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Abstract: We consider the control of distributed systems composed of subsystems communicat-
ing asynchronously; the aim is to build local controllers that restrict the behavior of a distributed
system in order to satisfy a global state avoidance property. We model distributed systems as
communicating finite state machines with reliable unbounded FIFO queues between subsystems.
Local controllers can only observe the behavior of their proper subsystem and do not see the queue
contents. To refine their control policy, controllers can use the FIFO queues to communicate by
piggy-backing extra information (some timestamps and their state estimates) to the messages sent
by the subsystems. We provide an algorithm that computes, for each local subsystem (and thus
for each controller), during the execution of the system, an estimate of the current global state of
the distributed system. We then define a synthesis algorithm to compute local controllers. Our
method relies on the computation of (co-)reachable states. Since the reachability problem is un-
decidable in our model, we use abstract interpretation techniques to obtain overapproximations
of (co-)reachable states. An implementation of our algorithms provides an empirical evaluation of
our method.
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Synthèse de contrôleurs pour des systèmes distribués
communicants

Résumé : Dans ce rapport de recherche, nous considérons des systèmes distribués, c.à.d. com-
posés de sous-systèmes communiquant de manière asynchrone. Notre objectif est de construire
des contrôleurs locaux qui restreignent le comportement de chaque sous-système pour satisfaire
une propriété de sûreté globale. Nous modélisons ces systèmes distribués par des automates
communicant par des canaux FIFO non bornés. Les contrôleurs locaux ne peuvent observer
que leur sous-systèmes et non le contenu des canaux. Pour améliorer leur politique de contrôle,
les contrôleurs peuvent communiquer entre eux en ajoutant des informations aux messages nor-
malement échangés par les sous-systèmes. Nous donnons un algorithme qui calcule, au cours de
l’exécution et pour chaque sous-système, une estimation de l’état global du système distribué.
Cette estimation permet de synthétiser des contrôleurs locaux. Notre méthode repose sur le cal-
cul d’ensembles d’états (co-)atteignables. Puisque le calcul exact de ces ensembles est impossible
(problème indécidable), nous utilisons des techniques issues de l’interprétation abstraite pour
obtenir des sur-approximations des ensembles d’états (co-)atteignables. Un logiciel basé sur ces
algorithmes permet une évaluation empirique de notre méthode.

Mots-clés : systèmes à événements discrets, contrôle, automates, systèmes infinis et distribués
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1 Introduction
In the framework of control of distributed systems, two classes of systems are generally considered,
depending on whether the communication between subsystems is synchronous1 or not. When the
network communication can be done through multiplexing or when the synchrony hypothesis [3]
can be made, the decentralized control problem and themodular control problem address the design
of coordinated controllers that jointly ensure the desired properties for this kind of systems [39,
34, 33, 10, 19]. When considering asynchronous distributed systems, the communication delays
between the components of the system must also be taken into account. Note that in both cases
the distributed control synthesis is undecidable [31, 37].

Our aim is to solve the latter problem, when the system to be controlled is composed of n
(finite) subsystems that communicate through reliable unbounded FIFO channels. These subsys-
tems are modeled by communicating finite state machines [5] (CFSM for short), a classical model
for distributed systems like communication protocols [30, 21] and web services [29]. Following
the architecture described in Figure 1, we assume that each subsystem is controlled by a local
controller which only observes the actions fired by its subsystem and communicates with it with
zero delays. The control decision is based on the knowledge each local controller has about the
current state of the whole system. Controllers communicate with each other by adding some ex-
tra information (some timestamps and their state estimates) to the messages normally exchanged
by the subsystems. These communications allow them to refine their knowledge, so that control
decisions may be more permissive.

and 

System 
under the 
control of 
C1 C2

T1 T2

C1 C2

Synchronous  Communicat ion

Queues

Queues

System 
to be 

controlled
Q1,2

Q1,2

Q2,1

Q2,1

Figure 1: Control architecture of a distributed system.

In this paper, we focus on the state avoidance control problem that consists in preventing the
system from reaching some bad states. To solve this control problem, we first compute offline (i.e.
before the system execution), the set of states that leads to bad states by only taking uncontrol-
lable transitions. We then compute online (i.e. during the execution of the controlled system)
state estimates for each controller so that they can take a better control decision. Since the
(co-)reachability problem is undecidable in our settings, we rely on the abstract interpretation
techniques of [21] to ensure the termination of the computations of our algorithms by over-
approximating the possible FIFO channel contents (and hence the state estimates) by regular
languages.
Related Works. Over the past years a considerable research effort has been done in decentral-
ized supervisory control [34, 39, 33, 15] that allows to synthesize individual controllers that have
a partial observation of the system’s moves and can communicate with each other [33, 1, 23].
The pioneer work of Pnueli and Rosner [31] shows that the synthesis of distributed systems is
in general undecidable. In [9], Gastin et al. study the decidability of LTL synthesis depending

1By synchronous communication, we mean that the communication between controllers is instantaneous.
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4 G. Kalyon & T. Le Gall & H. Marchand & T. Massart

on the architecture of the distributed system. However, in these works the authors consider a
synchronous architecture between the controllers. In [37], Tripakis studies the decidability of the
existence of controllers such that a set of responsiveness properties is satisfied in a decentralized
framework with communication delays between the controllers. He shows that the problem is
undecidable when there is no communication or when the communication delays are unbounded.
In [13], Irasihi proves the decidability a decentralized control problem of discrete event systems
with k-bounded-delay communication. In [2], Bensalem et al. propose a knowledge-based algo-
rithm for distributed control: each subsystem is controlled according to a (local) knowledge of
the property to ensure. When local knowledge is not sufficient, synchronizations are added until
a decision can be taken (the reachability problem is decidable in their model). Unlike them, the
reachability problem is undecidable in our model, the state estimates are a form of knowledge
that does not depend on the property to ensure, and we never add synchronizations.

The control of concurrent systems is closely related to our framework [15, 10, 19, 22]. However,
in this setting, the system is composed of several subsystems that communicate with zero delay
(and similarly for the controllers) whereas in our approach, the subsystems and the controllers
communicate asynchronously and we thus have to take into account the a priori unbounded
communication delay to perform the computation of the controllers.

Our problem differs from the synthesis problem (see e.g. [25, 11]) which asks to synthesize
a communication protocol and to distribute the actions of a specification depending on the
subsystem where they must be executed, and to synchronize them in such a way that the resulting
distributed system is equivalent to the given global specification.

In [7], Darondeau synthesizes distributed controllers for distributed system communicating
by bounded channels. He states a sufficient condition allowing to decide if a controller can be
implemented by a particular class of Petri nets that can be further translated into communicating
automata. Some other works deal with the computation of a state estimate of a centralized system
with distributed controllers. For example, in [38], Xu and Kumar propose a distributed algorithm
which computes an estimate of the current state of a system. Local estimators maintain and
update local state estimates from their own observation of the system and information received
from the other estimators. In their framework, the local estimators communicate between them
through reliable FIFO channels with delays, whereas the system is monolithic, and therefore these
FIFO channels are not included into the global states of the system. Moreover, as we consider
concurrent systems, we also have to take account the communication delay between sub-systems
to compute the state-estimates as well as the control policies. Finally, compared with [38], we
have chosen to exchange information between controllers using existing communication channel
between subsystems. This renders the computation of the state-estimates completely different.
Note also that the global state estimate problem of a distributed system is related to the problems
of (Mazurkiewicz) trace model checking and global predicate detection; this later aims to see if
there exists a possible global configuration of the system that satisfies a given global predicate φ.
A lot of related works, consider an offline approach where the execution, given as a Mazurkiewicz
trace [27] is provided from the beginning (see e.g. [12, 18] for a review and efficient methods).
Online global predicate detection has been studied, e.g. in [14, 35]. The proposed solution
implies a central monitor which receives on the fly the execution trace. Note that one of the
main issues in these problems is to have a precise estimation on the sequences of events in the
distributed execution. Therefore, standard techniques based e.g. on vector clocks [8, 26] are
used to generate a partial ordering of events; and so does also our method. However, compared
to the above mention works, our problem, is particular for one or several reasons. First, the
information must be received by all local controllers since no central monitor is present; then
FIFO queues are part of the global states; finally these controllers must take proactive measures
to prevent the system from taking an unsafe action.

Inria



Control of Distributed Systems with Communications 5

Outline. The remainder of this paper is structured as follows. In section 2, we present an
overview of our control method. In section 3, we define the formalism of communicating finite
state machines, that we use to model distributed systems. We formally define, in section 4,
the control mechanisms and the state avoidance control problem. In section 5, we present an
algorithm that computes estimates of the current state of a distributed system. In section 6, we
define a control algorithm, using this state estimate algorithm, for our state avoidance control
problem, and we explain how we can ensure the termination of this control algorithm by using
abstract interpretation techniques. Section 7 gives some experimental results. The proofs are
provided in Appendix.
Note. This paper is an extended version of two conference papers [17] and [16]. It contains the
full proofs of the theorems and examples that were omitted in the conference papers. It provides
the full process allowing to derive controllers from a state-based specification and a plant by
means of state-based estimates and abstract interpretation techniques, whereas [16] was only
presenting the state-based algorithms and [17] the control point of view with an overview of the
state-based estimates computation point of view.

2 Overview of the Method

This section provides an informal presentation, through a running example, of the model, problem
and main idea of our method.
Running Example. Figure 2 models a factory where three components T1, T2 and T3 work
together and communicate through four FIFO channels Q1,2, Q2,1, Q2,3 and Q3,1. Subsystem

T2 produces two kinds of items, a and b, and sends these items to T1 (action
Q2,1!a−→ ) which must

finish the job. At reception (action
Q2,1?a−→ ), T1 must immediately take care of each received item.

T1 can take care of b items at any time, but must be in turbo mode (locations A1 and A2) to
take care of a items. When T1 receives an item a, in normal mode (location A0), an error occurs
(location Aer). Messages c and d help the communication between the different subsystems, by
telling when T1 is in turbo mode and when T2 starts and stops to send items.

A state of the global system is naturally given by a tuple 〈`1, `2, `3, w1,2, w2,1, w2,3, w3,1〉 where
`i (∀i ∈ [1, 3]) gives the current location of the subsystem Ti and w1,2, w2,1, w2,3, w3,1 gives the
content of the queues Q1,2, Q2,1, Q2,3, Q3,1. Let Bad = {〈`1, `2, `3,M∗,M∗,M∗,M∗〉 | `1 = Aer}
be the set of states we want to avoid, where M = {a, b, c, d} is the set of messages (items in
transit).
Computation of the Set of Forbidden Global States. The first step of our algorithm is to
compute I(Bad), the set of states that can lead to Bad by a sequence of uncontrollable transitions

(input transitions). The only uncontrollable transition that leads to Bad is: A0
Q2,1?a−→ Aerr, so

the set of forbidden global states is: I(Bad) = Bad∪{〈`1, `2, `3,M∗, b∗.a.M∗,M∗,M∗〉 | `1 = A0}.
The most permissive control policy is thus to disable the action A2

Q1,2!d−→ A0 only when there
is a message a in the channel Q2,1. However, local controllers do not observe the content of
FIFO channels. Therefore, the communication between local controllers must provide enough
information to have a good knowledge of the content of FIFO channels.
State Estimates and Communication Between Controllers. This knowledge is given
by some estimates of the current global state of the system. Each local controller has one
state estimate to represent its knowledge and use it to define its control policy. The estimate
of a controller Ci is mainly updated online by observing its local subsystem Ti. Moreover,
controllers can communicate with each other by adding their state estimate to the messages
normally exchanged by the subsystems. In our example, when subsystem T2 sends message d to

RR n° 8260
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Figure 2: Running example

subsystem T3, its controller C2 knows whether a message a has been sent. C3 can then forward
this information to C1. So, when T1 is in location A2, its controller C1 knows whether there is a
message a in Q2,1 and it can then define the right control policy, i.e. it disables the transition

A2
Q1,2!d−→ A0 if and only if there is a message a in Q2,1.

