operation is not successful, the
request is rescheduled using a ASAP approach and the
result is offered to the user as an alternative to his
specified constraints.

6. Request Rescheduling

There are two cases when a rescheduling of the
existent requests is necessary: when a running transfer
exceeds its allocated time period and overlaps other
scheduled transfers or when a request having a high
priority or specified time constraints cannot be
scheduled on the selected path. The rescheduling
process consists of three steps, performed first for the
requests belonging to the current user and then for the
requests belonging to other users:
1. The bandwidth modification for running requests.
2. The bandwidth modification for scheduled (not yet
running) requests.
3. The rescheduling of the requests that can be moved
and are not yet running.

6.1. Bandwidth modification for running
requests

The requests that are suitable for this step of the
rescheduling process must comply with the following
rules:

- they have to be in one of the next two statuses:
RUNNING, STARTING
- they must have a priority lower than the priority of
the new request
- they must not have a bandwidth value specified by
the user. The bandwidth has to be allocated by the
scheduler.

The system tries to lower the used bandwidth for
every request, until the new request can be scheduled
into the desired position. A list consisting of requests
that follow the above conditions is computed, having
the elements sorted by several parameters: the priority
(ascending sort), the size of the bandwidth modified for
the request by subsequent rescheduling iterations
(ascending sort), the size of the allocated bandwidth
(ascending sort). For every running request, the system
decreases the current bandwidth to the value that is the
minimum between the needed bandwidth for the new
request and half of the current bandwidth used by the
request. The system tries to schedule again the new
request. If the scheduling succeeds, the remaining
requests will not be modified and will continue their
execution with the same settings.

6.2. Bandwidth modification for scheduled
requests

The requests that can be modified in this step of the
rescheduling process must comply with the following
rules:
- they have to be in the SCHEDULED status
- they must have a priority lower than the priority of
the new request
- they must not have a bandwidth value specified by
the user. The bandwidth has to be allocated by the
scheduler.

For the scheduled requests, the approach is
different, as when the bandwidth is modified, the
duration of the request might change and affect other
scheduled requests. As a consequence, all the requests
that are suitable for this kind of modifications are first
removed from the scheduler (not from the system and
the transfer queues, because they will be reinserted in
the scheduler into exactly the same position – they will
have the same scheduled time – but with a different
allocated bandwidth and possibly a different duration).

The system tries to schedule the new request. If the
scheduling succeeds then the list of requests is
reinserted into the scheduler, after they get modified. If
the new request cannot be scheduled, the removed
requests are reinserted into the scheduler after the new
request goes through all the steps of the rescheduling
process. If the request cannot be scheduled, they are
reinserted unmodified, otherwise the system tries to

add them to the scheduler using a Greedy algorithm
approach.

The system sorts the modifiable requests, using the
next rules: the priority (ascending sort), the size of the
bandwidth modified for the request by subsequent
rescheduling iterations (ascending sort),the size of the
allocated bandwidth (descending sort). This sorting
method is used to modify first the bandwidth for
requests that have low priority, that were not modified
a lot of times and that have a large amount of allocated
bandwidth (these requests are more likely to free
enough bandwidth for the new request and to allow the
other requests to be scheduled unmodified). The list of
requests is traversed from both directions. The system
extracts one request from the beginning of the list,
changes its bandwidth and then it schedules the
modified request in the initial position. Then an
element from the end of the list is processed. The
system tries to add it to the scheduler unmodified. If the
operation fails, the request will be scheduled like the
others, with a modified bandwidth.

These two steps repeat until all the modifiable
requests have been scheduled or until they cannot be
scheduled anymore in the same position they were
when the rescheduling process began. In the latter case,
the new request is removed, the requests are scheduled
unmodified and the rescheduling fails. The bandwidth
for every request is modified by the following rule: the
system decreases the current bandwidth to the value
that is the minimum between the needed amount of
bandwidth for the new request and half of the current
bandwidth used by the request.

6.3. Rescheduling for movable requests

The requests that are suitable for this step of the
rescheduling process must follow these rules:
- they have to be in the SCHEDULED status
- they must have a priority lower than the priority of
the new request
- they must have one of the following time constraints:
NONE or NOTBEFORE. Only these types of time
constraints are used because they imply that the request
was scheduled using a last fit policy and they can be
moved to a later start transfer moment without breaking
the user's demands.

The system computes a list consisting of requests
that follow the above conditions, sorted by the next
parameters: the priority (ascending sort), the number of
times the request was rescheduled (ascending sort), the
size of the allocated bandwidth (descending sort). This
sorting method is used to move in the first place the
requests that have low priority, that were not modified

a lot of times and that have a large amount of allocated
bandwidth (these requests are more likely to free
enough bandwidth for the new request and to allow the
other requests to be scheduled unmodified). The
requests belonging to the list are removed from the
scheduler (but not from the system's scheduled requests
list) one by one. After every removal the system tries to
schedule the new request. The operation ends when all
the requests have been removed or the new request is
scheduled successfully. If the new request could not be
scheduled, the removed requests are not reinserted into
the scheduler until the new request goes through all the
steps of the rescheduling process.

