
HAL Id: hal-00803476
https://hal.inria.fr/hal-00803476

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comments on ”Design and performance evaluation of
load distribution strategies for multiple loads on

heterogeneous linear daisy chain networks”
Matthieu Gallet, Yves Robert, Frédéric Vivien

To cite this version:
Matthieu Gallet, Yves Robert, Frédéric Vivien. Comments on ”Design and performance evalu-
ation of load distribution strategies for multiple loads on heterogeneous linear daisy chain net-
works”. Journal of Parallel and Distributed Computing, Elsevier, 2008, 68 (7), pp.1021-1031.
�10.1016/j.jpdc.2007.12.002�. �hal-00803476�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49805162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00803476
https://hal.archives-ouvertes.fr

Comments on “Design and performance evaluation of load
distribution strategies for multiple loads on heterogeneous

linear daisy chain networks”

Matthieu Gallet1,3,4 Yves Robert 1,3,4 Frédéric Vivien2,3,4

1 ENS Lyon
2 INRIA

3 Université de Lyon
4 LIP, UMR 5668 ENS-Lyon CNRS INRIA UCBL

Abstract

Min, Veeravalli, and Barlas have proposed strate-
gies to minimize the overall execution time of one
or several divisible loads on a heterogeneous linear
network, using one or more installments [10, 11].
We show on a very simple example that their ap-
proach does not always produce a solution and that,
when it does, the solution is often suboptimal. We
also show how to find an optimal scheduling for any
instance, once the number of installments per load
is given. Finally, we formally prove that under a
linear cost model, as in [10, 11], an optimal sched-
ule has an infinite number of installments. There-
fore such a cost model should not be used to design
practical multi-installment algorithms.

1 Introduction

Min, Veeravalli and Barlas have proposed strate-
gies to minimize the overall execution time of one
or several divisible loads on a heterogeneous lin-
ear network [10, 11]. Initially, the authors targeted
single-installment strategies, that is strategies un-
der which a processor receives in a single commu-
nication all its share of a given load. When they
were not able to design single-installment strate-
gies, they proposed multi-installment ones.

In this research note, we first show on a very
simple example that the approach proposed in [11]
does not always produce a solution and that, when
it does, the solution is often suboptimal. The fun-

damental flaw of the approach of [11] is that the
authors are optimizing the scheduling load by load,
instead of attempting a global ptimization. The
load by load approach is suboptimal and overcon-
strains the problem.

On the contrary, we show how to find an optimal
scheduling for any instance, once the number of
installments per load is given. In particular, our
approach always finds the optimal solution in the
single-installment case. Finally, we formally prove
that under a linear cost model for computation and
communication, as in [10, 11], an optimal schedule
has an infinite number of installments. Such a cost
model can therefore not be used to design practical
multi-installment strategies.

Please refer to the papers [10, 11] for a detailed
introduction to the optimization problem under
study. We briefly recall the framework in Section 2,
and we deal with an illustrative example in Sec-
tion 3. Then we directly proceed to the design of
our solution (Section 4). We experimentally eval-
uate the different approaches in Section 5, and we
discuss the linear cost model and the possible ex-
tensions of this work in Section 6. Finally, we con-
clude in Section 7.

2 Problem and notations

We summarize here the framework of [10, 11]. The
target architecture is a linear chain of m proces-
sors (P1, P2, . . . , Pm). Processor Pi is connected to
processor Pi+1 by the communication link li (see

1

Figure 1). The target application is composed of
N loads, which are divisible, which means that
each load can be split into an arbitrary number of
chunks of any size, and these chunks can be pro-
cessed independently. All the loads are initially
available on processor P1, which processes a frac-
tion of them and delegates (sends) the remaining
fraction to P2. In turn, P2 executes part of the
load that it receives from P1 and sends the rest
to P3, and so on along the processor chain. Com-
munications can be overlapped with (independent)
computations, but a given processor can be active
in at most a single communication at any time-
step: sends and receives are serialized (this is the
full one-port model).

Since the last processor Pm cannot start com-
puting before having received its first message, it is
useful for P1 to distribute the loads in several in-
stallments: the idle time of remote processors in the
chain will be reduced due to the fact that commu-
nications are smaller in the first steps of the overall
execution.

We deal with the general case in which the nth
load is distributed in Qn installments of different
sizes. For the jth installment of load n, processor
Pi takes a fraction γnj (i), and sends the remaining
part to the next processor while processing its own
fraction (that is, processor Pi sends a volume of
data equal to

∑m
k=i+1 γ

n
j (k) to processor Pi+1).

In the framework of [10, 11], loads have different
characteristics. Every load n (with 1 ≤ n ≤ N) is
defined by a volume of data Vcomm(n) and a quan-
tity of computation Vcomp(n). Moreover, proces-
sors and links are not identical either. We let wi
be the time taken by Pi to compute a unit load
(1 ≤ i ≤ m), and zi be the time taken by Pi to send
a unit load to Pi+1 (over link li, 1 ≤ i ≤ m − 1).
Note that we assume a linear model for computa-
tions and communications, as in the original arti-
cles, and as is often the case in divisible load liter-
ature [2, 5, 9].

For the jth installment of the nth load, let
Commstart

i,n,j denote the starting time of the commu-
nication between Pi and Pi+1, and let Commend

i,n,j

denote its completion time; similarly, Compstarti,n,j

denotes the start time of the computation on Pi for
this installment, and Compendi,n,j denotes its comple-
tion time. The objective function is to minimize the
makespan, i.e., the time at which all loads are com-

L1 L2

lm−1l2l1

Pm−1 PmP1 P2 P3

Figure 1: Linear network, with m processors and
m− 1 links.

puted. For the sake of convenience, all notations
are summarized in Table 1.

3 An illustrative example

3.1 Presentation

To show the limitations of [10, 11], we deal with
a simple illustrative example. We use 2 identical
processors P1 and P2 with w1 = w2 = λ, and
z1 = 1. We consider N = 2 identical divisible
loads to process, with Vcomm(1) = Vcomm(2) = 1
and Vcomp(1) = Vcomp(2) = 1. Note that when
λ is large, communications become negligible and
each processor is expected to process around half
of both loads. But when λ is close to 0, communi-
cations are very important, and the solution is not
obvious. To ease the reading, we only give a short
(intuitive) description of the schedules, and provide
their different makespans without justification (we
refer the reader to Appendix A for all proofs).

