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Abstract. This paper studies Newton-type methods for minimization of partly smooth convex
functions. Sequential Newton methods are provided using local parameterizations obtained
from U-Lagrangian theory and from Riemannian geometry. The Hessian based on the U-
Lagrangian depends on the selection of a dual parameter g; by revealing the connection to
Riemannian geometry, a natural choice of g emerges for which the two Newton directions
coincide. This choice of g is also shown to be related to the least-squares multiplier estimate
from a sequential quadratic programming (SQP) approach, and with this multiplier, SQP gives
the same search direction as the Newton methods.

1. Introduction

1.1. Motivation

Newton’s method is the canonical fast optimization algorithm. For a smooth
function f , Newton’s method converges quadratically to a stationary point x̄
of f when ∇2f(x̄) is nonsingular. Furthermore, the spirit of Dennis and Moré’s
celebrated quasi-Newton result [4] is that, for a strictly convex smooth function,
a convergent variable-metric steepest descent algorithm converges superlinearly
to the minimum if and only if the algorithm appears “Newton-like” along search
directions in the limit. Given the importance of Newton’s method for fast con-
vergence, one would like to extend it to nonsmooth functions.

This paper compares several approaches to defining a Newton method for
minimizing a nonsmooth convex function f : R

n → R with an additional struc-
ture: f is assumed to be partly smooth in the sense of Lewis [12]. Roughly speak-
ing, this means that there exists a smooth manifold M in which f is smooth,
and normal to which f is not differentiable. As explained in [12] (see also [21]),
two important classes of partly smooth functions are finite max-functions and
maximum eigenvalue functions. Section 2 studies the particular properties of the
U-Lagrangian theory [11] under the partial smoothness assumption.
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If we also assume that a minimizer of f belongs to M, minimizing f on R
n

amounts to minimizing f onM:

min f(x)

s.t. x ∈M.
(1.1)

This seems to complicate the situation. On the contrary: restricted toM every-
thing is smooth, and methods of smooth optimization can then be adapted.
But what does it mean to apply Newton’s method on a manifold? Since a p-
dimensional manifold locally resembles R

p, we can consider a smooth local pa-
rameterization ϕ : R

p →M and apply the usual Newton iteration to the com-
position f ◦ ϕ. One choice of parameterization derived from the U-Lagrangian
leads to the U-Newton method studied in Section 3. Another choice derived from
Riemannian geometry leads to the Riemannian Newton method studied in [24,6,
3] in particular. Section 4 presents the connections between these two methods:
with the right selection of the dual parameter g for U-Newton, both methods
give the same Newton direction and converge quadratically.

A second interpretation of (1.1) gives rise to a sequential quadratic program-
ming (SQP) approach. Replace f with a smooth function f̄ that agrees with f
on M, and describe M by smooth equations Φ : R

n → R
n−p, so that (1.1) is

locally equivalent to the smooth constrained problem

min f̄(x)

s.t. Φ(x) = 0.
(1.2)

SQP uses Newton’s method to solve the optimality conditions of (1.2), gene-
rating a quadratic program to solve at each step. This is the idea behind the
second-order methods for eigenvalue optimization in [20,23]. Section 5 presents
the connections between U-Newton and SQP methods. Just as the U-Newton
method depends on a choice of g ∈ ∂f(x) which defines the U-Lagrangian, SQP
depends on the choice of approximate Lagrange multipliers λ. We will show that
the choice of g leading to quadratic convergence of U-Newton corresponds to
the selection of least-squares multipliers for λ. Moreover, this choice makes the
Newton and SQP directions identical.

1.2. Notation and assumptions

Basic notation. For a subset S ⊂ R
n, linS, aff S and riS denote the linear

hull, affine hull and relative interior of S, respectively. When it is well-defined,
PS(x) is the projection of x onto S. The closed ball {y ∈ R

n | ‖y − x‖ ≤ r} is
written B(x, r).

Differential geometry. Roughly speaking, a sub-manifold in R
n is a set consist-

ing locally of the solutions of some smooth equations with linearly independent
gradients. Precisely, a subsetM of R

n is said to be a p-dimensional differentiable
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sub-manifold of class Ck around x ∈M (k ∈ N∪ {∞}) if there is a Ck-function
Φ : R

n → R
n−p such that, for all y close enough to x, it holds

y ∈M ⇐⇒ Φ(y) = 0,

and in addition the derivative of Φ at x is surjective. We say that Φ(y) = 0 is
a local equation ofM near x. For a sub-manifoldM, we denote respectively by
TM(x) and NM(x) the tangent and normal subspaces to M at x ∈ M. The
tangent bundle TM and normal bundle NM are defined by

TM =
⋃

x∈M

(x,TM(x)), NM =
⋃

x∈M

(x,NM(x)).

These are Ck−1-sub-manifolds of R
2n of dimension 2p and n, respectively.

When F is a differentiable function between two C1-sub-manifolds X and Y ,
the derivative DF (x) is a linear map from TX(x) to TY (F (x)).

Definition 1.1. Let M be a p-dimensional C∞-manifold and x ∈ M. A func-
tion ϕx is said to be a local parameterization of M around x if there exist a
neighborhood Θ of 0 in TM(x) and a neighborhood Ω of x in M, such that
ϕx : Θ → Ω is a C∞-diffeomorphism (ϕx : Θ → Ω is a bijection, and ϕx and
ϕ−1

x are of class C∞), and ϕx(0) = x.

Definition 1.2. We say that a family {ϕx}x is a smooth parameterization
family of M if ϕx is a local parameterization around x and if the function
(x, η) 7→ ϕx(η) from TM to M is C∞.

The three parameterization families that we consider in this paper (tangential pa-
rameterization, exponential parameterization and projection parameterization)
are smooth (see respectively Lemmas 3.3, 4.1 and 4.8).

Partial smoothness. Lewis introduced the notion of partly smooth functions
in [12]. This concept expresses an underlying smooth structure of a nonsmooth
function.

Definition 1.3. A function f is a Ck-partly smooth at x relative to M ⊂ R
n

(k ∈ N ∪ {∞}), if M is a Ck-sub-manifold around x ∈ M and the following
properties hold:

(i) restricted smoothness: the restriction of f to M is a Ck-function near x;
(ii) regularity: f is Clarke regular [22] at all y ∈M near x, with ∂f(y) 6= ∅;
(iii) normal sharpness: for any d ∈ NM(x), the function t 7→ f(x + td) is not

differentiable at t = 0;
(iv) subdifferential continuity: the set-valued map ∂f restricted to M is continu-

ous at x.

Note that (i) of Definition 1.3 is equivalent to the following property: there
exists a function f̄ : R

n → R which is Ck around x and which agrees with f on
M near x.
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In particular, a partly smooth function is smooth when restricted to the
manifold M. This property will be useful to define Newton’s method on M
(see Algorithm 1.8). Other properties of this definition are crucial to explain
algorithms related to the U-Lagrangian, especially for the key Theorem 2.12.

Assumptions. The following assumptions are made throughout the paper.

Assumption 1.4 (Convexity) We consider a function f that is convex and
real-valued over all of R

n.

This assumption is made to accommodate the U-Newton method which does
not apply to non-convex functions. Note that Clarke regularity (point (ii) of
Definition 1.3) is implied by convexity.

Assumption 1.5 (Partial smoothness) There exists a C∞-manifoldM con-
taining a minimizer of f , such that f is C∞-partly smooth relative to M at all
x ∈M.

The underlying smoothness has been chosen to be C∞ because it is a convenient
assumption for manipulating geometric objects. Most of the results can be ob-
tained with f only C2-partly smooth on a C2-sub-manifold M. In the rest of
the paper, the term “smooth” for functions or manifolds stands for “C∞”.

Examples. We give below two examples of our situation. The simple first ex-
ample is used as an illustration in the beginning of Section 3.

