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Approximate Membership for Regular Languages
modulo the Edit Distance

Antoine Ndione, Aurélien Lemay, Joachim Niehren

Links project, Inria and Lifl, Lille France

Abstract

We present an efficient probabilistic algorithm for testing approximate membership of words to
regular languages modulo the edit distance. Our algorithm runs in polynomial time in the size of
the input automaton and the inverse error precision in contrast to all previous approaches, and
independently of the size of the input word. We also improve a previous approximate membership
tester modulo the Hamming distance such that it runs in polynomial complexity time, but with
larger polynomials than for the edit distance.

Keywords: automata, probabilistic algorithms, property testing, tegular word languages.

Introduction

The area of property testing was initiated by Rubinfeld and Sudan in [15] for program check-
ing, and was first applied to combinatorial properties and specifically to graph properties [9, 4].
More recently, it was applied to study properties of hypergraphs [10], boolean functions [2, 13],
and geometric functions; see surveys [5, 8, 12]. Approximate membership testing [1, 11, 6] is a
special case of property pesting, where one wants to test whether a word belongs to the regular
language or to some language in another class.

Approximate membership testing for non-deterministic finite automata (Nfas) is the follow-
ing problem. Given a word w, a precision value ε and an Nfa A, the problem is to discover
nonmembership to the language of A if the word w is ε-far from it. Intuitively, being ε-far from
a language means that the correction of an ε-fraction of w is insufficient to turn it into a member
of the language. Which corrections are permitted depends on the distance notion on words that
is chosen. So far, the Hamming distance and the edit distance with moves were considered, but
one can also choose the usual edit distance without moves. Since these distances can be ordered
decreasingly, any approximate membership tester for the Hamming distance also applies to the
edit distance, and any approximate tester for the edit distance can be used for the edit distance
with moves. Membership testers whose efficiency does not depend on the size of the input word
are most relevant for processing large texts. It means that the tester needs only to inspect a
fragment of constant size of any input word when fixing the error precision and the Nfa. In
order to provide access to the word’s letters, without having to read the word entirely, the tester
inputs a reference to an array that contains the word together with its length. In this way, all
positions of the word can be drawn from a uniform distribution.

Exact membership testing can be sped up by preprocessing with an approximate membership
tester, since whenever the latter returns no, the exact tester can adopt this decision with high
probability (or even precisely for one-sided testers) without having to read the entire word. When
testing membership for a collection of words, it may thus be sufficient to read only few of them
entirely.

Preprint submitted to Elsevier March 13, 2013



precision ε, Nfa A over Σ with k strongly connected components,
inverse precision δ = 1/ε, polynomially bounded functions:

pi,j,l(δ, k, |A|) =def δk
2|A|i logj(δk|A|l)

Distance Query complexity Time complexity

Hamming distance
O(p2,3,2(δ, k, |A|)) O(2|A|

2

+ δk) ; O(p5,3,2(δ, k, |A|))
Alon et. al. [1] ; here
Edit distance

O(p1,3,1(δ, k, |A|)) O(p2,3,1(δ, k, |A|))
(here)
Edit distance with moves

ln |Σ| |Σ|2δ δ4 O(ln |Σ| |Σ|2δ δ4 + |A|O(δ))
Fischer et. al. [6]

Figure 1: Summary of results on approximate membership testing for regular word languages.

Alon, Krivelevich and Newmann [1] showed that approximate membership testing with con-
stant query complexity is indeed possible for regular languages modulo the Hamming distance,
for fixed automata and error precision. As argued above, their algorithm can equally be used to
test approximate membership for larger distances, such as the edit distance or the edit distance
with moves. The edit distance with move is the natural distance notion obtained if considering
words as directed graphs with deletion and addition of edges but may be too relaxed for some
applications. Fischer, Magniez, and de Rougemont [6] proposed another approximation algo-
rithm for regular languages modulo the edit distance with moves, which may be exponential in
the inverse of the error precision though.

The state of the art leaves two main problems open. First, all existing testers may require
exponential time in the size of the input automaton or the inverse error precision. It is unknown
whether polynomial time algorithms exist. Second, input automata are assumed to be deter-
ministic, which may induce another exponential blow up for determinization. The question is
whether there exist an algorithm that can also deal with nondeterministic automata in polyno-
mial time. For these two reasons, the previous algorithms fail to be efficient which limits their
potential for use in practice.

Our first contribution is an approximate membership tester for Nfas modulo the Hamming
distance, which runs in polynomial time depending on the size of the input Nfa and the inverse
error precision, independently of the size of the input word. The new algorithm is obtained by
reformulating Alon, Krivelevich and Newmann’s [1] algorithm based on the notion of infeasible
fragments of words that we introduce. In order to decide feasability, we have to decide k-step
reachability of Nfa states in polynomial time, but independently of k. As we show, this is indeed
possible under the assumption that addition and multiplication on natural numbers can be done
in constant time. Here we apply ideas from algorithms for computing the Chrobak normal form
of Nfas over a single letter alphabet [7].

As our second contribution, we show that approximate membership for Nfas modulo the
edit distance can even be tested more efficiently. Our new tester is based on the notion of
blocking fragments that we introduce. In order to decide whether a fragment is blocking, we
have to decide reachability for Nfa states. The reason for which we can relax k-reachability as
for the Hamming distance is that errors can be corrected by letter insertion for the edit distance.
Reachability can be decided in linear time in the size of the Nfa, and thus more efficiently than
k-step reachability. Therefore, the degree of the polynomial for the complexity of approximate
membership testing can be reduced by 3. We summarize the new state of the art including our
results in Figure 1.
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Outline. In Section 1 we start with preliminaries on finite automata and approximate member-
ship testing. Section 2 introduces informally the notions of infeasible and blocking fragments of
words and illustrates their relevance for approximate membership testing by example. Section 3
presents the formal definitions of blocking and infeasible fragments and presents polynomial time
algorithms to decide these properties. The next two sections present our approximate member-
ship tester for Nfas modulo the edit distance. In Section 4, we treat the case of strongly connected
Nfas based on the notion of blocking intervals, and in Section 5, we generalize this algorithm
to arbitrary Nfas with multiple strongly connected components, while relying on blocking frag-
ments. In Section 6, we sketch an analogous approximate membership tester for Nfas modulo
the Hamming distance, in which the notion of feasible fragments becomes essential.

1. Preliminaries

We recall preliminaries on finite automata and property testing. In particular, we introduce
the notion of a fragment of a word and show how to run a finite automaton on a fragment. We
also recall various distances between words as well as the notion of approximate membership
testing.

1.1. Words, Fragments, and Finite Automata

Let N be the set of non-zero natural numbers, N0 = N∪ {0}, and R≥0 the set of positive real
numbers. Given a finite set S we write |S| ∈ N0 for its cardinality. An alphabet Σ is a finite
set. We write Σ∗ for the set of words with letters in Σ, that is Σ∗ = ]n∈N0

Σn. We denote by
a1 . . . an the word (a1, . . . , an) ∈ Σn where n ≥ 0. The empty word is the unique element of Σ0.
The length of w = a1 . . . an is |w| = n, the set of positions pos(w) = {1, . . . , n}, and the domain
dom(w) = pos(w) ∪ {0}. Note that the domain of the empty word is non-empty. We denote the
concatenation of two words w and w′ by w ·w′. In particular, note that a ·w is the concatenation
of the one-letter word a ∈ Σ1 with the word w.

