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Dariusz Dereniowski∗ Yann Disser† Adrian Kosowski‡ Dominik Pająk‡

Przemysław Uznański‡
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Abstract

We study the following scenario of online graph exploration. A team of k agents is initially
located at a distinguished vertex r of an undirected graph. At every time step, each agent can
traverse an edge of the graph. All vertices have unique identifiers, and upon entering a vertex, an
agent obtains the list of identifiers of all its neighbors. We ask how many time steps are required
to complete exploration, i.e., to make sure that every vertex has been visited by some agent.

We consider two communication models: one in which all agents have global knowledge of
the state of the exploration, and one in which agents may only exchange information when
simultaneously located at the same vertex. As our main result, we provide the first strategy
which performs exploration of a graph with n vertices at a distance of at most D from r in time
O(D), using a team of agents of polynomial size k = Dn1+ε < n2+ε, for any ε > 0. Our strategy
works in the local communication model, without knowledge of global parameters such as n or D.

We also obtain almost-tight bounds on the asymptotic relation between exploration time
and team size, for large k. For any constant c > 1, we show that in the global communication
model, a team of k = Dnc agents can always complete exploration in D(1 + 1

c−1 + o(1)) time
steps, whereas at least D(1 + 1

c − o(1)) steps are sometimes required. In the local commu-
nication model, D(1 + 2

c−1 + o(1)) steps always suffice to complete exploration, and at least
D(1 + 2

c − o(1)) steps are sometimes required. This shows a clear separation between the global
and local communication models.

1 Introduction

Exploring an undirected graph-like environment is relatively straight-forward for a single agent.
Assuming the agent is able to distinguish which neighboring vertices it has previously visited, there
is no better systematic traversal strategy than a simple depth-first search of the graph, which
takes 2(n− 1) moves in total for a graph with n vertices. The situation becomes more interesting
if multiple agents want to collectively explore the graph starting from a common location. If
arbitrarily many agents may be used, then we can generously send nD agents through the graph,
where D is the distance from the starting vertex to the most distant vertex of the graph. At each
step, we spread out the agents located at each node (almost) evenly among all the neighbors of the
current vertex, and thus explore the graph in D steps.

While the cases with one agent and arbitrarily many agents are both easy to understand, it is
much harder to analyze the spectrum in between these two extremes. Of course, we would like to
explore graphs in as few steps as possible (i.e., close to D), while using a team of as few agents as

∗Gdańsk University of Technology, Poland. E-mail: deren@eti.pg.gda.pl
†TU Berlin, Germany. E-mail: disser@math.tu-berlin.de
‡Inria Bordeaux Sud-Ouest, France. E-mails: {adrian.kosowski,dominik.pajak,przemyslaw.uznanski}@inria.fr

1



possible. In this paper we study this trade-off between exploration time and team size. A trivial
lower bound on the number of steps required for exploration with k agents is Ω(D + n/k): for
example, in a tree, some agent has to reach the most distant node from r, and each edge of the
tree has to be traversed by some agent. We look at the case of larger groups of agents, for which
D is the dominant factor in this lower bound. This complements previous research on the topic for
trees [6, 8] and grids [17], which usually focused on the case of small groups of agents (when n/k
is dominant).

Another important issue when considering collaborating agents concerns the model that is as-
sumed for the communication between agents. We need to allow communication to a certain degree,
as otherwise there is no benefit to using multiple agents for exploration [8]. We may, for example,
allow agents to freely communicate with each other, independent of their whereabouts, or we may
restrict the exchange of information to agents located at the same location.This paper also studies
this tradeoff between global and local communication.

The collaborative online graph exploration problem.

We are given a graph G = (V,E) rooted at some vertex r. The number of vertices of the graph is
bounded by n. Initially, a set A of k agents is located at r. We assume that vertices have unique
identifiers that admit a total ordering. In each step, an agent visiting vertex v receives a complete
list of the identifiers of the nodes in N(v), where N(v) is the neighborhood of v. Time is discretized
into steps, and in each step, an agent can either stay at its current vertex or slide along an edge to
a neighboring vertex. Agents have unique identifiers, which allows agents located at the same node
and having the same exploration history to differentiate their actions. We do not explicitly bound
the memory resources of agents, enabling them in particular to construct a map of the previously
visited subgraph, and to remember this information between time steps. An exploration strategy
for G is a sequence of moves performed independently by the agents. A strategy explores the graph
G in t time steps if for all v ∈ V there exists time step s ≤ t and an agent g ∈ A, such that g is
located at v in step s. Our goal is to find an exploration strategy which minimizes the time it takes
the explore a graph in the worst case, with respect to the shortest path distance D from r to the
vertex furthest from r in the graph.

We distinguish between two communication models. In exploration with global communication
we assume that, at the end of each step s, all agents have complete knowledge of the explored
subgraph. In particular, in step s all agents know the number of edges incident to each vertex
of the explored subgraph which lead to unexplored vertices, but they have no information on any
subgraph consisting of unexplored vertices. In exploration with local communication two agents
can exchange information only if they occupy the same vertex. Thus, each agent g has its own view
on which vertices were explored so far, constructed based only the knowledge that originates from
the agent’s own observations and from other agents that it has met.

Our results.

Our main contribution is an exploration strategy for a team of polynomial size to explore graphs in
an asymptotically optimal number of steps. More precisely, for any ε > 0, the strategy can operate
with Dn1+ε < n2+ε agents and takes time O(D). It works even under the local communication
model and without prior knowledge of n or D.

We first restrict ourselves to the exploration of trees (Section 2). We show that with global
communication trees can be explored in time D · (1 + 1/(c− 1) + o(1)) for any c > 1, using a team
of Dnc agents. Our approach can be adapted to show that with local communication trees can be
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Communication Model Upper bound Lower bound

Global communication:
D · (1 + 1

c−1 + o(1))

Thm. 3.3

D · (1 + 1
c − o(1))

Thm. 4.1

Local communication :
D · (1 + 2

c−1 + o(1))

Thm. 3.3

D · (1 + 2
c − o(1))

Thm. 4.1

Table 1: Our bounds for the time required to explore general graphs with using Dnc agents.
The same upper and lower bounds hold for trees. The lower bounds use graphs with D = no(1).
explored in time D · (1 + 2/(c− 1) + o(1)) for any c > 1, using the same number of agents. We
then carry the results for trees over to the exploration of general graphs (Section 3). We obtain
precisely the same asymptotic bounds for the number of time steps needed to explore graphs with
Dnc agents as for the case of trees, under both communication models.

