
HAL Id: hal-00801702
https://hal.inria.fr/hal-00801702

Submitted on 18 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Multi-Cloud Configurations Using Feature
Models and Ontologies

Clément Quinton, Nicolas Haderer, Romain Rouvoy, Laurence Duchien

To cite this version:
Clément Quinton, Nicolas Haderer, Romain Rouvoy, Laurence Duchien. Towards Multi-Cloud Con-
figurations Using Feature Models and Ontologies. 1st International Workshop on Multi-Cloud Appli-
cations and Federated Clouds, Apr 2013, Prague, Czech Republic. pp.21-26. �hal-00801702�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49806751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00801702
https://hal.archives-ouvertes.fr

Towards Multi-Cloud Configurations
Using Feature Models and Ontologies

Clément Quinton, Nicolas Haderer, Romain Rouvoy, Laurence Duchien
INRIA Lille - Nord Europe

LIFL UMR CNRS 8022
University Lille 1, France

{firstname.lastname}@inria.fr

ABSTRACT

Configuration and customization choices arise due to the
heterogeneous and scalable aspect of the cloud computing
paradigm. To avoid being restricted to a given cloud and
ensure application requirements, using several clouds to de-
ploy a multi-cloud configuration is recommended but intro-
duces several challenges due to the amount of providers and
their intrinsic variability. In this paper, we present a model-
driven approach based on Feature Models (fms) originating
from Software Product Lines (spl) to handle cloud variabil-
ity and then manage and create cloud configurations. We
combine it with ontologies, used to model the various seman-
tics of cloud systems. The approach takes into consideration
application technical requirements as well as non-functional
ones to provide a set of valid cloud or multi-cloud configura-
tions and is implemented in a framework named Saloon.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design—Methodologies,
Representation; D.2.13 [Software Engineering]: Reusable
Software—Domain engineering, Reuse models

General Terms

Cloud Computing; Model-Driven; Configuration

Keywords

Cloud; Ontology; Feature Model; Multi-Cloud; Variability

1. INTRODUCTION
In cloud computing, resources are accessed on demand by

customers and are delivered as services by cloud providers
in a pay-per-use approach [1, 5]. This service provision-
ing model brings flexibility to companies that rely on cloud
providers’ infrastructure to run their applications. The whole
software stack required to host the application can be either
configured by hand in a Virtual Machine (VM) [21] or di-
rectly provided by cloud PaaS providers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MultiCloud’13, April 22, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-2050-4/13/04 ...$15.00.

When deploying an application into the cloud, companies
have to deal with a wide range of resources at different levels
of functionality among available cloud solutions. This leads
to complex choices which are usually made in an ad hoc
manner. Dealing with this cloud variability and resources
dimensions, e.g., database size, ends up in selecting a cloud
solution by adopting ad hoc criteria. It is all the more true
when considering a multi-cloud configuration, i.e., the de-
ployment of an application over several cloud providers [14],
e.g., when a cloud provider does not provide the whole func-
tionalities required by the application.

We argue that this selection can be partly automated us-
ing Feature Models (fms) combined with ontology engineer-
ing [15]. Cloud variability can thus be described using fms
and cloud resources specification, defined in this paper as
dimensions, can be done using feature attributes extending
the fm [2]. In addition, we propose to use ontologies to cap-
ture cloud knowledge and deal with the range of different
terms used to define the same cloud concept among cloud
providers. We give an overview of the SPLE application
engineering process by explaining how cloud features are se-
lected and dimensions specified. Therefore, we present an
approach based on the combination of ontologies with fms
to identify cloud or multi-cloud configurations whose func-
tionalities and resources fit the application’s technical re-
quirements and their resource dimensions. The approach is
implemented in a framework named Saloon, and we use as
a running example the ApiSense platform, that contains up
to 130 different configurations. Nonetheless, the approach
proposed here is not specific to this application and can cover
different domains.

