
HAL Id: hal-00800975
https://hal.archives-ouvertes.fr/hal-00800975

Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A synchronous language with partial delay specification
for real-time systems programming

Rémy Wyss, Frédéric Boniol, Julien Forget, Claire Pagetti

To cite this version:
Rémy Wyss, Frédéric Boniol, Julien Forget, Claire Pagetti. A synchronous language with partial delay
specification for real-time systems programming. 10th Asian Symposium on Programming Languages
and Systems, Dec 2012, Kyoto, Japan. pp.223-238. �hal-00800975�

https://hal.archives-ouvertes.fr/hal-00800975
https://hal.archives-ouvertes.fr

A synchronous language with partial delay

specification for real-time systems programming

Rémy Wyss1, Frédéric Boniol1, Julien Forget2, and Claire Pagetti1

1ONERA–Toulouse, France, 2LIFL/USTL–Lille, France

Abstract. High-level formal programming languages require system de-
signers to provide a very precise description of the system during early
development phases, which may in some cases lead to arbitrary choices
(i.e. the designer “overspecifies” the system). In this paper, we propose
an extension of synchronous dataflow languages where the designer can
specify that he does not care whether some communication is immediate
or delayed. It is then up to the compiler to choose where to introduce
delays, in a way that breaks causality cycles and satisfies latency require-
ments imposed on the system.

1 Introduction

Context. Implementing real-time critical systems is an increasingly complex pro-
cess that calls for high-level formal programming languages. In this paper, we fo-
cus on synchronous languages [1], such as Lustre [6] and its commercial version
Scade [4], which have successfully been adopted for the formal specification of
control systems. These languages are based on the synchronous paradigm, where
the behaviour of a program is seen as a sequence of reactions: (1) each reaction
consists in reading the current inputs, computing the current outputs and up-
dating the internal state of the system; (2) each reaction occurs in zero logical
time (we do not care about when computations occur during a reaction). Relying
on such a language imposes very early in the development process to specify a
completely deterministic system, while in some specific cases the designer might
want to leave some degree of liberty in the specification. This paper details how
to avoid such overspecification.

Non deterministic communication specification. Let us consider the simplified
mono-periodic flight control system depicted in the Figure 1. It consists of a set
of avionics functions, which acquire information on the state of the aircraft and
on the pilot orders, and which objective is to control the position, speed and
attitude of the vehicle thanks to its control surfaces. The right part of the figure
depicts the control of the ailerons while the left part depicts the control of the
elevators. Each vertex depicts a function. Edges depict data-communications be-
tween functions and are of two different kinds. Plain arrows stand for immediate
communications, which induce a precedence constraint from the producer to the
consumer. Dashed arrows stand for less constrained communications that do not
induce precedence constraints. We illustrate this distinction below.

The variable a_angle stands for the current angle of the aileron and is ac-
quired by the function AAF (Aileron angle filter). This function consolidates

a_orderAL

a_angleAAF

y_accYAF

LtLe_order EL

e_angle EAF

z_acc ZAF

LgL

o_a_angleo_e_angle

o_z_acc

r_e_angle

o_y_acc
GL

p_order

r_a_angle

lg_fbr_lg_acc
r_lt_acc

lt_fb

d1

d2

EL elevator law
EAF elevator angle filter
ZAF z acceleration filter
LgL longitudinal law GL guidance law

AL aileron law
AAF aileron angle filter
YAF y acceleration filter
LtL lateral law

Fig. 1. A simplified flight control system

the data and sends the variable o_a_angle (the observed angle) to the func-
tion AL (Aileron law). AL controls the aileron and maintains the required angle
r_a_angle. According to the observed angle and the required angle, it sends an
order a_order that enables to reach safely the required angle. Thus, the dif-
ferential equations that command the aileron surface are implemented by the
data-flow L1 = a_angle → o_a_angle → a_order. Such a computation path,
from a sensor acquisition to an actuator order is called a functional chain. In this
case, L1 corresponds to the discretisation of a command law and functions must
be applied strictly sequentially for the computation to be correct. The elevator
law behaves similarly.

The control laws of the ailerons and of the elevators communicate through
the functions LtL and LgL, in order to verify that the orders sent to the different
actuators (ailerons and elevators) are consistent. This consolidation is however
less stringent than the command described in L1, therefore longer latencies in
the communication can be supported. As a result, communications between such
functions do not impose strict precedence constraints and a function is allowed to
compute using data produced by another function during the previous reaction
instead of the current reaction (delayed communication). Still, the comparison
and consolidation must be done on sufficiently “fresh” data. Thus, the number
of delayed communications that the functional chain L2 = z_acc → o_z_acc

→ d2 → r_a_angle → a_order can tolerate is bounded by a maximum latency
constraint.

