
HAL Id: hal-00805966
https://hal.inria.fr/hal-00805966

Submitted on 29 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Point-Free, Set-Free Concrete Linear Algebra
Georges Gonthier

To cite this version:
Georges Gonthier. Point-Free, Set-Free Concrete Linear Algebra. Interactive Theorem Proving -
ITP 2011, Radboud University of Nijmegen, Aug 2011, Berg en Dal, Netherlands. pp.103-118,
�10.1007/978-3-642-22863-6_10�. �hal-00805966�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49802969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00805966
https://hal.archives-ouvertes.fr

Point-free, set-free concrete linear algebra

Georges Gonthier⋆

Microsoft Research Cambridge
gonthier@microsoft.com

Abstract. Abstract linear algebra lets us reason and compute with col-
lections rather than individual vectors, for example by considering entire
subspaces. Its classical presentation involves a menagerie of different set-
theoretic objects (spaces, families, mappings), whose use often involves
tedious and non-constructive pointwise reasoning; this is in stark con-
trast with the regularity and effectiveness of the matrix computations
hiding beneath abstract linear algebra. In this paper we show how a
simple variant of Gaussian elimination can be used to model abstract
linear algebra directly, using matrices only to represent all categories of
objects, with operations such as subspace intersection and sum. We can
even provide effective support for direct sums and subalgebras. We have
formalized this work in Coq, and used it to develop all of the group
representation theory required for the proof of the Odd Order Theorem,
including results such as the Jacobson Density Theorem, Clifford’s Theo-
rem, the Jordan-Holder Theorem for modules, the Wedderburn Structure
Theorem for semisimple rings (the basis for character theory).

Key words: Formalization of Mathematics, Linear Algebra, Module
Theory, Algebra, Type inference, Coq, SSReflect

1 Introduction

General linear algebra[1] is amongst the most ubiquitous and useful basic non-
trivial mathematical theory, probably because it mediates calculations and com-
binatorial deductive reasoning, linking computations in cartesian coordinates to
abstract geometric arguments, or purely combinatorial properties of finite groups
with algebraic properties of their linear representations. Developing a good lin-
ear algebra library was one of the important side goals of our Feit-Thompson
Theorem proof project[2–7].

Naturally, most computer proof systems supply one (or more!) linear alge-
bra libraries[8–13]. However most are limited to the algebra of vectors and/or
matrices and do not support point-free reasoning using whole subspaces. The
rare exceptions[10, 12, 14] use classical sets to represent subspaces. This basi-
cally combinatorial account fails to capture some specifics of linear subsets, in
particular their algebraic properties under sum, intersection and linear image.

Note however that all objects used in linear algebra can be represented as
matrices: endomorphisms by their matrix, (row) vectors by 1×n matrices, lists of

⋆ This work has been partially funded by the FORMATH project, nr. 243847, of the
FET program within the 7th Framework program of the European Commission.

2 Georges Gonthier

vectors and bases by rectangular matrices, and subspaces by a basis. Under this
identification the same matrix multiplication operation AF can mean composing
A and F , applying F to A, mapping F over A or taking the image of A under F .
The (unique) matrix product associativity and distributivity laws are consistent
with all those interpretations — a major simplification of the theory.

We came to this observation by accident. Because we wanted a constructive
formalization of linear algebra, we had to define an effective membership test for
linear sets. After working out a suitable generalization of Gaussian elimination
we realized it actually provided all the set theoretic subspace constructions, so
we could do away with the entire set-theoretic boilerplate and use matrices only.

We then applied the resulting library to one of the then outstanding pre-
requisites of the Feit-Thompson Theorem — an extensive development of group
module and representation theory. This worked out remarkably well, and was
also invaluable in shaping the details and ironing out all the kinks of the core
linear algebra formalization, for instance prompting the development of indexed
subspace sums and directed sums.

It is our experience that such large scale use is essential for obtaining a
usable formalization. With an appropriate framework, all basic linear algebra
proofs are trivial (2-5 lines) and hence provide no useful feedback on the library
design choices. Linear subspace theory is in the 10-line range and similarly offers
little guidance. It is only with representation theory, with proofs in the 30-50
line range, that we started to identify substantial issues, and the hardest issues,
such as the need to support complex direct sums and non-constructive results,
only appeared in the Feit-Thompson Theorem proof itself, with proofs in the
200+ line range.

The contributions of this paper are thus: a practical matrix encoding of linear
subspaces and their operations (section 3), an innovative use of type inference
and dependent types to formalize general direct sums of subspaces (section 4),
and a large-scale validation of the resulting library with an extensive library on
finite group representations and its application to the Local Analysis part of the
Feit-Thompson Theorem proof[3] (section 5).