The remainder of this paper is organized as follows. In
Sec. 2, we discuss the motivation behind the presented ap-
proach and describe the challenges to tackle. In Sec. 3 we
describe the approach and the way by which ontologies and
fms can be combined to support cloud or multi-cloud con-
figurations. Sec. 4 presents the implementation and the
first results obtained from applying the approach. Finally,
Sec. 5 compares our approach with close-related work in the
literature and Sec. 6 concludes the paper.

2. MOTIVATIONS & CHALLENGES
In this section, we analyze the difficulties of selecting one

or several clouds from application’s requirements, we discuss
the reasons that lead to select a multi-cloud configuration
and we identify several related challenges. We then present
ApiSense, a motivating example for our approach.

2.1 Selecting Among Cloud Providers
With the cloud computing paradigm, computing resources

are delivered as services. Such a model is usually described
as Anything as a Service (XaaS or *aaS), where anything is
divided into layers from Infrastructure to Software including
Platform. At IaaS level, configuring the cloud environment
means configuring the whole software stack running inside
the VM as well as the infrastructure concerns: number of
VMs, bandwidth, input/output activities, number of nodes,
of hard drives, database configuration, etc. Regarding plat-
forms provided by PaaS clouds, the configuration part fo-
cuses on software that compose this platform: which ap-
plication server(s), database(s), compilation tool, libraries,
etc. In a multi-cloud configuration perspective, parts of the
application can be deployed either at PaaS, IaaS or both
levels. The wide range of cloud providers [7] likely to host
the application makes the choice difficult, and there is a lack
of visibility among them to select one that matches the ap-
plication technical requirements. To fit these requirements
and dimensions, we find several possibilities. First, in the
case depicted by Fig. 1 a), the whole application is deployed
on one given cloud. Second, a multi-cloud configuration can
be used in case of b) privacy reasons, c) dimension reasons,
in this case it’s less expensive to store data on Cloud A or d)
when a required element is not provided.

Private
cloud

Public
cloud

Cloud A
storage $10

Cloud B
storage $15

Cloud A
provides Y

Cloud B
provides X

Application Database Process

Cloud C

a)

b)

c)

d)

Figure 1: Cases of multi-cloud configurations

To the best of our knowledge, no approach based on con-
figuration making tool has been proposed up to now en-
abling fine-grained selection of the ideal cloud or multi-cloud
configuration, or at least the most suitable with the applica-
tion’s technical and non-functional environment. Nowadays,
this choice relies on cloud computing experts’ knowledge and
raises issues about reliability and exhaustiveness of such a
knowledge [21]. The approach described in this paper is one
solution to help the user identifying and selecting among
cloud providers.

2.2 Challenges
This contribution aims at selecting a cloud or multi-cloud

configuration for the application to be deployed and faces
the following challenges:

C1: Support clouds variability. The main difficulty is to
deal with the wide range of clouds resources and func-
tionalities at different layers to find clouds whose com-
patibility with the application’s architecture and re-
quirements is ensured.

C2: Support configuration dimensions. Among potential
cloud providers identified with C1, a more accurate

choice can be done by specifying resource dimensions
related to the cloud configuration, e.g., database size.

C3: Support multi-cloud configurations. Challenges C1 and
C2 can be applied on multi-cloud based applications
to find a valid configuration distributed over several
cloud providers.

2.3 Case Study
To illustrate our proposition, we introduce ApiSense, a

configurable software platform for developing crowd-sourcing
applications divided into two main components: a server-
side infrastructure and a mobile phone application [16]. A
participant uses the mobile application to download exper-
iments, execute them and upload the collected datasets on
the server-side Java-based application, built as an assem-
bly of services. Three of these services are mandatory. The
Collector retrieves datasets uploaded by participants. The
Publisher makes the experiment available to participants
once defined by the scientist. Finally, the Export service
extracts data in a computable format. Collected datasets
are stored in a Database, either BaseX or MongoDB. The whole
ApiSense fm represents up to 130 different configurations.
Configuring it to be deployed in the cloud is a good way
to avoid the server crashing when peak loads arise. Indeed,
scientists cannot foresee how many participants are going to
install their experiments on their mobile phones and send
data to the server. In a multi-cloud configuration scenario,
the ApiSense database and the services are deployed on dif-
ferent clouds. Another scenario could be the deployment of
different services on several clouds (nodes).