A fragment of a word w is a subset of positions F ⊆ pos(w). We define the domain of a
fragment F by dom(F ) = {0} ∪ {i − 1, i | i ∈ F}. Hence dom(pos(w)) = dom(w) even for the
empty word. An (half-open) interval of w is a fragment I =]i, j] of w without holes, that is the
set {i + 1, . . . , j} where i < j are positions of w. A factor of a word w is another word w′ such
that w = w1 · w′ · w2 for some w1 and w2. If w = a1 . . . an and ]i, j] is an interval of w then we
denote the factor of w at ]i, j] by w]i, j] = ai+1 . . . aj .

A non-deterministic finite automaton (Nfa) is a tuple A = (Σ, Q,∆, init ,fin), where Σ is an
alphabet of letters, Q a finite set of states, ∆ ⊆ Q×Σ×Q a transition relation, and init ,fin ⊆ Q
the subsets of initial and final states. If (q, a, q′) ∈ ∆, we say that q

a→ q′ is a transition or

rule of A. Furthermore, we write
a−→A for the relation {(q, q′) | (q, a, q′) ∈ ∆} and →A for the

one-step reachability relation ∪a∈Σ
a−→A. The k-reachability relation is defined inductively by

−→k
A = −→k−1

A ◦ −→A and −→0
A= {(q, q) | q ∈ Q}. The reachability relation of A is the union of all

k-reachability relations −→∗A= ∪k≥0 −→k
A.

A quasi-run of an Nfa A on a fragment F of a word w = a1 . . . an is a function r : dom(F )→
Q such that r(i − 1)

ai−→ r(i) is a transition of A for all i ∈ F . A quasi-run is called total if its
domain is dom(w). Note that q →∗A q′ if and only if there exists a word w ∈ Σn and a total
quasi-run r on w by A such that r(0) = q and r(n) = q′.

A run r of A on a fragment F of w is a quasi-run of A on this fragment such that r(0) ∈ init .
A run is called successful if it is total and satisfies r(n) ∈ fin. As usual, we say that w is
recognized by A if there exists a successful run of A on w. The language L(A) ⊆ Σ∗ is the set of
all words w recognized by A. We call a language L ⊆ Σ∗ regular if it is equal to L(A) for some
Nfa A. The size of an Nfa A is the sum of the number of its states and rules |A| = |Q|+ |∆|.
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1.2. Distance Notions and Property Testing

A distance on words with alphabet Σ is a binary real-valued function d ⊆ Σ∗ × Σ∗ → R∞≥0

such that d(w,w) = 0 and d(w,w′) + d(w′, w′′) ≥ d(w,w′′). The distance between a word and
a non-empty language is d(w,L) = inf{d(w,w′) | w′ ∈ L}. A word w of length n is called ε-far
from a non-empty language L with respect to the distance if d(w,L) > εn, and ε-close otherwise.
Note that ε-farness and ε-closeness are defined with respect to the relative distance normalized
by the length of the word (and not with respect to the absolute distance).

The Hamming distance dhamming(w,w
′) between two words w = a1 . . . an and w′ = a′1 . . . a

′
m

is the least number of letter-exchange operations by which the two words become equal. For
words of the same length m = n, this is the number of positions i such that ai 6= a′i, and for
words of different length, this is ∞. The edit distance dedit(w,w

′) between two words w and w′

is the least number of insertion, deletion, and letter-exchange operations needed to transform w
into w′. For instance, dhamming(001100, 110011) = 6 and dedit(001100, 110011) = 4 since we can
insert 11 at the beginning of the left word and delete 00 at its end. Clearly the edit distance
between w and w′ is always smaller or equal than their Hamming distance.

We recall the problem of approximate membership testing to regular languages defined by
Nfas modulo some distance.

Definition 1. An approximate membership tester for Nfas A with alphabet Σ and a distance
function d : Σ∗ × Σ∗ → R∞≥0 is a terminating probabilistic algorithm that reads as input a
precision value ε ∈ R>0, a natural number n ∈ N0, and a reference rw to an array containing a
word w ∈ Σn and outputs close or no such that:

- if w ∈ L(A) then with probability 2
3 it outputs close, and

- if d(w,L(A)) > εn then with probability 2
3 the output is no.

When ε-close non-members of the language are received as input, approximate membership
testers are allowed to answer both close or no without any particular requirements. Given a
tester M , we can obtain another tester M ′ with higher probability than 2/3 by repeating M
sufficiently often. Also note that all testers presented in the present paper will be one-sided in
that they will always answer close for all words of the language. Hence, no-answers of one-sided
testers are always correct (not only with high probability).

Since the edit distance between w and w′ is always smaller or equal than their Hamming
distance, any approximate membership tester modulo the Hamming distance will also be an
approximate membership tester modulo the edit distance.

The query complexity of a tester is the maximal number of positions of the input word that
it may access until termination. We are particularly interested in testers with constant query
complexity in the size of the input word, so that the number of read operations may only depend
on the Nfa and the error precision. The time complexity of a tester is the maximal number
of computation steps it might require until termination. Here, we assume that all arithmetic
operations, by which to access the letters of the word in the array, take time in O(1) rather than
in O(log n).

2. Examples

We illustrate informally how to witness farness with respect to the Hamming distance or to
the edit distance by large collections of small “infeasible” or respectively “blocking” fragments.
The existence of such witnesses can then be tested by probabilistic algorithms. The precise
definitions will be given in the next section.
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Figure 2: An Nfa for L = (11)∗(10)∗.

We consider the regular language L = (11)∗(10)∗ over the alphabet Σ = {0, 1}. This language
is recognized by the Nfa with 4 states in Figure 2. This Nfa has k = 2 strongly connected
components, namely {q0, q1} and {q2, q3} which correspond to the two Kleene star operators in
the definition of L.

2.1. Intervals

We consider words um = (01)m with m > 0 which do not belong to L. They can be corrected,
however, to become a member of L by flipping all 0s to 1. It is apparent that corrections with
fewer relabeling operations do not exist, so the Hamming distance of um to L is equal to m. In
other words, um is at least 1/2-far from L with respect to the Hamming distance. With only 2
insertion operations, however, we can correct um so that it belongs to L, by adding a 1 in front
and a 0 at the end of um. Therefore the edit distance of um to L is at most 2, so um is 1/m-close
to L for the edit distance.

We next present a collection of intervals that witness for the Hamming distance that um is
far from L. We consider the intervals ]i, i+ 2] of um where 0 ≤ i < 2m− 1 and i is even. These
intervals are infeasible for the Nfa in the following sense: First note that the factor of um at
interval ]i, i + 2] is equal to 01. Words of even length can reach states q0 and q3 only. When
proceeding from there with word 01 all possible runs of the Nfa get stuck. This shows that no
word with factor 01 at any even position may belong to the language. Hence, at least 50% of all
intervals of length 2 are infeasible for this Nfa. An analogous argument for odd positions shows
that all of them are infeasible (but a fixed percentage will be enough for our algorithm).