Example 1.6 (Basic example). Let f : R
2 → R be defined by

f(x) := max{x1, ‖x− (1, 0)‖2 − 1}.

Its minimum is 0 and is achieved at (0, 0) belonging to

M = {x | x1 = ‖x− (1, 0)‖2 − 1}

which is a smooth sub-manifold of R
2. Let us prove that f is partly smooth

around (0, 0) relative to M. An equation of M is x1
2 − 3x1 + x2

2 = 0. The
restriction of f to M is simply (x1, x2) ∈ M 7→ x1 (which is smooth). Observe
that ∂f(x) is the segment joining (1, 0) and (2x1−2, 2x2), so the set-valued map
∂f restricted to M is continuous around (0, 0). There holds

TM(0, 0) = 0⊕ R, NM(0, 0) = R⊕ 0.

Since f(t, 0) = max{t, t2 − 2t} is not differentiable at 0, we can conclude that f
is partly smooth relative toM around (0, 0).

Example 1.7 (Maximum eigenvalue function). Let Sm be the Euclidean space of
symmetricm bymmatrices. We denote by λ1(X) ≥ · · · ≥ λm(X) the eigenvalues
of X ∈ Sm.
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The set Mr = {A ∈ Sm, λ1(A) = · · · = λr(A) > λr+1(A)} of symmetric
matrices whose maximum eigenvalue has a given multiplicity r is a smooth sub-
manifold of Sm (see [19] for example). Furthermore, the maximum eigenvalue
function λ1 is partly smooth at X ∈Mr relative toMr (see [12]).

Considering a smooth function F : R
n → Sm, the chain rule of [12, Th. 4.2]

then implies that λ1 ◦F is partly smooth at z ∈ F−1(Mr) relative to F−1(Mr)
if

ker DF (z)∗ ∩NMr
(F (z)) = {0}.

In the particular case where F is affine, we retrieve the transversal assumption
of [19, Definition 5.4].

1.3. Sequential Newton method

In this paper, we consider an iteration that is not exactly a Newton method,
but rather a “sequential Newton method” as introduced in [23]. The function to
which the Newton idea is applied changes at every iteration.

Algorithm 1.8 (Sequential Newton) Given x ∈ M and {ϕx}x a paramete-
rization family of M, repeat the update x← N(x) where

h(x) = −
[

∇2(f̄ ◦ ϕx)(0)
]−1∇(f̄ ◦ ϕx)(0) (1.3)

N(x) = ϕx(h(x)). (1.4)

We call N(x) the Newton update, N(x) − x the Newton step, and h(x) the
Newton direction.

We will consider applying the Newton update N(x) at an arbitrary point
x ∈ M. Issues of global convergence—and even the problem of existence of the
full Newton step—are ignored in this paper. It is not our intent to describe
a practical algorithm, but instead to explore the connections between various
formulations of Newton methods when they are well-defined.

The U-Newton and Riemannian Newton methods developed in subsequent
sections take the form of Algorithm 1.8 to which the standard proof of local
convergence of Newton methods does not apply. We will prove quadratic con-
vergence for each of the sequential Newton methods we consider by comparing
with a prototype Newton iteration that is intrinsically defined on the manifold
(Lemma 4.3).

2. VU-Theory for Partly Smooth Convex Functions

The general VU-theory for the study of the non-smooth behavior of convex
functions was introduced in [11]. We study here what is brought by our particular
context: how do the notions of VU-decomposition, U-Lagrangian and fast tracks
behave under Assumption 1.5? We also develop some continuity properties of
the gradient of the U-Lagrangian that will be useful later.
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2.1. VU-decomposition

The idea is to decompose R
n into two orthogonal subspaces U(x) and V(x),

such that V(x) contains the non-smooth behavior of f at x. For x ∈ R
n and an

arbitrary g ∈ ∂f(x), we define the following subspaces of R
n:

V(x) := lin (∂f(x)− g) , U(x) := V(x)⊥.

Notice that U(x) and V(x) are actually independent of the choice of g.
Near x, the function f appears smooth in directions from the subspace

U , while V determines the directions of nonsmoothness (see [11, Def. 2.1 and
Prop. 2.2]). Actually, when x ∈ M, the subspaces U and V are respectively the
tangent and normal subspaces of the manifoldM at x.

Lemma 2.1 (Interpretation of U and V). Let Φ define a local equation of
M around x ∈M. The following relations hold:

U(x) = TM(x) = ker(DΦ(x))

V(x) = NM(x) = range(DΦ(x)∗).

Proof. The subspace U(x) is exactly the space of directions for which the direc-
tional derivative of f is linear [11, Prop. 2.2(ii)], and so the normal sharpness of
f relative to M (Assumption 1.5(iii)) is equivalent to TM(x) = U(x) [12, Note
2.9(a)]. The remaining equalities follow directly from the local equations and the
definition of V(x). ⊓⊔

Theorem 2.2. Let x̄ ∈ M. Then there is a neighborhood Ω of (x̄, 0) in TM
and a unique smooth function v : Ω → R

n such that for x ∈ M close to x̄ and
d ∈ R

n small enough satisfying x+ d ∈M, we have

d = u+ v(x, u)

with u = PU(x)(d) and v(x, u) ∈ V(x). There holds for u ∈ U(x)

‖v(x, u)‖ = O(‖u‖2).

Proof. Let Φ be a local equation ofM around x̄. Consider Ψ defined by

Ψ(x, u, v) = Φ(x+ u+ v)

for x ∈ M close to x̄, u ∈ U(x) = TM(x) and v ∈ V(x) = NM(x). The partial
differential DvΨ(x̄, 0, 0) is, for v ∈ NM(x̄),

DvΨ(x̄, 0, 0)v = DΦ(x̄)v.

Thus DvΨ(x̄, 0, 0) is surjective from V(x̄) to R
n−p, so it is a bijection. The implicit

function theorem yields that there exists a unique smooth function v(x, u) such
that for all x ∈M close to x̄, all u close to 0 and all v close to 0, there holds

Ψ(x, u, v) = 0 ⇐⇒ v = v(x, u),



Newton Methods for Nonsmooth Convex Minimization 7

which means
x+ d ∈M ⇐⇒ d = u+ v(x, u)

with u = PU(x)(d). At d = 0, there holds v(x, 0) = 0. Compute the partial
derivative of v at (x, 0),

Duv(x, 0) = −[DvΨ(x, 0, 0)]−1[DuΨ(x, 0, 0)].

The inverse of DvΨ(x, 0, 0) exists by continuity since DvΨ(x̄, 0, 0) is a bijection,
and DuΨ(x, 0, 0) = 0 since U(x) = ker(DΦ(x)) = ker(DΨ(x, 0, 0)). Therefore

Duv(x, 0) = 0, which implies that ‖v(x, u)‖ = O(‖u‖2). ⊓⊔

The VU-decomposition of the space will induce via v the tangential parame-
terization of M (see Lemma 3.3). Particularizing Theorem 2.2 for x = x̄, we
obtain the following statement, which is part of [12, Theorem 6.1].

Corollary 2.3 (Manifold as a graph). Let x ∈M. Then there is a neighbor-
hood Θ of 0 in U(x) and a unique smooth function v : Θ → V(x) such that for
d ∈ R

n small enough satisfying x+ d ∈M, we have

d = u+ v(u)

with u = PU(x)(d). Furthermore, there holds

v(0) = 0 and Dv(0) = 0,

and then for u ∈ U(x)

‖v(u)‖ = O(‖u‖2).

At this point we remind the reader that x and x̄ are not meant to be fixed at
any value; they are free variables, ranging overM unless otherwise specified. We
use x̄ to denote an arbitrary point with some property, and then x is an arbitrary
nearby point. Nevertheless, for brevity we often drop the explicit dependence of
U , V and v on x when it is clear which x is intended.