3. PROPOSAL
To face the challenges identified in Sec. 2.2, we define a

model-based approach used to (i) capture cloud providers’
offer knowledge and (ii) bridge the gap between an applica-
tion requirements and cloud providers available configura-
tions.

[n..m]

[n..m]

[n..m]

Onto
Cloud

Onto
Dim

Concept selection

Legend

Mapping
Configuration validity

Ontologies Domain Feature Models

Application Engineering

Domain Engineering

Application
configuration

Figure 2: Approach overview

We propose in this contribution to combine ontologies and
fms into a single solution that gives strong support to all
stakeholders involved in cloud deployment. The approach

allows its user to (i) define a technical requirements config-
uration for the cloud providers likely to host the application
considering the application configuration and (ii) add re-
source dimensions to this configuration. Ontologies and fms
form the core architecture of the approach (Fig. 2). We pro-
pose in a first step to tackle challenge C1 by (i) defining cloud
providers fms, more precisely one fm per cloud provider and
(ii) mapping cloud ontology OntoCloud concepts to cloud
providers fms’ features. In a second step, we handle chal-
lenge C2 by proposing a dimension ontology OntoDim whose
concepts represent resource dimensions and are mapped to
cloud providers fms’ attributes. At the end, the application
configuration is mapped with each cloud provider fm, and
each fm configuration validity is checked. Finally, challenge
C3 can be tackled by combining several valid cloud configu-
rations to fit the application’s requirements.

The architecture distinguishes between two roles, the do-
main experts and the user. Cloud computing experts are in-
volved in the domain description. They describe their cloud
variability and commonality points, thus providing the cor-
responding fm to the architecture. They interact with other
cloud experts to formalize the domain semantics and model
the ontologies and they establish mapping between ontolo-
gies and fms. The users are all stakeholders involved in
cloud deployment, such as an application developer, a soft-
ware architect or even a cloud provider, e.g. to test its
own SaaS. Using such an approach only requires to have
necessary knowledge to properly configure the application’s
requirements.

3.1 Cloud Systems Variability Modelling
The architecture relies on two distinct parts, fms on one

hand and ontologies on the other hand. fms define the com-
monalities and variabilities of cloud providers while ontolo-
gies represents the scope, i.e., the set of cloud providers.
The definition of the commonality, the variability and the
scope is part of the Domain Engineering process in a spl

approach [20].

3.1.1 Feature Models

fms constitute the reasoning part of the architecture and
are used to specify the functionalities provided by a given
cloud. They focus on modeling and describing a cloud’s com-
monalities and variabilities and its valid combinations. Each
fm represents a cloud provider and the set of configurations
related to this cloud.

CloudA

Balancer

Language

Tomcat

Name: ram
Domain: integer
Value: 128

MongoDB
[0..4]

Java PHP

card(Tomcat) > 1 ⇒ Balancer

optional

mandatory
alternative
(xor)

or

Legend

Cloudlet
Name: cpu
Domain: integer
Value: 200

Figure 3: Excerpt of the CloudA FM (FMCloudA)

A Feature Diagram (fd) (see Fig. 3 that depicts an ex-
cerpt fm of a cloud CloudA) consists of a hierarchy of features
(typically a tree), which may be mandatory (commonality)

or optional (variability) and may form Xor or Or-groups.
Constraints, e.g., implies or excludes, can also be specified
using propositional logic to express inter-feature dependen-
cies. In the above example, the Tomcat application server is
mandatory while the Balancer feature is optional. Config-
uring the CloudA to have more than one configured Tomcat
implies such a cloud configuration to have a load Balancer.
Such a relation is described as a constraint between features
and is associated to the fd. We consider that a fm consists
of a fd and the associated set of constraints.