When it comes to farness for the edit distance, the precise position of an interval does not
matter but only the factor that it defines. The reason is that new letters can be inserted for
correction before or after the factor. Therefore, the notion of infeasible intervals can be weakened
to the notion of blocking intervals. These are intervals that do permit to run the Nfa under
consideration. Indeed, none of the intervals ]i, i+ 2] of um is blocking in this sense. If i is odd,
then the Nfa can be run on the i-factor 10 from states q0 or q3 – even though no word of odd
length can reach these states – and if i is even, the Nfa can be run on the i-factor 01 from states
q1 and q2 – even though no word of even length will end up there.

2.2. Fragments

We next show that collections of intervals are not always sufficient to witness farness. In
order to see this, we consider the words vm = (10)m(11)m with m > 0. Again, no vm belongs
to L but all of them can be corrected by flipping 0s to 1. There is no better way even not if
permitting insertion and deletion operations. Therefore, vm is 1/4-far from L both with respect
to the edit and the Hamming distance. Notice that ]2m − 1, 2m + 1] is the only blocking or
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infeasible interval of vm, hence most of the ’small’ collections of intervals of length 2 doesn’t
witness 1/4-farness of vm.

We now consider the fragments ]i, i+ 2]∪]j, j + 2] where 0 ≤ i < 2m− 1 ≤ j < 4m− 1. The
pair of factors of vm at these fragments are all equal to (10, 11), and thus blocked in the following
sense: Before reading the first factor arbitrary states are reachable, but when continuing with
the first factor 10, only state q3 can be reached. From there, we can reach states q2 and q3

over arbitrary words, given that we do not make any assumptions on the word between the two
factors (even not on its length). From there, if we try to continue with the second factor 11, we
get blocked in state q2. This shows that all above fragments are blocking, and they constitute
roughly 1/4th of all fragments with 2 intervals of length 2.

2.3. Sampling Algorithms

All our algorithms will be based on probabilistic sampling for testing whether a large fraction
of “short” fragments is blocking or infeasible. Most typically, we might want to test whether
a word contains an ε-fraction of blocking fragments of some fixed length, say 2 for instance.
This can be tested by a probabilistic algorithm as follows: parametrized by a positive real c, it
draws randomly c/ε fragments of length 2 of the input word from a uniform distribution, and
answers no if at least one of them is blocking, and yes otherwise. This algorithm will detect
some blocking fragment with probability at least 1 − (1 − ε)c/ε ≥ 1 − ec

c→∞−−−→ 1. Therefore,
it answers correctly with no with high probability, for instance, with probability 0.9999 if we
choose a parameter c ≥ ln(0.0001).

This kind of sampling algorithm can be used with ε = 1/4, for instance, in order to show
that vm is far from L modulo the edit distance. It can also be applied to show that um is far
from L modulo the Hamming distance, by considering infeasible intervals of size 2 and choosing
ε = 1/2. For testing membership of other words to L, one might expect that c increases with the
distance from L. How to choose c for given Nfa A and error precision ε, is less obvious though.

3. Blocking and Infeasible Fragments

We next define the notions of blocking and infeasible fragments formally and show how
to decide these properties in polynomial time in the size of the fragment and the Nfa, but
independently of the size of the word.

Since intervals are particular fragments, we also reintroduce infeasible intervals, which were
called “infeasible runs” in [1]. All other notions are original to the present article.

For all what follows, we fix an Nfa A = (Σ, Q,∆, init ,fin), a length n ∈ N0 and a word
w ∈ Σn.

Definition 2. A run r of an Nfa A on a fragment F of w (of size n) is blocking if:

1. there exist elements i, j ∈ dom(F ) with i < j such that r(i) 6→∗A r(j) – in this case we can
choose i, j such that ]i, j] is disjoint from F –, or

2. the maximal element m of dom(r) satisfies r(m) 6→∗A fin, or m = n and r(m) 6∈ fin.

We call a fragment F of w blocking for A if all runs of A on F are blocking.

Since intervals are fragments without holes, this definition introduces the notion of blocking
intervals as a special case. Furthermore, note that no fragment of a word in L(A) is blocking.

Proposition 3. Whether a fragment F of a word w is blocking for an Nfa A can be decided in
time O(|F ||A|) by an algorithm that receives as inputs the Nfa A and a reference to an array
containing the word w, and the length of w.
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Note that the whole word w cannot be read in time O(|F ||A|). Therefore, a reference to an
array is passed as input that contains the word, and in addition, the length of this word.

Proof. We define a non-deterministic evaluator for A on fragments F of the word. It reads the
positions of F in increasing order, applies automata transitions between subsequent positions,
and whenever meeting a hole of F then it jumps to all states that are reachable from the current
state set P . This set is denoted by −→∗A (P ). For all words w = a1 . . . an, elements i ∈ pos(w),
non-empty fragments F ⊆ {i, . . . , n}, and state sets P ⊆ Q we define:

evalA(F ) = eval ′A(0, init , F )

eval ′A(i− 1, P, F ) =

{
eval ′A(i,

ai−→A (P ), F \ {i}) if i = min(F )
eval ′A(j − 1,−→∗A (P ), F ) if j = min(F ) > i

eval ′A(i, P, ∅) =

{
P if i = n
−→∗A (P ) if i < n

Note that evalA(F ) ∩ fin = ∅ if and only if F is blocking for A. Furthermore, evalA(F ) can be
computed in time O(|F ||A|) by an algorithm that receives as inputs a fragment F , a reference
to an array containing w, and the length n of w. This can be done by computing the least fixed
point of a ground Datalog program of size O(|F ||A|), and thus in this time (see e.g. [? ]). Note
that for all P the set of reachable states −→∗A (P ) can be computed in time O(|A|). Note also
that the computation time is independent of the length of w. 2

Definition 4. A run r of an Nfa A on a fragment F of w (of length n) is called infeasible if:

1. there exist elements i, j ∈ dom(F ) such that i < j and r(i) 6−→j−i
A r(j) – in this case, we

can choose i, j such that ]i, j] is disjoint from F –, or

2. the maximal element m of dom(r) satisfies r(m) 6→n−m
A fin.

We call a fragment F of w infeasible for A if all runs of A on F are infeasible.

Note that blocking runs are infeasible, and thus blocking fragments are infeasible too. Fur-
thermore, no successful run is infeasible, so no word in L(A) may be infeasible nor blocking.

The following proposition for Nfas will help us get rid of the exponential dependency on the
automaton size in Alon et. al.’s algorithm.

Proposition 5. Whether a fragment F of a word w is infeasible for an Nfa A can be decided
in time O(|F ||A|3 + |A|5), when receiving as input a reference to an array containing w and its
length (so that the whole word does not need to be read).