The last part of the system, the guidance law (GL), computes a series of
accelerations to apply in order to reach a position ordered by the pilot. This is
described by the chain L3 = p_order → r_lt_acc → r_a_angle → a_order.
This function is temporally less constrained since the required position is reached
only after several execution steps (several reactions). The function could even be
implemented as a function executed less often than every logical instant. Thus,
communications between GL and other functions are flexible.

This illustrates two cases where the communication specification should re-
main non deterministic (unspecified): (1) when loosely coupled control laws com-
municate, (2) when there is a global latency imposed over a functional chain;
local delays between each component of the chain are not explicitly required and
may remain unspecified by the designer, provided that at run time the global
end-to-end latency is satisfied.

2

Allowing such a liberty in the way functions communicate eases the design
of large systems that are typically made up of several thousand components (for
instance, a flight control system is made up of about 5.000 functional nodes).
In such a system, specifying the temporal semantics of all the communications
(more than 20.000 in a flight control system) is not humanly reasonable. A
better solution would be to let designers specify only for critical communications
and to leave the rest unspecified, meaning that he "does not care" whether the
communications are immediate or delayed. The second advantage of this liberty
is to ease the scheduling as it allows for more parallelism, in particular when the
system is implemented on a distributed platform.

Contribution. With existing synchronous languages, the designer must explicitely
choose between immediate and delayed communications, even for flexible com-
munications. In this paper we detail how to transform this manual choice into
an automated choice included in the compilation process. Notice that we still
allow a system to contain explicitly immediate or delayed communications (for
instance to memorize the current state of the system requires a delay). The new
type of flexible communications comes as an additionnal mechanism, not as a
replacement for either immediate or delayed communications.

We define a synchronous language with partial delay specification that pro-
vides a higher degree of flexibility during the design phase. We introduce a new
operator called “don’t care” to specify communications that are allowed to be
either immediate or delayed. The semantics of the language is defined formally
with a Kahn’s semantics in section 2. A program with “don’t care” operators is
partially non deterministic as it accepts several different behaviours. The lan-
guage also enables to impose latency constraints expressed as bounds on the
number of delays involved in functional chains.

Though the initial specification is non deterministic, we want to generate
completely deterministic code in the end, as we are interested in highly critical
systems. We propose to translate a program with “don’t care” operators into a
standard synchronous program that respects the latency requirements imposed
on the functional chains and that is causal (meaning that there is no cycle
without delay). We have chosen a deterministic syntactic translation (section
3), which either simply drops a “don’t care” operator or replaces it by a classic
delay operator (the pre/fby of Lustre/Lucid Synchrone [6,17]). We show
that finding a valid translation (choosing where to keep delays) is equivalent to
solving a set of pseudo-Boolean constraints and can thus be solved using existing
techniques for this widely studied problem.

Related work. Real-time embedded code is often implemented as a set of threads
scheduled concurrently by a scheduling policy [3]. These policies focus on ensur-
ing the respect of temporal constraints and do not consider functional deter-
minism as tasks are assumed to be completely independent. We might say that
the system behaves as if all data-flows were tagged with a “don’t care”. There is
however an important difference with our language: two different executions of

3

the same system may have different functional behaviours due to timing varia-
tions (if a task executes for less than its worst-case execution time for instance).
Precedence constraints can be imposed on tasks imposing direct communication
and thus ensuring an order between tasks, however we lose the flexibility of the
“don’t care”.

Architecture Description Languages such Aadl (Architecture and Analysis
Design Language) [5], Marte (Modeling and Analysis of Real-time and Embed-
ded systems) [13] or Sysml (System Modeling Language) [14] enable to spec-
ify detailled communication patterns between functional components. In Aadl,
data communications are either immediate or delayed. Immediate connections
impose a precedence constraint from the producer to the consumer of the data,
while delayed communications do not. End-to-end latency constraints can also
be imposed on flows (a flow is a path through sub-components of a component).
However, the patterns are always fully deterministic and no mechanism allows
to handle “don’t care” communications. The CCSL language [11] used in Marte

is closer to our work. It enables to specify clock constraints, that is to say con-
straints on the relation between the activation rates of the different operations
of the system. This can yield several different instanciated systems that satisfy
the constraints.

In [15] and [10], the authors introduce a methodology to optimise the com-
putation time of synchronous circuits. For a given deterministic specification,
the method rewrites the specification into a functionally equivalent one by mod-
ifying the equations. To this intent, a synchronous program is represented as a
graph where the vertices are functional units and the edges represents the com-
munication between two functional units. The edges are tagged with an integer
which represents the number of delay registers required for the communication.
The idea of the methodology, called retiming, is to apply graph transformations
which insert and remove delays.