Effective Algorithm. The general control problem that we want to solve is undecidable. We
then use abstract interpretation techniques to ensure, at the price of some overapproximations,
that the computations of our control algorithm always terminate. In our case, we abstract queue
contents by regular languages.
Discussion on the Model and the Method. The CFSM model we consider in this work is
a theoretical framework that allow us to reason about control problems without considering the
technical limitations of actual implementations of e.g. communication protocols2. Indeed, we
consider unbounded FIFO channels since it is a useful abstraction to reason about communication
protocols of asynchronous distributed systems without having to specify the size of the buffers.
Therefore, our method gives valid results even when the FIFO are bounded.

Our method also aims at computing an optimal knowledge (for each local controller) of the
global state of the system. This allows local controllers to have the most permissive control
strategy w.r.t. past communications (see section 5). This knowledge (state estimates) includes
a finite, symbolic representation of possible FIFO channels content. States estimates are piggy-
backed to normal messages. This is both the main advantage and the main drawback of our
method, since it leads to optimal state estimates but it also adds complex information to the
original messages. While in our examples, messages are represented by single letters and state
estimates seem to be more complex, in practice, actual messages can be bigger without increasing
the size of state estimates. Therefore, the additional information may be proportionally quite
small for protocols that transmit data packages like TCP/IP. Moreover, we suggest some ways
to decrease the size of additional information at the end of this paper.

2As illustrated in this section, buffers can also be used to model place where items are stored in a manufacturing
system waiting to be transformed by another machine (modeled by a sub-system of the CFSM

Inria



Control of Distributed Systems with Communications 7

3 Model of the System

We model distributed systems by communicating finite state machines (CFSMs) [5] with reliable
unbounded FIFO channels (also called queues below). CFSMs with unbounded channels are
very useful to model and verify communication protocols, since we can reason on them without
having to consider the actual size of the queues, which depend on the implementation of the
protocol.
Model.

Definition 1 (Communicating Finite State Machines) A CFSM T is defined by a 6-tuple
〈L, `0, Q,M,Σ,∆〉, where (i) L is a finite set of locations, (ii) `0 ∈ L is the initial location, (iii)
Q is a finite set of queues, (iv) M is a finite set of messages, (v) Σ ⊆ Q × {!, ?} ×M is a finite
set of actions, which are either an output i!m to specify that the message m ∈ M is written on
the queue i ∈ Q or an input i?m to specify that the message m ∈M is read on the queue i ∈ Q,
and (vi) ∆ ⊆ L× Σ× L is a finite set of transitions.

An output transition 〈`, i!m, `′〉 indicates that, when the system moves from the location ` to `′, a
messagemmust be added at the end of the queue i. An input transition 〈`, i?m, `′〉 indicates that,
when the system moves from ` to `′, a message m must be present at the beginning of the queue
i and must be removed from this queue. To simplify the presentation of our method, this model
has no internal actions (i.e. events that are local to a subsystem and that are neither inputs nor
outputs) and we assume that T is deterministic i.e., ∀` ∈ L,∀σ ∈ Σ : |{`′ ∈ L|〈`, σ, `′〉 ∈ ∆}| ≤ 1.
Those restrictions are not mandatory and our implementation [28] accepts CFSMs with internal
actions and non-deterministic ones. For σ ∈ Σ, the set of transitions of T labeled by σ is denoted
by Trans(σ). An event e is the occurrence of a transition δe.
Semantics. A global state of a CFSM T is a tuple 〈`, w1, ..., w|Q|〉 ∈ X = L× (M∗)|Q| where `
is the current location of T and w1, ..., w|Q| are finite words on M∗ which give the content of the
queues in Q.

Definition 2 (Semantics of a CFSM) The semantics of a CFSM T = 〈L, `0, Q,M,Σ,∆〉 is
given by an LTS [[T ]] = 〈X,~x0,Σ,→〉, where (i) X

def
= L× (M∗)|Q| is the set of states, (ii) ~x0

def
=

〈`0, ε, . . . , ε〉 is the initial state, (iii) Σ is the set of actions, and (iv)→def
=
⋃
δ∈∆

δ−→⊆ X ×Σ×X
is the transition relation where δ−→ is defined as follows:

δ = 〈`, i!m, `′〉 ∈ ∆ w′i = wi ·m
〈`, w1, . . . , wi, . . . , w|Q|〉 δ−→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

δ = 〈`, i?m, `′〉 ∈ ∆ wi = m · w′i
〈`, w1, . . . , wi, . . . , w|Q|〉 δ−→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

To simplify the notations, we often denote transition ~x δe−→ ~x′ by ~x e−→ ~x′. An execution of T
is a sequence ~x0

e1−→ ~x1
e2−→ . . .

em−−→ ~xm where ~x0 = 〈`0, ε, · · · , ε〉 is the only initial state and
~xi

ei+1−−−→ ~xi+1 ∈−→ ∀i ∈ [0,m − 1]. Given a set of states Y ⊆ X, ReachT∆′(Y ) corresponds to the
set of states that are reachable in [[T ]] from Y only triggering transitions of ∆′ ⊆ ∆ in T , whereas
CoreachT∆′(Y ) denotes the set of states from which Y is reachable only triggering transitions of
∆′:

RR n° 8260



8 G. Kalyon & T. Le Gall & H. Marchand & T. Massart

ReachT∆′(E)
def
=
⋃
n≥0

(PostT∆′(E))n (1)

CoreachT∆′(E)
def
=
⋃
n≥0

(PreT∆′(E))n (2)

where (PostT∆′(E))n and (PreT∆′(E))n are the nth functional power of PostT∆′(E)
def
= {~x′ ∈ X|∃~x ∈

E,∃δ ∈ ∆′ : ~x
δ−→ ~x′} and PreT∆′(E)

def
= {~x′ ∈ X|∃~x ∈ E,∃δ ∈ ∆′ : ~x′

δ−→ ~x}. Although there
is no general algorithm that can exactly compute the (co)reachability set [5], there exists some
techniques that allow us to compute an overapproximation of this set (see section 6.2). Given a
sequence of actions σ = σ1 · · ·σm ∈ Σ∗ and two states x, x′ ∈ X, x σ−→ x′ denotes that the state
x′ is reachable from x by executing σ.
Product of CFSM. A distributed system T is generally composed of several subsystems Ti
(∀i ∈ [1..n]) acting in parallel. In our case, this global system T is defined by a CFSM resulting
from the product of the n subsystems Ti, also modeled by CFSMs. This can be defined through
the product of two subsystems.

Definition 3 (Product) Given two CFSMs Ti = 〈Li, `0,i, Qi,Mi,Σi,∆i〉, their product, de-
noted by T1||T2, is defined by a CFSM T = 〈L, `0, Q,M,Σ,∆〉, where (i) L

def
= L1 × L2, (ii)

`0
def
= (`0,1, `0,2), (iii) Q

def
= Q1 ∪ Q2, (iv) M

def
= M1 ∪ M2, (v) Σ

def
= Σ1 ∪ Σ2, and (vi)

∆
def
= {〈〈`1, `2〉, σ1, 〈`′1, `2〉〉|(〈`1, σ1, `

′
1〉 ∈ ∆1) ∧ (`2 ∈ L2)} ∪ {〈〈`1, `2〉, σ2, 〈`1, `′2〉〉|(〈`2, σ2, `

′
2〉 ∈

∆2) ∧ (`1 ∈ L1)}.

This operation is associative and commutative up to state renaming.

Definition 4 (Distributed system) A distributed system T = 〈L, `0, Q,M,Σ,∆〉 is defined
by the product of n CFSMs Ti = 〈Li, `0,i, Ni,M,Σi,∆i〉 (∀i ∈ [1..n]) acting in parallel and
exchanging information through FIFO channels.

Note that a distributed system is also modeled by a CFSM, since the product of several CFSMs
is a CFSM. To avoid the confusion between the model of one subsystem and the model of the
whole system, in the sequel, a CFSM Ti always denotes the model of a single process, and a
CFSM T = 〈L, `0, Q,M,Σ,∆〉 always denotes the distributed system T = T1|| . . . ||Tn.
Communication Architecture. We consider an architecture for the system T = T1|| . . . ||Tn
defined in Definition 4 with point-to-point communication i.e., any subsystem Ti can send mes-
sages to any other subsystem Tj through a queue3 Qi,j . Thus, only Ti can write a message m on
Qi,j (denoted by Qi,j !m) and only Tj can read m on this queue (denoted by Qi,j?m). Moreover,
we suppose that the queues are unbounded, that the message transfers between the subsystems
are reliable and may suffer from arbitrary non-zero delays, and that no global clock or perfectly
synchronized local clocks are available. With this architecture, the set Qi of Ti (∀i ∈ [1..n]) can
be rewritten as Qi = {Qi,j , Qj,i | (1 ≤ j ≤ n) ∧ (j 6= i)} and ∀j 6= i ∈ [1..n], Σi ∩ Σj = ∅. Let
δi = 〈`i, σi, `′i〉 ∈ ∆i be a transition of Ti, global(δi) def

= {〈〈`1, . . . , `i−1, `i, `i+1, . . . , `n〉, σi, 〈`1,
. . . , `i−1, `

′
i, `i+1, . . . , `n〉〉 ∈ ∆ |∀j 6= i ∈ [1..n] : `j ∈ Lj} is the set of transitions of ∆ that can be

built from δi in T . We extend this definition to sets of transitions D ⊆ ∆i of the subsystem Ti :
global(D)

def
=
⋃
δi∈D global(δi). We abuse notation and write ∆ \∆i instead of ∆ \ global(∆i) to

3To simplify the presentation of our method, we assume that there is one queue from Ti to Tj . But, our
implementation is more permissive and zero, one or more queues can exist from Ti to Tj .

Inria
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denote the set of transitions of ∆ that are not built from ∆i. Given the set Σi of Ti (∀i ∈ [1..n])
and the set Σ of T , the projection Pi of Σ onto Σi is standard: Pi(ε) = ε and ∀w ∈ Σ∗, ∀a ∈ Σ,
Pi(wa) = Pi(w)a if a ∈ Σi, and Pi(w) otherwise. The inverse projection P−1

i is defined, for each
L ⊆ Σ∗i , by P

−1
i (L) = {w ∈ Σ∗ | Pi(w) ∈ L}.

4 Framework and State Avoidance Control Problem
In the sequel, we are interested in the state avoidance control problem which consists in preventing
the system from reaching some undesirable states.

4.1 Control Architecture
The distributed system T is composed of n subsystems Ti (∀i ∈ [1..n]) and we want to associate
a local controller Ci with each subsystem Ti in order to satisfy the control requirements. Each
controller Ci interacts with Ti in a feedback manner: Ci observes the last action fired by Ti
and computes, from this observation and some information received from the other controllers
(corresponding to some state estimates), a set of actions that Ti cannot fire in order to ensure
the desired properties on the global system. Following the Ramadge & Wonham’s theory [32],
the set of actions Σi of Ti is partitioned into the set of controllable actions Σi,c, that can be
forbidden by Ci, and the set of uncontrollable actions Σi,uc, that cannot be forbidden by Ci. The
subsets Σ1,c, . . . ,Σn,c are disjoint, because Σi ∩ Σj = ∅ (∀i 6= j ∈ [1..n]). In this paper and
in our implementation [28], inputs are uncontrollable and outputs are controllable, a classical
assumption for reactive systems. Our algorithm however does not depend on this particular
partition of the actions, since one of its parameters is the set of uncontrollable actions. The set
of actions, that can be controlled by at least one controller, is denoted by Σc and is defined by
Σc

def
=
⋃n
i=1 Σi,c; We also define Σuc

def
= Σ \ Σc =

⋃n
i=1 Σi,uc. This cut also induces a partition

on the set of transitions ∆i into the sets ∆i,c and ∆i,uc. The set of transitions ∆ is similarly
partitioned into the sets ∆c and ∆uc.

4.2 Distributed Controller and Controlled Execution
The control decision depends on the current state of the global system T (i.e. state-feedback
control). Unfortunately, a local controller does not generally know the current global state, due
to its partial observation of the system. So, it must define its control policy from a state estimate
corresponding to its evaluation of the states the system T can possibly be. It is formally defined
as follows:

Definition 5 (Local Controller) A local controller Ci is a function Ci : 2X → 2Σi,c which
defines, for each estimate E ∈ 2X of the current state of T according to Ci, the set of controllable
actions that Ti may not execute.