Proof. The decision procedure for infeasibility of fragments is similar to deciding whether a
fragment is blocking, except that holes in fragments need to be evaluated more strictly. Therefore,
we define a strict evaluator for fragments which behaves like the previous evaluator, except that
it respect the number of missing positions in holes of fragments. For any word w = a1 . . . an,
element i ∈ pos(w), non-empty fragment F ⊆ {i, . . . , n}, and state set P ⊆ Q we define:

s evalA(F ) = s eval ′A(0, init , F )

s eval ′A(i− 1, P, F ) =

{
s eval ′A(i,

ai−→A (P ), F \ {i}) if i = min(F )

s eval ′A(j − 1,−→j−i
A (P ), F ) if j = min(F ) > i

s eval ′A(i, P, ∅) = −→n−i
A (P )

Note that s evalA(F ) ∩ fin = ∅ if and only if fragment F of w is infeasible for A. We can
now test whether fragment F of w is infeasible for A by computing s evalA(F ) and checking
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whether s evalA(F )∩fin = ∅. The following Lemma 6 implies that s evalA(F ) can be computed
recursively along its definition, with O(|F |) recursive calls each of which costs O(|A|3), after a
preprocessing time of O(|A|5). So the overall computation time is in O(|F ||A|3 + |A|5) as stated
by the proposition. 2

Lemma 6. For any Nfa A we can compute in preprocessing time O(|A|5) an algorithm that
receives as inputs a subset P of states of A and a natural number m ∈ N0 and computes in time
O(|A|3) the set −→m

A (P ), so in time independent of m.

Proof. For any pair of states (q, q′) ∈ Q, we compute an Nfa Aq
′

q with a single letter alphabet

({0}, Q,∆0
A, {q}, {q′}) where ∆0

A = {(q1, 0, q2) | q1 →A q2}. We then convert all Aq
′

q into their
Chrobak normal form by using the algorithm in [7]. This takes time O(|Q|3) for each pair (p, p′)
and thus O(|A|5) all together. Recall that a Chrobak normal form of a single-letter Nfa Aq

′

q is

a single-letter Nfa Bq
′

q that recognizes the same language, such that the digraph of Bq
′

q consists
of a single path with at most |Q|2 states, succeeded by a non-deterministic choice of a set of
disjoint cycles whose total sizes is at most |Q|. One can thus precompute in time O(|Q|2) the
length of the path and an array containing its states, and in time O(|Q|) the length of each cycle
and an array containing its states.

We show next – once having precomputed the sizes of the path and the cycles – that given
a pair of states (q, q′) ∈ Q2 and m ∈ N0, we can check in time O(|Q|) whether q −→m

A q′. This

property is equivalent to that Bq
′

q accepts some word of length m. If m is smaller than the

length of the path of Bq
′

q , this can be done by selecting the m’th state of the path in its array,

and testing whether it is final for Bq
′

q . Otherwise, we compute l′ = m − l where l is the length

of the path, and for all cycles of Bq
′

q the state that is reached with l′ steps. This can be done
by computing the remainder of l′ by division modulo the length of the cycle, and accessing the
state of this remainder in the array of the cycle. It then remains to check whether any of the
computed states is final. For each cycle, all these operations can be done in O(1). Since the
number of cycles is in O(|Q|) the overall time is in O(|Q|) too.

In order to compute −→m
A (P ) for some m and P , we check whether q −→m

A q′ for all pairs
(q, q′) ∈ P ×Q. This takes |Q|2 time O(|Q|), and thus can be done in time O(|A|3). 2

4. Membership for Strongly Connected NFAs modulo the Edit Distance

We present an approximate membership tester with respect to the edit distance for regular
languages defined by Nfas that are strongly connected. These are Nfas such that q →∗A q′ for
any two states q and q′.

Let ε > 0, δ = 1/ε and A = (Σ, Q,∆, init ,fin) a strongly connected Nfa containing some
initial and some final state. Since A is strongly connected with initial and final states, then L(A)
is not empty. Clearly, there exists a run of A on any fragment of any word in L(A), that is, no
fragment or interval of any word in the language is blocking. In contrast, words that are ε-far
from the language with respect to the edit distance must have many short blocking intervals:

Lemma 7. Let γ = 4δ(|Q| + 1), n ≥ 8γdlog(γ)e a natural number, and w ∈ Σ∗ a word of size
at most n, and d the edit distance from w to L(A). If d > εn then there exists a power of two
l = 2i in [2, γ] such that the number of intervals of length 2l that are blocking for A is at least
nβl where βl = l/(2γdlog(γ)e).

The assumptions of the lemma imply |Q| ≤ εn ≤ |w| ≤ n, since |Q| + |w| ≥ max(|Q|, |w|) ≥ d
holds generally for the edit distance for L(A) 6= ∅, and |w| ≥ d − |Q| ≥ nε − |Q| ≥ |Q| by
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these assumptions, so that max(|w|, |Q|) = |w|. In the application in this section, we will choose
|w| = n, but for the general case in Section 5, the lemma will be applied to some large interval of
a word of size n. Note also that the number of blocking intervals increases with l. Furthermore,
the lower bounds βl of the linear growth rate increases monotonically with l such that for all
l ≤ γ:

βl ≤ βγ = 1/(2 log(γ)) ≤ 1/4

Proof. Let w be a word of size at most n ≥ γdlog(γ)e whose edit distance from L(A) is at least

d > εn. We consider the unique decomposition 0 = i0 < . . . < ih = |w| such that all Ij =]ij−1, ij [
are maximal non-blocking intervals, where 1 ≤ j ≤ h. Since A is strongly connected, we can
repair w such that it becomes a word of L(A) by first deleting the letters of w at positions ij
and then inserting words of length at most |Q| after all ij where 0 ≤ j ≤ h. Without lost of
generality, and to ease up the repair strategy presentation, we show this only in the case where
all intervals Ij are not empty. Note that Ij is empty only if the letter at position ij does not
appear in any word of L(A). Then let rj be some run on interval Ij of w. The word inserted at
i0 is chosen such that it has a total run from init to r1(i0); this is possible since A is strongly
connected and has an initial state. For all 1 ≤ j < h, the word inserted after ij is chosen such
that it has a total quasi-run from rj(ij) to rj+1(ij) by A. The word inserted after ih must
have a total quasi-run from rh(ih) to fin by A′. This is possible since we assume that fin is
non-empty. Clearly, the repaired word belongs to L(A). The overall correction costs in terms
of letter insertion and deletion operations is h+ 1 + |Q|(h+ 1), so that d ≤ h+ 1 + |Q|(h+ 1).
Hence εn ≤ h+ 1 + |Q|(h+ 1) so that:

h ≥ 4n

γ
− 1 ≥ 3n

γ

The last inequation follows from n/γ ≥ 2, which in turn is a consequence of n ≥ γ log(γ) and
γ ≥ 4 (so that log γ ≥ 2).

Let S = {Ij | 0 ≤ j ≤ h − 1}. We call an interval of w small if its size is at most γ and
big otherwise. We next estimate the numbers of small intervals I in S such that I is blocking
for A. For all 2 ≤ l ≤ 2γ, let Sl be the subset of S of small intervals whose size belongs to
]l/2,min(l, γ)]. The number of big intervals of w is at most |w|/γ ≤ n/γ, so that the number

of small intervals in S is at least h − n/γ. Since ∪dlog(γ)e
i=1 S2i is a partition of the set of small

intervals of S, the above lower bound for h implies:

dlog(γ)e∑
i=1

|S2i | ≥ 2n/γ

Therefore, there exists a number l = 2i with 2 ≤ l ≤ γ and |Sl| ≥ 2n/γdlog(γ)e. We fix such an
index l.