In our approach, we defined a fm metamodel based on the
concepts proposed in [20]. We extend those concepts to in-
clude more information about features. First, we extend the
fm with feature cardinalities [9]. This kind of fms is said
cardinality-based fms. A feature cardinality is an interval
[m..n] with m as lower bound and n as upper bound of this
interval. This interval determines the number of instances of
the feature allowed in the product configuration. For exam-
ple, one possible configuration of the FMCloudA allows up to
4 Tomcat instances. The second extension is done by adding
attributes related to features, as proposed in [2]. These at-
tributes are used to fill the lack of information in the basic
fm notation. fms with additional information are called
extended fms. As these proposals, we consider a feature at-
tribute as a triplet <name, domain, value>. Thus, the CPU

feature attribute in the FMCloudA specifies the frequency
provided by this feature. Constraints related to fms can also
be cardinality-based, as described by the card(Tomcat) > 1

→ Balancer constraint: if the number of Tomcat instances is
upper than one, then a load Balancer must be selected. By
means of constraints, we assume that the resulting configu-
ration is fully functional.

3.1.2 Ontologies

Each cloud fm differs syntactically and semantically from
each other, since defined by different experts and represent-
ing different clouds. The heterogeneity of the different un-
derlying clouds needs to be abstracted to model the domain
knowledge and define the semantics of features and their re-
lationships. This abstract model is defined using ontologies.
In computer science, ontologies were first introduced by [15]
back in 1993. An ontology is ”a formal, explicit specifica-
tion of a shared conceptualization” [8]. They are used to
describe the concepts and the relationships between these
concepts, thus providing a vocabulary [13] and a knowledge
representation of a domain, here the cloud.

PaaS

Database

Application
Server

SQL

NoSQL

provides

Cloud

IaaS

Resource

RAM

CPU

uses

CapacityMemory

Dimension

Storage

Frequency

range

a) Onto
Cloud

b) Onto
Dim

Figure 4: OntoCloud and OntoDim ontologies (excerpt)

We propose to use ontologies to semantically bridge the
gap between the application’s requirements and the archi-
tecture reasoning part, the fms. In our approach, we define

two ontologies as depicted by Fig. 4 that conforms to an
ontology metamodel we defined based on the concepts pro-
posed in [8]. The first one, OntoCloud, models technical
requirements supported by cloud providers, e.g., applica-
tion server or database, and the relationships between these
concepts. The second ontology, OntoDim, describes the di-
mension properties the user can specify and associate to the
technical requirements selected in OntoCloud, e.g., database
size or CPU frequency.

3.1.3 Mapping Ontologies with FMs

We define two kinds of mapping to link these two ontolo-
gies with the cloud providers’ fms as depicted by Fig. 5. On
the one hand, OntoCloud Concepts are mapped to fms Fea-

tures. Two syntactically different Features in different Fea-

ture Models can be semantically equivalent and thus mapped
with the same OntoCloud Concept. On the other hand, re-
garding OntoDim, Concepts are mapped to feature Attributes.

CloudA

Tomcat

"RAM"
Integer
128

[0..4]

Cloudlet
"CPU"
Integer
200

Application
Server

Cloud

Resource

uses

Memory

Frequency

Figure 5: Example of mapping regarding FMCloudA

More precisely, Concept’s properties are mapped to fea-
ture Attributes the following way: (i) Property’s domain

name (i.e., Concept’s name attribute) with Attribute’s name,
(ii) Property’s value with Attribute’s value and (iii) Prop-

erty’s range with Attribute’s domain. These two mappings
bridge the gap between application’s requirements and the
range of cloud fms.