We first consider a simple schedule which uses
a single installment for each load, as illustrated in
Figure 2. Processor P1 computes a fraction γ11(1) =

2λ2+1
2λ2+2λ+1 of the first load, and a fraction γ11(2) =

2λ+1
2λ2+2λ+1 of the second load. Then the second pro-
cessor computes a fraction γ12(1) =

2λ
2λ2+2λ+1 of the

first load, and a fraction γ12(2) = 2λ2

2λ2+2λ+1 of the
second load. The makespan achieved by this sched-

ule is equal to makespan1 =
2λ(λ2+λ+1)
2λ2+2λ+1 .

3.2 Solution of [11], one-installment

In the solution of [11], P1 and P2 have to simul-
taneously complete the processing of their share of
the first load. The same holds true for the second
load. We are in the one-installment case when P1

is fast enough to send the second load to P2 while

2

m Number of processors in the system.
Pi Processor i, where i = 1, . . . ,m.
wi Time taken by processor Pi to compute a unit load.
zi Time taken by Pi to transmit a unit load to Pi+1.
τi Availability date of Pi (time at which it first becomes available for processing the loads).
N Total number of loads to process in the system.
Qn Total number of installments for nth load.
Vcomm(n) Volume of data for nth load.
Vcomp(n) Volume of computation for nth load.
γji (n) Fraction of nth load computed on processor Pi during the jth installment.
Commstart

i,n,j Start time of communication from processor Pi to processor Pi+1

for jth installment of nth load.
Commend

i,n,j End time of communication from processor Pi to processor Pi+1

for jth installment of nth load.
Compstarti,n,j Start time of computation on processor Pi

for jth installment of nth load.
Compendi,n,j End time of computation on processor Pi

for jth installment of nth load.

Table 1: Summary of notations.

t

0 3
5

β

T (1)t1,2 T (2)

λβλα

α

7
10

2
5

3
10

t1,1

P1

P2

l1

Figure 2: The example schedule, with λ = 1
2 , α is

γ12(1) and β is γ12(2).

it is computing the first load. This condition writes
λ ≥

√
3+1
2 ≈ 1.366.

In the solution of [11], P1 processes a fraction
γ11(1) = λ+1

2λ+1 of the first load, and a fraction
γ11(2) =

1
2 of the second one. P2 processes a frac-

tion γ12(1) =
λ

2λ+1 of the first load L1, and a frac-
tion γ12(2) = 1

2 of the second one. The makespan
achieved by this schedule is makespan2 = λ(4λ+3)

2(2λ+1) .
Comparing both makespans, we have 0 ≤

makespan2 − makespan1 ≤ 1
4 , the solution of [11]

having a strictly larger makespan, except when
λ =

√
3+1
2 . Intuitively, the solution of [11] is worse

than the schedule of Section 3.1 because it aims at
locally optimizing the makespan for the first load,
and then optimizing the makespan for the second
one, instead of directly searching for a global opti-
mum. A visual representation of this case is given
in Figure 3 for λ = 2.

3.3 Solution of [11], multi-
installment

The solution of [11] is a multi-installment strategy
when λ <

√
3+1
2 , i.e., when communications tend

to be important compared to computations. More

3

t

T (2)

λ(1 − β)

11
5

T (1)t1,1

0 6
5

7
10

2
5

t1,2

βα

λα λβ

P2

P1

l1

Figure 3: The schedule of [11] for λ = 2, with α =
γ12(1) and β = γ12(2).

precisely, this case happens when P1 does not have
enough time to completely send the second load to
P2 before the end of the computation of the first
load on both processors.

The way to proceed in [11] is to send the sec-
ond load using a multi-installment strategy. Let Q
denote the number of installments for this second
load. We can easily compute the size of each frac-
tion distributed to P1 and P2. Processor P1 has to
process a fraction γ11(1) = λ+1

2λ+1 of the first load,
and fractions γ11(2), γ21(2), . . . , γ

Q
1 (2) of the second

one. Processor P2 has a fraction γ12(1) = λ
2λ+1 of

the first load, and fractions γ12(2), γ22(2), . . . , γ
Q
2 (2)

of the second one. Moreover, we have the following
equality for 1 ≤ k < Q:

γk1 (2) = γk2 (2) = λkγ12(1).

And for k = Q (the last installment), we have
γQ1 (2) = γQ2 (2) ≤ λQγ12(1). Let βk = γk1 (2) =
γk2 (2). We can then establish an upper bound on
the portion of the second load distributed in Q in-
stallments:

Q∑
k=1

(2βk) ≤ 2

Q∑
k=1

(
γ12(1)λ

k
)
=

2
(
λQ − 1

)
λ2

2λ2 − λ− 1

if λ 6= 1, and Q = 2 otherwise.
We have three cases to discuss:

1. 0 < λ <
√
17+1
8 ≈ 0.64: Since λ < 1, we can

write for any nonnegative integer Q:

Q∑
k=1

(2βk) <

∞∑
k=1

(2βk) =
2λ2

(1− λ)(2λ+ 1)

We have 2λ2

(1−λ)(2λ+1) < 1 for all λ <
√
17+1
8 .

So, even in the case of an infinite number of

0

t1,1

t

λ
2

λα λβ1 λβ2

α β3β1 β2

3
8

1
4

1
2

5
8

t2,2

t1,2 T (1) t3,2

P2

P1

l1

Figure 4: The example with λ = 1
2 , α = γ12(1) and

βk = γk2 (2).

t

β2
7
6

1
3

2
3

α β1

β2β1α

t1,1 t1,2 T (1) t2,2 T (1, 2)T (2) = T (2, 2)

0 15
6

P2

P1

l1

Figure 5: The example with λ = 1, α = γ12(1) and
βk = γk2 (2).

installments, the second load will not be com-
pletely processed. In other words, no solution
is found in [11] for this case. A visual repre-
sentation of this case is given in Figure 4 with
λ = 0.5.

2. λ =
√
17+1
8 : We have 2λ2

(1−λ)(2λ+1) = 1, so an
infinite number of installments is required to
completely process the second load. Again,
this solution is obviously not feasible.

3.
√
17+1
8 < λ <

√
3+1
2 : In this case, the solu-

tion of [11] is better than any solution using a
single installment per load, but it may require
a very large number of installments. A visual
representation of this case is given in Figure 5
with λ = 1.