This definition of a controller does not explain how each local controller can compute a state
estimate. In section 5, we define an algorithm that allows Ci to compute this state estimate
during the execution of this system. Note that besides the preciseness of the state estimate, one
important property that should be satisfied by the state estimate E is that the actual current
state of the system is in E.
Based on Definition 5, a distributed controller is defined by:

Definition 6 (Distributed Controller) A distributed controller Cdi is defined by a tuple Cdi def=
〈Ci〉ni=1 where Ci (∀i ∈ [1..n]) is a local controller.
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A controlled execution is an execution that can occur in T under the control of Cdi.
Definition 7 (Controlled Execution) Given a distributed controller Cdi = 〈Ci〉ni=1, s = ~x0

e1−→
~x1

e2−→ . . .
em−−→ ~xm is a controlled execution of T under the control of Cdi if ∀k ∈ [1,m], whenever

δek ∈ ∆i and the estimate of Ci of the current state ~xk−1 of T is E, σek 6∈ Ci(E).

Note that with this definition, the language of the controlled system is controllable with respect
to the language of the original system. It is basically due to the fact that each local controller is
only able to disable the controllable actions that can occur in its corresponding subsystem.

4.3 Definition of the Control Problem
Control synthesis aims at restricting the behavior of a system to satisfy a goal property. The
goal properties we consider are invariance properties, defined by a subset Good ⊆ X of states, in
which any execution of the transition system should be confined. Alternatively, it can be viewed
as a state avoidance property Bad = X \ Good, which defines a set of states that no execution
should reach. Notice that the specification Bad can involve the contents of the FIFO channels
(recall that X = L× (M∗)|Q|). We define the problem as follows:

Problem 1 (Distributed State Avoidance Control Problem) Given a set of forbidden sta-
tes Bad ⊆ X, the distributed state avoidance control problem (the distributed problem for short)
consists in synthesizing a distributed controller Cdi = 〈Ci〉ni=1 such that each controlled execution
of the system T under the control of Cdi avoids Bad.
Proposition 1 Given a distributed systems T , a distributed controller Cdi and a set of forbidden
states Bad ⊆ X, it is undecidable to know whether Cdi solves Problem 1. Moreover, deciding the
existence of a non-trivial controller Cdi solving Problem 1 is undecidable.

Intuitively, this result is a consequence of the undecidability of the (co-)reachability problem in
the CFSM model[5].

Remark 1 (Trivial solutions and the non-blocking problem) Definition of Problem 1 does
not tackle the non-blocking problem (i.e. by imposing that at every time at least one transition
of one of the subsystem is allowed). Therefore, there exists a trivial solution of this problem,
which consists in disabling all output transitions so that nothing happens in the controlled sys-
tem. However, our aim is to find, as often as possible, solutions that are correct and enough
permissive to be of practical value. Since the principle of safe control is to allow a transition
only when the local controller is sure this transition cannot lead to a bad state, permissiveness
directly depends on the knowledge local controllers have about the global system.

Remark 2 Considering unbounded FIFO channels instead of bounded channels allows to reason
about communication protocols without having to specify the size of the buffers encoding the
channel and thus to be more generic when computing the controllers that remains valid whatever
is the size of the buffers (one can change the actual (finite) size of the buffers without having to
re-compute the controllers).

5 State Estimates of Distributed Systems
In this section, we present an algorithm that computes estimates of the current state of a dis-
tributed system. The result of this algorithm is used, in section 6, by our control algorithm
which synthesizes distributed controllers for the distributed problem. We first recall the notion
of vector clocks [20], a standard concept that we use to compute state estimates.
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5.1 Vector Clocks

To allow the local controllers to have a better understanding of the execution of the distributed
system, it is important to determine the causal and temporal relationship between the events
that occur during the execution : events emitted by a same subsystem are ordered, while events
emitted by different subsystems are generally not. When the concurrent subsystems communi-
cate, additional ordering information can be obtained, and the communication scheme can be
used to obtain a partial order on the events of the system. In practice, vectors of logical clocks,
called Vector clocks [20], can be used to time-stamp the events of a distributed system. The order
of the vector clocks induces the order of the corresponding events. Vector clocks are formally
defined as follows:

Definition 8 (Vector Clocks) Let 〈D,v〉 be a partially ordered set, a vector clock mapping
of width n is a function V : D 7→ Nn such that ∀d1, d2 ∈ D : (d1 v d2)⇔ (V (d1) ≤ V (d2)).

In general, for a distributed system composed of n subsystems, the partial order on events
is represented by a vector clock mapping of width n. The method for computing this vector
clock mapping depends on the communication scheme of the distributed system. For CFSMs,
it can be computed by the Mattern’s algorithm [26], which is based on the causal and thus
temporal relationship between the sending and reception of any message transferred through
any FIFO channel. This information is then used to determine a partial order, called causality
(or happened-before) relation ≺c, on the events of the distributed system. This relation is the
smallest transitive relation satisfying the following conditions: (i) if the events ei 6= ej occur
in the same subsystem Ti and if ei comes before ej in the execution, then ei ≺c ej , and (ii)
if ei is an output event occurring in Ti and if ej is the corresponding input event occurring in
Tj , then ei ≺c ej . In the sequel, when ei ≺c ej , we say that ej causally depends on ei (or ei
happened-before ej).
In Mattern’s algorithm [26], each subsystem Ti (∀i ∈ [1..n]) has a vector clock Vi ∈ Nn. Each
element Vi[j] (∀j ∈ [1..n]) is a counter which represents the knowledge of Ti regarding Tj and
which can roughly be interpreted as follows: Ti knows that Tj has executed at least Vi[j] events.
Initially, each component of the vector Vi (∀i ∈ [1..n]) is set to 0. Next, when an event e occurs
in Ti, the vector clock Vi is updated as follows: first, Vi[i] is incremented (i.e., Vi[i]← Vi[i] + 1)
to indicate that a new event occurred in Ti and next two cases are considered:

• if e consists in sending message m to Tj , vector clock Vi is attached to m and both infor-
mation are sent to Tj .

• if e corresponds to the reception of message m tagged with vector clock Vj , then Vi is set
to the component-wise maximum of Vi and Vj . This allows us to take into account the fact
that any event, that precedes the sending of m, should also precede the event e.

We now define a lemma related to vector clocks that will be used in the sequel:

Lemma 1 Given a sequence se1 = ~x0
e1−→ ~x1

e2−→ . . .
ei−1−−−→ ~xi−1

ei−→ ~xi
ei+1−−−→ ~xi+1

ei+2−−−→ . . .
em−−→

~xm executed by T , if ei 6≺c ei+1, then the sequence se2 = ~x0
e1−→ ~x1

e2−→ . . .
ei−1−−−→ ~xi−1

ei+1−−−→
~x′i

ei−→ ~xi+1
ei+2−−−→ . . .

em−−→ ~xm can also occur in T .

This property means that if two consecutive events ei and ei+1 are such that ei 6≺c ei+1, then these
events can be swapped without modifying the reachability of ~xm. Proof is given in Appendix.
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5.2 Computation of State Estimates
Each time an event occurs in subsystem Ti, controller Ci updates its vector clock Vi and its state
estimate Ei that should contain the current state of T . Note that Ei must also contain any
future state that can be reached from this current state by firing actions that do not belong to
Ti. Our state estimate algorithm proceeds as follows :

• When Ti sends a message m to Tj , Ti attaches the vector clock Vi and the state estimate
Ei of Ci to this message. Next, Ci observes the action fired by Ti, and infers the fired
transition. It then uses this information to update its state estimate Ei.

• When Ti receives a messagem from Tj , Ci observes the action fired by Ti and the information
sent by Tj i.e., the state estimate Ej and the vector clock Vj of Cj . It computes its new
state estimate from these elements.

In both cases, the computation of the new state estimate Ei depends on the computation of
reachable states. In this section, we assume that we have an operator that can compute an
approximation of the reachable states. We explain in section 6 how to compute this operator.
State Estimate Algorithm. Our algorithm, called SE-algorithm, computes state estimates of
a distributed system. It is composed of three sub-algorithms: (i) the initialEstimate algorithm,
which is only used when the system starts its execution, computes, for each controller, its initial
state estimate (ii) the outputTransition algorithm computes online the new state estimate of Ci
after an output of Ti, and (iii) the inputTransition algorithm computes online the new state
estimate of Ci after an input of Ti.
initialEstimate Algorithm: Each component of the vector Vi is set to 0. To take into ac-
count that, before the execution of the first action of Ti, the other subsystems Tj (∀j 6= i ∈
[1..n]) could perform inputs and outputs, the initial state estimate of Ci is given by Ei =
ReachT∆\∆i

(〈`0,1, . . . , `0,n, ε, . . . , ε〉).

Algorithm 1: initialEstimate(T )

input : T = T1|| . . . ||Tn.
output: The initial state estimate Ei of the controller Ci (∀i ∈ [1..n]).
begin1

for i← 1 to n do for j ← 1 to n do Vi[j]← 02

for i← 1 to n do Ei ← ReachT∆\∆i
(〈`0,1, . . . , `0,n, ε, . . . , ε〉)3

end4

Algorithm 2: outputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn, the vector clock Vi of Ci, the current state estimate Ei of Ci, and a

transition δ = 〈`1, Qi,j !m, `2〉 ∈ ∆i.
output: The state estimate Ei after the output transition δ.
begin1

Vi[i]← Vi[i] + 12
Ti tags message m with 〈Ei, Vi, δ〉 and writes this tagged message on Qi,j3

Ei ← ReachT∆\∆i
(PostTδ (Ei))4

end5

outputTransition Algorithm: Let Ei be the current state estimate of Ci. When Ti fires an output
transition δ = 〈`1, Qi,j !m, `2〉 ∈ ∆i, the following instructions are computed to update the state
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estimate Ei:

• Vi[i] is incremented (i.e., Vi[i]← Vi[i] + 1) to indicate that a new event has occurred in Ti.
• Ti tags message m with 〈Ei, Vi, δ〉 and writes this information on Qi,j . The estimate Ei, tagging

m, contains the set of states in which T can be before the execution of δ. The additional
information 〈Ei, Vi, δ〉 will be used by Tj to refine its state estimate.

• Ei is updated as follows to contain the current state of T and any future state that can be reached
from this current state by firing actions that do not belong to Ti: Ei ← ReachT∆\∆i

(PostTδ (Ei)).
More precisely, PostTδ (Ei) gives the set of states in which T can be after the execution of δ.
But, after the execution of this transition, Tj (∀j 6= i ∈ [1..n]) could read and write on their
queues. Therefore, we define the estimate Ei by ReachT∆\∆i

(PostTδ (Ei)).

Algorithm 3: inputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn, the vector clock Vi of Ci, the current state estimate Ei of Ci and a

transition δ = 〈`1, Qj,i?m, `2〉 ∈ ∆i. Message m is tagged with the triple 〈Ej , Vj , δ′〉
where (i) Ej is the state estimate of Cj before the execution of δ′ by Tj , (ii) Vj is the
vector clock of Cj after the execution of δ′ by Tj , and (iii) δ′ = 〈`′1, Qj,i!m, `′2〉 ∈ ∆j is
the output corresponding to δ.

output: The state estimate Ei after the input transition δ.
begin1
\\ We consider three cases to update Ej2

if Vj [i] = Vi[i] then Temp← PostTδ (ReachT∆\∆i
(PostTδ′(Ej)))3

else if Vj [j] > Vi[j] then Temp← PostTδ (ReachT∆\∆i
(ReachT∆\∆j

(PostTδ′(Ej))))4

else Temp← PostTδ (ReachT∆(PostTδ′(Ej)))5

Ei ← PostTδ (Ei) \\ We update Ei6
Ei ← Ei ∩ Temp \\ Ei = update of Ei ∩ update of Ej (i.e., Temp)7
Vi[i]← Vi[i] + 18
for k ← 1 to n do Vi[k]←max(Vi[k], Vj [k])9

end10

inputTransition Algorithm: Let Ei be the current state estimate of Ci. When Ti fires an input
transition δ = 〈`1, Qj,i?m, `2〉 ∈ ∆i, it also reads the information 〈Ej , Vj , δ′〉 (where Ej is the
state estimate of Cj before the execution of δ′ by Tj , Vj is the vector clock of Cj after the execution
of δ′ by Tj , and δ′ = 〈`′1, Qj,i!m, `′2〉 ∈ ∆j is the output corresponding to δ) tagging m, and the
following operations are performed to update Ei:

• we update the state estimate Ej of Cj (this update is stored in Temp) by using the vector
clocks to guess the possible behaviors of T between the execution of the transition δ′ and the
execution of δ. We consider three cases :

− if Vj [i] = Vi[i] : Temp ← PostTδ (ReachT∆\∆i
(PostTδ′(Ej))). In this case, thanks to the vector

clocks, we know that Ti has executed no transition between the execution of δ′ by Tj and the
execution of δ by Ti. Thus, only transitions in ∆\∆i could have occurred during this period.
We then update Ej as follows. We compute (i) PostTδ′(Ej) to take into account the execution
of δ′ by Tj , (ii) ReachT∆\∆i

(PostTδ′(Ej)) to take into account the transitions that could occur
between the execution of δ′ and the execution of δ, and (iii) PostTδ (ReachT∆\∆i

(PostTδ′(Ej)))
to take into account the execution of δ.
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− else if Vj [j] > Vi[j] : Temp ← PostTδ (ReachT∆\∆i
(ReachT∆\∆j

(PostTδ′(Ej)))). Indeed, in this case,
we can prove (see Theorem 1) that if we reorder the transitions executed between the
occurrence of δ′ and the occurrence of δ in order to execute the transitions of ∆i before the
ones of ∆j , we obtain a correct update of Ei. Intuitively, this reordering is possible, because
there is no causal relation between the events of Ti and the events of Tj , that have occurred
between δ′ and δ. So, in this reordered sequence, we know that, after the execution of δ,
only transitions in ∆ \∆j could occur followed by transitions in ∆ \∆i.