3.2 Clouds Configuration & Selection
Thanks to the previously described mappings, the user

makes only the selection of ontologies concepts and avoids
a tedious and error-prone task involving the selection of
features for each cloud provider’s fm. The selection of a
valid combination of features identified in the domain engi-
neering process is part of the Application Engineering pro-
cess [20]. The user selects by hand among ontologies con-
cepts those necessary for her/his application requirements.
She/He also specifies related dimension’s value when re-
quired. Let us now consider the following ApiSense configu-
ration: conf1 = {Database, MongoDB, Collector, Publisher,

Export}. Based on the description given in Sec. 2.3, the
ApiSense architect defines the set of conf1 requirements as:
req1 = [Java, MongoDB {capacity, real, 5}], the last num-
ber being the wished amount of GigaBytes, here given as
an example. The Storage concept is selected and defines a
property with the required information, MongoDB as domain,
real as range and 5 as value. Once the concepts selection
done, features are automatically selected in the different fms
thanks to the mapping between ontologies and fms previ-
ously described: (i) OntoCloud concepts are mapped with
features and (ii) OntoDim concepts are mapped with fea-
ture attributes (roughly).

The Algo. 1 informally describes the process of feature
selection for a given cloud provider fm. Running Algo. 1

Algorithm 1 configureFM(concepts, fm)

Require: a set of OntoCloud and OntoDim concepts
Ensure: a fm configuration config

1: for all Concept c in concepts do
2: for all Feature f in fm do
3: if findMapping(c, f) then
4: select f

5: if c.properties 6= ∅ then
6: for all Property p in c.properties do
7: f.attribute← p

8: end for
9: end if

10: end if
11: end for
12: end for

with concepts related to req1 and FMCloudA as parameters
results in the following FMCloudA configuration: [Database,

MongoDB {capacity, real, 5}, Language, Java]. This feature
selection process is applied on each cloud fm. The validity
of a cloud configuration is then checked using related fms
constraints.

3.3 Multi-Cloud Configurations
The previously described approach can be used in a multi-

cloud configuration perspective and tackles challenge C3.
Indeed, a fm configuration can be valid even if not fully
covering application’s requirements. In this case, it can be
associated with another cloud fm valid configuration for a
multi-cloud application to be deployed. Let us now consider
the following [Java, MySQL] set of requirements req2. conf2

= [Language, Java] is a valid configuration for FMCloudA

where CloudA supports Java-based application but does not
provide the MySQL database. conf2 does not fulfill req2.
Regarding Fig. 1 case d), there could be another CloudB

providing the MySQL support. Thus, the multi-cloud con-
figuration required to deploy the application is confmulti

= {[Language, Java]CloudA, [Database, MySQL]CloudB} with
[Language, Java] and [Database, MySQL] valid configurations
for CloudA and CloudB respectively.

In this section, we described how our approach is used to
deal with cloud variability and provide valid cloud configu-
rations. It faces challenges C1 and C2 by defining a mapping
between ontologies concepts and features and/or feature at-
tributes. Challenge C3 can be tackled the same way by com-
bining several configurations obtained from handling C1 and
C2. Each fm configuration validity is then checked to deter-
mine wether the corresponding cloud(s) fits user’s technical
requirements and resources dimensions choices or not.

4. PRELIMINARY VALIDATION
In this section, we present the details of the Saloon frame-

work we developed to implement the approach described in
Sec. 3, as well as the results obtained from first experimen-
tations we led to handle the challenges identified in Sec. 2.2.

4.1 Implementation
Regarding the implementation, the Saloon framework re-

lies on Eclipse Modeling Framework (EMF)1 metamodels,

1http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

which is one of the most widely accepted metamodeling tech-
nologies. Each metamodel is described as an ecore file and
allows us to create a dynamic instance as XMI model. These
models represent either an ontology, either a fm or even a
mapping model. During the cloud fms configuration pro-
cess, ontology models are loaded and the user selects the re-
quired concepts. Then, mapping and fms models are loaded.
The former is used while looping on the latter ones to select
the corresponding features. This choice brings high flexi-
bility to the Saloon framework. Indeed, one can target a
new cloud provider by adding corresponding fm model that
conforms to the fm metamodel. Once features are selected,
fms are translated to propositional logic and constraints are
loaded and checked against each cloud fm. The translation
of fms to propositional logic is well known [18] and off-the-
shelf SAT solvers such as Sat4j [3] can be used to check fms
configuration validity.