In this case, the number of installments is set

in [11] as Q =

⌈
ln(4λ2−λ−1

2λ2
)

ln(λ)

⌉
. To see that this

choice is not optimal, consider the case λ =

4

3
4 . The algorithm of [11] achieves a makespan
equal to

(
1− γ12(1)

)
λ + λ

2 = 9
10 . The first

load is sent in one installment and the second
one is sent in 3 installments (according to the
previous equation).

However, we can come up with a better sched-
ule by splitting both loads into two install-
ments, and distributing them as follows:

• during the first round, P1 processes 0 unit
of the first load,

• during the second round, P1 processes 317
653

unit of the first load,

• during the first round, P2 processes 192
653

unit of the first load,

• during the second round, P2 processes 144
653

unit of the first load,

• during the first round, P1 processes 0 unit
of the second load,

• during the second round, P1 processes 464
653

unit of the second load,

• during the first round, P2 processes 108
653

unit of the second load,

• during the second round, P2 processes 81
653

unit of the second load,

This scheme gives us a total makespan equal to
781
653

3
4 ≈ 0.897, which is (slightly) better than

0.9. This shows that among the schedules hav-
ing a total number of four installments, the
solution of [11] is suboptimal.

3.4 Conclusion
Despite its simplicity (two identical processors and
two identical loads), the analysis of this illustrative
example clearly outlines the limitations of the ap-
proach of [11]: this approach does not always return
a feasible solution and, when it does, this solution
is not always optimal.

As we said before, the main drawback of the pre-
vious approach is to search for local optimums. The
authors of [11], by forcing each load to finish at the
same time on all processors, designed their solution
as if the optimality principle, which is only true for
a single load, was true for several loads. More-
over, they wanted to remove, on each processor,
any potential computation idle time between the

processing two consecutive loads. However, these
constraints are useless to obtain a valid schedule,
but can artificially limit the solution space.

In the next section, we show how to compute an
optimal schedule when dividing each load into any
prescribed number of installments.

4 Optimal solution

In this section we show how to compute an op-
timal schedule, when dividing each load into any
prescribed number of installments. We will discuss
the computation of the right number of installments
in Section 6.

When the number of installments is set to 1 for
each load (i.e., Qn = 1, for any n in [1, N]), the fol-
lowing approach solves the problem originally tar-
geted by Min, Veeravalli, and Barlas.

To build our solution we use a linear program-
ming approach. In fact, we only have to list all
the (linear) constraints that must be fulfilled by
a schedule, and write that we want to minimize
the makespan. All these constraints are captured
by the linear program in Figure 6. This linear
program simply encodes the following constraints
(where a number in brackets is the number of the
corresponding constraint on Figure 6):

• Pi cannot start a new communication to Pi+1

before the end of the corresponding communi-
cation from Pi−1 to Pi (1),

• Pi cannot start to receive the next installment
of the n-th load before having finished to send
the current one to Pi+1 (2),

• Pi cannot start to receive the first installment
of the next load before having finished to send
the last installment of the current load to Pi+1

(3),

• any transfer has to begin at a nonnegative time
(4),

• the duration of any transfer is equal to the
product of the time taken to transmit a unit
load (5) by the volume of data to transfer,

• processor Pi cannot start to compute the jth
installment of the nth load before having fin-
ished to receive the corresponding data (6),

5

• the duration of any computation is equal to
the product of the time taken to compute a
unit load (7) by the volume of computations,

• processor Pi cannot start to compute the first
installment of the next load before it has com-
pleted the computation of the last installment
of the current load (8),

• processor Pi cannot start to compute the next
installment of a load before it has completed
the computation of the current installment of
that load (9),

• processor Pi cannot start to compute the first
installment of the first load before its availabil-
ity date (10),

• every portion of a load dedicated to a processor
is necessarily nonnegative (11),

• any load has to be completely processed (12),

• the makespan is no smaller than the comple-
tion time of the last installment of the last load
on any processor (13).

Lemma 1. Consider, under a linear cost model
for communications and computations, an instance
of our problem with one or more load, at least one
processor, and a given maximum number of install-
ments for each load. If, as in [10, 11], loads have
to be sent in the order of their submission, then the
linear program given in Figure 6 finds a valid and
optimal schedule.

Proof. First, we can ensure that the provided
schedule is valid:

• all starting time and installment sizes are non-
negative (4, 11),

• each computation only begins after the recep-
tion of the corresponding data (6),

• at most one computation is processed at any
time on any processor, and installments are
processed following the submission order (7, 8,
9, 10),

• any load is completely processed (12),

• all communications respect the strict one-port
model and the submission order (1, 2, 3, 5).

The only non-essential constraint is the respect of
the submission order by the computations (which is
imposed by 7, 8, 9, 10), since we could have inverted
the computation of two installments on the same
processor. This constraint allows the linear pro-
gram to give a complete description of the schedule,
with starting and ending time for any computation
and any communication.

Moreover, this constraint does not change the
minimum makespan: we know that an optimal
algorithm to the problem described as 1|rj |Cmax
(minimizing the makespan on one machine with re-
lease dates) in [3, p. 63] is the classical FCFS (First
Come, First Served) algorithm. Thus imposing the
submission order of the computations on a proces-
sor does not change the total computation time.

Since all other constraints are essential to have a
valid schedule, we can assert than the schedule ob-
tained by finding an optimal solution to the linear
program is an optimal schedule.

Altogether, we have a linear program to be solved
over the rationals, hence a solution in polyno-
mial time [7]. In practice, standard packages like
Maple [4] or GLPK [6] will return the optimal so-
lution for all reasonable problem sizes.

Note that the linear program gives the optimal
solution for a prescribed number of installments for
each load. We will discuss the problem of the num-
ber of installments in Section 6.

5 Experiments

Using simulations, we now assess the relative per-
formance of our linear programming approach, of
the solutions of [10, 11], and of simpler heuris-
tics. We first describe the experimental protocol
and then analyze the results.

Experimental protocol. We use Simgrid [8] to
simulate linear processor networks. Schedules are
pre-computed by a script, and their validity and
theoretical makespan are checked before running
them in the simulator.

We study the following algorithms and heuristics:

• The naive heuristic Simple distributes each
load in a single installment and proportionally
to the processor speeds.