We are now interested in the cardinality of the set W2l, which contains all intervals of w of
size in ]l, 2l] that are blocking for A. We next estimate the cardinality of W2l. Let i1, i2, i3, i4
be the two smallest and the two greatest indexes in {j | Ij ∈ Sl} respectively. Every interval
Ij ∈ Sl where j 6∈ {i1, i2, i3, i4} is subsumed by [l, n − l] and thus belongs to l intervals of W2l.
Conversely, every interval of W2l may contain at most 3 intervals from Sl, since the latter are
non-overlapping and of size at least 1 + l/2. Hence:

|W2l| ≥ l (|Sl|−4)
3

≥ l
3 ( 2n
γdlog(γ)e − 4) since |Sl| ≥ 2n/γdlog(γ)e

≥ l
3 ( 2n
γdlog(γ)e −

n
2γdlog(γ)e ) since n ≥ 8γdlog(γ)e

= nl
2γdlog(γ)e = nβl 2
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fun membership edit connectA(ε, n, rw)
// rw r e f e r e n c e to an array conta in ing some word w ∈ Σn

// 0 < ε < 1 p r e c i s i o n va lue
// A = (Σ, Q,∆, init ,fin) s t r o n g l y connected Nfa with init 6= ∅ and fin 6= ∅
l e t δ = 1/ε // i n v e r s e p r e c i s i o n
l e t γ = 4δ(|Q|+ 1) // s i z e bound f o r smal l i n t e r v a l s
i f n < 8γdlog(γ)e then

i f w ∈ L(A) then r e tu rn close e l s e r e tu rn no
// membership f o r smal l words w can be dec ided by running Nfa A on w ;
// t h i s needs time O(γlog(γ) |Q|)

e l s e // word w i s s u f f i c i e n t l y long
f o r i = 1 to dlog(γ)e do

l e t l = 2i

l e t βl = l/2γdlog(γ)e // f r a c t i o n o f b l o c k i n g i n t e r v a l s o f s i z e 2l by Lemma 7
f o r j1 = 1 to 2/βl

s e l e c t j ∈ [0, n− 2l] un i formly
i f i n t e r v a l ]j, j + 2l] o f w i s b lock ing wrt . A

then r e tu rn no and e x i t e l s e s k i p
// t h i s can be t e s t e d in time O(2l|Q|) by Propos i t ion 3

end
end // no smal l b l o c k i n g i n t e r v a l o f w found
r e t u r n close

Figure 3: An approximate membership tester for strongly connected Nfas with respect to the edit distance.

The above lemma tells us that we can test approximate membership for strongly connected
Nfas with respect to the edit distance by selecting sufficiently many small intervals randomly and
testing whether they are all non-blocking, and it provides estimations for the sizes and numbers
of small intervals that needed to be considered. However, we cannot know the precise size l = 2i

of small intervals, so we have to try out all possible sizes.

Proposition 8. Algorithm membership edit connectA in Figure 3 is a one-sided approximate
membership tester for words w in regular languages recognized by strongly connected Nfas A
with respect to the edit distance. The query complexity is in O(δ|A| log2(δ|A|)) and the time
complexity in O(δ|A|2 log2(δ|A|)), where δ = 1/ε is the inverse precision value.

Note that the upper bound for the time complexity O(p2,2,1(δ, k, |A|)) where k = 1 is slightly
better than O(p2,3,1(δ, k, |A|)) as we promised in the introduction for the general case, and
similarly for the query complexity.

Proof. Algorithm membership edit connectA(ε, n, r), where r is a reference to an array con-
taining a word w of size n, first checks whether word w is sufficiently long to apply Lemma 7,
that is whether n ≥ 8γdlog(γ)e with γ = 4δ(|Q|+ 1). This can be done in time O(|A|) without
traversing the word, since its size n is passed as input. Furthermore, note that we assume that
arithmetic operations can be done in size O(1).

The algorithm always returns close if w ∈ L(A), since in this case no interval of w is
blocking. This shows that the algorithm is one-sided. We next assume that d(w,L(A)) ≥ εn
and want to compute the probability that the algorithm answers no. By Lemma 7 there exists
a power of two l ∈ [2, γ] such that the number of intervals of length 2l that are blocking for A is
at least nβl where βl = l/2γdlog(γ)e. Our algorithm misses all these intervals with probability:

(1− βl)2/βl = (1− 2/(2/βl))
2/βl ≤ e−2 < 1/3.

10



q0 q1

0 1

1

Figure 4: An Nfa recognizing language 0∗1∗.

The algorithm will thus answer no correctly with probability of at least 2/3. The query com-

plexity of the algorithm for sufficiently long words is in O(
∑
{l | l=2i, 1≤i≤dlog(γ)e}

∑2/βl
j=1 2l) and

thus in O(δ|A| log2(δ|A|)). The time complexity is by a factor of |A| higher, since Nfa A is to be
run on all selected intervals of w in order to check whether they are non-blocking (Proposition
3) and thus it is in O(δ|A|2 log2(δ|A|)). 2

5. Membership for General NFAs modulo the Edit Distance

We next treat approximate membership for general Nfas with respect to the edit distance.
This problem is more difficult than the case of connected Nfas, since the correction algorithm
in the proof of Lemma 7 fails. Indeed, this lemma fails for general Nfas, so what we need is a
proper generalization.

For illustration, we consider the regular language L = 0∗1∗ which can be recognized by the
Nfa with 2 states in Figure 4. This Nfa has k = 2 strongly connected components. We consider
the collection of words wm = 1m0m with m ∈ N. A word wm has length n = 2m and edit
distance m from L, so it is 1/2-far from L. An interval I of wm is blocking for the above Nfa if
and only if the factor of w at interval I subsumes 10, that is, if {m,m + 1} ⊆ I. Thus, for all
1 ≤ l ≤ m the number of blocking intervals of wm of size l is equal to l − 1. This number is too
small, in that it fails to grow linearly with n for any l in contrast to what Lemma 7 would predict
for strongly connected Nfas. Similar to the example in Section 2.2, this problem can be solved
by looking into fragments F with one hole. These are unions of two disjoint subsequent intervals
I1 and I2 such that F = I1 ∪ I2. Such fragments F are blocking for A if the factor of wi at I1
contains the letter 1 while the factor of wi at I2 contains the letter 0. Therefore, the number
of blocking fragments of size |F | = 2 is m2. This number grows linearly with the total number
of fragments which are a union of two intervals (≤ 4m2), so we can detect farness from 0∗1∗ by
inspecting sufficiently many fragments with 2 positions, which need not to be subsequent.