4.2 Experimentation
To validate our approach, we used two different ApiSense

configurations as Saloon inputs: conf1, described in the
previous section and conf2 = [Database, MongoDB, Collec-

tor, Publisher, Export, DataAnalysis], where DataAnalysis

is a PHP-based algorithm used to compute collected datasets.
Regarding these configurations, the associated sets of re-
quirements are req1 = [Java, MongoDB] and req2 = [Java,

MongoDB, PHP] respectively. We ran Algo. 1 with four differ-
ent PaaS fm describing Cloudbees2, Cloud Foundry3, dot-
Cloud4 and Heroku5 PaaS providers. Saloon gave us as
output the results reported in Table. 1.

PaaS Req. set Req. cover. Missing Multi

Cloudbees
req1 � -

MongoDB
req2 � -

Cloud req1 � -
Foundry req2 × PHP

dotCloud
req1 � -
req2 � -

Heroku
req1 × MongoDB Java

req2 × MongoDB

Table 1: PaaS FM configuration using Saloon

Cloudbees and dotCloud are the only PaaS to provide
both Java and PHP support. As they also provide a config-
ured environment to deploy a MongoDB instance, they cover
entirely the application’s requirements and are able to host
the two ApiSense configurations corresponding to req1 and
req2. Cloud Foundry does not provide a PHP support, and
cannot be configured to host ApiSense in its conf2 configu-
ration. Finally, Heroku can be configured to host Java-based
applications, but only PostgreSQL database instances are
provided. We then checked these results by deploying the
two ApiSense configurations on the four real cloud PaaS
named before. As described by Table. 1, we were able to
deploy conf1 on Cloudbees, Cloud Foundry, dotCloud and
conf2 on Cloudbees and dotCloud. Although successful, we
achieved these deployments not without difficulty. Indeed,

2http://www.cloudbees.com
3http://www.cloudfoundry.com
4https://www.dotcloud.com
5http://www.heroku.com

some modifications can be required before the application
upload, e.g., setting a correct database connection URL.

Used as a multi-cloud configurator, Saloon proposes sev-
eral solutions. One possibility, described in Table. 1, is to
configure the MongoDB database on the Cloudbees cloud, that
provides fully managed Databases-as-a-Service and in par-
ticular a large MongoDB instance with 5GB storage, while the
rest of the application is hosted on Heroku.

5. RELATED WORK
Multi-Cloud & Configuration. Some recent works

were proposed to deal with the problem of multi-cloud and
configuration. In [22], the authors propose a model-based
approach that helps to model, deploy and configure complex
applications in multiple IaaS. The application to be deployed
is modeled and configured as an OVF appliance to be run
in VMs whereas we configure the cloud(s) likely to host the
application considering its requirements. In [4], a DSL is
used to model the application to be deployed in the clouds
while an interpreter is provided to identify which resources
have to be used in the infrastructure to fulfill application’s
requirements. These authors pursue the same goal than us
but they do not manage the cloud offer heterogeneity and
can not check the validity of the obtained cloud configura-
tion. Leusse et al. [11] propose in their vision paper an
architecture to facilitate the deployment of different com-
ponents of a same application onto different clouds. They
point out the lack of visibility among cloud providers that
is one of the challenges we face in this paper. In [19], the
authors present a federated multi-cloud PaaS infrastructure
deployed on top of several existing IaaS/PaaS. This infras-
tructure is based on an open service model used to design
both the multi-cloud PaaS and the SaaS applications run-
ning on top of it. Contrarily to our approach, they don’t
need to configure the multi-cloud platform since both SaaS
and PaaS are implemented using the same service model.