6

∀i < m− 1, n ≤ N, j ≤ Qn Commstart
i+1,n,j ≥ Commend

i,n,j (1)

∀i < m− 1, n ≤ N, j < Qn Commstart
i,n,j+1 ≥ Commend

i+1,n,j (2)

∀i < m− 1, n < N Commstart
i,n+1,1 ≥ Commend

i+1,n,Qn (3)
∀i ≤ m− 1, n ≤ N, j ≤ Qn Commstart

i,n,j ≥ 0 (4)

∀i ≤ m− 1, n ≤ N, j ≤ Qn Commend
i,n,j = Commstart

i,n,j + ziVcomm(n)

m∑
k=i+1

γjk(n) (5)

∀i ≥ 2, n ≤ N, j ≤ Qn Compstarti,n,j ≥ Commend
i,n,j (6)

∀i ≤ m,n ≤ N, j ≤ Qn Compendi,n,j = Compstarti,n,j + wiγ
j
i (n)Vcalc(n) (7)

∀i ≤ m,n < N Compstarti,n+1,1 ≥ Compendi,n,Qn (8)

∀i ≤ m,n ≤ N, j < Qn Compstarti,n,j+1 ≥ Compendi,n,j (9)
∀i ≤ m Compstarti,1,1 ≥ τi (10)

∀i ≤ m,n ≤ N, j ≤ Qn γji (n) ≥ 0 (11)

∀n ≤ N
∑m
i=1

∑Q
j=1 γ

j
i (n) = 1 (12)

∀i ≤ m makespan ≥ Compendi,N,Q (13)

Figure 6: The complete linear program.

• The strategy for a single load, SingleLoad,
presented by Min and Veeravalli in [10]. For
each load, we set the time origin to the avail-
ability date of the first communication link (in
order to try to prevent communication con-
tentions).

• The MultiInst n strategy. The main strat-
egy proposed by Min, Veeravalli and Barlas is
to split each loads into several installments, in
order to overlap communications by computa-
tions, and we called it MultiInst. However,
they do not fix any limit on the total number
of installments, and MultiInst n is a slightly
modified version of MultiInst which ensures
that a load is not distributed in more than n in-
stallments, the n−th installment of a load dis-
tributing all the remaining work of that load.

• The Heuristic B presented by Min, Veer-
avalli, and Barlas in [11].

• LP n: the solution of our linear program where
each load is distributed in n installments.

We measure the relative performance of each
heuristic on each instance: we divide the makespan

obtained by a given heuristic on a given instance by
the smallest makespan obtained, on that instance,
among all heuristics. Considering the relative per-
formance enables us to produce meaningful statis-
tics among instances with very different makespans.

Instances. We emulate a heterogeneous linear
network with m = 10 processors. We consider two
distribution types for processing powers: homoge-
neous where each processor Pi has a processing
power 1

wi
= 100 MFLOPS, and heterogeneous

where processing powers are uniformly picked
between 10 and 100 MFLOPS. Communication
link li has a speed 1

zi
uniformly chosen between 10

Mb/s and 100 Mb/s, and a latency between 0.1
and 1 ms (links with high bandwidths having small
latencies). For homogeneous and heterogeneous
platforms, loads have their computation volumes
either all uniformly distributed between 6 GFLOPS
and 4 TFLOPS, or all uniformly distributed be-
tween 6 and 60 GFLOPS. For each combination
of processing power distribution and task size, we
fix the communication to computation volume of
all tasks to either 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, or
100 (bytes per FLOPS). Each instance contains 50

7

loads. Finally, we randomly built 100 instances
per combination of the different parameters,
hence a total of 3,600 instances simulated and
reported in Table 2. The code and the experi-
mental results can be downloaded from: http:
//graal.ens-lyon.fr/~mgallet/downloads/
DivisibleLoadsLinearNetwork.tar.gz.

We only present the results of the simulation
with Simgrid, without giving the pre-computed
makespans (computed during the validity check of
each schedule). Schedules were computed without
latency according to the model. However, the com-
munication model used for the simulation is real-
istic and thus includes latencies (see Section 6).
Theses latencies are small, less than one millisec-
ond as in many modern clusters. This is suffi-
cient to have a small difference between predicted
makespans and experimental ones, less than 1 %,
but since both values were very close, only experi-
mental values are given.

We fixed an upper-bound to the number of in-
stallments per load used by the different heuristics:
MultiInst to either 100 or 300, SingleLoad to
100, and LP n to either 1, 2, 3, or 6.

Discussions of the results. As we can see in
Table 2, experimental values show that the linear
program give almost always the best experimen-
tal makespan. There is a difference between pre-
computed and experimental values, since LP 6 al-
ways give the best theoretical makespan but can be
0.01‰ away from the apparent best solution in the
experimental results.

LP 1, LP 2, LP 3, and LP 6 achieve equiva-
lent performance, always less than 5‰ away from
the best result, and even LP 1 gives the best
makespan in almost 90% of instances. This may
seem counter-intuitive but can readily be explained:
multi-installment strategies mainly reduce the idle
time incurred on each processor before it starts pro-
cessing the first task, and the room for improve-
ment is thus quite small in our (and [11]) batches
of 50 tasks. The strict one-port communication
model forbids the overlapping of some communica-
tions due to different installments, and further lim-
its the room for performance enhancement. Except
in some peculiar cases, distributing the loads in
multi-installments do not induce significant gains.
In very special cases, LP 6 does not achieve the

best performance during the simulations, but this
fact can be explained by the latencies existing in
simulations, and not taken into account in the lin-
ear program of Figure 6.

The bad performance of Simple, which can have
makespans 8000 greater than the optimal, justify
the use of sophisticated scheduling strategies. The
slight difference performance between MultiInst
100 and MultiInst 300 shows that MultiInst
sometimes uses a very large amount of installments
for an insignificant negative gain (certainly due to
latencies). When communication links are slow
and when computations dominate communications,
MultiInst and Heuristic B can have makespans
98% higher than the optimal.

6 Possible extensions

There are several restrictions in the model of [11]
that can be alleviated. First the model uses uni-
form machines, meaning that the speed of a proces-
sor does not depend on the task that it executes.
It is easy to extend the linear program for unre-
lated parallel machines, introducing wni to denote
the time taken by Pi to process a unit-size part of
load n. Also, all processors and loads are assumed
to be available from the beginning. In our linear
program, we have introduced availability dates for
processors. The same way, we could have intro-
duced release dates for loads. Furthermore, instead
of minimizing the makespan, we could have tar-
geted any other objective function which is an affine
combination of the loads completion time and of
the problem characteristics, like the average com-
pletion time, the maximum or average (weighted)
flow, etc.