Finally, we provide lower bounds for collaborative graph exploration that almost match our
positive results (Section 4). More precisely, we show that, in the worst case and for any c > 1,
exploring a graph with Dnc agents takes at least D · (1 + 1/c − o(1)) time steps in the global
communication model, and at least D · (1 + 2/c − o(1)) time steps in the local communication
model. Table 1 summarizes our upper and corresponding lower bounds.

Related work.

Collaborative online graph exploration has been intensively studied for the special case of trees.
In [8], a strategy is given which explores any tree with a team of k agents in O(D + n/ log k) time
steps, using a communication model with whiteboards at each vertex that can be used to exchange
information. This corresponds to a competitive ratio of O(k/ log k) with respect to the optimum
exploration time of Θ(D+n/k) when the graph is known. In [13] authors show that the competitive
ratio of the strategy presented in [8] is precisely k/ log k. Another DFS-based algorithm, given in [2],
has an exploration time ofO(n/k+Dk−1) time steps, which provides an improvement only for graphs
of small diameter and small teams of agents, k = O(logD n). For a special subclass of trees called
sparse trees, [6] introduces online strategies with a competitive ratio of O(D1−1/p), where p is the
density of the tree as defined in that work. The best currently known lower bound is much lower:
in [7], it is shown that any deterministic exploration strategy with k <

√
n has a competitive ratio of

Ω(log k/ log log k), even in the global communication model. A stronger lower bound of Ω(k/ log k)
holds for so-called greedy algorithms [13]. Both for deterministic and randomized strategies, the
competitive ratio is known to be at least 2 − 1/k, when k <

√
n [8]. None of these lower bounds

concern larger teams of agents. In [16] a lower bound of Ω(D1/(2c+1)) on competitive ratio is shown
to hold for a team of k = nc agents, but this lower bound only concerns so-called rebalancing
algorithms which keep all agents at the same height in the tree throughout the exploration process.

The same model for online exploration is studied in [17], where a strategy is proposed for
exploring graphs which can be represented as a D × D grid with a certain number of disjoint
rectangular holes. The authors show that such graphs can be explored with a team of k agents
in time O(D log2D + n logD/k), i.e., with a competitive ratio of O(log2D). By adapting the
approach for trees from [7], they also show lower bounds on the competitive ratio in this class
of graphs of Ω(log k/log log k) for deterministic strategies and Ω(

√
log k/log log k) for randomized

strategies. These lower bounds also hold in the global communication model.

Collaborative exploration has also been studied with different optimization objectives. An ex-
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ploration strategy for trees with global communication is given in [7], achieving a competitive ratio
of (4− 2/k) for the objective of minimizing the maximum number of edges traversed by an agent.
In [5] a corresponding lower bound of 3/2 is provided.

Our problem can be seen as an online version of the k Traveling Salesmen Problem (k-TSP) [9].
Online variants of TSP (for a single agent) have been studied in various contexts. For example, the
geometric setting of exploring grid graphs with and without holes is considered by [10, 11, 14, 15, 17],
where a variety of competitive algorithms with constant competitive ratios is provided. A related
setting is studied in [4], where an agent has to explore a graph while being attached to the starting
point by a rope of restricted length. A similar setting is considered in [1], in which each agent has
to return regularly to the starting point, for example for refueling. Online exploration of polygons
is considered in [3, 12].

2 Tree exploration

We start our considerations by designing exploration strategies for the special case when the ex-
plored graph is a tree T rooted at a vertex r.

For any exploration strategy, the set of all encountered vertices (i.e., all visited vertices and their
neighbors) at the beginning of step s = 1, 2, 3, . . . forms a connected subtree of T , rooted at r and
denoted by T (s). In particular, T (1) is the vertex r together with its children, which have not yet
been visited. For v ∈ V (T ) we write T (s)(v) to denote the subtree of T (s) rooted at v. We denote
by L(T (s), v) the number of leaves of the tree T (s)(v). Note that L(T (s), v) ≤ L(T (s+1), v) because
each leaf in T (s)(v) is either a leaf of the tree T (s+1) or the root of a subtree containing at least
one vertex. If v is an unencountered vertex at the beginning of step s, i.e., its parent was not yet
visited, we define L(T (s), v) = 1.

2.1 Tree exploration with global communication

We are ready to give the procedure TEG (Tree Exploration with Global Communication). The pseu-
docode uses the command “move(s)”, describing the move to be performed by each agent, specifying
the destination at which the agent appears at the start of time step s + 1. Since the agents can
communicate globally, the procedure can centrally coordinate the movements of each agent. For
simplicity we assume that x agents spawn in r in each time step, for some given value of x. Then,
the total number of agents used after l steps is simply lx.

Procedure TEG (tree T with root r, integer x) at time step s:
Place x new agents at r.
for each v ∈ V (T (s)) which is not a leaf do: { determine moves of the agents located at v }

Let A(s)
v be the set of agents currently located at v.

Denote by v1, v2, . . . , vd the set of children of v.
Let i∗ := arg maxi{L(T (s), vi)}. { vi∗ is the child of v with the largest value of L }
Partition A(s)

v into disjoint sets Av1 ,Av2 , . . . ,Avd , such that:

(i) |Avi | =
⌊
|A(s)

v |·L(T
(s),vi)

L(T (s),v)

⌋
, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗ | = |A
(s)
v | −

∑
i∈{1,2,...,d}\{i∗} |Avi |.

for each i ∈ {1, 2, . . . , d} do for each agent g ∈ Avi do move(s) g to vertex vi.
end for

end procedure TEG.

The following lemma provides a characterization of the tradeoff between exploration time and
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the number of agents x released at every round in procedure TEG. In the following, all logarithms
are with base 2 unless a different base is explicitly given.