In [12], the authors define a non deterministic language based on Input/Out-
put Boolean Automata. The semantics of a non deterministic program is de-
fined as the set of deterministic programs which behaviour is included in the
non deterministic ones. This language has a higher expressive power than our
data-flow language. The authors then define the product of non deterministic
specifications. To convert a non deterministic specification into a deterministic
one, the designer needs to define an “oracle” and synchronise the program with
this oracle. How to define an oracle is out of the scope of the paper.

2 A synchronous language with partial delay specification

In this section, we extend synchronous data-flow languages with the ability to
have partial delay specifications using a new “don’t care” operator.

2.1 Syntax

We define the syntax of a very simple first-order synchronous data-flow language.
The language is meant as a proof-of-concept and those concepts should later be
included in a larger, more realistic language. The grammar is the following:

4

syst ::= n_list;
node N(io) returns (io) [var io; req_list;] let eqs tel

n_list ::= imported node N(io) returns (io)
| imported node N(io) returns (io);n_list

io ::= id | io, id

eqs ::= eq | eqs eq

eq ::= io = exp;
exp ::= id | cst | dop(id, . . . , id) | cst fby id | cst dc id

A program (syst) is made up of a list of imported nodes (n_list) and a unique
main node which assembles the set of imported nodes. Imported nodes are black
boxes (programmed with other existing languages) that have no side effects on
the rest of the program. The program takes a set of inputs, produces a set of
outputs and can use local variables. All of these are described by io. It is possible
to specify a set of requirements (req_list). This will be explained in section 2.3.
The assembly of imported nodes is described as a set of equations (eqs). An
equation computes a list of local or output flows using a flow expression (expr).
A flow expression can be a flow variable (id), a constant (cst), the application of
an imported node (dop) on flows, the application of the fby operator (the delay
operator of Lucid Synchrone [17]) on a flow. This "followed by" operator in-
troduces a delay of one reaction between its input and its output flow (parameter
cst is the initialization value for the first reaction, as it has no previous value).
Finally an expression can be the application of the new “partial delay” operator
dc (called “don’t care”) on a flow. The equation x = cst dc x′ can correspond
to either x = x′ or x = cst fby x′ and thus introduces some non determinism.
In the first case, the communication between x′ and x is immediate and in the
second it is delayed. Again, the operator dc can only be applied to identi-
fiers and not to expressions in order to simplify our presentation. Notice that
programs contain no hierarchy (no nodes decomposed into other non-imported
nodes). Modular compilation/analysis is out of the scope of this paper.

Example 1. Let us illustrate our syntax with the textual version of the flight
control system of Figure 1.

imported node AL(i1, i2) returns (o);

imported node EL(i1, i2) returns (o);

imported node GL(i1, i2, i3) returns (o1 , o2);

...

node FCS(a_angle , y_acc , e_angle , z_acc , p_order)

returns (a_order , e_order)

var o_e_angle , o_a_angle , r_a_angle , o_y_acc , r_e_angle , o_z_acc ,

lg_fb , r_lg_acc , d1, d2, r_lt_acc , lt_fb , dc1 , dc2 , dc3 , dc4 , dc5 , dc6;

l e t
o_a_angle = AAF(a_angle); o_y_acc = YAF(y_acc);

o_z_acc = ZAF(z_acc); o_e_angle = EAF(e_angle);

o_z_acc = ZAF(z_acc); o_e_angle = EAF(e_angle);

(lg_fb , d2, r_e_angle) = LgL(dc1 , o_z_acc , dc4);

(r_a_angle , lt_fb , d1) = LtL(dc2 , o_y_acc , dc6);

(r_lt_acc , r_lg_acc) = GL(dc3 , dc5 , p_order);

a_order = AL(o_a_angle ,r_a_angle);

e_order = EL(r_e_angle , o_e_angle);

5

dc1 = 0 dc d1; dc2 = 0 dc d2;

dc3 = 1 dc lt_fb; dc4 = 0 dc r_lg_acc;

dc5 = 1 dc lg_fb; dc6 = 0 dc r_lt_acc;

t e l

At the beginning of the code we declare 9 imported nodes, one for each
functional block (we only show 3 declarations here for more conciseness). After
that we define the node FCS which takes 4 inputs (a_angle, y_acc, e_angle

and z_acc) and returns 2 outputs (a_order and e_order). We also declare a
set of local variables which correspond to the variables exchanged between the
nodes. The set of equations between let and tel defines how outputs and local
variables are computed from inputs and how imported nodes communicate. To
specify the “don’t care” communications accordingly to the syntax, we add 6
auxiliary variables (dc1 to dc6).