2.2. U-Lagrangian

Given g ∈ ∂f(x), the U-Lagrangian of f at x [11] is the function Lg
U : U(x)→ R

defined by
Lg
U (u) := inf

v∈V(x)

{

f(x+ u+ v)− g⊤v
}

. (2.1)

The U-Lagrangian an effective way to extract the smooth behavior of f along
U(x). Theorem 3.3 in [11] says that Lg

U is differentiable at u = 0, and that its
derivative at 0 is given by

∇Lg
U (0) = PU (g).

For our purposes, it is important to emphasize that the derivative at 0 is actually
independent of g ∈ ∂f(x). We call it the U-gradient of f at x.
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Lemma 2.4 (U-gradient). All g ∈ ∂f(x) have the same projection on U , which
we denote by gU . Moreover,

gU (x) := PU (g) = Paff ∂f(x)(0).

Proof. Set h := Paff ∂f(x)(0), and notice that V = lin(∂f(x) − h). Since U and
aff ∂f(x) are perpendicular, h lies in U . Given g ∈ ∂f(x), there holds:

PU (g) = PU (g − h) + PU (h) = 0 + PU (h) = h,

which ends the proof. ⊓⊔
Note that the U-gradient gU (x) may not be in ∂f(x) in general. However, it is

the case if x is close to a point x̄ where gU (x̄) ∈ ri ∂f(x̄) holds (see Theorem 2.12
below).

2.3. U-Hessian

The set of minimizers in (2.1) is denoted by W g(u):

W g(u) := argmin
w∈V(x)

{

f(x+ u+ w)− g⊤w
}

. (2.2)

If g actually belongs to ri ∂f(x), then W g(u) is non-empty for all u ∈ U(x) [11,
Theorem 3.2]. Furthermore the partial smoothness assumption implies that a
minimizing w is unique for each u small enough, and it coincides with v(u).

Theorem 2.5 (Unique winner). Let g ∈ ri ∂f(x). For all u ∈ U(x) small
enough, W g(u) reduces to {v(u)} (given by Corollary 2.3). Moreover Lg

U is
smooth in a neighborhood of 0 in U(x).

Proof. W g(u) reduces to v(u) thanks to partial smoothness (Theorem 6.1 in
[12]). It follows that for all u ∈ U small enough,

Lg
U (u) = f(x+ u+ v(u))− g⊤v(u) . (2.3)

Corollary 2.3 and Assumption 1.5 yield that Lg
U is smooth around 0. ⊓⊔

Theorem 2.5 shows that the U-Lagrangian is useful for the analytic construc-
tion of the implicitly-defined v. Moreover, it ensures the existence of ∇2Lg

U (0),
the so-called U-Hessian of f at x [11]. A second-order-like expansion of f onM
is obtained from the U-Hessian.

Theorem 2.6 (“Second-order” expansion). Let g ∈ ri ∂f(x). For d ∈ R
n

such that x+ d ∈M we have

f(x+ d) = f(x) + g⊤d+ 1
2 (PUd)

⊤
[

∇2Lg
U (0)

]

PUd+O(‖d‖3). (2.4)

Proof. This is Theorem 3.9 in [11]. There the remainder term is o(‖d‖2), but the
extra smoothness of Lg

U actually makes it O(‖d‖3). ⊓⊔
Example 2.7 (Maximum eigenvalue function). Since the transversality assump-
tion yields that λ1◦A is partly smooth relative to A−1(Mr), Theorem 5.9 of [19]
is a particular case of Theorem 2.5. Moreover, Corollary 4.13 in [19] corresponds
to Theorem 2.6 written for f = λ1.
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2.4. Fast tracks

In this section only, we drop the partial smoothness assumption on f for the
purpose of establishing connections between fast tracks and partial smoothness.
The definition below is essentially extracted from [16], where the concept of fast
track was first introduced in order to define Newton-like methods for a class of
nonsmooth convex functions.

Definition 2.8 (Fast track). Let x ∈ R
n. We say that x+ u+ w(u) is a fast

track leading to x if for all u small enough

(i) w : U → V is a smooth function such that w(u) ∈W g(u) for all g ∈ ri ∂f(x);
(ii) u 7→ f(x+ u+ w(u)) is a smooth function.

For consistency of the paper, this definition assumes that w is C∞ (smooth)
instead of only C2 as in [16]. Nevertheless, the proof of the following theorem
can be easily adapted to the C2 case. Note however that we slightly extend the
definition: x is not necessarily a minimum of f (as in [16, Definition 2.1]).

Theorem 2.9 (Fast track and partial smoothness). Let x ∈ R
n. Suppose

that x+u+w(u) is a fast track leading to x, and define ψ : U(x)→ R
n by ψ(u) =

x+ u + w(u). Then f is partly smooth at x relative to M = {ψ(u) | u ∈ U(x)}
which is a manifold. Furthermore w(u) is the function v(u) of Corollary 2.3.

Proof. Since w is smooth, so is ψ. We compute Dψ(0) = I + Dw(0). Since
w(u) ∈W g(u) for any g ∈ ri ∂f(x), Corollary 3.5 of [11] yields that

‖w(u)‖ = o(‖u‖), (2.5)

and then Dw(0) = 0. Thus Dψ(0) = I is a bijection, which implies by the local
inverse theorem that ψ is a smooth diffeomorphism. We can conclude thatM is
a smooth sub-manifold, and range(Dψ(0)) = U is the tangent space at x. Finally,
the uniqueness in Corollary 2.3 yields that w is the function v ofM.

Let us check the four points of Definition 1.5. First, f is smooth on M by
Definition 2.8(ii). Second, f is convex hence Clarke regular [22]. Third, since
U = TM(x), we have normal sharpness by Definition 2.1 of [11]. The only point
to prove is the inner semi-continuity of the restriction of ∂f to M, since ∂f is
already outer semi-continuous [9, VI.6.2.4].

Definition 2.8 implies: for all g ∈ ri ∂f(x), the function u 7→ Lg
U (u) is also

smooth at all u in a neighborhood Ω of 0. Theorem 3.3 of [11] says that

∂Lg
U (u) =

{

h
∣

∣ h+ PV(g) ∈ ∂f(ψ(u))
}

.

In our case, this means that for all g ∈ ri ∂f(x) and all u ∈ Ω,

∇Lg
U (u) + PV(g) ∈ ∂f(ψ(u)),

which can be rewritten with Lemma 2.4 as

∇Lg
U (u)− gU + g ∈ ∂f(ψ(u)). (2.6)
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Furthermore, note that for all g and g′ in ri ∂f(x),

Lg
U (u)− Lg′

U (u) = (g′ − g)⊤w(u)

for u small enough, by Definition 2.8(i).
Let ε > 0 be arbitrary. The boundedness of ∂f(x) and (2.5) imply that there

exists a neighborhood N of 0 in U such that

∀u ∈ N, ∀ g, g′ ∈ ri ∂f(x), ‖∇Lg
U (u)−∇Lg′

U (u)‖ ≤ ε. (2.7)

Fix g ∈ ri ∂f(x), and use (2.6) and (2.7) to get

∇Lg
U (u)− gU + ri ∂f(x) ⊂ ∂f(ψ(u)) +B(0, ε).

Since ∂f(x) is closed for all x, we obtain

∇Lg
U (u)− gU + ∂f(x) ⊂ ∂f(ψ(u)) +B(0, ε).

Observe that ∇Lg
U (u) tends to ∇Lg

U (0) = gU when u tends to 0. Then restricting
N if necessary, we have ‖∇Lg

U (u)− gU‖ ≤ ε and then

∂f(ψ(0)) = ∂f(x) ⊂ ∂f(ψ(u)) +B(0, 2ε).

This expresses the inner semi-continuity of ∂f on M. We can conclude that f
is partly smooth onM, which ends the proof. ⊓⊔
Corollary 2.10. There is a fast track leading to x if and only if f is partly
smooth at x.