Let A = (Σ, Q,∆, init ,fin) be an Nfa. Without loss of generality, we assume that A is
productive, i.e. that every state in Q is reachable from init and co-reachable from fin. A
connected component of A is a maximal subset of states of A that is strongly connected. Note
that the strongly connected components of A partition Q. Let k be the number of strongly
connected components of A. We also fix a precision value ε > 0 and its inverse δ = 1/ε.

Definition 9. A component path of A is a sequence Π = (Q1, . . . , Qj) of pairwise distinct
strongly connected components of A such that for all 1 < h ≤ j some state of Qh is reachable
from some state of Qh−1.

In this case, all states of later components of Π are reachable from all states of earlier components.
Furthermore, note that the length of any component path is at most k, that is 0 ≤ j ≤ k.

Let Q′ ⊆ Q be a subset of states of A. The restriction of A to Q′ is the Nfa A(Q′) =
(Σ, Q′,∆′, init ′,fin ′) with state set Q′, initial states init ′ = Q′, final states fin ′ = Q′, and
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transition relation ∆′ = ∆ ∩ (Q′ × Σ×Q′). The restriction of A to a component path Π is the
automaton A(Π) = A(Q1 ∪ . . . ∪Qj).

A decomposition of word w of length n along a component path Π = (Q1, . . . , Qj) is a
sequence of integers J = (i0, i1, . . . , ij) such that 0 = i0 < . . . < ij = n. Notice that any
decomposition depends on the length of the word and the length of the component path (which
we sometimes leave implicit in the context).

Definition 10. A word w ∈ Σn is ε-far from a path (Q1, . . . , Qj) of A if for all decompositions
0 = i0 < . . . < ij = n there exists some integer h such that:

dedit(w]ih−1, ih], L(A(Qh)) > εn

A word is called ε-close from Π if it is not ε-far from it. The next lemma shows that sufficiently
long words far from L(A) are also far from any component path of A.

Lemma 11. Let α = 2(k + 1)|Q|δ where k is the number of strongly connected components of
A and let w ∈ Σn be a word of length n ≥ α. If word w is ε-far from L(A) then it is ε

2k -far from
any component path of A.

Proof. Let a word w ∈ Σn with n ≥ α be ε
2k -close to some component path Π = (Q1, . . . , Qj) of

A. We will then show that w is ε-close to L(A). By assumption, there exists some decomposition
0 = i0 < . . . < ij = n such that for all natural numbers 1 ≤ h ≤ j:

dedit(w]ih−1, ih], L(A(Qh))) <
εn

2k

Hence, we can correct all factors w]ih−1, ih] into some word wh ∈ L(A(Qh)) at the cost of at
most εn

2k edit operations. Let rh be a successful run of A(Qh) on wh. For 1 ≤ h < j, since A(Qh)
is strongly connected and Π a component path of A, there is a word vh of length at most |Q| with
a total quasi-run from rh(|wh|) to rh+1(0). Since A is productive, there also exists a word v0 of
length at most |Q| with a total run from init to r1(0), and another word vj of length at most |Q|
with a total quasi-runs from rj(|vj |) to fin. Now consider the word w′ = v0 ·w1 ·v1 · · · vj−1 ·wj ·vj .
Clearly, w′ ∈ L(A). Furthermore:

dedit(w,w
′) ≤ |Q|+ εn

2k
· j + (j − 1)|Q|+ |Q| = εnj

2k
+ (j + 1)|Q|

This inequality, j ≤ k, and n ≥ 2(k+1)|Q|
ε yield that dedit(w,L(A)) ≤ εn. 2

By combining Lemmas 11 and 7, we can show for all ε-far words, that there is a lower bound
on the number of intervals blocking for every component path and decomposition along this path.

Lemma 12. Let γ′ = 16kδ(|Q| + 1) (that is γ′ = 4kγ). Then for any word w ∈ Σn of length
n ≥ 4γ′dlog(γ′)e that is ε-far from L(A), there exists a power of two l in [2, γ′] such that for
all component paths Π = (Q1, . . . , Qj) of A and decompositions 0 = i0 < . . . < ij = n, there
exists some interval ]ih−1, ih] of w that contains at least nβ′l subintervals of size 2l are blocking
for A(Qh), where β′l = l/(γ′dlog(γ′)e).

Proof. Let w ∈ Σn be ε-far from L(A) where n ≥ 4γ′dlog(γ′)e and define β′l = l/(γ′dlog(γ′)e)
for all l ∈ [2, γ′]. Note that 0 < β′l ≤ 1/4. We consider an arbitrary component path Π =
(Q1, . . . , Qj) of A. Since w is ε-far from L(A), it follows with ε′ = ε/2k that w is also ε′-far
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from Π by Lemma 11 (which can be applied since n ≥ 4γ′dlog(γ′)e ≥ γ′ ≥ α). Hence, for any
decomposition 0 = i0 < . . . < ij = n there exists an index h such that:

dedit(w]ih−1, ih], L(A(Qh))) >
εn

2k

Since n ≥ 4γ′dlog(γ′)e, we can apply Lemma 7 to the factor w′ = w]ih−1, ih], Nfa A′ = A(Qh),
precision value ε′, and γ′ (instead of w, A, ε, and γ). Note that the size of w′ is at most n as
required. The lemma shows that there exists a power of two l′ in [2, γ′], such that at least nβ′l′
intervals of w′ blocking for A(Qh) of size 2l′. Let l be the least l′ for all component paths Π and
decompositions 0 = i0 < . . . < ij = n. Since β′l′ grows monotonically with l′, the claim follows.
2

Let w be a word of length n. For all natural numbers l,m, we define S(w, l,m) to be the
set of all sequences containing m intervals of w of length l. A sequence S = (I1, . . . , Im) of
S(w, l,m) is called blocking for A if and only if the fragment F = ∪1≤o≤m Io is blocking for A.
Given a component path Π = (Q1, . . . , Qj), and a decomposition J = (i0, . . . , ij), we say that S
matches (Π, J) if and only if there exists a non-blocking run of A(Π) on F = ∪1≤o≤m Io such
that r(i) ∈ Qh for 1 ≤ h ≤ j and all i ∈]ih−1, ih] ∩ dom(F ). In this case, we write (Π, J) |= S.

Lemma 13. Let γ′ = 16kδ(|Q|+ 1). Then for any word w ∈ Σn of length n ≥ 4γ′dlog(γ′)e that
is ε-far from L(A) with respect to the edit distance, there exists a power of two l in [2, γ′] such that
at least 2

3 of the interval sequences in S(w, 2l, αl) are blocking for A, where αl = 6kγ′dlog(γ′)e2/l.

Proof. Let w ∈ Σn be ε-far from L(A) where n ≥ 4γ′ log(γ′). For an interval I of the domain
of w, a set Q′ ⊆ Q, and a natural number l, we denote by B(I, l, Q′) the set of subintervals of
size l of I that are blocking for A(Q′).

By Lemma 12, we can fix a power of two l ∈ [2, γ′], such that for all component paths
Π = (Q1, . . . , Qj) of A and decompositions J = (i0, . . . , ij) for w and Π, there exists 1 ≤ h ≤ j
such that the interval Ih =]ih−1, ih] satisfies |B(Ih, 2l, Qh)| ≥ nβ′l, where β′l = l/(γ′dlog(γ′)e). In
particular, note that the size of Ih is strictly greater than nβ′l for such indexes h.