Finally, the removed requests are added back to the
scheduler. If the new start time allocated is different
from the previous one, the request will be deleted from
the system and the corresponding waiting queue for
scheduled requests and a new request will be added
with the newly computed parameters.

6.4. Dynamic rescheduling

The scheduler needs to dynamically modify its
requests in one of the following two situations:
- when a transfer finishes faster than its predicted
duration
- when a transfer finishes later than its predicted
duration.

In the first case, the transfer is automatically
removed from the scheduler when it ends, in order to
free the bandwidth allocated for its entire duration.

Every transfer is inserted at its start moment in a
waiting queue. When its allocated duration is due, the
transfer is extracted from the queue and its status is
inspected. If it is still in the RUNNING status, this
means that it will run more time that it was supposed
to. In this case, the scheduler automatically adds a
bandwidth reservation with the highest possible priority
at the moment when the transfer should have been
finished, which allows the transfer to extend its
execution over its due time.

This approach has two advantages:
- enables the rescheduling of the requests that were
placed after the running transfer if their total bandwidth
exceeds the available one
- prevents the scheduling of new requests that could
overlap the extended transfer.

7. Tests

7.1. Testing environment
The MonALISA[2] service was installed on a set of

nodes, presented in Figure 2:

Figure 2. System nodes
The nodes are connected using the links defined below
(Figure 3):

Figure 3. System links
The network topology was defined locally for every

farm. The links are considered to be dedicated, having
no other traffic than the one initiated by the scheduler.

To facilitate the visualization of the requests and of
the way they are kept into the scheduler, the system
uses ApMon[14] to send scheduler data to the local
MonALISA farm. Every time a new request is inserted
into the system, the monitoring module sends the
current state of the scheduler to the farm.

The tests consisted in several types of transfers and
the result returned by the scheduler. The monitoring
information is from the GUI MonALISA client, and
shows the data reported by the scheduler to the local
MonALISA service.

7.2. Transfer that triggers bandwidth
modification rescheduling

Figure 4. Scheduler initial state
The chart in Figure 4 shows four transfers recorded

in the scheduler, their scheduled positions in time and
their allocated bandwidth.

We try to add a bandwidth reservation that overlaps
the first scheduled transfer (alex-237) and has a higher
priority. The first transfer (alex-237) has been inserted
without a bandwidth specified by the user, and with a
priority equal to 1. The scheduler allocated it the
maximum available bandwidth, 50Mbps. The new

request (alex-238) cannot be scheduled with its
specified bandwidth. As a consequence, the bandwidth
of the first scheduled request (that has a lower priority)
is modified to 12.5Mbps and the new request can now
fit into its intended place.

Figure 5 shows the new request (alex-238) inserted
with its 30Mbps bandwidth and the transfer with the
modified bandwidth of 12.5 Mbps (alex-237).

Figure 5. Scheduler state after inserting
alex-238

7.3. Dynamic bandwidth modification for
running requests

For a path that has the maximum bandwidth 50
Mbps, we add a request that has no bandwidth
specified by the user, alex-145. The path is free, so the
request is scheduled with the maximum possible
bandwidth, 50Mbps. We try to add a second request,
alex-149, again with no bandwidth specified by the
user, but with a higher priority (2) and a time
constraint: the request should not begin after 12:27
12.06.2008.

The request cannot be scheduled with a bandwidth
equal to the maximum value, 50Mbps, and the system
tries again to schedule it with a bandwidth equal to half
the maximum bandwidth, 25Mbps. Because of the
running request, the scheduling process fails again. As
a consequence, the bandwidth of the running request
(alex-145) is dynamically modified to 25Mbps and the
new request (alex-149) gets an assigned bandwidth of
25Mbps.

We add a third request, alex-150, with a bandwidth
of 20Mbps, but with a higher priority (5) than the
previous two requests and a time constraint: the
transfer should not begin after 12:30 12.06.2008. The
transfer cannot be scheduled, and given its high
priority, the other two running transfers go through
another bandwidth modification process: their
bandwidth drops from 25Mbps to 12.4 Mbps. The

chart in Figure 6 shows the bandwidth evolution of the
three requests and the sum of their bandwidths, which
has to be lower than 50Mbps.

Figure 6. Bandwidth values for running
requests

8. Conclusions

The proposed file transfer scheduler takes care of
the different aspects in transferring data in a dynamic
environment. It offers a reservation system for user
transfer requests that allocates them transfer times and
bandwidth, according to the constraints the user
specified for the requests.