Proof. If f is partly smooth at x relative toM then v provided by Corollary 2.3
determines a fast track. The other direction is simply Theorem 2.9. ⊓⊔
A similar result appears in [8, Theorem 3.1], which the authors discovered after
this paper was written.

2.5. Continuity properties of U-gradient

In this subsection, we prove two properties of gU (·), namely its continuity and
the persistence of the property gU (x) ∈ ri ∂f(x) for small perturbations of x.

Lemma 2.11 (Continuity of gU). The function gU :M→ R
n is continuous

on M.

Proof. Recall from Lemma 2.4 that

gU (x) = PU(x)(∂f(x)).

Let x̄ ∈M and Φ be a local equation ofM around x̄. Subdifferential continuity
(Definition 1.3(iv)) means that x 7→ ∂f(x) is continuous on M. It is easy to
see that x 7→ PU(x) is also continuous for x near x̄: since U(x) = ker DΦ(x)
(Lemma 2.1), there holds

PU(x) = I −DΦ(x)∗[DΦ(x)DΦ(x)∗]−1DΦ(x).

We can then conclude that gU is continuous around x̄. ⊓⊔
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Theorem 2.12 (Persistence of gU as an interior subgradient). Let x̄ ∈
M. If gU (x̄) ∈ ri ∂f(x̄), then gU (x) ∈ ri ∂f(x) for any x ∈M close enough to x̄.

Proof. Observe first that

V(x) = lin(∂f(x)− gU (x)).

Notice from Lemma 2.4 that the dimension of V(x) = NM(x) is constant (equal
to n − p). We also deduce that there is a basis of V(x) depending continuously
on x ∈M (the columns of a matrix representing DΦ(x)∗). With this basis, it is
easy to construct a continuous function x 7→ ψx such that

ψx : V(x) −→ R
n−p

is a linear bijection between V(x) and R
n−p. Consider then C : M ⇉ R

n−p

defined by
C(x) = ψx(∂f(x)− gU (x)).

Continuity of ∂f (by partial smoothness assumption (iv)), of gU (by Lemma 2.11)
and of ψx (by construction) yield the continuity of C onM around x̄. Further-
more, observe that

gU (x) ∈ ri ∂f(x) ⇔ 0 ∈ intC(x).

To prove this, consider r > 0 such that

0 ∈ B(0, r) ∩ V(x) ⊂ ∂f(x)− gU (x),

and observe that
0 = ψx(0) ∈ B(0, r/‖ψ−1

x ‖) ⊂ C(x)

since ψx is a linear bijection.
Now, suppose for contradiction that there exists a sequence {xk} of points

in M such that xk tends to x and gU (xk) /∈ ri ∂f(xk). Set Ck = C(xk) so that
0 /∈ intCk. For all k, Ck is convex since ψxk

is linear. Now separate 0 from intCk:
there exist sk ∈ R

n−p with ‖sk‖ = 1 such that

∀k ∈ N, ∀y ∈ Ck, s⊤ky ≤ 0. (2.8)

Extracting a subsequence if necessary, we can suppose that sk → s with ‖s‖ = 1.
Since 0 ∈ intC(x̄), let r > 0 be such that B(0, r) ⊂ C(x̄). Let v ∈ B(0, r); the
continuity of C implies that there are vk ∈ Ck such that vk → v. With (2.8), we
can write

∀k ∈ N, s⊤kvk ≤ 0.

Passing to the limit, this gives s⊤v ≤ 0. This can be done for any v ∈ B(0, r), so
we have s⊤v = 0 for all v ∈ B(0, r). We conclude that s = 0, which contradicts
‖s‖ = 1. ⊓⊔

Example 2.13 (Maximum eigenvalue function). In the particular case f = λ1, the
last theorem corresponds to [19, Proposition 6.9(iii)]. Note also that a similar
result holds for the structured functions considered in [18, Theorem 4.2].



12 Scott A. Miller, Jérôme Malick

Theorem 2.12 leads to another interpretation of gU in a neighborhood of a
“sharp” minimizer of f .

Corollary 2.14. Let x̄ be a minimizer of f such that 0 ∈ ri ∂f(x̄). Then for all
x in a neighborhood of x̄ in M, there holds

P∂f(x)(0) = gU (x).

Proof. Since 0 = gU (x̄) ∈ ri ∂f(x̄), Theorem 2.12 yields that gU (x) ∈ ri ∂f(x)
for all x in a neighborhood of x̄ in M. Thus with Lemma 2.4, there holds
Paff ∂f(x)(0) = gU (x) ∈ ri ∂f(x), and then gU = P∂f(x)(0). ⊓⊔

3. The U-Newton Method

3.1. Curvature in the tangential parameterization

A difficulty of interpretation arises in Theorem 2.6. The VU-decomposition, the
manifold M and the tangential parameterization u 7→ x+ u+ v(u) are all geo-
metric properties of f at x. The second-order behavior of f along a tangentially
parameterized curve should not depend on the choice of g used to define the U-
Lagrangian. Indeed, Lemma 2.4 shows that the U-gradient ∇Lg

U (0) is indepen-
dent of g. But the following example demonstrates that the U-Hessian ∇2Lg

U (0)
depends on g. Others similar examples can be found in [15].

Example 3.1 (Dependence on the subgradient). Consider the function f of Ex-
ample 1.6. There holds ∂f(0, 0) = [−2, 1] × {0}, so we retrieve U = 0 ⊕ R and

V = R ⊕ 0. Since x1 = 3
2 −

√

9
4 − x2

2 is a local equation around (0, 0) of M,

there is, for u = (0, u2) ∈ U ,

v(u) =

[

3
2 −

√

9
4 − u2

2

0

]

,

whose derivative is

Dv(u) =





0
2u2√

9− 4u2
2

0 0



 .

Choose an arbitrary g ∈ ∂f(x), so g = (γ, 0) for some γ ∈ [−2, 1]. For any
u = (0, u2) ∈ U , the U-Lagrangian is

Lg
U (u) = (1− γ)

(

3

2
−
√

9

4
− u2

2

)

,

and its derivatives are

∇Lg
U (u)=





0

(1− γ) 2u2√
9− 4u2

2



 and ∇2Lg
U (u)=





0 0

0 (1− γ) 18

(9− 4u2
2)3/2



 .

We see that ∇Lg
U (0, 0) = 0, but ∇2Lg

U (0, 0) depends on g. ⊓⊔
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Why, then, does the U-Hessian—which seems to determine the curvature of
f in (2.4)—depend on g? The answer is that the U-Hessian does not entirely
determine the curvature of f because the “linear” term g⊤d may have curvature!
Since the trajectory of d in Theorem 2.6 is constrained by x+ d ∈M, the term
g⊤v(u) contributes to the curvature of f .

To see this, take a trajectory onM: fix u ∈ U and substitute d(t) = tu+v(tu)
into the expansion (2.4) to get

f(x+ d(t)) = f(x) + g⊤(tu+ v(tu)) + 1
2 t

2u⊤[∇2Lg
U (0)]u+O(t3). (3.1)

By Corollary 2.3, we can thus write

v(tu) = 1
2 t

2[Hv(0)](u, u) +O(t3),

where [Hv(0)] denotes the Hessian of v at the point 0. More generally, throughout
the paper, HΨ stands for the Hessian of a function Ψ defined between two vectors
spaces. Now (3.1) becomes the second-order Taylor expansion

f(x+d(t)) = f(x)+ tg⊤u+ 1
2 t

2
(

g⊤[Hv(0)](u, u)+u⊤[∇2Lg
U (0)]u

)

+O(t3), (3.2)

and the second derivative includes the extra term g⊤[Hv(0)](u, u). The next
lemma shows that Hv(0) cannot in general be ignored.