− else Temp ← PostTδ (ReachT∆(PostTδ′(Ej))). Indeed, in this case, the vector clocks do not
allow us to deduce information regarding the behavior of T between the execution of δ′ and
the execution of δ. Therefore, to have a correct state estimate, we update Ej by taking into
account all the possible behaviors of T between the execution of δ′ and the execution of δ.

• we update the estimate Ei to take into account the execution of δ: Ei ← PostTδ (Ei).

• we intersect Temp and Ei to obtain a better state estimate: Ei ← Ei ∩ Temp.
• vector clock Vi is incremented to take into account the execution of δ and subsequently is set to

the component-wise maximum of Vi and Vj . This last operation allows us to take into account
the fact that any event that precedes the sending of m should also precede the occurrence of
δ.

5.3 Properties
State estimate algorithms should have two important properties: soundness and completeness.
Completeness means that the current state of the global system is always included in the state
estimates computed by each controller. Soundness means that all states included in the state
estimate of Ci (∀i ∈ [1..n]) can be reached by one of the sequences of actions that are compatible
with the local observation of Ti.

We first introduce some additional notations and a lemma used in the proof of Theorem 1.
Let s = ~x0

e1−→ ~x1
e2−→ . . .

em−−→ ~xm be an execution of T . When an event ek is executed in the
sequence s, the state estimate of each controller Ci is denoted by Eki . This state estimate is
defined in the following way: if ek has not been executed by Ti, then Eki

def
= Ek−1

i . Otherwise,
Eki is computed by Ci according to Algorithm 2 or 3.

Lemma 2 Given a transition δi = 〈`i, Qt,i?mi, `
′
i〉 ∈ ∆i (with t 6= i), and a set of states B ⊆ X,

then ReachT∆\∆i
(PostTδei

(ReachT∆\∆i
(B))) = PostTδei

(ReachT∆\∆i
(B)).

Theorem 1 SE-algorithm is complete if the Reach operator computes an overapproximation
of the reachable states. In other words, SE-algorithm satisfies the following property: for any
execution ~x0

e1−→ ~x1
e2−→ . . .

em−−→ ~xm of T , ~xm ∈
⋂n
i=1E

m
i .

Proof 1 (Proof (Sketch)) We prove4 this theorem by showing, by induction on the length m
of an execution ~x0

e1−→ ~x1
e2−→ . . .

em−−→ ~xm of T , that ∀i ∈ [1..n] : ReachT∆\∆i
(~xm) ⊆ Emi . By

abuse of notation, we identify a state ~xm and the singleton {~xm} in the proofs. Since ~xm ∈
ReachT∆\∆i

(~xm), we have that ~xm ∈ Emi .

• Base case (m = 0): According to Algorithm 1, ∀i ∈ [1..n] : E0
i = ReachT∆\∆i

(~x0).

4The proofs of Theorems 1 and 2 are quite technical and composed of several cases. In the sketch of these
proofs, we present the different cases: for the first ones, we fully explain the techniques and the approaches used
to solve them, but for the last ones, we are more concise, since they are based on similar resolution methods. We
proceed in this way to give the intuition of the complete resolution of the proof.
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• Induction step: We suppose that the property holds for k ≤ m and we prove that ∀j ∈ [1..n] :
ReachT∆\∆j

(~xm+1) ⊆ Em+1
j . For that, we suppose that the event em+1 has been executed by Ti

and we consider two cases:

1) δem+1
is an output on the queue Qi,k (with k 6= i ∈ [1..n]): We consider two sub-cases:

a) j = i: We know that ReachT∆\∆i
(~xm) ⊆ Emi (induction hypothesis) and the set Em+1

i =

ReachT∆\∆i
(PostTδem+1

(Emi )) (see Algorithm 2). Moreover, we have that:

~xm ⊆ ReachT∆\∆i
(~xm)

⇒ PostTδem+1
(~xm) ⊆ PostTδem+1

(ReachT∆\∆i
(~xm))

⇒ ~xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(~xm)), as PostTδem+1
(~xm) = ~xm+1

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(~xm)))

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(Emi )), by induction hypothesis

⇒ ReachT∆\∆i
(~xm+1) ⊆ Em+1

i , by definition of Em+1
i

b) j 6= i: we prove the property by induction as in the previous case.
Note that since we compute an overapproximation of Em+1

j (∀j ∈ [1..n]), the inclusion we proved
remains true5.

2) δem+1
is an input from the queue Qk,i (with k 6= i ∈ [1..n]): Again, we consider two sub-cases:

a) j = i: By Algorithm 3, the set Em+1
i = Temp∩PostTδem+1

(Emi ) (in our algorithm, the set Temp

can have three possible values). To prove that ReachT∆\∆i
(~xm+1) ⊆ Em+1

i , we first prove that
ReachT∆\∆i

(~xm+1) ⊆ PostTδem+1
(Emi ) and next we show that ReachT∆\∆i

(~xm+1) ⊆ Temp. The
first inclusion is proved as follows:

~xm ⊆ ReachT∆\∆i
(~xm)

⇒ PostTδem+1
(~xm) ⊆ PostTδem+1

(ReachT∆\∆i
(~xm))

⇒ ~xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(~xm)), as PostTδem+1
(~xm) = ~xm+1

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(~xm)))

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(~xm)), by Lemma 2

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(Emi ), by induction hypothesis
To prove the second inclusion, we must consider three possibilities which depend on the definition
of Temp. Let et (with t ≤ m) be the output (executed by Tk with k 6= i ∈ [1..n]) corresponding
to the input em+1:
A) Temp = PostTδem+1

(ReachT∆\∆i
(PostTδet (Et−1

k ))) and Vk[i] = Vi[i] (as a reminder, Vk repre-
sents the vector clock of Tk after the occurrence of the event et and Vi represents the vector
clock of Ti before the occurrence of the event em+1): We first prove that

ReachT∆\∆i
(~xt) ⊆ ReachT∆\∆i

(PostTδet (Et−1
k )) (3)

Next, since Vk[i] = Vi[i], we know that, between the moment where et has been executed
and the moment where em has been executed, the vector clock Vi[i] has not been modified.
Thus, during this period no transition of Ti has been executed. In consequence, we have that
~xm ⊆ ReachT∆\∆i

(~xt) and hence ~xm ⊆ ReachT∆\∆i
(PostTδet (Et−1

k )) by (3). Finally, from this
inclusion, we can deduce that

ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(PostTδet (Et−1

k ))),

5Note that if we compute an underapproximation of Em+1
j , the inclusion does not always hold.
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which proves the property.

B) Temp = PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(PostTδet (Et−1

k )))) and Vk[k] > Vi[k]: first, we
prove that:

~xm ⊆ ReachT∆\∆i
(ReachT∆\∆k

(~xt)) (4)

For that, we consider the subsequence se = ~xt
et+1−−−→ ~xt+1

et+2−−−→ . . .
em−−→ ~xm of the execution

~x0
e1−→ ~x1

e2−→ . . .
em−−→ ~xm, and we show that se can be reordered to obtain a new sequence

where the events of Ti are executed before the ones of Tk and where ~xm remains reachable. To
prove that such a reordered sequence can be obtained we first prove that the events in se exe-
cuted by Tk do not causally depend on the events in se executed by Ti. Then we use Lemma 1,
that allows us to swap two consecutive events without modifying the reachability when these
events are not causally dependent, to reorder the events of Ti and Tk. Finally, from (4), we
can deduce that ReachT∆\∆i

(~xm+1) ⊆ PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(PostTδet (Et−1

k )))).

C) Temp = PostTδem+1
(ReachT∆(PostTδet (Et−1

k ))): first, we prove that:

ReachT∆(~xt) ⊆ ReachT∆(PostTδet (Et−1
k )) (5)

Next, since the events et+1, . . . , em leading to ~xm from the state ~xt correspond to transitions
which belong to ∆ we have that ~xm ⊆ ReachT∆(~xt) and hence ~xm ⊆ ReachT∆(PostTδet (Et−1

k ))

by (5). Finally, from this inclusion, we can deduce that

ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆(PostTδet (Et−1
k ))).

Thus, for each definition of Temp, we have that ReachT∆\∆i
(~xm+1) ⊆ Temp and hence

ReachT∆\∆i
(~xm+1) ⊆ Em+1

i .

b) j 6= i: The proof is similar to the one given in the case where δem+1 is an output.

Thus, for each j ∈ [1..n], we have that ReachT∆\∆j
(~xm+1) ⊆ Em+1

j . Moreover, since we compute
an overapproximation of Em+1

j (∀j ∈ [1..n]), this inclusion remains true.

Theorem 2 SE-algorithm is sound if the Reach operator computes an underapproximation of
the reachable states. In other words, SE-algorithm satisfies the following property: for any
execution ~x0

e1−→ ~x1
e2−→ . . .

em−−→ ~xm of T , Ei ⊆ {x′ ∈ X|∃σ ∈ P−1
i (Pi(σe1 .σe2 . . . σem)) : ~x0

σ−→
x′} (∀i ≤ n) where ∀k ∈ [1,m], σek is the action that labels the transition corresponding to ek.

Proof 2 (Proof (Sketch)) We prove by induction on the length m of the sequences of events
e1, . . . , em executed by the system that ∀i ∈ [1..n] : Emi ⊆ {xr ∈ X|∃σ ∈ P−1

i (Pi(σe1 .σe2 . . . σem)) :

~x0
σ−→ xr} where δek = 〈`ek , σek , `′ek〉 is the transition corresponding to ek, for each k ∈ [1,m]:

• Base case (m = 0): It is proved by showing that ∀i ∈ [1..n] : E0
i = {xr ∈ X|∃σ ∈

P−1
i (Pi(ε)) : ~x0

σ−→ xr}.

• Induction step: We suppose that the property holds for k ≤ m and we prove that ∀j ∈
[1..n] : Em+1

j ⊆ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1)) : ~x0

σ−→ xr}. We suppose that em+1

has been executed by Ti and we consider two cases:

1) δem+1
is an output: We consider two sub-cases:
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a) i 6= j: The property is proved from the induction hypothesis Emj ⊆ {xr ∈ X|∃σ ∈
P−1
j (Pj(σe1 .σe2 . . . σem)) : ~x0

σ−→ xr} by using the fact that Em+1
j = Emj (since Cj does

not update its state estimate) and that Pj(σe1 .σe2 . . . σem) = Pj(σe1 .σe2 . . . σem+1
), because

σem+1 6∈ Σj.

b) i = j: We have to prove that Em+1
j = ReachT∆\∆j

(PostTδem+1
(Emj )) ⊆ {xr ∈ X|∃σ ∈

P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}. This can be done by showing that if a state ~x ∈

ReachT∆\∆j
(PostTδem+1

(Emj )), ~x ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}.