The user has the possibility to reserve a certain time
moment for his request, or simply make a bandwidth
reservation in order to be sure that the desired
bandwidth is available. If the transfer is successfully
scheduled, the user that submitted the request knows
when the transfer is going to take place and its
duration. The system will always keep the parameters
stated by the user at their specified value. When the
bandwidth or the desired start time are not important
for the user, they are allocated by the scheduler, in the
best possible way to make use of the available
bandwidth and to allow other requests to run
concurrently. The scheduler also offers the possibility
of establishing a hierarchy between requests, by
assigning them different priorities. If a high priority
request cannot be scheduled, the system tries to
dynamically adjust the parameters for low priority
requests in order to accommodate the new one.

The new features that our algorithm brings
compared to other approaches can be summarized as
follows: it introduces for the user the possibility to let
the system decide the value of the bandwidth that the
transfer will use; it establishes a hierarchy for the
transfers, enabling the rescheduling of the low priority
requests, in terms of dynamically reducing the allocated

bandwidth for running and scheduled requests, and
moving the scheduled requests that have no time
constraints; it adds to the running requests that exceed
their allocated time period the means to automatically
trigger the rescheduling of subsequent transfers and
continue their execution without affecting the
scheduling process.

The possible improvements to the scheduling
algorithm can be related to the next ideas:
- the scheduler can integrate MonALISA monitoring
information to provide accurate measurements of the
available bandwidth
- for the duration of the file transfers, the scheduler
could use a duration prediction module
- the system could tackle the problem of transfers
with dependencies.

9. References

[1] C. Cirstoiu, “Optimization Framework for Data Intensive
Applications in Large Scale Distributed Systems”, PhD.
dissertation, University “Politehnica” of Bucharest, 2008.
[2] “MonALISA” http://monalisa.caltech.edu/
[3] H.B. Newman, I.C.Legrand, P. Galvez, R. Voicu, C.
Cirstoiu, “MonALISA - A Distributed Monitoring Service
Architecture”, CHEP03, La Jolla, California, 2003
[4] Y. Zhu, “A Survey on Grid Scheduling Systems”,
Technical Report, Computer Science Department of Hong
Kong, University of Science and Technology, 2003
http://oslab.khu.ac.kr/mgrid/resources/rao_ZHU_Yanmin_Su
rvey_Report.pdf
[5] Reliable File Transfer (RFT),
 http://www.globus.org/toolkit/data/rft/
[6] A. Popescu, “Integrated transfer scheduling system with
reservations in Grid environments”, Diploma Project,
University “Politehnica” of Bucharest, 2007.
[7] „File Transfer Service”, http://egee-jra1-dm.web.cern.ch/
egee-jra1-dm/FTS/default.htm
[8] „EGEE gLite User’s Guide GLITE FILE TRANSFER
SERVICE – CLI”, 2005, https://edms.cern.ch/file/591792/1/
EGEE-TECH-591792-Transfer-CLI-v1.0.pdf
[9] T. Kosar and M. Livny, “Stork: Making data placement a
first class citizen in the Grid”, Proceedings of the 24th
International Conference on Distributed Computing
Systems, 2004, http://www.cs.wisc.edu/condor/stork/ papers/
stork-icdcs2004.pdf
[10] G.A. Stewart, G. McCance, “Grid Data Management:
Reliable File Transfer Services’ Performance”, CHEP06,
Mumbai, India, February 2006
[11] Ian Foster, Carl Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit”, International Journal of
Supercomputing Applications, 1997
[12] “The Globus toolkit webpage”, www.globus.org/toolkit/
[13] “Globus GridFTP”,
http://www.globus.org/toolkit/docs/4.0/data/gridftp/index.pdf
[14] ApMon User Guide,http://monalisa.cacr.caltech.edu/
monalisa __ Documentation__ApMon_User_Guide.htm

http://monalisa.caltech.edu/
http://monalisa.cacr.caltech.edu/
http://monalisa.cacr.caltech.edu/monalisa__Documentation__ApMon_User_Guide.htm
http://monalisa.cacr.caltech.edu/monalisa__Documentation__ApMon_User_Guide.htm
http://monalisa.cacr.caltech.edu/monalisa
http://www.cs.wisc.edu/condor/stork/papers/stork-icdcs2004.pdf
http://www.cs.wisc.edu/condor/stork/
http://www.cs.wisc.edu/condor/stork/papers/stork-icdcs2004.pdf
http://www.globus.org/toolkit/
http://www.globus.org/toolkit/docs/4.0/data/gridftp/index.pdf
https://edms.cern.ch/file/591792/1/EGEE-TECH-591792-Transfer-CLI-v1.0.pdf
https://edms.cern.ch/file/591792/1/EGEE-TECH-591792-Transfer-CLI-v1.0.pdf
http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/FTS/default.htm
http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/FTS/default.htm
http://www.globus.org/toolkit/data/rft/