Lemma 2.1. In the global communication model, procedure TEG with parameter x explores any
rooted tree T in at most D · (1 + 1

logn x−1−logn(2 log x)) time steps, for x > 6(n log n+ 1).

Proof. Fix any leaf f of the tree T . We want to prove that procedure TEG visits the leaf f after at
most D · (1 + 1

logn x−1−logn(2 log x)) time steps. Take the path F = (f0, f1, f2, . . . , fDf
) from r to f in

T , where r = f0,f = fDf
, and Df ≤ D. We define the wave of agents ws starting from r at time s

and traversing the path F as the maximum sequence of the non-empty sets of agents which leave
the root in step s and traverse edges of F in successive time steps, i.e., ws = (A(s)

f0
,A(s+1)

f1
, . . .),

where we use the notation from procedure TEG. The size of wave ws in step s + t is defined to be
|A(s)

ft
|, i.e., the number of exploring agents located at vertex ft at the beginning of time step s+ t;

initially, every wave has size |A(s)
f0
| = x. Note that each agent in A(s+i)

fi
, 0 ≤ i < Df , is located at r

at the start of time step s. We denote the number of leaves in the subtree of T (i) rooted at fj by

λ
(i)
j = L(T (i), fj). Recall that if fj is not yet discovered in step i, by definition of the function L,

we have λ(i)
j = 1. In general, 1 ≤ λ(i)

j ≤ n. We define

αi =
x

2

λ
(i)
1

λ
(i)
0

λ
(i+1)
2

λ
(i+1)
1

· · ·
λ

(i+Df−1)
Df

λ
(i+Df−1)
Df−1

.

(See Figure 1 in the Appendix for an illustration of the construction.) We define the value α∗i as
the number of agents of the i-th wave that reach the leaf f , i.e., the size of the i-th wave in step
i + Df . If α∗1 = α∗2 = · · · = α∗i−1 = 0 and α∗i ≥ 1 for some time step i, then we say that leaf f is
explored by the i-th wave. Before we proceed with the analysis, we show the following auxiliary
claim.

Claim (*). Let i be a time step for which αi ≥ log x. Then, α∗i ≥ αi, and thus αi is a lower
bound on the number of agents reaching f in step i+Df .

Proof (of the claim). We define cj = λ
(i+j)
j+1 /λ

(i+j)
j for j = 0, . . . , Df − 1. For i ≥ 1 we have

αi = x/2

Df−1∏
j=0

cj .

Since cj ≤ 1 for all j and since αi ≥ log x, there exist at most log x different j such that cj ≤ 1/2.
Denote the set of all such j by J , with |J | ≤ log x. Also, denote the size of wave wi in step i+ s
by as (for s = 0, 1, 2, . . .), in particular a0 = x.

Consider some index s for which cs > 1/2. We have λ(i+s)
s+1 /λ

(i+s)
s > 1/2, thus more than half

of all leaves of the tree T (i+s)(fs) also belong to the tree T (i+s)(fs+1). But then, in time step
i+ s+ 1, agents are sent from fs to fs+1 according to the definition in expression (ii) in procedure
TEG. Thus, we can lower-bound the size of wave wi in step i+ s+ 1 by as+1 ≥ ascs. Otherwise, if
cs ≤ 1/2 (i.e., if s ∈ J ), then agents are sent according the definition in expression (i) in procedure
TEG, and hence as+1 ≥ bascsc. Note that these bounds also hold if there are no agents left in the
wave, i.e., as = as+1 = 0. Thus, we have:

as+1 ≥ ascs − δs, where δs =

{
1, if s ∈ J ,
0, otherwise.
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In this way we expand the expression for α∗i = aDf
:

α∗i = aDf
≥ aDf−1cDf−1 − δDf−1 ≥ . . . ≥ (...((a0c0 − δ0)c1 − δ1)c2 − . . .)cDf−1 − δDf−1 =

= x

Df−1∏
j=0

cj −
Df−1∑
j=0

δj Df−1∏
p=j+1

cj

 ≥ 2αi −
Df−1∑
j=0

δj ≥ 2αi − |J | ≥ 2αi − log x.

Since by assumption αi ≥ log x, we obtain α∗i ≥ 2αi − log x ≥ αi, which completes the proof of
the claim.

We now show that if the number of waves a in the execution of the procedure is sufficiently
large, then there exists an index i ≤ a, such that αi ≥ log x. Thus, taking into account Claim (*),
leaf f is explored at the latest by the a-th wave.

Take a waves and consider the product
∏a
i=1 αi. Note that λ(s)

Df
= 1 for every s. Thus, simplifying

the product of all αi by shortening repeating terms in numerators and denominators, and using
1 ≤ λ(i)

j ≤ n, we get

a∏
i=1

αi = (x/2)a
a∏
i=1

Df−1∏
j=0

λ
(i+j)
j+1

λ
(i+j)
j

= (x/2)a
∏a
i=1

∏Df−1
j=0 λ

(i+j)
j+1∏a

i=1

∏Df−1
j=0 λ

(i+j)
j

= (x/2)a
∏a−1
i′=0

∏Df

j′=1 λ
(i′+j′)
j′∏a

i=1

∏Df−1
j=0 λ

(i+j)
j

=

= (x/2)a

(∏Df

j′=1 λ
(j′)
j′

)(∏a−1
i′=1

∏Df−1
j′=1 λ

(i′+j′)
j′

)(∏a−1
i′=1 λ

(i′+Df )
Df

)
(∏a

i=1 λ
(i)
0

)(∏a−1
i=1

∏Df−1
j=1 λ

(i+j)
j

)(∏Df−1
j=1 λ

(a+j)
j

) ≥ (x/2)a

nanDf−1
≥ (x/2)a

na+D
. (1)

We want to find a, such that
a∏
i=1

αi ≥ (log x)a.

Taking into account (1), it is sufficient to find a satisfying

(x/2)a

na+D
≥ (log x)a,

which for sufficiently large x (we take x > 6(n log n+1)) can be equivalently transformed by taking
logarithms and elementary arithmetic to the form

a ≥ D

logn x− 1− logn(2 log x)
.