Ontologies, FMs & Cloud. Several related work pro-
pose an ontology or fm-based approach to discover a cloud
provider. In [17, 10], ontologies are used to describe ser-
vices available at IaaS and PaaS level. They both propose
to reason on these ontologies to select one service that fits
best user’s requirements using similarity reasoning. Our ap-
proach goes in the same direction but add support to manage
cloud heterogeneity and variability and check the configura-
tion of several services thanks to fms. Other authors such
as [21, 12] present an fm-based approach to select and man-
age software configurations and deploy virtual appliances
on IaaS providers. They consider virtual appliances as spl

products and rely on fms to describe and select configura-
tions. Using this approach, one can not select among several
clouds and only configure IaaS VMs. Cavalcante et al. pro-
pose an adaptation of the SPL-based development process
to deploy their Health Watcher system [6]. Regarding the
application to be deployed, they include in its fm ”cloud
features”, e.g., Amazon S3 for the storage feature, that have
been collected by studying applications already deployed in
the cloud. Contrarily to our approach, they modify the orig-
inal application fm and, in a way, they influence the cloud
provider final choice. Moreover, they do not provide any
means of selecting among several clouds. In [23], the au-
thors propose an approach based on spl engineering to con-
figure multi-tenant cloud applications. They rely on an ex-

http://www.cloudbees.com
http://www.cloudfoundry.com
https://www.dotcloud.com
http://www.heroku.com

tended fm to describe functionalities and quality of services
for the application to be deployed and plan to use in their
future work an adaptive staged configuration process for re-
configuration of fm variants. A stakeholder for each cloud
level (IaaS, PaaS, SaaS) selects features for its level. Cloud
provider choice is thus limited to the IaaS/PaaS selected by
the corresponding stakeholder.

6. CONCLUSION
Selecting a cloud provider to host its application leads to

complex choices to deal with a wide range of resources at
different levels of functionality among available cloud solu-
tions, in particular when migrating services from one cloud
to another and managing distributed applications spanning
multiple clouds. In this paper, we proposed a model-driven
approach implemented in the Saloon framework that uses
feature models to represent clouds variability, as well as on-
tologies to describe the heterogeneous aspect of the cloud
ecosystem. A semantic mapping is defined between ontolo-
gies concepts and fms features, that bridges the gap between
application requirements and cloud providers configurations.
This mapping is automated and avoids the Saloon user to
select features for each cloud provider fm manually. By
combining several valid cloud configurations, our approach
supports multi-cloud configuration and thus faces the chal-
lenges identified in Sec. 2.2. As a preliminary validation,
we used our framework on four cloud providers and showed
that Saloon can be used to (i) check wether a cloud con-
figuration is valid or not and (ii) if invalid, wether another
cloud could be used in a multi-cloud configuration or not.

For future work, we plan to extend our approach to help
the user in its configuration process by using previous con-
figuration decisions as a feedback for quite equivalent appli-
cation’s requirements. We currently work on applying our
approach as the entry point of a whole spl, adding assets
composition and product generations steps to Saloon.

Acknowledgments
This work is supported by Ministry of Higher Education and
Research, Nord–Pas de Calais Regional Council, the FEDER
through the Contrat de Plan Etat Region Campus Intelligence
Ambiante (CPER CIA) 2007-2013 and the EU FP7 PaaSage
project.

7. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
and M. Zaharia. Above the Clouds: A Berkeley View of
Cloud Computing. Technical report, University of
California, Berkeley, 2009.

[2] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
Reasoning on Feature Models. In Proceedings of the 17th
international conference on Advanced Information Systems
Engineering, CAiSE’05, pages 491–503, 2005.

[3] D. L. Berre and A. Parrain. The sat4j library, release 2.2.
JSAT, 7(2-3):59–6, 2010.

[4] E. Brandtzæg, M. Parastoo, and S. Mosser. Towards a
Domain-Specific Language to Deploy Applications in the
Clouds. In 3rd International Conference on Cloud
Computing, GRIDs, and Virtualization, pages 213–218,
2012.

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as the
5th Utility. Future Gener. Comput. Syst., 25:599–616, 2009.

[6] E. Cavalcante, A. Almeida, T. Batista, N. Cacho, F. Lopes,
F. C. Delicato, T. Sena, and P. F. Pires. Exploiting

Software Product Lines to Develop Cloud Computing
Applications. In Proceedings of the 16th International
Software Product Line Conference - Volume 2, SPLC ’12,
pages 179–187, 2012.