Since the language does not include over-sampling or sub-sampling operators
(such as when or current), all the flows are on the same clock (the base logical
time). Therefore we do not provide any clock calculus. Mixing sampling operators
and “don’t care” will be studied in future work. All the flows are well initialised
because the delay operator (fby) includes an initialisation value.

2.2 Kahn’s semantics

We provide a Kahn’s semantics [8] for our language, which details the sequence
of values corresponding to flow expressions. We introduce the following grammar
to represent such sequences:

E ::= {x1, . . . , xn} s ::= E.s

E is a set of values. E.s denotes the sequence whose head value is non determin-
istically chosen among the values in E and whose tail is s. We abusively write
v.s instead of {v}.s to denote a flow whose first value is deterministic. Finally,
we define:

< E1.s1| . . . |En.sn >= ∪1≤i≤nEi. < s1| . . . |sn >

For any operator ⋄, ⋄#(p1, ..., pn) = s means that the operator ⋄ applied to
parameters p1, ..., pn produces the sequence s. Let

∏n

i=1 Ei = E1 × . . . × En

denote the cartesian product of the sets Ei. The semantics of flow expressions is
given with:

cst# = cst.cst#

imp#(E1.s1, . . . , Em.sm) = ∪t∈
∏

m
i=1

Ei
{imp(t)}.imp#(s1, . . . , sm)

fby#(cst, s) = cst.s#

dc#(cst, s) = < fby#(cst, s)|s# >

1. The first rule describes the constant: it simply produces a flow that always
has the same value.

6

2. The second rule is the call of an imported node. At each step of the sequence,
we may take as input for the node any combination of the non deterministic
values of its inputs (any tuple in the cartesian product of the possible head
values of each input) and then we apply the imported node to each combi-
nation. In other words, we simply apply an imported node point-by-point on
the sequence of values of its inputs.

3. The third rule is for the fby operator. It simply concatenates the initiali-
sation value to the flow, thus delaying each value of the input flow by one
reaction.

4. The last rule is for the dc operator. It introduces non-determinism by stating
that the dc operator can either be replaced by a fby or by the identity.

Example 2. We illustrate the semantics in an example where the imported node
plus simply computes the addition of the two inputs.

imported node plus (i1,i2) returns (o);

node ex (i) returns (o)

var v1 , v2;

l e t
v1 = 0 dc i;

v2 = 1 fby v1;

o = plus(v1, v2);

t e l

i 5 3 7 . . .
v1 {0, 5} {5, 3} {3, 7}
v2 {1} {0, 5} {5, 3}
o {1, 6} {3, 5, 8, 10} {6, 8, 10, 12}

2.3 Latency requirements

Let x
0
−→ x′ denote that the variable x′ immediately depends on the variable

x. Similarly, x
1
−→ x′ denotes a delayed dependency and x

?
−→ x′ a “don’t care”

dependency. Let x → x′ def
⇔ x

0
−→ x′ ∨ x

1
−→ x′ ∨ x

?
−→ x′. Let Var0(e) denote the

variables that appear free in e and not as an argument of a fby or a dc, Var1(e)
those that are an argument of a fby and Var?(e) those argument of a dc. Given

a program p and c ∈ {0, 1, ?}, we have x
c
−→ x′ in p iff there is an equation io = e

in p such that x′ ∈ io and x ∈ Varc(e).

Definition 1 (Functional chain). A functional chain (x1, . . . , xn) is a list of
flow variables such that ∀1 ≤ i < n, xi → xi+1.

Example 3. Let us consider again the program ex of example 2. There are two
chains from the input i to the output o: L = (i, v1, v2, o) and L′ = (i, v1, o).

The latency of a functional chain is the number of delays of the chain. Latency
constraints impose a bound on this number and are in most cases maximum
latency constraints, i.e. constraints of the form Lat(x1 . . . xn) < k, where k ∈
N

⋆ and (x1 . . . xn) is a functional chain. Our approach can however support
constraints where < is replaced by any other comparison operator. In a program,
latency constraints are specified using the keyword req.

Example 4. The flight control system specified in example 1 contains several
chains. The requirements on those mentioned in the introduction are:

req (z_acc , o_z_acc , d2, dc2 , r_a_angle , a_order) < 1; --L2

req (p_order , r_lt_acc , dc6 , r_a_angle , a_order) < 4; --L3

7

3 Concretisation of an abstract program

We propose a compilation scheme in two steps: a) Translate the specification
into a standard deterministic synchronous data-flow program; b) Apply a syn-
chronous compiler. The second step is well studied [7] and is out of the scope of
this paper. This section describes the first step, which consists in choosing one
program among the different deterministic synchronous programs which seman-
tics is included in the semantics of the original non deterministic program. The
compiler performs a purely syntactic translation that replaces each “don’t care”
operator either by a direct communication or by a delayed communication.