Hence, for a = d D
logn x−1−logn(2 log x)e, we have that there exists some i such that αi ≥ log x. For the

same i we have α∗i ≥ log x, by Claim (*). Thus, a waves are sufficient to explore the path F . This
analysis can be done for any leaf f , thus it is enough to send a waves in order to explore the graph
G. Considering that a wave wi is completed by the end of step D + i− 1, the exploration takes at
most D+a−1 time steps in total. Thus, the exploration takes at most D · (1 + 1

logn x−1−logn(2 log x))
time steps.

We remark that in the above Lemma, the total number of agents used throughout all steps of
procedure TEG is x ·D · (1+ 1

logn x−1−logn(2 log x)). For any c > 1, by appropriately setting x = Θ(nc),
we directly obtain the following theorem.

Theorem 2.2. For any fixed c > 1 and known n, the online tree exploration problem with global
communication can be solved in at most D ·

(
1 + 1

c−1 + o(1)
)

time steps using a team of k ≥ Dnc

agents.
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2.2 Tree exploration with local communication

In this section we propose a strategy for tree exploration under the local communication model.
In the implementation of the algorithm we assume that whenever two agents meet, they exchange
all information they possess about the tree. Thus, after the meeting, the knowledge about the
explored vertices and their neighborhoods, is a union of the knowledge of the two agents before the
meeting. Since agents exchange information only if they occupy the same vertex, at any time s,
the explored tree T (s) may only partially be known to each agent, with different agents possibly
knowing different subtrees of T (s).

In order to obtain a procedure for the local communication model, we modify procedure TEG

from the previous section. Observe that in procedure TEG, agents never move towards the root of
the tree, hence, in the local communication model, agents cannot exchange information with other
agents located closer to the root. The new strategy is given by the procedure TEL (Tree Exploration
with Local Communication).

Procedure TEL (tree T with root r, integer x) at time step s:
Place x new agents at r in state “exploring”.
for each v ∈ V (T (s)) which is not a leaf do: { determine moves of the agents located at v }
if v 6= r then for each agent g at v in state “notifying” do move(s) g to the parent of v.
if v contains at least two agents in state “exploring” and agents at v do not have

information of any agent which visited v before step s then:
{ send two new notifying agents back to the root from newly explored vertex v }
Select two agents g∗, g∗∗ at v in state “exploring”.
Change state to “notifying” for agents g∗ and g∗∗.
move(s) g∗ to the parent of v. { g∗∗ will move to the parent one step later }

end if
Let A(s)

v be the set of all remaining agents in state “exploring” located at v.
Denote by v1, v2, . . . , vd all children of v, and by δ the distance from r to v.
s′ :=

⌊
δ+s
2

⌋
. { s′ is a time in the past such that T (s′)(v) is known to the agents at v }

Let i∗ := arg maxi{L(T (s′), vi)}. { vi∗ is the child of v with the largest value of L }
Partition A(s)

v into disjoint sets Av1 ,Av2 , . . . ,Avd , such that:

(i) |Avi | =
⌊
|A(s)

v |·L(T
(s′),vi)

L(T (s′),v)

⌋
, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗ | = |A
(s)
v | −

∑
i∈{1,2,...,d}\{i∗} |Avi |.

for each i ∈ {1, 2, . . . , d} do if |Avi | ≥ 2 then for each agent g ∈ Avi do move(s) g to vi.
for each i ∈ {1, 2, . . . , d} do if |Avi | = 1 then change state to “discarded” for agent in Avi .
end for
for each v ∈ V (T (s)) which is a leaf do move(s) all agents located at v to the parent of v.

end procedure TEL.

In procedure TEL, all agents are associated with a state flag which may be set either to the value
“exploring” or “notifying”. Agents in the “exploring” state act similarly as in global exploration,
with the requirement that they always move to a vertex in groups of 2 or more agents. Every
time a group of “exploring” agents visits a new vertex, it detaches two of its agents, changes their
state to “notifying”, and sends them back along the path leading back to the root. These agents
notify every agent they encounter on their way about the discovery of the new vertices. Although
information about the discovery may be delayed, in every step s, all agents at vertex v know the
entire subtree T (s′)(v) which was explored until some previous time step s′ ≤ s. The state flag
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also has a third state, “discarded”, which is assigned to agents no longer used in the exploration
process.

The formulation of procedure TEL is not given from the perspective of individual agents, however,
based on its description, the decision on what move to make in the current step can be made by
each individual agent. The correctness of the definition of the procedure relies on the following
lemma, which guarantees that for a certain value s′ the tree T (s′)(v) is known to all agents at v.

Lemma 2.3. Let T be a tree rooted at some vertex r and let v be a vertex with distance δ to r.
After running procedure TEL until time step s, all agents which are located at vertex v at the start
of time step s know the tree T (s′)(v), for s′ =

⌊
δ+s

2

⌋
.

Proof. Suppose the claim of the lemma holds until time step s−1, i.e., procedure TEL is well defined
until time step s− 1.

Assume that agents following procedure TEL discover vertex v∗ in the subtree of v at distance
δ∗ from v at the beginning of time step s∗ ≤ s. This means that the parent of v∗ is visited at the
beginning of s∗ and notifying agents sent from the parent of v∗ carry knowledge about v∗ towards
the root. We need to prove that that if s∗ ≤ s′ (i.e., if v∗ ∈ V (T (s′))), then agents located at v at
time s know of v∗. It suffices to show that, by the start of time step s, these agents have met a
notifying agent (as defined in procedure TEL) coming from the parent of v∗.

Since the distance from the root to the parent of v∗ is δ+ δ∗− 1, we have s∗ ≥ δ+ δ∗− 1. Thus:

δ + s

2
≥ s′ ≥ s∗ =⇒ s ≥ 2s∗ − δ ≥ s∗ + δ∗ − 1.

Since s ≥ s∗+ δ∗− 1, the first of the notifying agents for v∗ (agent g∗ sent out from parent of v∗ at
time s∗) reached vertex v on the path to the root by the start of time step s, and then continued
its walk on the path to the root. The second of the corresponding notifying agents, g∗∗, is exactly
one step further from the root. Suppose that g ∈ A(s)

v 6= ∅. By the construction of procedure
TEL, agent g has been descending along a path from root r to vertex v in consecutive time steps,
reaching v at the start of time step s. It follows that g has encountered at some vertex on the path
from r to v exactly one of the notifying agents g∗, g∗∗ (passing the other on an edge), and so the
claim holds.