Lemma 3.2. Let x ∈M and let Φ define a local equation ofM. If the restriction
of HΦ(x) to U(x)×U(x) is not identically null, then Hv(0) is not identically null
either.

Proof. We have Φ(x + u + v(u)) = 0 for u small enough. From Corollary 2.3,
u 7→ Φ(x+ u+ v(u)) is smooth around u = 0. Differentiating the equation once
around u = 0 we get, for all δ1 ∈ U ,

DΦ(x+ u+ v(u))(I + Dv(u))δ1 = 0,

and differentiating again we get, for all δ1, δ2 ∈ U ,

[HΦ(x+ u+ v(u))]
(

(I + Dv(u))δ1, (I + Dv(u))δ2

)

+

DΦ(x+ u+ v(u))
(

[Hv(u)](δ1, δ2)
)

= 0.

At u = 0 we have Dv(0) = 0 so for all δ1, δ2 ∈ U ,

[HΦ(x)](δ1, δ2) + DΦ(x)
(

[Hv(0)](δ1, δ2)
)

= 0. (3.3)

By hypothesis, there exist δ̄1, δ̄2 ∈ U such that [HΦ(x)](δ̄1, δ̄2) 6= 0, hence
[Hv(0)](δ̄1, δ̄2) 6= 0. ⊓⊔
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Therefore, use of the U-Hessian ∇2Lg
U (0) alone to model the curvature of f

onM may not lead to a true Newton method. However, if g can be chosen in U
(so that g⊤v(u) = 0 for all u ∈ U), then the U-Hessian does accurately model the
curvature of f . Observe from Lemma 2.4 that if ∂f(x)∩U is non-empty, then it
is equal to {gU}. The U-gradient gU is thus the only possible choice for such a
g. If gU /∈ ∂f(x), no U-Hessian can give the correct curvature of f . Notice that,
if x is a sharp minimizer of f , then gU = 0 ∈ ri ∂f(x) and the U-Hessian with
g = 0 precisely models the curvature of f around x. In addition, if f is a convex
max-function then gU ∈ ∂f(x) is sufficient [15]. But even if gU /∈ ∂f(x), we show
in the next section that a proper U-Newton method is defined using gU .

3.2. The U-Newton method

We now describe a sequential Newton method based on the U-Lagrangian theory.
Following Algorithm 1.8, we need a parameterization family ofM. The function
v(x, u) of Theorem 2.2 provides the parameterization

ϕtan
x (u) := x+ u+ v(x, u), (3.4)

for u ∈ U(x) small enough. The superscript “tan” stands for “tangential”.

Lemma 3.3 (Tangential parameterization). The function ϕtan
x is a local

parameterization ofM around x, and the family {ϕtan
x }x is a smooth paramete-

rization family.

Proof. Straightforward from Theorem 2.2 (note that [ϕtan
x ]−1 = PU(x)( · − x)).

⊓⊔

By U-Newton method we mean the sequential Newton method of Algo-
rithm 1.8 using the parameterization family {ϕtan

x }x. To define the algorithm,
we need the gradient and Hessian of f ◦ ϕtan

x , or equivalently of f̄ ◦ ϕtan
x with f̄

given by Assumption 1.5, at u = 0. The derivatives of f̄ ◦ ϕtan
x can be directly

computed using a chain rule, as we will see shortly. However, another formula-
tion can be obtained by examination of (2.4): substitute ϕtan

x (u) for x + d in
(2.4) particularized with g = gU , and use PU (ϕtan

x (u)− x) = u to obtain

(f ◦ ϕtan
x )(u) = f(x) + g⊤Uu+ 1

2u
⊤[∇2LgU

U (0)]u+O(‖u‖3). (3.5)

This expansion is also straightforward from the expression LgU

U = f ◦ϕtan
x (since

gU = ∇LgU

U (0)). Then the U-Hessian ∇2LgU

U (0) can also be obtained by com-
puting derivatives of f̄ ◦ ϕtan

x , which leads to an interpretation of the quadratic
term of this expansion. We have

∇(f̄ ◦ ϕtan
x )(0)⊤δ = ∇f̄(x)⊤(I + Dv(0))δ = ∇f̄(x)⊤δ ∀ δ ∈ U

δ⊤1 [∇2(f̄ ◦ ϕtan
x )(0)]δ2 = δ⊤1∇2f̄(x)δ2 +∇f̄(x)⊤[Hv(0)](δ1, δ2) ∀ δ1, δ2 ∈ U .
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We solve for Hv(0) from (3.3). Introduce the matrices M1, . . . ,Mn−p (depending
on x) such that

[HΦ(x)](ξ1, ξ2) =







ξ⊤1M1ξ2
...

ξ⊤1Mn−pξ2






∀ ξ1, ξ2 ∈ R

n.

Let δ1 and δ2 be in U . Then [Hv(0)](δ1, δ2) ∈ V = range(DΦ(x)∗), hence

[Hv(0)](δ1, δ2) = −DΦ(x)∗(DΦ(x)DΦ(x)∗)−1[HΦ(x)](δ1, δ2). (3.6)

Finally, define

λLS := −(DΦ(x)DΦ(x)∗)−1DΦ(x)∇f̄(x) (3.7)

M̄ :=

n−p
∑

i=1

(λLS)iMi (3.8)

so that
δ⊤1 [∇2(f̄ ◦ ϕtan

x )(0)]δ2 = δ⊤1 [∇2f̄(x) + M̄ ]δ2.

We have derived the following second-order expansion of f onM.

Theorem 3.4 (Tangential second-order expansion). With M̄ defined ac-
cording to (3.8), we have

(f ◦ ϕtan
x )(u) = f(x) +∇f̄(x)⊤u+ 1

2u
⊤[∇2f̄(x) + M̄ ]u+O(‖u‖3). (3.9)

Direct comparison of (3.5) and (3.9) gives

gU = PU (∇f̄(x)) and ∇2LgU

U (0) = PU [∇2f̄(x) + M̄ ]PU .

The first equality gives an intrinsic interpretation of the U-gradient: gU is the
gradient of the restriction of f toM. This implies in particular that

∇f̄(x) ∈ aff ∂f(x). (3.10)

The second equality gives an explicit expression for the U-Hessian ∇2LgU

U (0)
when it exists. But note that Theorem 3.4 is not conditioned on gU ∈ ri ∂f(x).
The U-Newton direction based on the tangential parameterization is always well-
defined, regardless of whether the U-Hessian is.

Algorithm 3.5 (U-Newton) Let x ∈M be given. Repeat:

1. Identify U(x) and a basis U of U(x). Compute ∇f̄(x) and M̄ from (3.8).
2. Compute the Newton update:

htan(x) = −U
(

U⊤[∇2f̄(x) + M̄ ]U
)−1

U⊤∇f̄(x), (3.11)

Ntan(x) = ϕtan
x (htan(x)) = x+ htan(x) + v(htan(x)). (3.12)

3. Update x← Ntan(x).
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Incidentally, notice that the choice of basis for U does not affect htan(x).

Remark 3.6. Algorithm 6 in [17] looks like a implementable version of this U-
Newton. The U-step uses an approximation of P∂f(x)(0) which is equal to gU (x)
if x is close to a strong minimizer (see Corollary 2.14). The V-step uses a bundle
iteration to approximate the proximal point, which if exact would put the next
iterate back on the manifold. Neither step needs exact knowledge of the U-
gradient, the U-Hessian, or v(·).