In order to obtain the lower bound in the lemma, we prove an upper bound on the number
of nonblocking sequences in S(w, 2l, αl). The next claim shows that we can restrict ourselves
to decompositions whose positions are multiples of λ = nβ′l/4, so that they belong to the set
Λ = {min(doλe, n) | 0 ≤ o ≤ 4/β′l + 1}.

Claim 14. For any nonblocking sequence S ∈ S(w, 2l, αl), there exist a strongly connected com-
ponent Qh of A and an interval I =]i, i′] with i, i′ ∈ Λ such that B(I, 2l, Qh) contains at least 2λ
intervals, but no interval of S.

Let S be a nonblocking sequence in S(w, 2l, αl). By definition, there exists a component path
Π = (Q1, . . . , Qj) and a decomposition J = (i0, . . . , ij) such that (Π, J) |= S. As argued above,
there exists 1 ≤ h ≤ j such that the interval Ih =]ih−1, ih] satisfies |B(Ih, 2l, Qh)| ≥ nβ′l = 4λ.
Since (Π, J) |= S, none of the intervals of S may belong to B(Ih, 2l, Qh). Let I be the largest
interval included in Ih with limits in Λ. By inclusion, no interval of sequence S may occur in
B(I, 2l, Qh) neither. Furthermore, the number of positions in Ih that are not in I is at most 2λ.
Hence:

|B(I, 2l, Qh)| ≥ |B(Ih, 2l, Qh)| − 2λ ≥ 4λ− 2λ = 2λ

This concludes the proof of the claim.
For any interval I with limits in Λ and strongly connected component Qh with |B(I, 2l, Qh)| ≥

2λ, the number of sequences in S(w, 2l, αl) without intervals from B(I, 2l, Qh) is bounded by
(n − 2l − 2λ)αl . To obtain the lower bound on the total number of nonblocking sequences, we
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fun membership editA(ε, n, rw)
// rw r e f e r e n c e to an array conta in ing some word w ∈ Σn

// 0 < ε < 1 p r e c i s i o n va lue
// A = (Σ, Q,∆, init ,fin) Nfa with init 6= ∅ and fin 6= ∅
l e t k be the number o f connected components o f A
l e t δ = 1/ε // i n v e r s e p r e c i s i o n
l e t γ′ = 16kδ(|Q|+ 1) // s i z e bound f o r smal l i n t e r v a l s
i f n < 4γ′dlog(γ′)e then

i f w ∈ L(A) then r e tu rn close e l s e r e tu rn no
// membership f o r smal l words w can be dec ided by running Nfa A on w ;
// t h i s needs time O(γ′log(γ′) |Q|)

e l s e // word w i s s u f f i c i e n t l y long
f o r i = 1 to dlog(γ′)e do

l e t l = min(2i, γ′)

l e t αl = 6kγ′ log2(γ′)/l // number o f i n t e r v a l s o f s i z e 2l
f o r j = 1 to αl

s e l e c t j ∈ [0, n− 2l] un i formly
l e t Ij =]j, j + 2l] .

end
i f fragment I1 ∪ . . . ∪ Iαl o f w i s b lock ing wrt . A

then r e tu rn no and e x i t e l s e s k i p
end
r e tu rn close

Figure 5: An approximate membership tester for Nfas with respect to the edit distance.

sum over all possible pairs of intervals and connected components. Their number is bounded by
|Λ|(|Λ| − 1)k ≤ 20k/β′l

2
so that the number of nonblocking sequences in S(w, 2l, αl) is at most

20k/β′l
2 · (n− 2l − 2λ)αl . For k ≥ 2, the lemma now follows from the following estimation:

20k
β′l

2 · (n− 2l − 2λ)αl ≤ 20k/β′l
2 · (n− 2l − nβ

′
l

2 )αl since λ =
nβ′l
4

≤ 20k/β′l
2 · (n− 2l)αl · (1− β′l

2 )αl since
nβ′l
n−2l ≥ β

′
l

≤ 20k/β′l
2 · |S(w, 2l, αl)| · (1− β′l

2 )αl since |S(w, 2l, αl)| = (n− 2l)αl

≤ 20k/β′l
2 · |S(w, 2l, αl)| · e

−αlβ
′
l

2

≤ |S(w, 2l, αl)| · 20k/β′l
2 · e−3k log(γ′) definition of αl and β′l

≤ |S(w, 2l, αl)| · 20kγ′2dlog2(γ′)e
2 · ( 1

γ′ )
3k since β′l ≥ 2

γ′dlog(γ′)e
≤ |S(w, 2l, αl)| · 10k · ( 1

γ′ )
3k−4 since log(γ′) ≤ γ′

≤ |S(w, 2l, αl)| · 10k · ( 1
γ′ )

2 since k > 2

≤ 1
3 |S(w, 2l, αl)| since γ′ > 10k > 3

The case k = 1 where A is strongly connected follows directly from Lemma 7. 2

With this lemma and the fact that words from L(A) have only feasible fragments, we obtain
an approximated membership tester for Nfas which the expected performance.

Theorem 15. Algorithm membership editA in Figure 5 is a one-sided approximate membership
tester for words in languages defined by Nfas A with respect to the edit distance, with query
complexity O(δk2|A| log3(δk|A|)) and time complexity O(δk2|A|2 log3(δk|A|)) where δ = 1/ε is
the inverse precision value and k the number of connected components in A.

Proof. The case n ≤ 4γ′dlog(γ′)e corresponds to an exact decision procedure so we can consider
only the case n > 4γ′dlog(γ′)e in our argument. If w ∈ L(A) then the path defined by any
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successful run is matched by all sequences of intervals in w. Therefore the algorithm always
answers close for such words. Now if w is ε-far from L(A), then using Lemma 13 one has
with probability at least 2

3 a sequence S ∈ S(w,αl, 2l) which is blocking for A. Therefore the
algorithm answers no with at least the same probability. The query complexity is obtained by
counting the accesses to w]j, j + 2l] for every selected j. Hence it is bounded by:

dlog(γ′)e∑
i=1

2lαl ≤ 8kγ′dlog(γ′)e3 = O(δk2|A| log3(δk|A|))

For the time complexity the consuming part corresponds to testing whether the sequences S is
blocking, using the result of Proposition 3 we know that this can be done in time O(|A|2lαl).
Summing up yields a time complexity of

O(|A|
dlog(γ′)e∑
i=1

2lαl) = O(δk2|A|2 log3(δk|A|))

2

6. Membership for NFAs modulo the Hamming Distance

We improve Alon et. al.’s approximate membership tester for Dfas [1] so that it runs in
polynomial time, while being extended to Nfas. The correctness argument follows the same
schema as worked out there for the original algorithm. Therefore, we present only a sketch of
the proof in which we point out the differences to before.