Lemma 2.4. In the local communication model, procedure TEL with parameter x explores any rooted
tree T in at most D · (1 + 2+1/ logn

logn x−1−logn(4 log x)) time steps, for x > 17(n log n+ 1).

Proof. As in the proof of Lemma 2.1, we consider any leaf f and the path F = (f0, f1, . . . , fDf
)

from r to f . As before, we denote the number of leaves in the subtree of T (i) rooted at fj by

λ
(i)
j = L(T (i), fj). Recall that if fj is not yet discovered in step i, we have L(T (i), fj) = 1. We

adopt the definition of a wave from Lemma 2.1. We define the values αi differently, however, to
take into account the fact that the procedure relies on a delayed exploration tree, and that some
waves lose agents as a result of deploying notifying agents:

αi =
x

4

λ
(b i

2c)
1

λ
(b i

2c)
0

λ
(b i

2c+1)
2

λ
(b i

2c+1)
1

· · ·
λ

(b i
2c+Df−1)

Df

λ
(b i

2c+Df−1)
Df−1

.

We call a wave that discovered at least dlog xe new nodes (or equivalently, a wave whose agents
were the first to visit at least dlog xe nodes of the tree) a discovery wave. Thus, there are at
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most b Df

dlog xec ≤ b
D

log xc discovery waves along the considered path. Observe that if a wave is not a
discovery wave, then the number of notifying agents it sends out is at most 2 log x.

We define by α∗i the number of agents of the i-th wave that reach leaf f . We now prove that
the following analogue of Claim (*) from the proof of Lemma 2.1 holds for non-discovery waves.

Claim (**). Let i be a time step for which wi is not a discovery wave and αi ≥ log x. Then,
α∗i ≥ αi, and thus αi is a lower bound on the number of agents reaching f in step i+Df .

Proof (of claim). We define cj = λ
(b i

2
c+j)

j+1 /λ
(b i

2
c+j)

j for j = 0, . . . , Df − 1. Then

αi = x/4

Df−1∏
j=1

cj .

Since cj ≤ 1 for all j and since αi ≥ log x, there exist at most log x different j such that cj ≤ 1/2.
Denote the set of all such j by J , with |J | ≤ log x. Denote by Q the set of all such indices s that
wave wi sends two notifying agents from vertex fs. By the assumption of the claim, we have that
wi is not a discovery wave thus |Q| ≤ dlog xe − 1 ≤ log x. Also, denote the size (number of agents)
of wave wi in step i+ s by as (s = 0, 1, 2, . . .), where a0 = x. Finally, let R be the set of indices s
such that as ≥ 2 and as+1 = 0; note that R has at most one element.

Consider an index s /∈ R for which cs > 1/2 and assume that wave wi does not send notifying
agents from vertex fs (i.e. s /∈ Q). We have λ(i+s)

s+1 /λ
(i+s)
s > 1/2, thus more than half of all leafs of

the tree T (i+s)(fs) also belong to the tree T (i+s)(fs+1). But then, in time step i+ s+ 1, agents are
sent from fs to fs+1 according to the definition in expression (ii) in the pseudocode of procedure
TEL. Thus, we can lower-bound the size of wave wi in step i+ s+ 1 as: as+1 ≥ ascs. Otherwise, if
s /∈ R ∪Q and cs ≤ 1/2 (i.e., if s ∈ J ), then agents are sent according the definition in expression
(i) in the pseudocode, and then as+1 ≥ bascsc. Finally, if s ∈ Q then in vertex fs wave wi reduces
by 2 notifying agents, while if s ∈ R then the wave may be reduced by one more agent (as+1 = 0
instead of as+1 = 1, since agents are always deployed in groups of two or more), and after that we
can perform a similar analysis. Eventually, depending on which of the sets J ,Q,R node s belongs
to, we obtain:

as+1 ≥ ascs − δs, where δs = δsj + δsq + δsr,

and

δsj =

{
0, if s /∈ J
1, if s ∈ J

, δsq =

{
0, if s /∈ Q
2, if s ∈ Q

, δsr =

{
0, if s /∈ R
1, if s ∈ R.

In this way we expand the expression for α∗i = aDf
:

α∗i = aDf
≥ aDf−1cDf−1 − δDf−1 ≥ . . . ≥ (...((a0c0 − δ0)c1 − δ1)c2 − . . .)cDf−1 − δDf−1 =

= x

Df−1∏
j=0

cj −
Df−1∑
j=0

δj Df−1∏
p=j+1

cj

 ≥ 4αi −
Df−1∑
j=0

δj ≥ 4αi − |J | − 2|Q| − |R| ≥

≥ 4αi − 3 log x− |R|.

Since by assumption αi ≥ log x, we obtain α∗i ≥ 4αi − 3 log x − |R| ≥ αi − |R|. Since |R| ≤ 1, it
follows that α∗i ≥ log x − 1 ≥ 2, hence R = ∅. So, we have α∗i ≥ αi, which completes the proof of
the claim.
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It is left to prove that if the number of waves a in the execution of the procedure is sufficiently
large, there exists an index i ≤ a, such that wave wi is not a discovery wave and αi ≥ log x. We
again consider the product

a∏
i=1

αi = (x/4)a
a∏
i=1

Df−1∏
j=0

λ
(b i

2c+j)
j+1

λ
(b i

2c+j)
j

=

= (x/4)a
∏a
i=1

∏Df−1
j=0 λ

(b i
2c+j)

j+1∏a
i=1

∏Df−1
j=0 λ

(b i
2c+j)

j

= (x/4)a
∏a−2
i′=−1

∏Df

j′=1 λ
(
⌊

i′
2

⌋
+j′)

j′∏a
i=1

∏Df−1
j=0 λ

(b i
2c+j)

j

=

= (x/4)a

(∏Df

j′=1 λ
(j′−1)
j′

)(∏Df

j′=1 λ
(j′)
j′

)(∏a−2
i′=1

∏Df−1
j′=1 λ

(i′+j′)
j′

)(∏a−2
i′=1 λ

(
⌊

i′
2

⌋
+Df )

Df

)
(∏a

i=1 λ
(b i′

2 c)
0

)(∏a−2
i=1

∏Df−1
j=1 λ

(i+j)
j

)(∏Df−1
j=1 λ

(b a−1
2 c+j)

j

)(∏Df−1
j=1 λ

(b a
2 c+j)

j

) ≥
≥ (x/4)a

1(Df−1)·(a−1)

na+2Df−2
≥ (x/4)a

na+2D
. (2)

We now choose a so as to guarantee that there exists at least one non-discovery wave αi ≥ log x.
Since there are at most b D

log xc discovery waves, we require that the
(
b D

log xc+ 1
)

-st biggest value
αi is at least log x. Observe that since we have αi ≤ x, it suffices to choose a so that:

a∏
i=1

αi ≥ x
D

log x (log x)a.