3.3. The role of the U-gradient as an interior subgradient

We see from (3.12) that the U-Newton step has two parts: a tangent step htan ∈
U , and a normal step v(htan) ∈ V that puts Ntan(x) back on the manifold.
Neither part is contingent on

gU ∈ ri ∂f(x). (3.13)

What this condition provides is the characterization of v(u) in Theorem 2.5: for
u ∈ U small enough,

v(u) = argmin
v∈V

f(x+ u+ v). (3.14)

This is the V-step proposed in the “conceptual superlinear scheme” of [11, Sec-
tion 4.3], a variant of the U-Newton method with U and V fixed at a strong
minimizer x̄ (so gU = 0). Nevertheless, (3.13) is not even necessary for the ap-
plicability of (3.14) in a superlinearly convergent algorithm. Mifflin and Sagas-
tizábal [15] show that if gU = 0 /∈ ri ∂f(x̄) so that W gU (u) (or even W gU (0)) is
not a singleton, taking a V-step by selecting an arbitrary v ∈W gU (u) still leads
to superlinear convergence, as long as a linear growth condition on u 7→W gU (u)
holds (satisfied in our situation thanks to Corollary 2.3).

It is worth noting, however, that the proximal-point approximation to a U-
Newton scheme in [17] requires the existence of a strong minimizer, and in par-
ticular 0 ∈ ri ∂f(x̄).

An alternative to (3.14) exists for implementing a V-step. Oustry [19] uses a
projection onto the manifold in the “U-Newton” algorithm for minimizing the
maximum eigenvalue function (see [19, Algorithm 6.4]). This is not a V-step
in our sense, since it is not perpendicular to U but rather to the manifold at
the projected point. Nevertheless, we will show, in Theorem 4.9, that the steps
are the same to second order. At this point, we only wish to note that the
subgradient g = P∂f(x)(0) selected for defining the U-Hessian in [19] is actually
gU for x close enough to x̄. In general gU 6= g, but the convergence analysis in
[19] assumes that 0 ∈ ri ∂f(x̄), which by Corollary 2.14 guarantees that gU = g.
The U-Hessian defined by g thus correctly reflects the curvature of f onM near
the minimizer, and leads to the quadratic convergence of [19, Algorithm 6.4].
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4. The Riemannian Newton Method

The tangential parameterization of the U-Newton method is not the only para-
meterization ofM. Others lead to different Newton steps. However, in this sec-
tion we demonstrate the intrinsic nature of the U-Newton direction by compar-
ing it to a sequential Newton method defined using Riemannian geometry. This
connection also provides a proof of local quadratic convergence of U-Newton.

4.1. Geodesics

Since M is a differentiable manifold, it may be endowed with a Riemannian
metric to make it a Riemannian manifold. The Riemannian Newton method
uses geodesics to parameterize the manifoldM. Roughly speaking, geodesics are
length-minimizing curves among those traced with constant speed (see among
others [10, Ch. 4] or [5, Ch. 3]).

Let y(t) be a smooth path in M with real parameter t, and suppose it is
traced with constant speed (‖ẏ(t)‖ is constant for all t). BecauseM is embedded
in R

n, such a path y(t) is a geodesic if and only if its acceleration at any point
t is normal to the manifold at y(t). Hence we differentiate the local equations
for the manifold Φ(y) = 0 twice to obtain local equations for a geodesic. The
argument (t) will sometimes be suppressed for brevity.

d

dt
Φ(y(t)) = DΦ(y)ẏ = 0 (4.1)

d2

dt2
Φ(y(t)) = DΦ(y)ÿ + [HΦ(y)](ẏ, ẏ) = 0. (4.2)

For y(t) to be a geodesic, ÿ must be a normal vector, which according to
Lemma 2.1 means

∃ θ ∈ R
n−p such that ÿ = DΦ(y)∗θ. (4.3)

Combining (4.2) and (4.3) and solving for ÿ, we get the differential equation for
a geodesic (see the correspondence with (3.6)):

ÿ = −DΦ(y)∗ (DΦ(y)DΦ(y)∗)
−1

[HΦ(y)](ẏ, ẏ). (4.4)

Notice that the inverse of DΦ(y)DΦ(y)∗ exists for y close enough to x by sur-
jectivity of DΦ(x) and smoothness of Φ. The solutions of interest are those with
y(0) = x, and ẏ(0) in U because of (4.1). Existence and uniqueness of maximal
solutions are assured (see [10, Theorem 4.10]). Therefore, the free parameter
u ∈ U locally determines the geodesic through initial conditions y(0) = x and
ẏ(0) = u. We adopt the classical notation γ(t, x, u) for this geodesic. The unique-
ness also yields the rescaling property ([5, Ch. 3, Lemma 2.6]): for a ∈ R, there
holds

γ(t, x, au) = γ(at, x, u) (4.5)

whenever either side is defined. The function γ can be used to define the expo-
nential parameterization ofM at x.
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Lemma 4.1 (Exponential parameterization). The function ϕexp
x defined by

ϕexp
x (u) := γ(1, x, u) for all u ∈ U(x) small enough

is a smooth local parameterization ofM around x. Moreover {ϕexp
x }x is a smooth

parameterization family.

Proof. The function ϕexp
x is exactly the exponential map (usually denoted expx),

a standard parameterization in Riemannian geometry. See [5, Ch. 3, Prop. 2.7]
for the smoothness of (x, u) 7→ γ(1, x, u), and [5, Ch. 3, Prop. 2.9] for the para-
meterization expx. ⊓⊔

4.2. Extrinsic and intrinsic Riemannian Newton

An extrinsic formulation of the Riemannian Newton method comes from Algo-
rithm 1.8 using ϕexp

x as the parameterization.

Algorithm 4.2 (Riemannian Newton) Given a point x ∈M, repeat the up-
date x← Nexp(x) where

hexp(x) = −
[

∇2(f̄ ◦ ϕexp
x )(0)

]−1∇(f̄ ◦ ϕexp
x )(0) (4.6)

Nexp(x) = ϕexp
x (hexp(x)).

A Newton method may also be formulated using covariant derivatives, which
are intrinsic geometric objects that express the derivatives of a function or vector
field on a differentiable manifold (see e.g. [5,10]). Using

∇Mf(x) ∈ TM(x) and ∇2
Mf(x) : TM(x)→ TM(x)

to denote respectively the covariant derivative and Hessian of f onM at x, the
intrinsic Riemannian Newton method is the iteration x← NR(x) where

hR(x) = −[∇2
Mf(x)]−1∇Mf(x) (4.7)

NR(x) = ϕexp
x (hR(x)). (4.8)

This iteration has appeared in particular in [7,24,25,6,3].
The connection between the intrinsic and extrinsic Riemannian Newton meth-

ods can be established via the following Taylor formula (see Remark 3.2 in [24]
for instance):

f(ϕexp
x (tu)) = f(x) + t∇Mf(x)⊤u+ 1

2 t
2u⊤[∇2

Mf(x)]u+O(t3). (4.9)

Thus, we have

∇Mf(x) = ∇(f̄ ◦ ϕexp
x )(0) and ∇2

Mf(x) = ∇2(f̄ ◦ ϕexp
x )(0), (4.10)

so hexp = hR and the two formulations of Riemannian Newton are identical.
Local quadratic convergence of Riemannian Newton was proved in particular

in [7] and [24] using geometric arguments. We present a simple proof that will
be useful as a model for the other sequential Newton methods in this paper.
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Lemma 4.3 (Quadratic convergence of sequential Newton). Let x̄ ∈ M
be such that ∇Mf(x̄) = 0 and ∇2

Mf(x̄) is nonsingular. Suppose {ϕx}x is a
smooth parameterization family of M with Dϕx(0) = I for all x ∈ M. Then
for x close enough to x̄, the Newton step hR(x) is well-defined and the Newton
update given by

N(x) = ϕx(hR(x)) (4.11)

is quadratically closer to x̄ than x is.

Proof. First note that the smoothness of f and the invertibility of ∇2
Mf(x̄) yield

that ∇2
Mf(x) is nonsingular (and then hR(x) is well-defined) in some neighbor-

hood Ω of x̄ in M. Observe also that hR(x̄) = 0 and N(x̄) = x̄; that is, x̄ is a
fixed point of N .