The formulation of the problem does not allow
any piece of the n′th load to be processed before
the nth load is completely processed, if n′ > n. We
can easily extend our solution to allow forN rounds
of the N loads, each load being still divided into
several installments. This would allow to interleave
the processing of the different loads.

The divisible load model is linear, which causes
major problems for multi-installment approaches.
Indeed, once we have a way to find an optimal so-
lution when the number of installments per load is
given, the question is: what is the optimal number
of installments? Under a linear model for commu-

8

Heuristic Average Std dev. Max Best result Optimal solutions found
Simple 1150.42 1.6 103 8385.94 3.66 0.00 %
SingleLoad 100 1462.65 2.0 103 10714.41 6.03 0.00 %
MultiInst 100 1.13962 1.8 10−1 1.98712 1. 7.64 %
MultiInst 300 1.13963 1.8 10−1 1.98712 1. 6.99 %
Heuristic B 1.13268 1.7 10−1 2.01865 1. 4.72 %
LP 1 1.00047 8.5 10−4 1.00498 1. 89.97 %
LP 2 1.00005 9.6 10−5 1.00196 1. 97.32 %
LP 3 1.00002 4.7 10−5 1.00098 1. 97.35 %
LP 6 1.00000 0 1.00001 1. 99.82 %

Table 2: Summary of results.

nications and computations, the optimal number
of installments is infinite, as the following theorem
states:

Theorem 1. Consider, under a linear cost model
for communications and computations, an instance
of our problem with one or more load and at least
two processors, such that all processors are initially
idle. Then, any schedule using a finite number of
installments is suboptimal for makespan minimiza-
tion.

This theorem is proved by building, from any
schedule using a finite number of installments, an-
other schedule with a strictly smaller makespan.
The proof is available in Appendix B.

An infinite number of installments obviously does
not define a feasible solution. Moreover, in practice,
when the number of installments becomes too large,
the model is inaccurate, as acknowledged in [2, p.
224 and 276]. Any communication incurs a startup
cost K, which we express in bytes. Consider the n-
th load, whose communication volume is Vcomm(n):
it is split intoQn installments, and each installment
requires m−1 communications. The ratio between
the actual and estimated communication costs is
roughly equal to ρ = (m−1)QnK+Vcomm(n)

Vcomm(n) > 1.
Since K, m, and Vcomm are known values, we can
choose Qn such that ρ is kept relatively small, and
so such that the model remains valid for the tar-
get application. Another, and more accurate solu-
tion, would be to introduce latencies in the model,
as in [1]. This latter article shows how to design
asymptotically optimal multi-installment strategies
for star networks. A similar approach should be
used for linear networks.

7 Conclusion

We have shown that a linear programming ap-
proach allows to solve all instances of the schedul-
ing problem addressed in [10, 11]. In contrast, the
original approach was providing a solution only for
particular problem instances. Moreover, the linear
programming approach returns an optimal solution
for any given number of installments, while the
original approach was empirically limited to very
special strategies, and was often sub-optimal.

Intuitively, the solution of [11] is worse than the
schedule of Section 3.1 because it aims at locally op-
timizing the makespan for the first load, and then
optimizing the makespan for the second one, and so
on, instead of directly searching for a global opti-
mum. We did not find elegant closed-form expres-
sions to characterize optimal solutions but, through
the power of linear programming, we have been able
to find an optimal schedule for any instance.

A Analytical computations for
the illustrative example

In this appendix we prove the results stated in Sec-
tions 3.2 and 3.3. In order to simplify equations,
we write α instead of γ12(1) (i.e., α is the fraction
of the first load sent from the first processor to the
second one), and β instead of γ22(1) (similarly, β is
the fraction of the second load sent to the second
processor).

In this research note we used simpler notations
than the ones used in [11]. However, as we want
to explicit the solutions proposed by [11] for our
example, we need to use the original notations to

9

enable the reader to double-check our statements.
The necessary notations from [11] are recalled in
Table 3.

In the solution of [11], both P1 and P2 have to
finish the first load at the same time, and the same
holds true for the second load. The transmission
for the first load will take α time units, and the
one for the second load β time units. Since P1

(respectively P2) will process the first load during
λ(1−α) (respectively λα) time units and the second
load during λ(1 − β) (respectively λβ) time units,
we can write the following equations:

λ(1− α) = α+ λα (14)

λ(1− α) + λ(1− β) = (α+max(β, λα)) + λβ

There are two cases to discuss:

1. max(β, λα) = λα. We are in the one-
installment case when L2C1,2 ≤ T (1) − t1,2,
i.e., β ≤ λ(1 − α) − α (equation (5) in [11],
where L2 = 1, C1,2 = β, T (1) = λ(1 − α) and
t1,2 = α). The values of α and β are given by:

α =
λ

2λ+ 1
and β =

1

2
.

This case is true for λα ≥ β, i.e., λ2

2λ+1 ≥
1
2

⇔ λ ≥ 1+
√
3

2 ≈ 1.366.

In this case, the makespan is equal to:

makespan2 = λ(1−α)+λ(1−β) = λ(4λ+ 3)

2(2λ+ 1)
.

Comparing both makespans, we have:

makespan2 −makespan1 =

λ
(
2λ2 − 2λ− 1

)
8λ3 + 12λ2 + 8λ+ 2

.

For all λ ≥
√
3+1
2 ≈ 1.366, our solution is bet-

ter than their one, since:

1

4
≥ makespan2 −makespan1 ≥ 0

Furthermore, the solution of [11] is strictly
suboptimal for any λ >

√
3+1
2 .

2. max(β, λα) = β. In this case, P1 does not
have enough time to completely send the sec-
ond load to P2 before the end of the computa-
tion of the first load on both processors. The
way to proceed in [11] is to send the second
load using a multi-installment strategy.

By using Equation 14, we can compute the
value of α:

α =
λ

2λ+ 1
.

Then we have T (1) = (1 − α)λ = λ+1
2λ+1λ and

t1,2 = α = λ
2λ+1 , i.e., the communication for

the second request begins as soon as possible.