3.1 Instance space

Non deterministic programs are called abstract programs, while deterministic
ones are called concrete programs.

Definition 2. A system (or a program) is said concrete if and only if it contains
no dc operations, otherwise it is abstract.

Example 5. The abstract program ex given in example 2 corresponds to several
concrete versions. If the “don’t care” operator is syntactically translated into
either the identity or the fby operator, there are 2 solutions (ex1 and ex2). A
more complex solution (not supported in our approach) would be to interleave
direct and delayed communications (for instance, ex3).

node ex1 (i) returns (o)

var v1 , v2;

l e t
v1 = i;

v2 = 1 fby v1;

o = plus(v1, v2);

t e l

node ex2 (i) returns (o)

var v1 , v2;

l e t
v1 = 0 fby i;

v2 = 1 fby v1;

o = plus(v1, v2);

t e l

node ex3 (i) returns (o)

var v1 , v2 , j;

l e t
j = true fby (not j);

v1 = i f j then i

e l se (0 fby i);

v2 = 1 fby v1;

o = plus(v1, v2);

t e l

Let sys denote an abstract system. Let dc(sys) = {dc1, . . . , dcn} denote the
ordered set of dc operators in sys (we take the chronological apparition order
of the operators in the set of equations). Let p = (dci 7→ fby)sys denote the
program p resulting of the substitution of operator dci by a fby operator in sys.
Similarly, (dci 7→ id)sys denotes the substitution of dci by the identity operator
and (dcx 7→ op, ..., dcy 7→ op)sys denotes the program resulting of the set of
substitutions dcx 7→ op, ..., dcy 7→ op (where op is either fby or the identity).

Definition 3 (Instance). Let p be a concrete system and sys be an abstract
program such that dc(sys) = {dc1, . . . , dcn}. p is an instance of sys iff there
exists a set of substitutions dc1 7→ op1, ..., dcn 7→ opn such that:

p = (dc1 7→ op1, ..., dcn 7→ opn)sys

In the following, sys[b1, . . . , bn] denotes the instance p = (sub1, . . . , subn)sys
such that:

{

subi = dci 7→ id if bi = 0

subi = dci 7→ fby if bi = 1

8

Example 6. The program ex has two instances as shown in example 5, with
ex1=ex[0] and ex2=ex[1].

Let us denote by I(sys) the set of instances of the system sys(dc1, . . . , dcn).
We define the relation ⊑sys between instances of sys as follows:

Definition 4. Let p = sys[n1, . . . , nm] and p′ = sys[n′
1, . . . , n

′
m] be two in-

stances of sys:

p ⊑sys p
′ def
⇐⇒ ∀i ≤ m,n′

i ≤ ni

In other words, dc communications are “more immediate” in p′ than in p.

Proposition 1. (I(sys),⊑sys) is a finite lattice in which the top element is
sys[0, . . . , 0] (all dc communications are immediate) and the bottom element is
sys[1, . . . , 1] (all dc communications are delayed).

This is a very classical example of a Boolean lattice. We use a Hasse diagram to
represent the lattice (I(sys),⊑sys). In such a diagram, each element of I(sys)
is a vertex and there is an upward edge from s to s′ whenever s ⊑ s′ and there
is no s′′ such that s ⊑ s′′ ⊑ s′. Notice that (I(sys),⊑sys) is a n-dimensional
hypercube.

Example 7. The instance space of the simplified flight control system FCS(dc1, dc2,
dc3, dc4, dc5, dc6) is described by the 6-dimensional hypercube:

000000

000001000010000100001000010000100000

100001000110001010010010100010001100010100100100

010101011001101001001110011010101010110010011100110100111000

.

.

.

011110111001110101101101011101110011101011011011

111110111101111011110111101111011111

111111

3.2 Valid instance space

Only a subset of the instances of an abstract program are valid. We say that an
instance p of sys is valid if and only if 1) p is causal and 2) p satisfies all the
latency requirements of the system. Part 1) ensures that the instance is imple-
mentable (by checking that the instance does not contain an data-dependency
cycle). However, not all implementable instances satisfy latency requirements,
thus we also need to check 2).

Respecting latency requirements. Let us first define formally the latency of a
functional chain.