Note that since we compute an underapproximation of Em+1
j , the inclusion we proved remains

true.

2) δem+1
is an input: We consider again two sub-cases. For the first case (i.e., i 6= j), the proof is

similar to the one given in the case where δem+1
is an output. For the second case (i.e., i = j),

we must prove that PostTδem+1
(Emj ) ∩ Temp ⊆ {xr ∈ X|∃σ ∈ P−1

j (Pj(σe1 .σe2 . . . σem+1
)) :

~x0
σ−→ xr} (see Algorithm 3). This can be done by showing that if a state ~x ∈ PostTδem+1

(Emj ),

then ~x ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}. Again, since we compute

an underapproximation of Em+1
j , the inclusion remains true.

The full proofs of these theorems are given in Appendix. If we compute an underapproximation
of the reachable states, our state estimate algorithm is sound but not complete. If we compute
an overapproximation of the reachable states, our state estimate algorithm is complete but not
sound. Since we only need completeness to solve the control problem, we define in section 6 an
effective algorithm for the distributed problem by computing overapproximations of the reachable
states.

6 Computation by Means of Abstract Interpretation of Dis-
tributed Controllers for the Distributed Problem

In this section, we first define a semi-algorithm for the distributed problem which uses SE-
algorithm as sub-algorithm. Next, we explain how to extend it by using abstract interpretation
techniques to obtain an effective algorithm.

6.1 Semi-Algorithm for the Distributed Problem

Our algorithm, which synthesizes a distributed controller Cdi for the distributed problem, is
composed of two parts:

•Offline part: We compute the set I(Bad) of states of the global system T that can lead to
Bad by a sequence of uncontrollable transitions. Next, we compute, for each local controller
Ci, a control function Fi which gives, for each action σ of Ti, the set of states of T that can
lead to I(Bad) by a transition labeled by σ. This information is used by Ci, in the online part,
to define its control policy.

•Online part: During the execution of T , each local controller Ci uses the SE-algorithm to obtain
its own state estimate Ei and computes from this information the actions to be forbidden.

These two parts are formalized as follows.

RR n° 8260



18 G. Kalyon & T. Le Gall & H. Marchand & T. Massart

Offline Part. The set I(Bad) of states of T leading uncontrollably to Bad is given by the set
CoreachT∆uc

(Bad) which, as a reminder, is defined by CoreachT∆uc
(Bad) =

⋃
n≥0(PreT∆uc

)n(Bad)

(see (2)). Alternatively, it is defined as the least fixpoint of the function λB.Bad ∪ PreT∆uc
(B).

Since this function is continuous as a composition of continuous functions, the Knaster-Tarski and
Kleene’s theorems [36, 24] ensure that the least fixpoint exists, so I(Bad) = CoreachT∆uc

(Bad).
Next, we define, for each local controller Ci, the control function Fi : Σi × 2X → 2X , which

gives, for each action σ ∈ Σi and set B ⊆ X of states to be forbidden, the set Fi(σ,B) of global
states in which the action σ must be forbidden. This set corresponds, more precisely, to the
greatest set O of states of T such that, for each state ~x ∈ O, there exists a transition labeled by
σ leading to B from ~x:

Fi(σ,B)
def
=

{
PreTTrans(σ)(B) if σ ∈ Σi,c
∅ otherwise

(6)

We compute, for each action σ ∈ Σi, the set Fi(σ, I(Bad)) (∀i ∈ [1..n]). This information is used,
during the execution of T , by the local controller Ci to compute the actions to be forbidden.
Online Part. The local controller Ci is formally defined, for each state estimate E ∈ 2X , by:

Ci(E)
def
= {σ ∈ Σi | Fi(σ, I(Bad)) ∩ E 6= ∅} (7)

Thus, if E is the state estimate of Ci, it forbids an action σ ∈ Σi if and only if there exists a state
~x ∈ E in which the action σ must be forbidden in order to prevent the system T from reaching
I(Bad) (i.e., ∃~x ∈ E : ~x ∈ Fi(σ, I(Bad))).

During the execution of the system, when the subsystem Ti (∀i ∈ [1..n]) executes a transition
δ = 〈`i, σ, `′i〉, the local controller Ci receives the following information:

• if σ = Qj,i?m (with j 6= i ∈ [1..n]), it receives σ, and the triple 〈Ej , Vj , δ′〉 tagging m.

• if σ = Qi,j !m (with j 6= i ∈ [1..n]), it receives σ.

In both cases, since Ci knows that Ti was in the location `i before triggering σ, this controller can
infer the fired transition. Ci then uses the SE-algorithm with this information to update its state
estimate Ei and computes, from this estimate, the set Ci(Ei) of actions that Ti cannot execute.

The following theorem proves that this algorithm synthesizes correct controllers for the dis-
tributed problem.

Theorem 3 Given a set of forbidden states Bad ⊆ X, our distributed controller Cdi = 〈Ci〉ni=1

solves the distributed problem if ~x0 /∈ I(Bad).

Proof 3 We prove by induction on the length m of the sequences of transitions (these sequences
begin in the initial state) that I(Bad) is not reachable in the system T under the control of Cdi,
which implies that Bad is not reachable, because Bad ⊆ I(Bad):
Base case (m = 0): Since ~x0 6∈ I(Bad), the execution of the system T under the control of Cdi
starts in a state which does not belong to I(Bad).
Induction step: We suppose that the proposition holds for the sequences of transitions of length
less than or equal to m and we prove that this property remains true for the sequences of transi-
tions of length m+1. By induction hypothesis, each state ~x1 reachable by a sequence of transitions
of length m does not belong to I(Bad) and we show that each transition δ ∈ ∆, which can lead
to a state ~x2 ∈ I(Bad) from this state ~x1 in T , cannot be fired from ~x1 in the system T under
the control of Cdi. For that, we consider two cases and we suppose that δ is executed by Ti and is
labeled by σ:
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• if δ is controllable, then σ is forbidden by Ci in ~x1 and hence δ cannot be fired from ~x1. Indeed,
the estimate Ei of Ci contains ~x1, because the SE-algorithm is complete. Moreover, we have
that ~x1 ∈ Fi(σ, I(Bad)), because ~x1 ∈ PreTδ (~x2) and ~x2 ∈ I(Bad). Therefore, σ ∈ Ci(Ei)
(by (7)), which implies that δ cannot be fired from ~x1.
• if δ is uncontrollable, then ~x2 ∈ I(Bad), which is impossible by hypothesis.

Hence, in the system T under the control of Cdi, the forbidden state ~x2 cannot be reached from
~x1 by the transition δ.

Q1,2!cT1

T2

T3

[1, 0, 0]

[1, 1, 0] [1, 2, 0] [1, 3, 0]

[1, 3, 1] [1, 3, 2]

[2, 3, 2] [4, 3, 2][3, 3, 2]

Q1,2?c Q2,1!a Q2,3!d

Q2,3?d Q3,1!d

Q3,1?d Q1,2!dQ2,1?a

Figure 3: An execution of the running example.

Example 1 We consider the sequence of actions of our running example of Figure 3. The
set Bad is given by the set of global states where the location of T1 is Aer. Thus, I(Bad) =
Bad ∪ {〈`1, `2, `3, w1,2, w2,1, w2,3, w3,1〉|(`1 = A0) ∧ (w2,1 = a.M∗)}. At the beginning of the
execution of T , the state estimates of the subsystems are E1 = {〈A0, B0, D0, ε, ε, ε, ε〉}, E2 =
{〈A0, B0, D0, ε, ε, ε, ε〉, 〈A1, B0, D0, c, ε, ε, ε〉}, and E3 = {〈A0, B0, D0, ε, ε, ε, ε〉, 〈A1, B0, D0, c, ε, ε, ε〉,
〈A1, B1, D0, ε, b

∗, ε, ε〉, 〈A1, B2, D0, ε, b
∗(a+ ε), ε, ε〉, 〈A1, B3, D0, ε, b

∗(a+ ε), d, ε〉}. After the first
transition 〈A0, Q1,2!c, A1〉, the state estimate of the controller C1 is not really precise, because a
lot of things may happen without the controller C1 being informed: E1 = {〈A1, B0, D0, c, ε, ε, ε〉,
〈A1, B1, D0, ε, b

∗, ε, ε〉, 〈A1, B2, D0, ε , b
∗a, ε, ε〉, 〈A1, B3, D0, ε, b

∗(a+ε), d, ε〉, 〈A1, B3, D1, ε, b
∗(a+

ε), ε, ε〉, 〈A1, B3, D0, ε, b
∗(a+ ε), ε, d〉}. However, after the second transition 〈B0, Q1,2?c,B1〉, the

controller C2 has an accurate state estimate: E2 = {〈A1, B1, D0, ε, ε, ε, ε〉}. We skip a few steps
and consider the state estimates before the sixth transition 〈D1, Q3,1!d,D0〉: E1 is still the same,
because the subsystem T1 did not perform any action, E3 = {〈A1, B3, D1, ε, b

∗(a+ ε), ε, ε〉}, and
we do not give E2, because T2 is no longer involved. When T3 sends message d to T1, it tags it
with E3. Thus, C1 knows, after receiving this message, that there is a message a in the queue
Q2,1. It thus disables the action A2

Q1,2!d−→ A0, as long as this message a is not read (action

A2
Q2,1?a−→ A2), to prevent the system from reaching the forbidden states. Note that if we consider

the sequence of actions of Figure 3 without the sending and the reception of the message a, then
when T1 reaches the location A2 by executing the action Q3,1?d, its controller C1 enables the
actions Q1,2!d, because it knows that no message a is in Q2,1.

6.2 Effective Algorithm for the Distributed Problem
The algorithms described in the previous sections require the computation of (co-)reachability
operators. Those operators cannot be computed exactly because of undecidability reasons. Ab-
stract interpretation-based techniques [6] allows us to compute, in a finite number of steps, an
overapproximation of the (co-)reachability operators, and thus of the set I(Bad), and of the state
estimates Ei.
Computation of (Co-)Reachability Sets by the Means of Abstract Interpretation.
For a given set of global states X ′ ⊆ X and a given set of transitions ∆′ ⊆ ∆, the reachability
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(resp. co-reachability) set from X ′ can be characterized by the least fixpoint ReachT∆′(X
′) =

µY.F∆′(Y ) with F∆′(Y ) = X ′ ∪ PostT∆′(Y ) (resp. CoreachT∆′(X
′) = µY.F∆′(Y ) with F∆′(Y ) =

X ′ ∪ PreT∆′(Y )). Abstract interpretation provides a theoretical framework to compute efficient
overapproximation of such fixpoints. The concrete domain i.e., the sets of states 2X , is substituted
by a simpler abstract domain Λ, linked by a Galois connection 2X −−−→←−−−α

γ
Λ [6], where α (resp.

γ) is the abstraction (resp. concretization) function. The fixpoint equation is transposed into
the abstract domain. So, the equation to solve has the form: λ = F ]∆′(λ), with λ ∈ Λ and
F ]∆′ w α ◦ F∆′ ◦ γ where w is the comparison operator in the abstract lattice. In that setting, a
standard way to ensures that this fixpoint computation converges after a finite number of steps
to some overapproximation λ∞, is to use a widening operator ∇. The concretization c∞ = γ(λ∞)
is an overapproximation of the least fixpoint of the function F∆′ .
Choice of the Abstract Domain. In abstract interpretation-based techniques, the quality of
the approximation we obtain depends on the choice of the abstract domain Λ. In our case, the
main issue is to abstract the content of the FIFO channels. Since the CFSM model is Turing-
powerful, the language which represents all the possible contents of the FIFO channels may be
recursively enumerable. As discussed in [21], a good candidate to abstract the contents of the
queues is to use the class of regular languages, which can be represented by finite automata. Let
us recall the main ideas of this abstraction.
Finite Automata as an Abstract Domain. We first assume that there is only one queue
in the distributed system T ; we explain later how to handle a distributed system with several
queues. With one queue, the concrete domain of the system T is defined by X = 2L×M

∗
. A set

of states Y ∈ 2L×M
∗
can be viewed as a map Y : L 7→ 2M

∗
that associates a language Y (`) with

each location ` ∈ L; Y (`) therefore represents the possible contents of the queue in the location
`. In order to simplify the computation, we substitute the concrete domain 〈L 7→ 2M

∗
,⊆〉 by

the abstract domain 〈L 7→ Reg(M),v〉, where Reg(M) is the set of regular languages over the
alphabet M and v denotes the natural extension of the set inclusion to maps. This substitution
consists thus in abstracting, for each location, the possible contents of the queue by a regular
language. Regular languages have a canonical representation given by finite automata, and each
operation (union, intersection, left concatenation,...) in the abstract domain can be performed
on finite automata.
Widening Operator. With our abstraction, the widening operator we use to ensure the con-
vergence of the computation, is also performed on a finite automaton, and consists in quotienting
the nodes6 of the automaton by the k-bounded bisimulation relation ≡k; k ∈ N is a parameter
which allows us to tune the precision: increasing k improves the quality of the abstractions in
general. Two nodes are equivalent w.r.t. ≡k if they have the same outgoing path (sequence of
labeled transitions) up to length k. While we merge the equivalent nodes, we keep all transitions
and obtain an automaton recognizing a larger language. Note that the number of equivalent
classes of the k-bounded bisimulation relation is bounded by a function of k and of the size of
the alphabet of messages. Therefore the number of states of the resulting automaton is also
bounded. So, if we fix k and we apply this widening operator regularly, the fixpoint computation
terminates (see [21] for more details and examples).