Taking into account (2), it is sufficient to find a satisfying

(x/4)a

na+2D
≥ x

D
log x (log x)a,

which holds for sufficiently large x (we assume that x > 17(n log n+1)) for a = d 2D+D/ logn
logn x−1−logn(4 log x)e.

Now, we have that there exists some index i ≤ a such that αi ≥ log x and wave wi is not a discovery
wave. For the same i we have α∗i ≥ log x, by Claim (**). Thus, a waves are sufficient to explore the
path F . This analysis can be done for any leaf f , thus it is enough to send a waves in order to explore
the graph G. We obtain that exploration takes at most D + a − 1 ≤ D · (1 + 2+1/ logn

logn x−1−logn(4 log x))
time steps.

Acting as in the previous Subsection, from Lemma 2.4 we obtain a strategy for online exploration
of trees in the model with local communication.

Theorem 2.5. For any fixed c > 1, the online tree exploration problem can be solved in the
model with local communication and knowledge of n using a team of k ≥ Dnc agents in at most
D
(

1 + 2
c−1 + o(1)

)
time steps.
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3 General graph exploration

In this section we develop strategies for exploration of general graphs, both with global commu-
nication and with local communication. These algorithms are obtained by modifying the tree-
exploration procedures given in the previous section.

Given a graph G = (V,E) with root vertex r, we call P = (v0, v1, v2, . . . , vm) with r = v0,
vi ∈ V , and {vi, vi+1} ∈ E a walk of length `(P ) = m. Note that a walk may contain a vertex more
than once. We introduce the notation P [j] to denote vj , i.e., the j-th vertex of P after the root,
and P [0, j] to denote the walk (v0, v1, . . . , vj), for j ≤ m. The last vertex of path P is denoted by
end(P ) = P [`(P )]. The concatenation of a vertex u to path P , where u ∈ N(end(P )) is defined as
the path P ′ ≡ P + u of length `(P ) + 1 with P ′[0, `(P )] = P and end(P ′) = u.

Let P be the set of walks P in G having length 0 ≤ `(P ) < n. We introduce a linear order on
walks in P such that for two walks P1 and P2, we say that P1 < P2 if `(P1) < `(P2), or `(P1) = `(P2)
and there exists an index j < `(P1) such that P1([0, j]) = P2([0, j]) and P1([j + 1]) < P2([j + 1]).
The comparison of vertices from V is understood as comparison of their identifiers in G.

We now define the tree T with vertex set P, root (r) ∈ P, such that vertex P ′ is a child of vertex
P if and only if P ′ = P + u, for some u ∈ N(end(P )). We first show that agents can simulate the
exploration of T while in fact moving around graph G. Intuitively, while an agent is following a
path from the root to the leaves of T , its location in T corresponds to the walk taken by this agent
in G.

Lemma 3.1. A team of agents can simulate the virtual exploration of tree T starting from root
(r), while physically moving around graph G starting from vertex r. The simulation satisfies the
following conditions:

(1) An agent virtually occupying a vertex P of T is physically located at a vertex end(P ) in G.

(2) Upon entering a vertex P of T in the virtual exploration, the agent obtains the identifiers of
all children of P in T .

(3) A virtual move along an edge of T can be performed in a single time step, by moving the agent
to an adjacent location in G.

(4) Agents occupying the same virtual location P in T can communicate locally, i.e., they are
physically located at the same vertex of G.

Proof. We define the simulation so that claims (1-4) hold for all time steps. Initially, claim (1) is
trivially true since end((r)) = r. Suppose that at the start of some step s, an agent occupies some
virtual location P in T , and its corresponding physical location is end(P ). Claim (2) holds for this
step, since the set of children of P in T is given as {P + u ∈ P : u ∈ N(end(P ))}, P is stored in
the agents memory (as the identifier of its location in T ), and the neighborhood of end(P ) in G
is accessible to the agent by definition. When required to move to a virtual location P ′ adjacent
to P in T , the agent performs a move to vertex end(P ′) ∈ V . Note that if P ′ is the child of P
in T , then end(P ′) ∈ N(end(P )) by definition of T , whereas if P ′ is the parent of P in T , then
end(P ′) = P [`(P ) − 1] ∈ N(end(P )) from the definition of walk P . After such a move, claim
(1) is immediately satisfied, and claims (2-3) follow by induction on time. Claim (4) is a trivial
consequence of claim (1).
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We remark that the number of vertices of tree T is exponential in n. Hence, our goal is to
perform the simulation with only a subset of the vertices of T . For a vertex v ∈ V , let Pmin(v) ∈ P
be the minimum (with respect to the linear order on P) walk ending at v. We observe that, by
property (1) in Lemma 3.1, if, for all v ∈ V , the vertex Pmin(v) of T has been visited by at least
one agent in the virtual exploration of T , the physical exploration of G is completed. We define
Pmin = {Pmin(v) : v ∈ V }, and show that all vertices of Pmin are visited relatively quickly if
we employ the procedure TEG (or TEL) for T , subject to a simple modification. In the original
algorithm, we divided the agents descending to the children of the vertex according to the number
of leaves of the discovered subtrees. We introduce an alternate definition of the function L(T (s), v),
so as to take into account only the number of vertices in T (s) corresponding to walks which are
smallest among all walks in T (s) sharing the same end-vertex. (See Figure 2 in the Appendix for
an example.)