Definition 5. Let sys be a system and (x1, . . . , xn) be a functional chain of sys.
The latency of the chain in sys is defined inductively as:

9

Latsys(x1, . . . , xn) =

{

1 + Latsys(x1, . . . , xn−1) if xn−1
1
−→ xn

Latsys(x1, . . . , xn−1) if xn−1
0
−→ xn or xn−1

?
−→ xn

with Latsys() = 0, where () is the empty functional chain.

Example 8. For program ex and the chain L = (i, v1, v2, o), Latex(L) = Latex1(L)
= 1 and Latex2(L) = 2.

We say that dci is involved in C if there exists two variables x, x′ in C

such that x
?
−→ x′ and dci is the dc operator between x and x′. The following

proposition details how the latency of a chain is computed for a given instance.

Proposition 2. Let sys(dc1, . . . , dcn) be an abstract system, let C be a func-
tional chain of sys and let p = sys[b1, . . . , bn] be an instance of sys. We have

1. Latp(C) =
∑l

j=1 bij +Latsys(C), where the operators dcij are those involved
in C, l ≤ n and for all ij, 1 ≤ ij ≤ n.

2. If p′ is another instance such that p ⊑ p′: Latp(C) < k =⇒ Latp′(C) < k

This proposition allows us to partition the instance space into two sets: the
instances satisfying the requirements and those which do not.

Example 9. The flight control system Figure 1 has to satisfy the requirement
R = Lat(z_acc, o_z_acc, d2, dc2, r_a_angle, a_order) < 1. The partitioning
is depicted below.

000000

000001000010000100001000010000100000

100001000110001010010010100010001100010100100100

010101011001101001001110011010101010110010011100110100111000

.

.

.

011110111001110101101101011101110011101011011011

111110111101111011110111101111011111

111111

R

¬R

Causality. A program is causal if it does not contain instantaneous data-dependency
cycles. A non-causal program must be rejected because we cannot find a compu-
tation order that satisfies all data-dependencies. As a consequence, in a concrete
program data-dependency cycles are allowed only if they contain a fby.

Definition 6. The functional chain C = (x1, . . . , xn, x1) is a dc-cycle iff:

∃i, 1 ≤ i ≤ n, xi
?
−→ x(i mod n)+1

10

Example 10. The following program contains a cycle where a dc is involved:

imported node n1 (i1,i2) returns (o);

node causal (i) returns (o)

var v1;

l e t
o = n1(i,v1);

v1 = 0 dc o;

t e l

i o v1

(o, v1, o) is a dc-cycle
causal[0] is not causal,
while causal[1] is.

Definition 7. Let sys(dc1, . . . , dcn) be an abstract system.

1. sys is strongly causal if all its instances are causal.
2. sys is weakly causal if sys admits at least one causal instance.
3. sys is non-causal if it admits no causal instance.

Example 11. The program ex of example 2 is strongly causal since there is no
cycle in the data dependency graph. causal of example 10 is weakly causal.

Proposition 3. Let sys(dc1, . . . , dcn) be an abstract system,

1. If sys is strongly causal, then sys is also weakly causal.
2. sys is strongly causal if and only if sys[0, . . . , 0] is causal.
3. sys is weakly causal if and only if sys[1, . . . , 1] is causal.

Proposition 4. Let sys(dc1, . . . , dcn) be an abstract system. Let p and p′ be two
instances of sys such that p ⊑ p′. Then if p′ is causal, so is p.

Proof. If p ⊑ p′, for all equations io = e, we have Varp
′

1 (e) ⊆ Varp1(e). Thus, the
dependency graph of p is a sub graph of the one of p′. If p′ is causal, it means
that the dependency graph of p′ is acyclic and so is any subgraph.

As a consequence, the Hasse diagram of a system can be partitioned into two
sets: a “south” partition which contains the causal instances of sys and a “north”
partition which contains the non causal instances of sys.

Example 12. If we consider again the flight control system Figure 1, the graph of
instances of this system can be partitioned as shown below. As a result, the set of
valid instances of the abstract program is the intersection of the causal instances
with the black instances in figure of example 9. There are 4 valid instances:
101111, 101011, 101010, 101101.

000000

000001000010000100001000010000100000

100001000110001010010010100010001100010100100100

010101011001101001001110011010101010110010011100110100111000

.

.

.

011110111001110101101101011101110011101011011011

111110111101111011110111101111011111

111111

not causal

causal

11

If a cycle is a dc-cycle, it is possible to find an instance p where this cycle
is broken by replacing one of the dc operations in the cycle by a fby. If a cycle
is not a dc-cycle the program is not causal. The following property shows that
causality can be treated as additional latency requirements that must be satisfied
by valid instances:

Proposition 5. Let sys be an abstract system, p be an instance of sys, C =
(x1, . . . , xn, x1) be a dc-cycle in sys:

C is a cycle in p ⇔ Latp(C) = 0.