We know from equation (1) of [11] that αk2,1 =

αk2,2, and by definition of the α’s, αk2,1+αk2,2 =

1, so we have αk2,i =
1
2 . We also have C1,2 =

1 − αk2,1 = 1
2 , E1,2 = λ

2 , Y
(1)
1,2 = 0, X(1)

1,2 = 1
2 ,

H = H(1) =
X

(1)
1,2C1,2

C1,2
= 1

2 , B = C1,2 + E1,2 −
H = λ

2 .

We will denote by β1, . . . , βn the sizes of the
different installments processed on each pro-
cessor (then we have Lk,2 = 2βk).

Since the second processor is not left idle, and
since the size of the first installment is such
that the communication ends when P2 com-
pletes the computation of the first load, we
have β1 = T (1)− t1,2 = λα (see equation (27)
in [11], in which we have C1,2 = 1

2).

By the same way, we have β2 = λβ1, β3 = λβ2,
and so on (see equation (38) in [11], we recall
that B = λ

2 , and C1,2 = 1
2):

βk = λkα.

Each processor computes the same fraction of
the second load. If we have Q installments,
the total processed portion of the second load
is upper bounded as follows:

Q∑
k=1

(2βk) ≤ 2

Q∑
k=1

(
αλk

)
= 2

λ

2λ+ 1
λ
λQ − 1

λ− 1

=
2
(
λQ − 1

)
λ2

2λ2 − λ− 1

10

Tncp Time taken by the standard processor (w = 1) to compute the load Ln.
Tncm Time taken by the standard link (z = 1) to communicate the load Ln.
Ln Size of the nth load, where 1 ≤ n ≤ N .
Lk,n Portion of the load Ln assigned to the kth installment for processing.
α
(k)
n,i The fraction of the total load Lk,n to Pi, where

0 ≤ α(k)
n,i ≤ 1, ∀i = 1, . . . ,m and

∑m
i=1 α

(k)
n,i = 1.

tk,n The time instant at which is initiated the first communication for the kth installment
of load Ln (Lk,n).

Ck,n The total communication time of the kth installment of load Ln when Lk,n = 1;
Ck,n =

Tncm
Ln

∑m−1
p=1 zp

(
1−

∑p
j=1 α

(k)
n,j

)
.

Ek,n The total processing time of Pm for the kth installment of load Ln when Lk,n = 1;
Ek,n = α

(k)
n,mwmT

n
cp

1
Ln

.
T (k, n) The finish time of the kth installment of load Ln; it is defined as the time instant

at which the processing of the kth installment of load Ln ends.
T (n) The finish time of the load Ln; it is defined as the time instant

at which the processing of the nth load ends, i.e., T (n) = T (Qn)
where Qn is the total number of installments required to finish processing load Ln.
T (N) is the finish time of the entire set of loads resident in P1.

Table 3: Summary of the notations of [11] used in this paper.

if λ 6= 1, and Q = 2 otherwise.

Q∑
k=1

(2βk) ≤
2λ2Q

2λ+ 1
.

We have four sub-cases to discuss:

(a) 0 < λ <
√
17+1
8 ≈ 0.64: Since λ < 1, we

can write for any nonnegative integer Q:

Q∑
k=1

(2βk) <

∞∑
k=1

(2βk) =
2λ2

(1− λ)(2λ+ 1)
.

We have 2λ2

(1−λ)(2λ+1) < 1 for all λ <
√
17+1
8 . So, even in the case of an infi-

nite number of installments, the second
load will not be completely processed. In
other words, no solution is found in [11]
for this case.

(b) λ =
√
17+1
8 : We have 2λ2

(1−λ)(2λ+1) = 1,
so an infinite number of installments is
required to completely process the second
load. Again, this solution is obviously not
feasible.

(c)
√
17+1
8 < λ <

√
3+1
2 and λ 6= 1: In this

case, the solution of [11] is better than
any solution using a single installment per
load, but it may require a very large num-
ber of installments.

Now, let us compute the number of in-
stallments. We know that the ith install-
ment is equal to βi = λiγ12(1), except-
ing the last one, which can be smaller
than λQγ12(1). So, instead of writing∑Q
i=1 2βi =

(∑Q−1
i 2λiγ12(1)

)
+2βQ = 1,

we write:

Q∑
i=1

2λiγ12(1) ≥ 1

⇔
2λ2

(
λQ − 1

)
(λ− 1)(2λ+ 1)

≥ 1

⇔ 2λQ+2

(λ− 1)(2λ+ 1)
≥ 2λ2

(λ− 1)(2λ+ 1)
+ 1.

11

If λ is strictly smaller than 1, we obtain:

2λQ+2

(λ−1)(2λ+1) ≥ 2λ2

(λ− 1)(2λ+ 1)
+ 1.

⇔ 2λQ+2 ≤ 4λ2 − λ− 1

⇔ ln(λQ) ≤ ln

(
4λ2 − λ− 1

2λ2

)
⇔ Q ln(λ) ≤ ln

(
4λ2 − λ− 1

2λ2

)

⇔ Q ≥
ln
(

4λ2−λ−1
2λ2

)
ln(λ)

We thus obtain:

Q =

ln
(

4λ2−λ−1
2λ2

)
ln(λ)

 .
When λ is strictly greater than 1 we ob-
tain the exact same result (then λ−1 and
ln(λ) are both positive).

(d) λ = 1. In this case,

Q∑
i=1

2λiγ12(1) ≥ 1

simply leads to Q = 2.

B Proof of Theorem 1
Proof. We first remark that in any optimal solution
to our problem all processors work and complete
their share simultaneously. To prove this state-
ment, we consider a schedule where one proces-
sor completes its share strictly before the makespan
(this processor may not be doing any work at all).
Then, under this schedule there exists two neighbor
processors, Pi and Pi+1, such that one finishes at
the makespan, denotedM, and one strictly earlier.
We have two cases to consider:

1. There exists a processor Pi which finishes
strictly before the makespanM and such that
the processor Pi+1 completes its share exactly
at time M. Pi+1 receives all the data it
processes from Pi. We consider any install-
ment j of any load Ln that is effectively pro-
cessed by Pi+1 (that is, Pi+1 processes a non

null portion of the jth installment of load Ln
and processes nothing hereafter). We mod-
ify the schedule as follows: Pi enlarges by an
amount ε, and Pi+1 decreases by an amount
ε, the portion of the jth installment of the
load Ln it processes. Then, the completion
time of Pi is increased, and that of Pi+1 is de-
creased, by at least an amount proportional to
ε as our cost model is linear. More precisely,
the completion time of Pi is increased by an
amount equal to εwiVcomp(n) and the comple-
tion time of Pi+1 is decreased by an amount
between εwi+1Vcomp(n) and ε(ziVcomm(n) +
wi+1Vcomp(n)).