0 1 2 3 4
b b b a

a

aa
{0, 1, 2} {3} {4}b

b

a

a

Figure 4: Automaton A and A′ built from A with the 1-bounded bisimulation relation ≡1

6The states of an automaton representing the queue contents are called nodes to avoid the confusion with the
states of a CFSM.
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example # subsystems # channels time [s] memory [MB] maximal size average size
running example 3 4 7.13 5.09 143 73.0
c/d protocol 2 2 5.32 8.00 183 83.2
non-regular protocol 2 1 0.99 2.19 172 47.4
ABP 2 3 1.19 2.19 49 24.8
sliding window 2 2 3.26 4.12 21 10.1
POP3 2 2 3.08 4.12 22 8.5

Table 1: Time and memory consumption of a 100-steps random run

Example 2 We consider the automaton A depicted in Figure 4, whose recognized language
is a + ba + bba + bbba. We consider the 1-bounded bisimulation relation i.e., two nodes of
the automaton are equivalent if they have the same outgoing transitions. So, nodes 0, 1, 2 are
equivalent, since they all have two transitions labeled by a and b. Nodes 3 and 4 are equivalent
to no other node since 4 has no outgoing transition whereas only a is enabled in node 3. When
we quotient A by this equivalent relation, we obtain the automaton A′ on the right of Figure 4,
whose recognized language is b∗a. �

When the system contains several queues Q = {Q1, . . . , Qr}, their content can be represented
by a concatenated word w1] . . . ]wr with one wi for each queue Qi and ], a delimiter. With
this encoding, we represent a set of queue contents by a finite automaton of a special kind,
namely a QDD [4]. Since QDDs are finite automata, classical operations (union, intersection,
left concatenation,...) in the abstract domain are performed as previously. We must only use a
slightly different widening operator not to merge the different queue contents [21].
Effective Algorithm. The Reach and Coreach operators are computed using those abstract
interpretation techniques: we proceed to an iterative computation in the abstract domain of
regular languages and the widening operator ensures that this computation terminates after a
finite number of steps [6]. So the Reach (resp. Coreach) operators always give an overapproxima-
tion of the reachable (resp. co-reachable) states, whatever the distributed system is. Finally, we
define the distributed controller as in section 6.1 by using the overapproximations I ′(Bad) and
E′i instead of I(Bad) and Ei.

7 Experiments

Our control algorithm has been implemented as a part of the McScM tool, and freely available at
[28]. McScM’s input is a CFSM model of the system. The set Bad is given by a set of locations
and regular expressions describing what the queues should not contain. Our tool first computes
an overapproximation of I(Bad) according to the algorithms of sections 6. Then it starts an
interactive simulation of the system. At each step, it displays the current state of the system
and the transitions forbidden by the controller, and asks the user to choose a transition among
the allowed ones. Then, it updates the current state of the system and the state estimates as in
section 6 and thus enables or disables the controllable transitions.
Experiment on the Running Example. On this example, our software computes the exact
set I(Bad) (see Example 1) if we set the widening parameter k = 1. We considered the sequences
of events of Example 1 and the software validates the theory. The computation of I(Bad) and
execution of each sequence of events took less than 0.4s of run time and required 1.22 MB of
memory on a standard laptop.
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Experiment on the Connection/Disconnection Protocol. In this example taken from [21],
an error occurs when the client and the server send close/disconnect message at the same time.
Our controller solves the problem by not allowing the server to send disconnection messages.
The computation of I(Bad) took less than 0.1s and required 1.22 MB of memory.
Simulation. Instead of asking the user what transitions should be taken, our software can
randomly choose them. Table 1 displays the time and memory consumption needed by a 100-
steps random run on several examples of communication protocol. It also mentions the size
(number of nodes) of the state estimate computed during this run.

Remark 3 Note that even though the state space is unbounded, state estimates are symbolical
representations of sets of states, and their sizes do not depend on the number of states they
represent. For example, a state estimate which represents a queue containing one or more
messages ’a’ (i.e. the infinite set of states a,aa,aaa,...) can be encoded by an automaton with
only two nodes and two transitions. Thus, the state estimates always have a finite representation,
and the experiments give the maximal and average size of this representation.

8 Conclusion and further works

We propose in this paper a novel framework for the control of distributed systems modeled
as communicating finite state machines with reliable unbounded FIFO channels. Each local
controller can only observe its subsystem but can communicate with the other controllers by
piggy-backing extra information, such as state estimates, to the messages sent in the FIFO chan-
nels. Our algorithm synthesizes the local controllers that restrict the behavior of a distributed
system in order to satisfy a global state avoidance property, e.g. to ensure that an error state
is no longer reachable or to bound the size of the FIFO channels. We abstract the content of
the FIFO channels by the same regular representation as in [21]; this abstraction leads to a safe
effective algorithm. Even if we cannot have any theoretical guarantee about the permissiveness
of the control (like a non-blocking property), we remind that this permissiveness depends on the
quality of the abstraction. The more precise the abstraction is, the more permissive the control
is. Our experiments show that our approach is tractable and allows a precise control.

As a further work, we intend to solve the main practical problem of our approach: we compute
and send states estimates every time a message is sent. A more evolved technique would consist
in the offline computation of the set of possible estimates. Estimates would be indexed in a
table, available at execution time to each local estimator. A similar online method would be
to use the memoization technique: When a state estimate is computed for the first time, it is
associated with an index that is transmitted to the subsystem which records both values. If the
same estimate must be transmitted, only its index can be transmitted and the receiver can find
from its table the corresponding estimate. We still have to determine what is the most efficient
technique, and evaluate how it improves the current implementation. We also believe that the
work of decentralized control with communication and modular control with coordinator might
be adapted in our framework in order to reduce the communication between controllers.
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A Proofs of Theorems 1 and 2
In this appendix, we prove Theorems 1 and 2. These proofs requires Lemmas 1 and 2, for which
the proofs are given in section A.1.

A.1 Lemmas
In the sequel, the vector clock Vi, computed after the occurrence of an event e in the subsystem
Ti, is denoted by Vi(e). Vi(e)[j] is the jth value of this vector and represents the number of
events that happened in Tj and that were recorded by Ti when e occurs.

The following lemma proves the correctness of the vector clock mapping computed by the
Mattern’s algorithm for the relation ≺c:
Lemma 3 ([26]) Given n subsystems Ti (∀i ∈ [1..n]) and two events e1 6= e2 occurring respec-
tively in Ti and Tj (i can be equal to j), we have the following equivalence: e1 ≺c e2 if and only if Vi(e1) ≤
Vj(e2).

Lemma 4 Given n subsystems Ti (∀i ∈ [1..n]) and three events ei 6= ej 6= ek occurring respec-
tively in Ti, Tj and Tk , if ek 6≺c ej and ei ≺c ej , then ek 6≺c ei.

Proof 4 Let us assume that ek ≺c ei. Since ek 6≺c ej, there exists ` ∈ [1..n] such that Vk(ek)[`] >
Vj(ej)[`]. Moreover, Vk(ek)[`] > Vi(ei)[`], because Vi(ei)[m] ≤ Vj(ej)[m] for each m ∈ [1..n]
(due to ei ≺c ej). But it is a contradiction with ek ≺c ei, because this relation implies that
Vk(ek)[m] ≤ Vi(ei)[m] for each m ∈ [1..n].

A.2 Proof of Lemma 1
We suppose that δei = 〈`ei , σei , `′ei〉 ∈ ∆i and δei+1

= 〈`ej , σej , `′ej 〉 ∈ ∆j . Note that i 6= j;
otherwise, we would have ei ≺c ei+1 (by definition of ≺c). We can prove this property by showing
that PostTδei+1

(PostTδei
(~xi−1)) = PostTδei

(PostTδei+1
(~xi−1)). For that, we consider two cases:

1) δei and δei+1
act on different queues: We suppose that δei and δei+1

respectively act on the
queues Qki and Qkj . We also suppose that ~xi−1 = 〈`1, . . . , `ei ,. . . , `ej , . . . , `n, w1, . . . , wki , . . . ,
wkj , . . . , w|Q|〉 (where wki and wkj respectively denote the content of the queues Qki and Qkj ),
and that the action σei (resp. σej ), which acts on the content wki (resp. wkj ), modifies it to
give w′ki (resp. w

′
kj
). In consequence, PostTδei (~xi−1) = 〈`1, . . . , `′ei ,. . . , `ej , . . . , `n, w1, . . . , w

′
ki
,

. . . , wkj , . . . , w|Q|〉 and PostTδei+1
(PostTδei

(~xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1, . . . , w
′
ki
, . . . ,

w′kj , . . . , w|Q|〉. Since ei 6≺c ei+1, we have that PostTδei+1
(~xi−1) = 〈`1, . . . , `ei ,. . . , `′ej , . . . , `n, w1,

. . . , wki , . . . , w
′
kj
, . . . , w|Q|〉 and PostTδei

(PostTδei+1
(~xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1, . . . ,

w′ki , . . . , w
′
kj
, . . . , w|Q|〉, which implies that PostTδei+1

(PostTδei
(~xi−1)) = PostTδei

(PostTδei+1
(~xi−1)).

2) δei and δei+1
act on the same queue Qk: We consider two sub-cases:

a) σei = Qk!mi is an output and σei+1 = Qk?mj is an input: The message written by δei
cannot be read by the transition δei+1

, because, in this case, we would have ei ≺c ei+1.
Thus, PostTδei+1

(PostTδei
(~xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1, . . . , w.mi, . . . , w|Q|〉 where

w.mi is the content of the queue Qk. Therefore, the state PostTδei (~xi−1) = 〈`1, . . . , `′ei ,. . . , `ej ,
. . . , `n, w1, . . . , mj .w.mi, . . . , w|Q|〉 and the state ~xi−1 = 〈`1, . . . , `ei ,. . . , `ej , . . . , `n, w1, . . . ,

mj .w, . . . , w|Q|〉. Next, we compute the state PostTδei+1
(~xi−1) = 〈`1, . . . , `ei ,. . . , `′ej , . . . , `n,
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w1, . . . , w, . . . , w|Q|〉 and the state PostTδei (PostTδei+1
(~xi−1)) = 〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1,

. . . , w.mi, . . . , w|Q|〉. In consequence, PostTδei+1
(PostTδei

(~xi−1)) = PostTδei
(PostTδei+1

(~xi−1)).

b) σei = Qk?mi is an input and σei+1
= Qk!mj is an output: The state PostTδei+1

(PostTδei
(~xi−1)) =

〈`1, . . . , `′ei ,. . . , `′ej , . . . , `n, w1, . . . , w.mj , . . . , w|Q|〉 where w.mj is the content of the queue
Qk. Next, similarly to the previous case, we can prove that PostTδei+1

(PostTδei
(~xi−1)) =

PostTδei
(PostTδei+1

(~xi−1)).

The cases, where δei and δei+1 are both an input or an output, are not possible, because these
transitions would then be executed by the same process and hence we would have ei ≺c ei+1.