Lemma 3.2. Let T (s) ⊆ T be a subtree of T rooted at (r). For P ∈ V (T (s)), let L(T (s), P ) be the
number of vertices v of G, for which the subtree of T (s) rooted at P contains a vertex representing
the smallest among all walks contained in T (s) which end at v:

L(T (s), P ) =
∣∣∣V (T (s)(P )) ∩

⋃
v∈V

{
min{P ′ ∈ V (T (s)) : end(P ′) = v}

} ∣∣∣,
and for P ∈ P \ V (T (s)), let L(T (s), P ) = 1. Subject to this definition of L, procedure TEG with
parameter x > 6(n log n+ 1) (procedure TEL with parameter x > 17(n log n+ 1)) applied to tree T
starting from root (r) visits all vertices from Pmin within D · (1 + 1

logn x−1−logn(2 log x)) (respectively,

D · (1 + 2+1/ logn
logn x−1−logn(4 log x))) time steps.

Proof. The set Pmin spans a subtree Tmin = T [Pmin] in T , rooted at (r). We can perform an analysis
analogous to that used in the Proofs of Lemmas 2.1 and 2.4, evaluating sizes of waves of agents along
paths in the subtree Tmin. We observe that for any P ∈ Pmin which is not a leaf in Tmin, we always
have L(T (s), P ) ≥ 1. Moreover, we have L(T (s), P ) ≤ |V (T (s)(P ))|, and so L(T (s), P ) ≤ n. Since
these two bounds were the only required properties of the functions L in the Proofs of Lemmas 2.1
and 2.4, the analysis from these proofs applies within the tree Tmin without any changes. It follows
that each vertex of Pmin is reached by the exploration algorithm within D · (1 + 1

logn x−1−logn(2 log x))

time steps in case of global communication, and within D · (1 + 2+1/ logn
logn x−1−logn(4 log x)) time steps in

case of local communication.

We recall that by Lemma 3.1, one step of exploration of tree T can be simulated by a single
step of an agent running on graph G. Thus, appropriately choosing x = Θ(nc) in Lemma 3.2, we
obtain our main theorem for general graphs.

Theorem 3.3. For any c > 1, the online graph exploration problem with knowledge of n can be
solved using a team of k ≥ Dnc agents:

• in at most D ·
(

1 + 1
c−1 + o(1)

)
time steps in the global communication model.

• in at most D ·
(

1 + 2
c−1 + o(1)

)
time steps in the local communication model.

For the case when we do not assume knowledge of (an upper bound on) n, we provide a vari-
ant of the above theorem which also completes exploration in O(D) steps, with a slightly larger
multiplicative constant.
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Theorem 3.4. For any c > 1, there exists an algorithm for the local communication model, which
explores a rooted graph of unknown order n and unknown diameter D using a team of k agents,
such that its exploration time is O(D) if k ≥ Dnc.

Proof. Let c′ = c+1
2 , 1 < c′ < c. For a graph G, the algorithm proceeds by assuming geometrically

increasing upper bounds D̄ = 1, 2, 4, . . . , on the value of D. For a fixed value of D̄, we set
n̄ = b(k/D̄)1/c′c, and perform exploration of the graph using the algorithm from Theorem 3.3
with parameter c′, assuming that the explored graph has at most n̄ vertices, and using D̄n̄c

′ ≤ k

agents. After at most D̄ ·
(

1 + 2
c′−1 + o(1)

)
time steps (where the asymptotic o(1) value follows

from Theorem 3.3) exploration is interrupted, and all agents return to the root vertex in at most
O(D̄) steps. If exploration of G has been completed, then the algorithm stops. This can be detected
since the agents are aware which vertices still have unexplored neighbors. If the exploration has not
been completed, we continue for a doubled value of D̄, until the bound n̄ = 0 is reached. Finally, if
exploration has been unsuccessful so far, we perform an arbitrary valid exploration algorithm, e.g.
Depth First Search (DFS) with a single agent.

The algorithm always completes exploration successfully in finite time. Observe that if in the
stage with D̄ = 2dlog2De and n̄ = b(k/D̄)1/c′c we have n̄ ≥ n, then exploration is completed
successfully in this stage, and the total time of all exploration stages is O(D). Observe that we
have D̄ < 2D and k ≥ Dnc, and so it suffices that b(nc/2)c

′c ≥ n. This holds for sufficiently large
n. If the condition k ≥ Dnc does not hold or n is too small, then the algorithm reaches the final
phase in which DFS is executed, resulting in a correct exploration of the graph in finite time.

We remark that by choosing x = Θ(n log n) in Lemma 2.3, we can also explore a graph using
k = Θ(Dn log n) agents in time Θ(D log n), with local communication. This bound is the limit of
our approach in terms of the smallest allowed team of agents.

4 Lower bounds

In this section, we show lower bounds for exploration with Dnc agents, complementary to the
positive results given by Theorem 3.3. The graphs that produce the lower bound are a special class
of trees. The same class of trees appeared in the lower bound from [8] for the competitive ratio of
tree exploration algorithms with small teams of agents. In our scenario, we obtain different lower
bounds depending on whether communication is local or global.

Theorem 4.1. For all n > 1 and for every increasing function f , such that log f(n) = o(log n),
and every constant c > 0, there exists a family of trees Tn,D, each with n vertices and height
D = Θ(f(n)), such that

(i) for every exploration strategy with global communication that uses Dnc agents there ex-
ists a tree in Tn,D such that number of time steps required for its exploration is at least
D
(
1 + 1

c − o(1)
)
,

(ii) for every exploration strategy with local communication that uses Dnc agents there exists a tree
in Tn,D such that number of time steps required for exploration is at least D

(
1 + 2

c − o(1)
)
.

Proof. We prove the theorem assuming that the number of agents is nc, rather than Dnc. The
asymptotic form of the bounds in claims (i) and (ii) remains unchanged since D = no(1) by
assumption, and Dnc = nc+o(1). In previous sections we assumed that certain number of agents
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spawned in the root r every round. Here we assume that all nc agents are available in the first
round.