3.3 Generation of valid instances

Finding a valid instance p of sys(dc1, . . . , dcn) consists in finding a valuation
sys[b1, . . . , bn] which satisfies the latency constraints explicitly specified in the
node definition and the constraints generated by the causality analysis. If there
exists several solutions, we arbitrarily choose one among them (there is no notion
of “better” solution). In this section, we show that we can solve this problem by
translating it into a pseudo-Boolean problem, which enables us to reuse existing
solvers, such as SAT4J [9] for instance.

Let sys be a system with several latency requirements of the form L =
Lat(C) ∼ k (where ∼∈ {<,>}). According to proposition 2, an instance p of sys
satisfies L if and only if:

l
∑

j=1

bij ∼ k − Latsys(C)

where dcij are the dc operators involved in the chain (xi1 , . . . , xil) and bij ∈
{0, 1}. Thus, the set of latency constraints can be translated into a conjunction
of linear pseudo-Boolean constraints of this form. The variables of the pseudo-
Boolean problem are the bij and k − Latsys(C) can be considered as a constant
as it does not depend on instance p.

The causality analysis can also be translated into pseudo-Boolean constraints.
We enumerate the elementary cycles of the form C = (xi1 , . . . , xim , xi1) of the
data-dependency graph of sys using a classic cycle detection algorithm such as
that of Tarjan [18]. According to proposition 5, a cycle C will be avoided (broken)
if and only if:

l
∑

j=1

bij + Latsys(xi1 , . . . , xim , xi1) > 0

Example 13. Let us consider the following program:
node trad (i) returns (o1 ,o2)

req (i,v1,v2,v3,o2) < 3;

var v1, v2 , v3;

l e t
o1 = n1(i,v1);

v1 = 0 dc o1; --dc1

v2 = 0 dc v1; --dc2

v3 = 0 fby v2;

o2 = n2(v2);

t e l

The set of constraints is
{

b1 + b2 + 1 < 3

b1 > 0

12

3.4 Implementation

To implement the valid instance search, we could proceed as follows:

1. Translate latency constraints into pseudo-Boolean (PB) constraints;

2. For each cycle, add a PB constraint to break the cycle;

3. Solve the whole set of PB constraints.

However, the enumeration of the cycles of a graph is a problem with exponential
time-complexity (even though the complexity of Tarjan’s algorithm is close to
polynomial when the number of cycles is small). Thus, instead we use an iterative
process, described in Algorithm 1: we ask the PB-solver for a solution, if the
solution is non-causal we add a PB constraint to break a cycle and iterate. With
this solution, we do not enumerate all cycles, because breaking one cycle often
breaks several other cycles. Experiments suggest that we actually only perform
a polynomial number of iterations (even in worst cases), but this remains a
conjecture that needs to be proved in future works.

Algorithm 1 Implementation of the valid instance search

Translate latency constraints into pseudo-Boolean constraints.
Check the causality for non-dc cycles only1.
while The PB-solver finds a solution to the constraints do

if The solution is not-causal then

Add a PB constraint to break the first cycle we find
else

We have found a valid instance, return the solution.
end if

end while

We have implemented an OCaml prototype, which translates a specification
with partial delays into a valid synchronous program. The compilation process
is shown in Figure 2. The compiler first takes an abstract program and generates
the corresponding pseudo-Boolean problem. The problem is then solved using
the solver SAT4J [9]. There may be several iterations between the solver and
the compiler so that the compiler checks the causality of the solution returned
by the solver. Finally, the compiler produces the valid instance corresponding to
the final solution returned by the solver.

Abstract program Compiler SAT4J

Concrete program

Solution

PB-problem

Fig. 2. The compilation process

13

We have experimented the compiler on several examples and in particular
an avionic application similar to the one presented in [2]. It is made up of 3994
imported nodes and 16186 variables. We made the experiments by duplicating
all the variables with a “don’t care” variable. If we do not specify any latency
requirements, the compiler produces the trivial solution where all dc are replaced
by a fby. We then generate some latency requirements to have an overview of
the performance of the compiler. The time needed to parse the file is about 1
second. The experiments were made on a Linux machine with 4 GB of memory.
We make 10 different benchmarks on each point. These first results are very
promising because they show that the method scales well on a representative
case study.

0 500 1000 1500 2000 2500

Number of requirements

0

5

10

15

20

25

tim
e

in
 s

4 Conclusion and perspectives

In this paper we have presented an extension of a synchronous data-flow language
with a new operator (dc), which enables to specify communications that can
either be immediate or delayed. We also introduced the possibility to specify
latency requirements. We have detailled how a high level specification containing
dc can be translated into a classic synchronous program without dc, taking
latency and causality constraints into account.