A.3 Proof of Lemma 2

First, the inequality PostTδei
(ReachT∆\∆i

(B)) ⊆ ReachT∆\∆i
(PostTδei

(ReachT∆\∆i
(B))) holds trivially.

To prove the other inclusion, we have to show that if a state ~xm ∈ ReachT∆\∆i
(PostTδei

(ReachT∆\∆i
(B))),

then ~xm ∈ PostTδei
(ReachT∆\∆i

(B)). We actually prove a more general result. We show that each

sequence ~x1
e2−→ ~x2

e3−→ . . .
ek−1−−−→ ~xk−1

ek−→ ~xk
ek+1−−−→ ~xk+1

ek+2−−−→ . . .
em−−→ ~xm (where (i) ~x1 ∈ B,

(ii) the event ek corresponds to the transition δek = δi ∈ ∆i, and (iii) the event eb, for each
b 6= k ∈ [2,m], corresponds to a transition δeb ∈ ∆ \∆i) can be reordered to execute ek at the
end of the sequence without modifying the reachability of ~xm i.e., the following sequence can
occur: ~x1

e2−→ ~x2
e3−→ . . .

ek−1−−−→ ~xk−1
ek+1−−−→ ~x′k+1

ek+2−−−→ . . .
em−−→ ~x′m

ek−→ ~xm. This reordered se-
quence can be obtained thanks to Lemma 1, but to use this lemma, we must prove that ek 6≺c eb
(∀b ∈ [k + 1,m]). The proof is by induction on the length of the sequence of events that begins
from ~xk:

• Base case: we must prove that ek 6≺c ek+1. By definition of ≺c, since ek and ek+1 occur in
different subsystems and are consecutive events, there is one possibility to have ek ≺c ek+1: it
is when ek is an output and ek+1 is the corresponding input. But ek is an input and hence
ek 6≺c ek+1.

• Induction step: we suppose that ek 6≺c ek+r (∀r ∈ [1, j]) and we prove that ek 6≺c ek+j+1.
By definition of ≺c, since ek and ek+1 occur in different subsystems, there are two possibilities
to have ek ≺c ek+j+1: (i) ek is an output and ek+j+1 is the corresponding input, but since ek
is an input, this case is impossible; (ii) ek ≺c ek+r (with r ∈ [1, j]) and ek+r ≺c ek+j+1, but
by induction hypothesis, ek 6≺c ek+r (∀r ∈ [1, j]) and hence this case is impossible. Therefore,
ek 6≺c ek+j+1.

A.4 Proof of Theorem 1

To show that this theorem holds, we prove by induction on the length m of an execution ~x0
e1−→

~x1
e2−→ . . .

em−−→ ~xm of the system T that ∀i ∈ [1..n] : ReachT∆\∆i
(~xm) ⊆ Emi . Since ~xm ∈

ReachT∆\∆i
(~xm), we have then that ~xm ∈ Emi .

• Base case (m = 0): For each i ∈ [1..n], the set E0
i = ReachT∆\∆i

(〈`0,1, . . . , `0,n, ε, . . . , ε〉)
(see Algorithm 1). Therefore, we have that ReachT∆\∆i

(~x0) = E0
i (∀i ∈ [1..n]), because ~x0 =

〈`0,1, . . . , `0,n, ε, . . . , ε〉.
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• Induction step: We suppose that the property holds for the executions of length k ≤ m
(i.e., ∀ 0 ≤ k ≤ m,∀i ∈ [1..n] : ReachT∆\∆i

(~xk) ⊆ Eki ) and we prove that the property also holds
for the executions of length m+ 1 (i.e., ∀j ∈ [1..n] : ReachT∆\∆j

(~xm+1) ⊆ Em+1
j ). For that, we

suppose that the event em+1 has been executed by Ti. We must consider two cases:

1) δem+1
is an output on the queue Qi,k (with k 6= i ∈ [1..n]): We consider two sub-cases:

a) j = i: By induction hypothesis, we know that ReachT∆\∆i
(~xm) ⊆ Emi . The set Em+1

i =

ReachT∆\∆i
(PostTδem+1

(Emi )) (see Algorithm 2). Moreover, we have that:

~xm ⊆ ReachT∆\∆i
(~xm)⇒ PostTδem+1

(~xm) ⊆ PostTδem+1
(ReachT∆\∆i

(~xm))

⇒ ~xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(~xm)), as PostTδem+1
(~xm) = ~xm+1

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(~xm)))

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(Emi )), by induction hypothesis

⇒ ReachT∆\∆i
(~xm+1) ⊆ Em+1

i , by definition of Em+1
i

b) j 6= i: By induction hypothesis, we know that ReachT∆\∆j
(~xm) ⊆ Emj . Moreover, we have

that:

~xm ⊆ ReachT∆\∆j
(~xm), by definition of Reach

⇒ PostTδem+1
(~xm) ⊆ PostTδem+1

(ReachT∆\∆j
(~xm)), as Post is monotonic

⇒ ~xm+1 ⊆ ReachT∆\∆j
(~xm), because δem+1 ∈ ∆ \∆j (as δem+1 ∈ ∆i) and

PostTδem+1
(~xm) = ~xm+1

⇒ ReachT∆\∆j
(~xm+1) ⊆ ReachT∆\∆j

(ReachT∆\∆j
(~xm)), as Reach is monotonic

⇒ ReachT∆\∆j
(~xm+1) ⊆ ReachT∆\∆j

(~xm)⇒ ReachT∆\∆j
(~xm+1) ⊆ Emj

⇒ ReachT∆\∆j
(~xm+1) ⊆ Em+1

j , because Emj = Em+1
j (due to the fact that em+1 has not

been executed by Tj)

Thus, for each j ∈ [1..n], we have that ReachT∆\∆j
(~xm+1) ⊆ Em+1

j . Moreover, since we
compute an overapproximation of Em+1

j (∀j ∈ [1..n]), this inclusion remains true7.

2) δem+1
is an input on the queue Qk,i (with k 6= i ∈ [1..n]): We consider again two cases:

a) j = i: By induction hypothesis, we know that ReachT∆\∆i
(~xm) ⊆ Emi . By Algorithm 3, the

set Em+1
i = Temp∩PostTδem+1

(Emi ) (in our algorithm, the set Temp can have three possible

values). To prove that ReachT∆\∆i
(~xm+1) ⊆ Em+1

i , we first prove that ReachT∆\∆i
(~xm+1) ⊆

PostTδem+1
(Emi ) and next we show that ReachT∆\∆i

(~xm+1) ⊆ Temp. The first inclusion is
proved as follows:

7Note that if we compute an underapproximation of Em+1
j , the inclusion does not always hold.
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~xm ⊆ ReachT∆\∆i
(~xm)⇒ PostTδem+1

(~xm) ⊆ PostTδem+1
(ReachT∆\∆i

(~xm))

⇒ ~xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(~xm)), because PostTδem+1
(~xm) = ~xm+1

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(~xm)))

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(~xm)), by Lemma 2

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(Emi ), by induction hypothesis

To prove the second inclusion, we must consider three cases which depend on the definition
of Temp. Let et (with t ≤ m) be the output (executed by Tk with k 6= i ∈ [1..n])
corresponding to the input em+1:
A) Temp = PostTδem+1

(ReachT∆\∆i
(PostTδet (Et−1

k ))) and Vk[i] = Vi[i] (as a reminder, Vk rep-
resents the vector clock of Tk after the occurrence of the event et and Vi represents the
vector clock of Ti before the occurrence of the event em+1): By induction hypothesis,
we know that ReachT∆\∆k

(~xt−1) ⊆ Et−1
k . Moreover, we have that:

~xt−1 ⊆ ReachT∆\∆k
(~xt−1)⇒ ~xt−1 ⊆ Et−1

k , by induction hypothesis

⇒ PostTδet (~xt−1) ⊆ PostTδet (Et−1
k )⇒ ~xt ⊆ PostTδet (Et−1

k ), as PostTδet (~xt−1) = ~xt

⇒ ReachT∆\∆i
(~xt) ⊆ ReachT∆\∆i

(PostTδet (Et−1
k )) (β)

However, since Vk[i] = Vi[i], we know that, between the moment where et has been exe-
cuted and the moment where em has been executed, the vector clock Vi[i] has not been
modified. Thus, during this period no transition of Ti has been executed. In conse-
quence, we have that ~xm ⊆ ReachT∆\∆i

(~xt) and hence ~xm ⊆ ReachT∆\∆i
(PostTδet (Et−1

k ))

by (β). From this inclusion, we deduce that:

PostTδem+1
(~xm) ⊆ PostTδem+1

(ReachT∆\∆i
(PostTδet (Et−1

k )))

⇒ ~xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(PostTδet (Et−1
k ))), because ~xm+1 = PostTδem+1

(~xm)

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(PostTδet (Et−1
k ))))

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(PostTδet (Et−1

k ))), by Lemma 2

⇒ ReachT∆\∆i
(~xm+1) ⊆ Temp, by definition of Temp

B) Temp = PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(PostTδet (Et−1

k )))) and Vk[k] > Vi[k] (as a
reminder, Vk represents the vector clock of Tk after the occurrence of the event et
and Vi represents the vector clock of Ti before the occurrence of the event em+1): By
induction hypothesis, we know that ReachT∆\∆k

(~xt−1) ⊆ Et−1
k . Moreover, we have that:

~xt−1 ⊆ ReachT∆\∆k
(~xt−1)⇒ ~xt−1 ⊆ Et−1

k , by induction hypothesis

⇒ PostTδet (~xt−1) ⊆ PostTδet (Et−1
k )

⇒ ~xt ⊆ PostTδet (Et−1
k ), because PostTδet (~xt−1) = ~xt (γ)
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This inclusion is used further in the proof. Now, we prove that ~xm ⊆ ReachT∆\∆i
(ReachT∆\∆k

(~xt)).

For that, let us consider the subsequence se = ~xt
et+1−−−→ ~xt+1

et+2−−−→ . . .
em−−→ ~xm of the

execution ~x0
e1−→ ~x1

e2−→ . . .
em−−→ ~xm. Let eK1

be the first event of the sequence
se executed8 by Tk and sI = eI1 , . . . , eI` (with I1 < . . . < I`) be the events of the
sequence se executed9 by Ti. If I` < K1 (i.e., eI` has been executed before eK1

),
then ~xm ⊆ ReachT∆\∆i

(ReachT∆\∆k
(~xt)), because all the events of the sequence se ex-

ecuted by Ti have been executed before the first event eK1 of Tk. Otherwise, let
sI′ = eId , . . . , eI` be the events of sI executed after eK1

. We must reorder the se-
quence se to obtain a new sequence where all the actions of Ti are executed before
the ones of Tk and ~xm remains reachable. Lemma 1 allows us to swap two consec-
utive events without modifying the reachability when these events are not causally
dependent. To use this lemma, we must prove that the events eId , . . . , eI` do not
causally depend on eK1 . For that, we first prove that eK1 6≺c eI` . By assumption,
we know that Vk[k] > Vi[k]. Vk represents the vector clock of Tk after the execution
of et and Vi represents the vector clock of Ti before the execution of em+1, which
gives Vk(et)[k] > Vi(em)[k]. Moreover, Vi(em)[k] ≥ Vi(eI`)[k] (because eI` has been
executed before10 em) and Vk(eK1)[k] ≥ Vk(et)[k] + 1 (because eK1 is the event which
follows et in the execution of the subsystem Tk). Thus, Vk(eK1)[k] > Vi(eI`)[k], and
hence eK1

6≺c eI` . Next, since eIc ≺c eI` (∀eIc 6= eI` ∈ sI′) and since eK1
6≺c eI` ,

we have by Lemma 4 that eK1
6≺c eIc . Now, in the sequence se, we will move the

events eId , . . . , eI` to execute them before eK1
without modifying the reachability of

~xm. We start by moving the element eId . To obtain a sequence where eId precedes
eK1 , we swap eId with the events which precede it and we repeat this operation until
the event eK1

. Lemma 1 ensures that ~xm remains reachable if eId is swapped with
an element e′ such that e′ 6≺c eId . However, between eK1

and eId there can be some
events, that happened before eId . We must thus move these events before moving eId .
More precisely, let sb = eb1 , . . . , ebp (with b1 < . . . < bp) be the greatest sequence
of events such that (i) these events are executed between the occurrence of eK1 and
the occurrence of eId and (ii) ∀ebc ∈ sb : ebc ≺c eId (note that the events of the
sequence sb are not executed by Tk; otherwise, we would have eK1