(i) First we define the family of trees Tn,D. It is possible to find D = Θ(f(n)) such that for
any n there exist integers ∆ and κ such that n = D∆ + κ + 1 and 0 ≤ κ ≤ D − 1. Note that
∆ = n−(κ+1)

D . Given a vector q = (q1, . . . , qD) ∈ {1, . . . ,∆}D, we define T (q) as the tree rooted at
r with vertex set

V (T (q)) = {r} ∪
D⋃
i=1

Vi ∪W,

where Vi = {vi1, . . . , vi∆} is the set of nodes at distance i from the root r and W = {w1, w2, . . . , wκ}
is the set of additional nodes attached to the root. For convenience, we set v0

q0 = r, and we define
the edge set by

E(T (q)) =
D⋃
i=1

{
{vi−1
qi−1

, vij}
∣∣ j = 1, . . . ,∆

}
∪
{
{r, wj}

∣∣ j = 1, 2, . . . κ
}
,

which means that one specific vertex vi−1
qi−1

from level i−1 is connected to all vertices on level i. We
set Tn,D = {T (q)

∣∣ q ∈ {1, . . . ,∆}D}. Since we are interested in lower bounds we will not consider
vertices from W , we assume that exploration is finished when all vertices from Vi sets are explored.

We prove that each exploration strategy that uses at most nc agents needs at least D(1+ 1
c−o(1))

steps to explore some tree in Tn,D.

Let S be any exploration strategy that uses at most nc agents. We select a tree from Tn,D based
on the behavior of S in the class of trees Tn,D. More precisely, let T ∈ Tn,D be such that, for each
i = 1, . . . , D − 1, if s is the first step in which a vertex in Vi is visited, then one of the vertices
in Vi holding the minimum number of agents in step s is the one having the vertices in Vi+1 as
children. In the following we bound the number of steps of S while exploring T . We say that S
makes progress in time step s if for some i ∈ {1, . . . , D}, some vertex in Vi is not visited in step
s − 1 and all vertices in Vi are visited at the start of step s. If only a strict non-empty subset of
vertices of Vi are visited in some step s, then, by choosing T appropriately, the adversary may act
so that the vertex in Vi that has ∆ children is among those not visited in step s. We have nc agents
in v0

q0 in step 1. In step 2 at most nc/∆ agents reach v1
q1 . In steps 3 at most nc/∆2 agents reach

v2
q2 , and so on. Thus S exploring tree T can make progress in at most blog∆ n

cc consecutive time
steps. This is due to the choice of T .

Let p be the number of maximal sequences of consecutive time steps in which S makes progres.
Let si, i = 1, . . . , p, be the length of the i-th such sequence. By the above, we obtain that
si ≤ blog∆(nc)c for each i = 1, . . . , p. Since the strategy S explores the entire tree T , the total
number of steps in which S makes progress equals D, the height of the tree T . We obtain D =∑p

i=1 |si| ≤ pblog∆ n
cc. Thus we can lower bound the value p

p ≥ D

bc log∆ nc
≥ D log ∆

c log n
= D

log(n− (κ+ 1))− logD

c log n
= D

(
1

c
− o(1)

)
, (3)

because logD = Θ(log f) = o(log n) and log(n− (κ+ 1))/ log n = 1− o(1). Each pair of maximal
sequences of consecutive time steps in which S makes progress has to be separated by at least one
step in which S makes no progress in tree T . Thus the are at least p − 1 steps without progress
and at most D steps with progress. Let s′ be the first step in which all vertices are visited when
executing S in T . By (3) and by the choice of T ,

s′ ≥ p− 1 +D ≥ D
(

1

c
− o(1)

)
− 1 +D = D

(
1 +

1

c
− 1

D
− o(1)

)
≥ D

(
1 +

1

c
− o(1)

)
,
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where 1
D = o(1) because f is increasing. This completes the proof of (i).

(ii) We use the same family of trees T as in (i). Let S be any exploration strategy with local
communication that uses at most nc agents.

We select a tree from Tn,D based on the behavior of S in the class of trees Tn,D. If step s is
the first step in which a vertex in Vi is visited, then, since communication is local, agents located
in vertex vi−1

qi−1
have no knowledge about the degrees of the vertices in Vi in step s. Since no agent

comes back from Vi in step s, agents in vi−1
qi−1

have the same knowledge in steps s − 1 and s. We
select T ∈ T in such a way that a vertex in Vi for which the sum of the number of agents in steps
s and s+ 1 is minimized, is the vertex viqi . Now, similarly as in (i), we lowerbound the number of
steps.

We have nc agents in v0
q0 in step 1. Together, in steps 2 and 3, in total at most nc/∆ agents reach

v1
q1 . In steps 3 and 4 at most nc/∆2 agents reach v2

q2 , and so on. Thus in the first blog∆ n
cc + 2

time steps, there are be two steps in which the algorithm does not make progress in terms of levels
explored. Similarly as in previous part of the lemma the number of time steps without progress can
be lowerbounded by D

(
2
c − o(1)

)
. Thus the exploration takes at least D

(
1 + 2

c − o(1)
)

steps.

When looking at the problem of minimizing the size of the team of agents, our work (The-
orem 3.4) shows that it is possible to achieve asymptotically-optimal online exploration time of
O(D) using a team of k ≤ Dn1+ε agents, for any ε > 0. For graphs of small diameter, D = no(1),
we can thus explore the graph in O(D) time steps using k ≤ n1+ε agents. This result almost
matches the lower bound on team size of k = Ω(n1−o(1)) for the case of graphs of small diameter,
which follows from the trivial lower bound Ω(D+n/k) on exploration time (cf. e.g. [8]). The ques-
tion of establishing precisely what team size k is necessary and sufficient for performing exploration
in O(D) steps in a graph of larger diameter remains open.
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Figures

Figure 1: Illustration of proof of Lemma 2.1: computation of value of αi for a wave of agents
descending in tree T
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Figure 2: Illustration of exploration of general graphs: (a) The explored graph G, (b) The virtually
explored tree of walks T , with highlighted nodes belonging to Pmin, (c) An example of a subtree
T (s) ⊆ T with highlighted nodes which are counted when computing function L (this tree T (s) does
not correspond to a real execution of procedure TEL on T ).
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