If ε is small enough, both processors complete
their work strictly beforeM. With our modifi-
cation of the schedule, the size of a single com-
munication was modified, and this size was de-
creased. Therefore, this modification did not
enlarge the completion time of any processor
except Pi. Therefore, the number of proces-
sors whose completion time is equal to M is
decreased by at least one by our schedule mod-
ification.

2. No processor which completes it share strictly
before time M is followed by a processor fin-
ishing at time M. Therefore, there exists an
index i such that the processors P1 through
Pi all complete their share exactly atM, and
the processors Pi+1 through Pm complete their
share strictly earlier. Then, let the last pro-
cessing of processor Pi of installment j of load
Ln. We have Compendi+1,j,n, . . . , Comp

end
m,j,n <

M.

Then Pi decreases by a size ε, and Pi+1 in-
creases by a size ε, the portion of the jth in-
stallment of load Ln that it processes.

Then the completion time of Pi is decreased by
an amount εVcalc(n)wi, thus proportional to ε.
The computation times of the processors Pi+1

through Pm is at most increased by an amount
εVcalc(n)wi+1 proportional to ε.

Therefore, if ε is small enough (i.e., 0 < ε <

max

(
Compendi,j,n−Comp

end
i+1,j,n

Vcalc(n)wi+1
,
Compendi,j,n−Comm

end
i,j,n

Vcomm(n)zi

)
),

the processors Pi through Pm complete their
work strictly beforeM.

12

In both cases, after we modified the schedule, there
is at least one more processor which completes its
work strictly before time M, and no processor is
completing its share after that time. If no proces-
sor is any longer completing its share at timeM, we
have obtained a schedule with a better makespan.
Otherwise, we just iterate our process. As the num-
ber of processors is finite, we will eventually end up
with a schedule whose makespan is strictly smaller
thanM. Hence, in an optimal schedule all proces-
sors complete their work simultaneously (and thus
all processors work).

We now prove the theorem itself by contradic-
tion. Let S be any optimal schedule using a finite
number of installments. As processors P2 through
Pm initially hold no data, they stay temporarily
idle during the schedule execution, waiting to re-
ceive some data to be able to process them. Let us
consider processor P2. As the idleness of P2 is only
temporary (all processors are working in an opti-
mal solution), this processor is only idle because it
is lacking data to process and it is waiting for some.
Therefore, the last moment at which P2 stays tem-
porarily idle under S is the moment it finished to
receive some data, namely the j0-th installment of
load Ln0

sent to him by processor P1.
As previously, Qk is the number of installments

of the load Lk under S. Then from the schedule S
we build a schedule S ′, identical to S except that
we replace the j0-th installment of load Ln0

by two
new installments. The replacement of the j0-th in-
stallment of load Ln0 only affects processors 1 and
2: for the others the first new installment brings no
work to process and the second brings exactly the
same amount of work than the j0-th installment of
load Ln0

in S. Formally, using the same notations
for S ′ than for S, but with an added prime, S ′ is
defined as follows:

• All loads except Ln0
have the exact same

installments under S ′ than under S: ∀n ∈
[1, N] \ {n0}, Q′n = Qn and ∀i ∈ [1,m],
∀j ∈ [1, Qn], γ

′j
i (n) = γji (n).

• The load Ln0
has Q′n0

= (1+Qn0
) installments

under S ′, defined as follows:

– The first (j0−1) installments of Ln0
under

S ′ are identical to the first (j−1) install-
ments of this load under S: ∀i ∈ [1,m],
∀j ∈ [1, j0 − 1], γ′ji (n0) = γji (n0).

– Installment j0 of Ln0
is defined as follows:

γ′j01 (n0) = γj01 (n0).
γ′j02 (n0) =

1
2γ

j0
2 (n0).

∀i ∈ [3,m], γ′j0i (n0) = 0.
– Installment j0+1 of Ln0

is defined as fol-
lows:
γ′j0+1
2 (n0) = 0.
γ′j0+1
2 (n0) =

1
2γ

j0
2 (n0).

∀i ∈ [3,m], γ′j0+1
i (n0) = γj0i (n0).

– The last (Qn0
−j0) installments of Ln0

un-
der S ′ are identical to the last (Qn0 − j0)
installments of this load under S: ∀i ∈
[1,m], ∀j ∈ [j0 + 1, Q′n0

], γ′ji (n0) =

γj−1i (n0).

Since the j0-th installment of the n0-th load is
the first modified one, starting and ending times of
each previous installment remain unchanged:

∀n < n0 and ∀j ∈ [1, Qn]

or n = n0 and ∀j ∈ [1, j0 − 1],

∀i ∈ [1,m− 1], Comm′ starti,n,j = Commstart
i,n,j ,

∀i ∈ [1,m− 1], Comm′ endi,n,j = Commend
i,n,j ,

∀i ∈ [1,m], Comp′ starti,n,j = Commstart
i,n,j ,

∀i ∈ [1,m], Comp′ endi,n,j = Compendi,n,j .

(15)

Now, let us focus on the j0-th installment. We
can easily derive the following properties for the
first processor:

Comp′ start1,n0,j0 = Compstart1,n0,j0 ,

Comp′ end1,n0,j0 = Compend1,n0,j0 ,

Comp′ start1,n0,j0+1 = Compend1,n0,j0 ,

Comp′ end1,n0,j0+1 = Compend1,n0,j0 .

We can write the following equations about the
communication between P1 and P2:

Comm′ start1,n0,j0 = Commstart
1,n0,j0 ,

Comm′ end1,n0,j0 =

Commstart
1,n0,j0 +

1

2
γj01 (n0) ∗ Vcomm(n0) ∗ z1, (16)

13

Comm′ start1,n0,j0+1 = Comm′ end1,n0,j0 .