Since N is smooth, its first-order expansion at x̄ is

N(x) = N(x̄) + DN(x̄)(x− x̄) +O(‖x− x̄‖2).

We proceed to show DN(x̄) = 0, since it then follows that

N(x)− x̄ = O(‖x− x̄‖2).

Define A(x) := [∇2
Mf(x)]−1 for x ∈ Ω, so hR(x) = −A(x)∇Mf(x). Compute

the covariant directional derivative of hR at x̄ in direction u ∈ TM(x̄):

h′R(x̄;u) = −A′(x̄;u)∇Mf(x̄)−A(x̄)[∇2
Mf(x̄)]u = −u,

which shows DhR(x̄) = −I. Now define h̄(x) := (x, hR(x)) ∈ TM, and ϕ(x, u) :=
ϕx(u) for (x, u) ∈ TM. Then N = ϕ ◦ h̄. Identify TTM(x) = TM(x)× TM(x),
and observe that Dϕ(x, 0) = [I I] for any x ∈M. Hence

DN(x̄) = Dϕ(h̄(x̄))Dh̄(x̄) =
[

I I
]

[

I
−I

]

= 0,

which completes the proof. ⊓⊔

Theorem 4.4 (Quadratic convergence of Riemannian Newton). Let x̄ ∈
M be such that ∇(f̄ ◦ϕexp

x̄ )(0) = 0 and ∇2(f̄ ◦ϕexp
x̄ )(0) is nonsingular. Then for

x close enough to x̄, the Riemannian Newton step hexp(x) in Algorithm 4.2 is
well-defined, and the Riemannian Newton update Nexp(x) is quadratically closer
to x̄ than x is.

Proof. Given u ∈ TM(x), the directional derivative of ϕexp
x at 0 is

ϕexp
x

′(0;u) =
d

dt
γ(1, x, tu)

∣

∣

∣

t=0
=

d

dt
γ(t, x, u)

∣

∣

∣

t=0
= u,

using (4.5) with (t, u) there set to (1, t). Thus Dϕexp
x (0) = I. Using (4.10) and

hexp = hR, apply Lemma 4.3 with ϕx = ϕexp
x to complete the proof. ⊓⊔
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4.3. Connection to U-Newton

The tangentially parameterized paths of the U-Newton method are not geodesics
in general. However, they are close to them.

Theorem 4.5 (Tangential parameterization and geodesics). Tangentially
parameterized paths agree with geodesics up to second-order: for x ∈ M and
u ∈ U(x),

γ(t, x, u) = x+ tu+ v(tu) + o(t2). (4.12)

Proof. Let x ∈ M and u ∈ U . For t small enough, let y(t) := γ(t, x, u) be
the geodesic given by u, and let z(t) := x + tu + v(tu) be the tangentially
parameterized curve given by u. We have z(0) = x, and ż(t) = u + Dv(tu)u so
ż(0) = u (by Corollary 2.3). Thus y(t) and z(t) agree to first order. Now recall
that being a geodesic requires ÿ(0) ∈ V. This implies that

PU (y(t)− x) = tu+ o(t2).

Therefore Corollary 2.3 yields that

PV(y(t)− x) = v(tu+ o(t2)).

Since v is smooth, it is locally Lipschitz in particular and then

PV(y(t)− x) = v(tu) + o(t2).

Finally we get

y(t) = x+ PU (y(t)− x) + PV(y(t)− x) = x+ tu+ v(tu) + o(t2),

which ends the proof. ⊓⊔

The first corollary is about fast tracks: Theorem 2.9 states that a convex
function admitting a fast track is actually partly smooth relative to this fast
track. Thus parameterized paths x̄+ tu+w(tu) on a fast track are geodesics up
to second order. A second corollary is the following.

Corollary 4.6. The exponential and tangential parameterizations agree to sec-
ond order:

ϕexp
x (u) = ϕtan

x (u) + o(‖u‖2).

Proof. For u 6= 0, the rescaling property (4.5) yields γ(1, x, u) = γ(‖u‖, x, u
‖u‖ )

so we can rewrite (4.12) as γ(1, x, u) = x+ u+ v(u) + o(‖u‖2). ⊓⊔

A consequence of this corollary and equations (3.5) and (4.9) is that the
first and second covariant derivatives of f on M at x may be computed from
U-objects:

∇Mf(x) = gU and ∇2
Mf(x) = ∇2LgU

U (0). (4.13)

Furthermore, Corollary 4.6 implies that U-Newton gives the same Newton di-
rection as Riemannian Newton, and local quadratic convergence is preserved.
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Theorem 4.7 (Quadratic convergence of U-Newton). Let x̄ ∈ M be such
that gU = 0 and ∇2LgU

U (0) is nonsingular. Then for x close enough to x̄, the U-
Newton step htan(x) given by Algorithm 3.5 is well-defined, and the U-Newton
update Ntan(x) is quadratically closer to x̄ than x is.

Proof. Observe Theorem 2.2 and (3.4) imply Dϕtan
x (0) = I. Moreover Corol-

lary 4.6 implies that htan = hexp = hR, since the Newton direction depends
only on first and second derivatives. Finally (4.13) ensures that we can apply
Lemma 4.3 with ϕx = ϕtan

x to complete the proof. ⊓⊔

4.4. Connection to projected U-Newton

We refer to the “U-Newton method” in [19] as the projected U-Newton method
because it projects ontoM in place of the V-step from the tangential parameteri-
zation. This method implicitly uses a different parameterization of the manifold,
what might be called a projection parameterization: for x ∈M and u ∈ U(x)

ϕproj
x (u) := PM(x+ u). (4.14)

The projection is well-defined for u small enough. Let us prove that it is a
parameterization ofM and that it reproduces the exponential parameterization
to second order.

Lemma 4.8 (Projection parameterization). The function ϕproj
x is a smooth

local parameterization ofM around x ∈M and the family {ϕproj
x }x is a smooth

parameterization family.

Proof. Recall that NM = {(x, v) ∈ R
n×R

n | x ∈ M, v ∈ NM(x)} is a smooth
manifold of dimension n. It is easily shown using the equations for NM that

TNM(x, 0) = TM(x)×NM(x).

Consider the smooth function

F :

{

NM −→ R
n

(x, v) 7−→ x+ v .

Its derivative DF (x, 0) : TNM(x, 0)→ R
n is given by

DF (x, 0)

[

u
v

]

= u+ v

so it is obviously invertible. Thus the local inverse theorem (for manifolds) yields
that F is a local diffeomorphism from a neighborhood of (x, 0) in NM into its
image. Introducing the projection

π1 :

{

NM −→ M
(x, v) 7−→ x ,
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the function ψ = π1 ◦ F−1 defined from a neighborhood of x in R
n to a neigh-

borhood of x inM is also smooth.
Now observe that ϕproj

x is the restriction of ψ to x + TM(x). Thus we can
write

ϕproj
x (u) = π1(F

−1(x+ u)). (4.15)

First conclusions are that ϕproj
x is smooth and that (x, u) 7→ ϕproj

x (u) is smooth
too. Taking the derivative of (4.15), we get for all u ∈ U(x),

Dϕproj
x (0)u = π1(u, 0) = u. (4.16)

Then the local inverse theorem yields that ϕproj
x is a smooth diffeomorphism,

and thus ϕproj
x is a local parameterization ofM around x. ⊓⊔

Theorem 4.9. The projection parameterization agrees with the exponential pa-
rameterization to second order: for u ∈ U(x) small enough

ϕexp
x (u) = ϕproj

x (u) + o(‖u‖2).

Proof. In this proof we denote, for x ∈ M and u ∈ U , by y(t) = γ(t, x, u)
the geodesic satisfying y(0) = x and ẏ(0) = u, and by Hx(u, u) the second
fundamental form (see [10, Ch. 8] for example).