There are several open questions and future works. First, experiments show
that we should ease the specification of latency requirement. For instance we
could introduce some kind of pattern matching, e.g. to compute all functional
chains matching with (i,*,v,*,o).

Second, we need to study the problem complexity when considering only
latency requirements of the form Lat(C) ≤ k. In that case, we have a conjection
of slighly less general constraints of the form Σaj ≤ k and Σaj > 0.

The third perspective concerns the extension with sampling operators. If
we define the exact latency of a functionnal chain (x1, . . . , xm) as the maximum
number of reactions before the value of xm actually depends on x1, then sampling
operators have an impact on this latency. Indeed, applying sampling operators
(such as the when/current operators of Lustre) on a delayed flow can increase
the delay of the flow, thus increasing the latency of the chains it belongs to.
The effect of general Boolean sampling operators on latencies is hard to analyse:
latencies may fluctuate with the sampling condition and even be unpredictable
if the condition is an input flow. Instead, we could focus on more restrictive
sampling operators that can be analysed more efficiently, such as the strictly

14

periodic clock sampling operators of Prelude [16]. On the contrary to Boolean
sampling operators, latencies should be constant and computable fully statically.

Acknowledgment

The authors would like to thank Jean-Louis Colaço for his careful analysis and
help for improving this work.

References

1. Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The synchronous languages 12 years later. Pro-
ceedings of the IEEE, 91(1):64–83, 2003.

2. Frédéric Boniol, Pierre-Emmanuel Hladik, Claire Pagetti, Frédéric Aspro, and
Victor Jégu. A framework for distributing real-time functions. In 6th Interna-
tional Conference on Formal Modeling and Analysis of Timed Systems (FORMATS
2008), volume 5215 of Lecture Notes in Computer Science, pages 155–169, 2008.

3. Francis Cottet, Joëlle Delacroix, Claude Kaiser, and Zoubir Mammeri. Scheduling
in real-time systems . John Wiley & Sons, octobre 2002.

4. Francois-Xavier Dormoy. Scade 6 a model based solution for safety critical software
development. In Embedded Real-Time Systems Conference (ERTS’2008), 2008.

5. Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture analysis &
design language (AADL): An introduction. Technical Report CMU/SEI-2006-TN-
011, Software Engineering Institute, Carnegie Mellon University, February 2006.

6. Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming and
verifying real-time systems by means of the synchronous data-flow language lustre.
IEEE Trans. Software Eng., 18(9):785–793, 1992.

7. Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel. Generating efficient
code from data-flow programs. In Third International Symposium on Programming
Language Implementation and Logic Programming (PLILP ’91), Passau, Germany,
1991.

8. Gilles Kahn. The semantics of simple language for parallel programming. In IFIP
Congress, pages 471–475, 1974.

9. D. Le Berre and A. Parrain. The sat4j library, release 2.2 system description.
Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

10. Charles.E. Leiserson and James .B. Saxe. Optimizing synchronous systems. In
Foundations of Computer Science, 1981. SFCS’81. 22nd Annual Symposium on,
pages 23–36. IEEE, 1981.

11. Frédéric Mallet, Julien DeAntoni, Charles André, and Robert de Simone. The clock
constraint specification language for building timed causality models. Innovations
in Systems and Software Engineering, 6:99–106, 2010. 10.1007/s11334-009-0109-0.

12. Florence Maraninchi and Nicolas Halbwachs. Compositional semantics of non-
deterministic synchronous languages. In Proceedings of the 6th European Sympo-
sium on Programming Languages and Systems, ESOP ’96, pages 235–249, London,
UK, 1996. Springer-Verlag.

13. OMG. A UML profile for MARTE. Technical report, Object Management Group,
Inc, 2007.

15

14. OMG. Systems modeling language. Technical report, Object Management Group,
Inc, 2010.

15. Timothy W. O’Neil, Tongsima Sisades, and Sha Edwin H.-M. Optimal scheduling
of data-flow graphs using extended retiming. In Proceedings of the ISCA 12th
International Conference on Parallel and Distributed Computing Systems, pages
292–297, 1999.

16. Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens.
Multi-task implementation of multi-periodic synchronous programs. Discrete Event
Dynamic Systems, 21(3):307–338, 2011.

17. Marc Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual. Univer-
sité Paris-Sud, LRI, 2006.

18. Robert Endre Tarjan. Enumeration of the elementary circuits of a directed graph.
SIAM J. Comput., 2(3):211–216, 1973.

16

	A synchronous language with partial delay specification for real-time systems programming