Comm′ end1,n0,j0+1 = Commend
1,n0,j0 . (17)

There are only two constraints on the beginning
of the computation on P2:

Comp′ start2,n0,j0 = max
{
Comm′ end1,n0,j0 ,

Comp′ end2,n0,j0−1
}
, (18)

Compstart2,n0,j0 = max
{
Commend

1,n0,j0 ,

Compend2,n0,j0−1
}
. (19)

Of course, Equations 18 and 19 are only true for
j0 > 1, we have to replace Comp′ end2,n0,j0−1 (respec-
tively Compend2,n0,j0−1) by Comp′ end2,n0−1,Qn0−1

(re-
spectively Compend2,n0−1,Qn0−1

) if we have n0 > 1

and j0 = 1, and by 0 in both cases if n0 = 1 and
j0 = 1, we recall that all processors are initially
idle1.

By definition of j0 and n0, P2 is idle right be-
fore the beginning of the computation of the j0-th
installment of the n0-th load, therefore:

Compend2,n0,j0−1 < Commend
1,n0,j0 . (20)

Using Equation 19, we thus have:

Compstart2,n0,j0 = Commend
1,n0,j0 . (21)

Moreover, since we have γj02 (n0) > 0, the commu-
nication of the j0-th installment between P1 and P2

in S ′ ends strictly earlier than the communication
of the j0-th installment between these processors in
S:

Comm′ end1,n0,j0 < Commend
1,n0,j0 = Compstart2,n0,j0 .

(22)
We can apply Equation 15 for the (j0 − 1)-th

installment of the n0 load, and use Equations 20
and 21:

Comp′ end2,n0,j0−1 = Compend2,n0,j0−1 < Compstart2,n0,j0
(23)

1This constraint is a bit too strong. The theorem is still
true when only one processor (different from P1) is initially
idle. If all processors have strictly positive release times,
they can finish their first communication and immediately
start to compute the first installment of the first load, with-
out any idle time between their release date and their first
computation, and our theorem is false.

In our new schedule S ′, by using Equations 18,
22, and 23, we can say that the computation on the
new j0-th installment begins strictly earlier on P2:

Comp′ start2,n0,j0 < Compstart2,n0,j0 . (24)

Comp′ start2,n0,j0+1 = max
{
Comp′ end2,n0,j0 ,

Comm′ end1,n0,j0+1

}
. (25)

By definition of Comp′ end2,n0,j0
, and Comp′ end2,n0,j0+1,

we have the two following equations 26 and 27:

Comp′ end2,n0,j0 = Comp′ start2,n0,j0

+
Compend2,n0,j0

− Compstart2,j0,n0

2
, (26)

Comp′ end2,n0,j0+1 = Comp′ start2,n0,j0+1

+
Compend2,n0,j0

− Compstart2,j0,n0

2
. (27)

If we use 27, 26, 25 and 17:

Comp′ end2,n0,j0+1 = max{
Compend2,n0,j0

−Compstart2,j0,n0

2 + Commend
1,n0,j0

,
Comp′ start2,n0,j0

+ Compend2,n0,j0
− Compstart2,n0,j0

.

(28)

Since we have equation 20 and 0 < γn0
2 (j0), we have

Compend2,n0,j0
> Compstart2,n0,j0

and then

Compend2,n0,j0
− Compstart2,j0,n0

2
+ Commend

1,n0,j0 <

Compend2,n0,j0 − Comp
start
2,j0,n0

+ Commend
1,n0,j0

= Compend2,n0,j0 . (29)

By using equation 24, we can ensure:

Comp′ start2,n0,j0 + Compend2,n0,j0 − Comp
start
2,n0,j0 <

Compend2,n0,j0 . (30)

By combining 29, 30 and 28, we have:

Comp′ end2,n0,j0+1 < Compend2,n0,j0 . (31)

Therefore, under schedule S ′ processor P2 com-
pletes strictly earlier than under S the computation

14

of what was the j0-th installment of load Ln0
under

S. If P2 is no more idle after the time Comp′ end2,n0,j0
,

then it completes its overall work strictly earlier un-
der S ′ than under S. P1 completes its work at the
same time. Then, using the fact that in an op-
timal solution all processors finish simultaneously,
we conclude that S ′ is not optimal. As we have
already remarked that its makespan is no greater
than the makespan of S, we end up with the contra-
diction that S is not optimal. Therefore, P2 must
be idled at some time after the time Comp′ end2,n0,j0

.
Then we apply to S ′ the transformation we applied
to S as many times as needed to obtain a contra-
diction. This process is bounded as the number
of communications that processor P2 receives af-
ter the time it is idle for the last time is strictly
decreasing when we transform the schedule S into
the schedule S ′.

References

[1] Olivier Beaumont, Henri Casanova, Ar-
naud Legrand, Yves Robert, and Yang
Yang. Scheduling divisible loads on star
and tree networks: results and open prob-
lems. IEEE Trans. Parallel Distributed Sys-
tems, 16(3):207–218, 2005.

[2] V. Bharadwaj, D. Ghose, V. Mani, and T.G.
Robertazzi. Scheduling Divisible Loads in Par-
allel and Distributed Systems. IEEE Computer
Society Press, 1996.

[3] Peter Brucker. Scheduling Algorithms.
Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2001.

[4] B. W. Char, K. O. Geddes, G. H. Gonnet,
M. B. Monagan, and S. M. Watt. Maple Ref-
erence Manual, 1988.

[5] D. Ghose and T.G. Robertazzi, editors. Spe-
cial issue on Divisible Load Scheduling. Clus-
ter Computing, 6, 1, 2003.

[6] GLPK: GNU Linear Programming Kit. http:
//www.gnu.org/software/glpk/.

[7] N. Karmarkar. A new polynomial-time algo-
rithm for linear programming. In Proceedings
of ACM STOC’84, pages 302–311, 1984.

[8] A. Legrand, L.Marchal, and H. Casanova.
Scheduling Distributed Applications: The
SimGrid Simulation Framework. In Proceed-
ings of CCGrid’03, pages 138–145, May 2003.

[9] T.G. Robertazzi. Ten reasons to use divisi-
ble load theory. IEEE Computer, 36(5):63–68,
2003.

[10] Han Min Wong and Bharadwaj Veeravalli.
Scheduling divisible loads on heterogeneous
linear daisy chain networks with arbitrary pro-
cessor release times. IEEE Trans. Parallel Dis-
tributed Systems, 15(3):273–288, 2004.

[11] Han Min Wong, Bharadwaj Veeravalli, and
Gerassimos Barlas. Design and performance
evaluation of load distribution strategies for
multiple divisible loads on heterogeneous lin-
ear daisy chain networks. J. Parallel Dis-
tributed Computing, 65(12):1558–1577, 2005.

15