Fix x ∈M and u ∈ U and set

θ(t) := y(t)− 1
2 t

2 Hy(t)(ẏ(t), ẏ(t)).

Observe that

θ(0) = x, θ̇(0) = u, and θ̈(0) = ÿ(0)−Hx(u, u).

Since y(t) is a geodesic, the Gauss Formula [10, Lemma 8.5] enables to write
ÿ(0) = 0 +Hx(u, u), and then θ̈(0) = 0. Thus there holds

θ(t) = x+ tu+ o(t2).

Projecting intoM, we get

PM(θ(t)) = PM(x+ tu) + o(t2).

Since y(t) ∈M and Hy(t)(ẏ(t), ẏ(t)) ∈ NM(y(t)), we can write

PM(θ(t)) = PM

(

y(t)− t2

2
Hy(t)(ẏ(t), ẏ(t)

)

= PM(y(t)) = y(t).

Finally, we thus have

y(t) = ϕproj
x (tu) + o(t2).

Using rescaling lemma (as in Corollary 4.6), we obtain that the projection para-
meterization agrees with the exponential parameterization to second order. ⊓⊔
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The following summarizes the relations between the three parameterizations
considered in the paper : for u ∈ U(x),

γ(t, x, u) = ϕexp
x (tu) = ϕtan

x (tu) + o(t2) = ϕproj
x (tu) + o(t2).

Theorem 4.10 (Quadratic convergence of projected U-Newton). Let x̄ ∈
M such that ∇(f̄ ◦ ϕproj

x̄ )(0) = 0 and ∇2(f̄ ◦ ϕproj
x̄ )(0) is nonsingular. Then for

x close enough to x̄, the projected U-Newton step

hproj(x) = −
[

∇2(f̄ ◦ ϕproj
x )(0)

]−1∇(f̄ ◦ ϕproj
x )(0)

is well-defined, and the projected U-Newton update

Nproj(x) = ϕproj
x (hproj(x))

is quadratically closer to x̄ than x is.

Proof. Equation (4.16) implies Dϕproj
x (0) = I. In addition, Theorem 4.9 implies

that hproj = hexp = hR, since the Newton direction depends only on first and
second derivatives. Then Lemma 4.3 with ϕx = ϕproj

x completes the proof. ⊓⊔

5. Sequential Quadratic Programming

Recall the framework set in the introduction: represent the manifoldM around
x by a local equation {y | Φ(y) = 0}, and replace f by a smooth function f̄ that
coincides with f on M. Now we solve (1.2), which is locally equivalent to the
original problem of minimizing f onM. The Lagrangian for this problem is

L(y, λ) := f̄(y) + λ⊤Φ(y),

and the first-order optimality conditions are

∇yL(y, λ) = ∇f̄(y) + DΦ∗(y)λ = 0 (5.1)

∇λL(y, λ) = Φ(y) = 0. (5.2)

Each iteration of the SQP method solves a linearization of (5.1)-(5.2), linearized
at y = x and some choice of λ intended to approximate the optimal Lagrange
multipliers (see [1] for instance). With a change of variables, this can be shown
to be the same as solving the quadratic program

min
d

∇f̄(x)⊤d+ 1
2d

⊤[∇2
yL(x, λ)]d

s.t. Φ(x) + DΦ(x)d = 0
(5.3)

as long as d⊤[∇2
yL(x, λ)]d > 0 for feasible directions d.

Of course, this Hessian depends on the choice of λ, which is reminiscent of
the dependence of the U-Hessian on g. In fact, for any g0 ∈ aff ∂f(x), there is
a one-to-one correspondence between λ ∈ R

n−p and g ∈ aff ∂f(x) through the
relation

g = g0 + DΦ(x)∗λ, (5.4)

although g and g0 may not be subgradients. Two common choices for λ are
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(i) the optimal Lagrange multipliers from the quadratic program of the previous
iteration,

(ii) the multipliers that solve the least-squares problem

min
λ

∥

∥∇f̄(x) + DΦ(x)∗λ
∥

∥

2
, (5.5)

approximately solving the optimality condition (5.1).

The first choice results in a Newton method for solving the optimality conditions
(5.1)-(5.2), producing quadratic convergence of the (x, λ) iterates [1, Th. 13.2],
so it is well-motivated analytically. The second choice has a more geometric
motivation, as explained in the following theorem (which uses the notation of
Section 3.2).

Theorem 5.1 (SQP and U-Newton). Let x ∈ M and λ = λ(x) solve (5.5).
Then there holds

gU (x) = ∇f̄(x) + DΦ(x)∗λ(x). (5.6)

Moreover, the next iterate computed by SQP is the U-step of the U-Newton al-
gorithm: if M̄ +∇2f̄(x) is positive definite on U(x), the solution to (5.3) exists
and is d = htan(x) = hexp(x) = hR(x) = hproj(x).

Proof. By (3.10), set g0 = ∇f̄(x) in (5.4). Then solving (5.5) corresponds to
projecting 0 on aff ∂f(x). By Lemma 2.4, this yields (5.6). As x ∈ M, the con-
straint of (5.3) can be written DΦ(x)d = 0, which means d ∈ U (see Lemma 2.1).
Now observe that λLS defined in (3.7) solves (5.5) (these are the least-squares
multipliers, as suggested by the notation). Hence ∇2

yL(x, λLS) = ∇2f̄(x) + M̄ ,
and thus (5.3) is equivalent to

min
u∈U

∇f̄(x)⊤u+ 1
2u

⊤[∇2f̄(x) + M̄ ]u

when λ = λLS. The solution of this quadratic program is u = htan(x) defined
in (3.11). We can conclude using the definitions of hexp, hR and hproj, and
Corollary 4.6 and Theorem 4.9. ⊓⊔

This theorem provides a geometric interpretation for the direction computed
by SQP when least-squares multipliers are used: it is the Newton direction for
the function f constrained on the manifold M. There is a key difference with
SQP, though. The constrained Newton methods discussed here are valid only
on the manifold, whereas SQP is valid over the whole space R

n. In SQP, x is
updated to x + d with d solving (5.3), without an explicit attempt to restore
x to the manifold. SQP is intended to achieve both feasibility and optimality
asymptotically.

However, this difference is not as meaningful as it might seem. Like any
Newton method, SQP should be “globalized” with the help of a line-search or
trust-region technique, both using a merit function q. As a rule, q is nonsmooth;
typically one takes q(y) = f(y) + π‖Φ(y)‖ with π large enough. It may happen
that, no matter how x is close to a solution x∗ (a point minimizing q), the
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Newton iterate x + d (quadratically closer to x∗) may have q(x + d) > q(x),
and therefore be rejected by the line search. This so-called “Maratos effect” can
cause a loss of superlinear convergence, and it has more chance to occur when
x ∈M; see an illustration in [2].

The remedy proposed by Maratos himself [13] is to make a move toward
M using a second-order model of the constraints. A more common and simpler
remedy, apparently first proposed by Mayne in [14], uses a first-order model of
the constraints. One takes an additional step v ∈ V(x) computed according to

v = −DΦ(x)∗ (DΦ(x)DΦ(x)∗)
−1
Φ(x+ d) (5.7)

and updates x to x + d + v. We have seen from Theorem 5.1 that d is the U
portion of the U-Newton step; the correction (5.7) is itself a sort of Newton
approximation to the V portion of the U-Newton step. Thus, even though SQP
constructs its iterates in the whole space, convergence rate may be improved by
restricting it to a method staying nearM, approximating the U-Newton method.

The algorithm of [17], being a different approximation of U-Newton (see
Remark 3.6), presents another remedy to the Maratos effect. The iterates stay
nearM (the fast track) via adequate approximations of proximal steps, using a
bundling mechanism that needs neither f̄ nor Φ. As a referee has pointed out,
the good numerical results of this algorithm may result from the bundle stopping
test generating good least-squares multipliers.
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