The main difference of our improved algorithm is that we rely on deciding feasibility of
fragments. The original algorithm decided infeasibility for intervals in the case of Dfas with
single strongly connected components. In the general case, it relied on deciding infeasibility of
fragments only implicitly, without having extracted that notion. It should also be noticed that we
elaborated the same schema again for our new tester for Nfas with respect to the edit distance,
with the main difference that infeasible fragments are used there instead of blocking fragments.

6.1. Strongly Connected NFAs
We start with strongly connected Nfas A. For any word that is far from the language of

A with respect to the Hamming distance, we show that it has many small infeasible intervals.
This is stated by the following lemma, which is the analogous of our Lemma 7 in the case of the
Hamming distance, except that it was only stated for Dfas in [1].

Lemma 16 (Lemma 2.4 of [1]). Let A be a strongly connected Nfa over Σ and δ = 1/ε.
Then there exists a natural number m ≤ 3|Q|2 (called the reachability constant of A) such that
for any word w ∈ Σn of length n ≥ 64δm log(4mδ) such that dhamming(w,L(A)) ≥ εn, there
exists a power of two l ∈ [2, 4mδ] such that the number of infeasible intervals of w of length 2l is
at least 2ln/(δm log(4mδ)).

The proof is analogous to the proof of our Lemma 7 for the edit distance. With the Hamming
distance, however, one must adapt the repair strategy carefully, such that it produces a word
of the exactly the same size n. The fact that we lift this lemma from Dfas to Nfas does not
matter, since the original proof did not depend on determinism.

According to Proposition 5, we can decide feasibility of intervals in polynomial time in the
size of the interval and the Nfa, and independently of the size of the word. In combination with
Lemma 16 this allow us to construct an approximate membership tester with constant query
complexity (in the size of the word) that runs in polynomial time for all Nfas that are strongly
connected.

15



6.2. General NFAs

In the case of Nfas with many strongly connected components, we consider components path
with decomposition of the word, as we did before for the edit distance. Let A = (Σ, Q,∆, init ,fin)
be an Nfa with k strongly connected components. Without loss of generality, we assume that
A is productive. Let 0 < ε < 1 and δ = 1/ε. For any state set Q′ we denote by A(Q′, p, q)
the Nfa (Σ, Q′,∆′, {p}, {q}) where ∆′ is the restriction of ∆ to states in Q′. Let w ∈ Σ∗. A
triplet (Π, J, (po, qo)1≤o≤j) consists of a component path Π = (Q1, . . . , Qj), a decomposition
J = (i0, . . . , ij) of w, where po, qo ∈ Qo for all 1 ≤ o ≤ j. A triplet is called admissible if

init →A p0, qj →A fin and and for all 1 ≤ o < j it holds that qo −→A po+1 and po −→io+1−io−1
A qo.

The next lemma relates the general case to the case with one strongly connected component.

Lemma 17 (Lemma 2.7 in [1]). Let (Π, J, (po, qo)1≤o≤j) be an admissible triplet for a com-
ponent path Π = (Q1, . . . , Qj) and a decomposition J = (i0, . . . , ij) of a word w. It w is ε-far
from L(A) with respect to the Hamming distance, then there exists 1 ≤ h ≤ j such that:

dhamming(w]ih−1, ih[, L(A(Qh, ph, qh))) ≥ ε|w|
2k

The proof of this lemma is similar to the proof of Lemma 11, except that the repair strategy
needs to be adapted so that it copes with Hamming distance properly, as done before for Alon
et. al.’s algorithm. We omit the details.

Lemma 18. Let M be the maximal reachability constants m for all connected components in A
(so M = 3|A|2 in the worst case) and η = 8Mkδ. For any word w ∈ Σn of length n ≥ 16η log(η)
that is ε-far from L(A) with respect to the Hamming distance, there exists a power of two l in

[2, η] such that at least 2
3 of the elements in S(w, 2l, 3kη log2(η)

4l ) are infeasible for A.

This lemma can be proven in the same way than Lemma 13. The only thing that changes is
that blocking intervals or fragments are to be exchanged for infeasible intervals or fragments.

Theorem 19. Algorithm membership hammingA in Figure 6 is a one-sided approximate mem-
bership tester for Nfas A with respect to the Hamming distance. If k the number of strongly
connected components of A and δ = 1/ε the inverse precision, then its query complexity is in
O(δk2|A|2 log3(δk|A|2)) and its time complexity in O(δk2|A|5 log3(δk|A|2)).

Proof. Based on Lemma 18, we can argue as we did for the edit distance, that algorithm
membership hammingA is a membership tester with respect to the Hamming distance. Its query
complexity and running time are mainly due to deciding the feasibility of the randomly selected
sequence of intervals. By Proposition 5, we can compute the feasibility of a fragment F in time
O(|F ||A|3) after a global precomputation (once for all fragments) in O(|A|5). 2

7. Conclusion and Future Work

We have shown that approximate membership testing for Dfas with constant query complex-
ity can be done in polynomial time. It turns out that approximation modulo the edit distance
leads to more natural algorithms with lower query and time complexity.

This opens up quite some questions for future work. First of all, we would like to develop
approximate membership testing algorithms for regular tree languages. We conjecture that this
will not be possible without imposing serious locality restrictions, but this needs to be elaborated.
Since document type descriptors (Dtds) for Xml documents satisfy strong locality restrictions,
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fun membership hammingA(ε, n, rw)
// rw r e f e r e n c e to an array conta in ing some word w ∈ Σn

// 0 < ε < 1 p r e c i s i o n va lue
// A = (Σ, Q,∆, init ,fin) Nfa with init 6= ∅ and fin 6= ∅ .
l e t k be the number o f connected components o f A
l e t M be the maximal r e a c h a b i l i t y constant m o f a l l s t r o n g l y connected

components o f A

// M can be computed in time O(|A|2) as shown in the o r i g i n a l a l gor i thm

// or e l s e we can choose the worst case M = 3|Q|2
l e t δ = 1/ε // i n v e r s e error p r e c i s i o n
l e t η = 8Mkδ
i f n < 16η log(η) then

i f w ∈ L(A) then r e tu rn close e l s e r e tu rn no
// membership f o r smal l words w can be dec ided by running Nfa A on w ;
// t h i s needs time O(ηlog(η) |Q|)

e l s e // word w i s s u f f i c i e n t l y long
f o r i = 1 to dlog(η)e do

l e t l = min(2i, η)

f o r j = 1 to 3kη log2(4η)
l

s e l e c t j ∈ [0, n− 2l] from a uniform d i s t r i b u t i o n
l e t Ij =]j, j + 2l]

end
i f fragment I1 ∪ . . . ∪ Iαl o f w i s i n f e a s i b l e wrt . A

then r e tu rn no and e x i t e l s e s k i p
end
r e tu rn close

Figure 6: An approximate membership tester for Nfas with respect to the Hamming distance.

one could hope for approximate membership testers for (Dtds) and thus for efficient approximate
Xml schema validation. First results in this direction exist already for the edit distance with
moves [14], but one could hope for better results for the edit distance in the future.

Another direction would be to study approximate inclusion or equivalence checking with
respect to the edit distance [3]. So far, approximate inclusion checking has only been considered
for the edit distance with moves [6]. So the question is whether approximation can lead to
realistic algorithms in this perspective.
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