≺c eId). The se-
quence of events s = eK1

, eK1+1, eK1+2, . . . , eb1−1 executed between eK1
and eb1 is such

that ∀et′ ∈ s : et′ 6≺c eb1 . Indeed, if et′ ≺c eb1 , then by transitivity we would have
et′ ≺c eId , but this is not possible, because et′ 6∈ s. Thus, by Lemma 1, in the sequence
~xt

et+1−−−→ . . .
eK1−−→ ~xK1

eK1+1−−−−→ ~xK1+1

eK1+2−−−−→ . . .
eb1−1−−−→ ~xb1−1

eb1−−→ ~xb1
eb1+1−−−→ . . .

em−−→ ~xm,
we can safely swap the events eb1−1 and eb1 . We then obtain a reordered sequence
where ~xm remains reachable i.e., we obtain ~xt

et+1−−−→ . . .
eK1−−→ ~xK1

eK1+1−−−−→ ~xK1+1

eK1+2−−−−→
. . .

eb1−2−−−→ ~xb1−2

eb1−−→ ~x′b1
eb1−1−−−→ ~xb1

eb1+1−−−→ . . .
em−−→ ~xm. By repeating this swap with

the events eb1−2, eb1−3, . . . , eK1+1, eK1 , we obtain a reordered sequence where (i) eb1 is
executed before eK1

and (ii) ~xm remains reachable (by Lemma 1). We repeat the op-
erations performed for eb1 with the events eb2 , . . . , ebp and eId to obtain a reordered se-
quence where (i) eId is executed before eK1

and (ii) ~xm is reachable. Finally, we repeat
the operations performed for eId with the other elements of the sequence sI′ to obtain
a reordered sequence where (i) ~xm is reachable from ~xt and (ii) the events of Ti are

8If this element does not exist, then the transitions executed in this sequence do not belong to ∆k; thus,
~xm ⊆ ReachT∆\∆k

(~xt) and hence ~xm ⊆ ReachT∆\∆i
(ReachT∆\∆k

(~xt))
9If the sequence sI is empty, then the transitions executed in the sequence se do not belong to ∆i; thus,

~xm ⊆ ReachT∆\∆i
(~xt) and hence ~xm ⊆ ReachT∆\∆i

(ReachT∆\∆k
(~xt)), because ~xt ⊆ ReachT∆\∆k

(~xt)
10Note that eI` may be equal to em.
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executed before the ones of Tk, which implies that ~xm ⊆ ReachT∆\∆i
(ReachT∆\∆k

(~xt)).
Next, from this inclusion, we deduce that:

PostTδem+1
(~xm) ⊆ PostTδem+1

(ReachT∆\∆i
(ReachT∆\∆k

(~xt)))

⇒ ~xm+1 ⊆ PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(~xt))), because ~xm+1 = PostTδem+1

(~xm)

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(PostTδem+1
(ReachT∆\∆i

(ReachT∆\∆k
(~xt))))

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(ReachT∆\∆k

(~xt))), by Lemma 2

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆\∆i
(ReachT∆\∆k

(PostTδet (Et−1
k )))), by (γ)

⇒ ReachT∆\∆i
(~xm+1) ⊆ Temp, by definition of Temp

C) Temp = PostTδem+1
(ReachT∆(PostTδet (Et−1

k ))): By induction hypothesis, we know that

ReachT∆\∆k
(~xt−1) ⊆ Et−1

k . Moreover, we have that:

~xt−1 ⊆ ReachT∆\∆k
(~xt−1)⇒ ~xt−1 ⊆ Et−1

k , by induction hypothesis

⇒ PostTδet (~xt−1) ⊆ PostTδet (Et−1
k )⇒ ~xt ⊆ PostTδet (Et−1

k ), as PostTδet (~xt−1) = ~xt

⇒ ReachT∆(~xt) ⊆ ReachT∆(PostTδet (Et−1
k )) (α)

However, the events et+1, . . . , em leading to ~xm from the state ~xt correspond to transi-
tions which belong to ∆. Thus, ~xm ⊆ ReachT∆(~xt) and hence ~xm ⊆ ReachT∆(PostTδet (Et−1

k ))

by (α). From this inclusion, we deduce that:

PostTδem+1
(~xm) ⊆ PostTδem+1

(ReachT∆(PostTδet (Et−1
k )))

⇒ ~xm+1 ⊆ PostTδem+1
(ReachT∆(PostTδet (Et−1

k ))), as ~xm+1 =PostTδem+1
(~xm)

⇒ ~xm+1 ⊆ ReachT∆(PostTδet (Et−1
k )), because δem+1

∈ ∆

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆\∆i

(ReachT∆(PostTδet (Et−1
k )))

⇒ ReachT∆\∆i
(~xm+1) ⊆ ReachT∆(PostTδet (Et−1

k )), because ∆ \∆i ⊆ ∆

⇒ ReachT∆\∆i
(~xm+1) ⊆ PostTδem+1

(ReachT∆(PostTδet (Et−1
k ))), because δem+1

∈ ∆

⇒ ReachT∆\∆i
(~xm+1) ⊆ Temp, by definition of Temp

In conclusion, we have proven, for each definition of Temp, that ReachT∆\∆i
(~xm+1) ⊆ Temp

and hence ReachT∆\∆i
(~xm+1) ⊆ Em+1

i .

b) j 6= i: The proof is similar to the one given in the case where δem+1
in an output.

Thus, for each j ∈ [1..n], we have that ReachT∆\∆j
(~xm+1) ⊆ Em+1

j . Moreover, since we
compute an overapproximation of Em+1

j (∀j ∈ [1..n]), this inclusion remains true.

A.5 Proof of Theorem 2
To show that this theorem holds, we prove by induction on the lengthm of the sequences of events
e1, . . . , em (let δek = 〈`ek , σek , `′ek〉 be the transition corresponding to ek, for each k ∈ [1,m])
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executed by the system that ∀i ∈ [1..n] : Emi ⊆ {xr ∈ X|∃σ ∈ P−1
i (Pi(σe1 .σe2 . . . σem)) : ~x0

σ−→
xr}:

• Base case (m = 0): The initial state ~x0 = 〈`0,1, . . . , `0,n, ε, . . . , ε〉 and we must prove that
∀i ∈ [1..n] : E0

i ⊆ {xr ∈ X|∃σ ∈ P−1
i (Pi(ε)) : ~x0

σ−→ xr}. The set E0
i = ReachT∆\∆i

(~x0)

(see Algorithm 1) and ReachT∆\∆i
(~x0) = {xr ∈ X|∃σ ∈ P−1

i (Pi(ε)) : ~x0
σ−→ xr}, which

implies that E0
i = {xr ∈ X|∃σ ∈ P−1

i (Pi(ε)) : ~x0
σ−→ xr}. Moreover, since we compute an

underapproximation of E0
i (∀j ∈ [1..n]), this inclusion remains true11.

• Induction step: We suppose that the property holds for the sequences of events of length
k ≤ m and we prove that the property remains true for the sequences of length m + 1 (i.e.,
∀j ∈ [1..n] : Em+1

j ⊆ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}). We suppose that

em+1 has been executed by Ti. We consider two cases:

1) δem+1 is an output: We consider two sub-cases:

a) i = j: The set Em+1
j = ReachT∆\∆j

(PostTδem+1
(Emj )) and Pj(σe1 .σe2 . . . σem+1

) = Pj(σe1 .σe2 . . . σem).σem+1
,

because σem+1
∈ Σj . We prove that if ~x ∈ Em+1

j , then ~x ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1)) :

~x0
σ−→ xr}. If ~x ∈ Em+1

j , then there exists a state ~x′ ∈ Emj such that ~x ∈ ReachT∆\∆j
(PostTδem+1

(~x′)).
Let 〈`em+1 , σem+1 , `

′
em+1
〉, 〈`t1 , σt1 , `′t1〉, . . . , 〈`tk , σtk , `′tk〉 be the sequence of transitions

which leads to ~x from ~x′ i.e., ~x′
σem+1

.σt1
...σtk−−−−−−−−−−→ ~x. The transition 〈`tb , σtb , `′tb〉 ∈ ∆\∆j (for

each b ∈ [1, k]), which implies that σem+1
.σt1 . . . σtk ∈ P−1

j (σem+1
). Moreover, by induction

hypothesis, the state ~x′ ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem)) : ~x0

σ−→ xr}, which im-

plies that ∃σ′ ∈ P−1
j (Pj(σe1 .σe2 . . . σem)) : ~x0

σ′−→ ~x′. Since P−1
j (Pj(σe1 .σe2 . . . σem+1

)) =

[P−1
j (Pj(σe1 .σe2 . . . σem)).P−1

j (σem+1
)], the sequence σ′′ = σ′.σem+1

.σt1 . . . σtk belongs to

P−1
j (Pj(σe1 .σe2 . . . σem+1

)). Moreover, ~x0
σ′′−→ ~x (because ~x0

σ′−→ ~x′ and ~x′
σem+1

.σt1
...σtk−−−−−−−−−−→

~x) which implies that ~x ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}. Hence,

Em+1
j ⊆ {xr ∈ X|∃σ ∈ P−1

j (Pj(σe1 .σe2 . . . σem+1)) : ~x0
σ−→ xr}. Moreover, since we

compute an underapproximation of Em+1
j , this inclusion remains true.

b) i 6= j: By induction hypothesis, we know that Emj ⊆ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem)) :

~x0
σ−→ xr}. Since Em+1

j = Emj (by definition), we have that Em+1
j ⊆ {xr ∈ X|∃σ ∈

P−1
j (Pj(σe1 .σe2 . . . σem)) : ~x0

σ−→ xr}. Moreover, {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem)) :

~x0
σ−→ xr} = {xr ∈ X|∃σ ∈ P−1

j (Pj(σe1 .σe2 . . . σem+1
)) : ~x0

σ−→ xr}, as Pj(σe1 .σe2 . . . σem) =

Pj(σe1 .σe2 . . . σem+1) (because σem+1 6∈ Σj). Therefore, we have that Em+1
j ⊆ {xr ∈

X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}. Again, since we compute an underap-

proximation of Em+1
j , this inclusion remains true.

2) δem+1
is an input: We consider again two sub-cases:

a) i = j: The set Em+1
j = PostTδem+1

(Emj ) ∩ Temp (see Algorithm 3). Thus, we have that

Em+1
j ⊆ PostTδem+1

(Emj ) and it then suffices to prove that PostTδem+1
(Emj ) ⊆ {xr ∈ X|∃σ ∈

11Note that if we compute an overapproximation of the reachable states, the inclusion does not always hold.
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P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}. For that, we show that if ~x ∈ PostTδem+1

(Emj ),

then ~x ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}. If ~x ∈ PostTδem+1

(Emj ),

then there exists a state ~x′ ∈ Emj such that ~x = PostTδem+1
(~x′). By induction hypoth-

esis, the state ~x′ ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem)) : ~x0

σ−→ xr}, which im-

plies that ∃σ′ ∈ P−1
j (Pj(σe1 .σe2 . . . σem)) : ~x0

σ′−→ ~x′. Since P−1
j (Pj(σe1 .σe2 . . . σem+1

)) =

[P−1
j (Pj(σe1 .σe2 . . . σem)).P−1

j (σem+1)], the sequence σ′′ = σ′.σem+1 belongs to P
−1
j (Pj(σe1 .σe2 . . . σem+1)).

Moreover, ~x0
σ′′−→ ~x (because ~x0

σ′−→ ~x′ and ~x = PostTδem+1
(~x′)) which implies that

~x ∈ {xr ∈ X|∃σ ∈ P−1
j (Pj(σe1 .σe2 . . . σem+1

)) : ~x0
σ−→ xr}. Therefore, we have that

Em+1
j ⊆ {xr ∈ X|∃σ ∈ P−1

j (Pj(σe1 .σe2 . . . σem+1
)) : ~x0

σ−→ xr}. Again, since we compute
an underapproximation of Em+1

j , this inclusion remains true.

b) i 6= j: The proof is similar the one given in the case where δem+1
is an output. �
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