[7] CloudTimes. Cloud Computing Ecosystem.
http://cloudtimes.org/wp-content/uploads/2011/11/
Clouds.cloudtimes.png, 2012. Accessed 31.10.12.

[8] O. Corcho, M. Fernández-López, and A. Gómez-Pérez.
Ontological Engineering: Principles, Methods, Tools and
Languages. In Ontologies for Software Engineering and
Software Technology, pages 1–48. 2006.

[9] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing
Cardinality-based Feature Models and their Specialization.
Software Process: Improvement and Practice, 10(1):7–29,
2005.

[10] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya. An
Effective Architecture for Automated Appliance
Management System Applying Ontology-Based Cloud
Discovery. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, CCGRID ’10, pages 104–112, 2010.

[11] P. de Leusse and K. Zielinski. Towards governance of rule
and policy driven components in distributed systems. In
ServiceWave, volume 6994 of Lecture Notes in Computer
Science, pages 317–318, 2011.

[12] B. Dougherty, J. White, and D. C. Schmidt. Model-driven
Auto-scaling of Green Cloud Computing Infrastructure.
Future Gener. Comput. Syst., 28(2):371–378, Feb. 2012.

[13] D. Gasevic, D. Djuric, and V. Devedzic. Model Driven
Engineering and Ontology Development (2. ed.). 2009.

[14] N. Grozev and R. Buyya. Inter-cloud architectures and
application brokering: taxonomy and survey. Software:
Practice and Experience, pages n/a–n/a, 2012.

[15] T. R. Gruber. A Translation Approach to Portable
Ontology Specifications. Knowl. Acquis., 5(2):199–220,
June 1993.

[16] N. Haderer, R. Rouvoy, and L. Seinturier. A Preliminary
Investigation of User Incentives to Leverage Crowdsensing
Activities. In 2nd International IEEE PerCom Workshop
on Hot Topics in Pervasive Computing (PerHot), San

Diego, États-Unis, Mar. 2013. IEEE Computer Society.
[17] J. Kang and K. M. Sim. Cloudle: An Ontology Enhanced

Cloud Service Search Engine. In Proceedings of the 2010
international conference on Web information systems
engineering, WISS’10, pages 416–427, 2011.

[18] M. Mendonca, A. Wa֒sowski, and K. Czarnecki. SAT-based
Analysis of Feature Models is Easy. In Proceedings of the
13th International Software Product Line Conference,
SPLC ’09, pages 231–240, 2009.

[19] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and
L. Seinturier. A Federated Multi-cloud PaaS Infrastructure.
In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 392 –399, june 2012.

[20] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. 2005.

[21] C. Quinton, R. Rouvoy, and L. Duchien. Leveraging
Feature Models to Configure Virtual Appliances. In
Proceedings of the 2nd International Workshop on Cloud
Computing Platforms, CloudCP ’12, pages 2:1–2:6, 2012.

[22] A. Sampaio and N. Mendonça. Uni4Cloud: An Approach
based on Open Standards for Deployment and Management
of Multi-cloud Applications. In Proceedings of the 2nd
International Workshop on Software Engineering for Cloud
Computing, SECLOUD ’11, pages 15–21, 2011.

[23] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and
M. Lochau. Dynamic Configuration Management of
Cloud-based Applications. In Proceedings of the 16th
International Software Product Line Conference - Volume
2, SPLC ’12, pages 171–178, 2012.

http://cloudtimes.org/wp-content/uploads/2011/11/Clouds.cloudtimes.png
http://cloudtimes.org/wp-content/uploads/2011/11/Clouds.cloudtimes.png

	Introduction
	Motivations & Challenges
	Selecting Among Cloud Providers
	Challenges
	Case Study

	Proposal
	Cloud Systems Variability Modelling
	Feature Models
	Ontologies
	Mapping Ontologies with FMs

	Clouds Configuration & Selection
	Multi-Cloud Configurations

	Preliminary Validation
	Implementation
	Experimentation

	Related Work
	Conclusion
	References