This work was done using the SSReflect extension of the Coq system[15,
16]. We review the basic SSReflect matrix algebra library [16, 6] in section 2,
and use mathematical notation as much as possible in section 3, but due to
lack of space we assume some familiarity with our prior work[7, 6] in the more
technical sections 3.4 and 4.

The libraries described here can be viewed at http://coqfinitgroup.gforge.
inria.fr/; they will be distributed as part of the next SSReflect release, early
during the review period.

2 Matrix operations

2.1 A combinatorial and algebraic hierarchy

Matrices are a typical container type. The properties of a given matrix type
will typically be a function of the properties of the type of its coefficients: while
all matrices will share some structural properties such as shape, only matrices

Point-free, set-free concrete linear algebra 3

with comparable elements can be compared, only matrices over a ring can be
multiplied, etc.

In the SSReflect library this notion of “type with properties” is captured
with Structures, which are just (higher-kinded) record types with two fields,
a sort, or carrier type, and a class, itself a record providing various operations
over the sort along with some of their properties. For example, a “comparable”
type, or eqType, could be described as follows:

Module Equality.
Record class_of (T : Type) : Type :=
Mixin {op : T -> T -> bool; _ : forall x y, x = y <-> op x y}.

Structure type : Type := Pack {sort; class : class_of sort}.
End Equality.
Notation eqType := Equality.type.
Coercion Equality.sort : eqType >-> Sortclass.
Definition eq_op T := Equality.op (Equality.class T).
Notation "x == y" := (@eq_op _ x y).

The Coercion line lets us use an eqType as a type, as in

Let swap {T : eqType} (x y z : T) := if z == x then y else z.

Note that this is very similar to the Haskell type class mechanism, except for
the extra layer of packaging introduced by the type Structure, which is made
possible by Coq’s higher-kinded types. This extra packaging has important conse-
quences on the feasibility of type checking, especially in the presence of container
types such as matrices[7].

Similarly to the type class Instance declaration, the Canonical Structure
declaration lets us tie specific structures to existing types, e.g., allowing us to
equip bool and nat with definitions for _ == _.

The SSReflect library defines many such structures (97 at last count),
which provide many standard sets of operations, from basic combinatorial fare
such as eqType above to standard algebraic objects such as rings and fields, and
combinations thereof such as finite fields. Here are a few of the less common ones

– finType a finite, explicitly enumerable type; any subset A of a finType can
be enumerated (enum A) and counted (#|A|).

– choiceType a type with a choice operator choose P x0 that picks a canonical

x such that Px holds, given x0 such that Px0.
– zmodType a type with an addition operation, and therefore integer scaling.
– lmodType R a type with both an addition operation and a scaling operation

(denoted α*:v in Coq) with coefficients α in R (which must be a ringType).
– unitRingType a ring with an effective test for unit (invertible) elements, and

a partial inverse function for its units.

These Structures are arranged in a (multiple) inheritance hierarchy in the obvi-
ous way[7]. It is important to note that zmodType, the smallest algebraic struc-
ture, inherits from both eqType and choiceType.

Let us finally point out that unlike Haskell type classes (but similarly to
their Coq reinterpretation[17], Structure keys are not limited to types. The“big
operator” library[6] uses these to recognize AC operators, and we will be using

4 Georges Gonthier

below similar structures to quantify over linear functions (between lmodTypes)
and ring morphisms.

2.2 Basic algebra

Matrices are basically tabulations of functions with a finite rectangular domain
of the form [0,m) × [0, n). The SSReflect library defines both finite index
types (ordinal n, denoted ’I_n), and a generic tabulation type constructor
{ffun ..} for functions with a finType domain, which we simply combine:

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

Note that matrix R m n is a dependent type that is specialized to the m × n
shape. This is required to develop an algebraic theory, because too many laws
do not generalize to “matrices of unknown shape”. The usual Coq notation for
this type is ’M_(m, n) as R can usually be inferred from context.

The finfun library provides us with a one-to-one correspondence between
{ffun A -> R} and A -> R, which we only need to curry to get a

Coercion fun_of_matrix : matrix >-> Funclass.

that lets us write A i j in Coq for the Aij coefficient of A. We provide a dual
notation for defining matrices, which we use for all matrix arithmetic operators:

Definition addmx A B := \matrix_(i, j) (A i j + B i j).
Definition mulmx A B := \matrix_(i, k) \sum_j (A i j * B j k).

(We have omitted some type declarations.) While they may not use the most
efficient algorithms, these definitions have the advantage of actually being useful

for proving algebraic identities. Indeed most algebraic identities can be proved
in one or two lines.

We then declare Canonical z/lmodType Structures so that addition and
scaling can be denoted with the generic + and *: operators, and all lemmas of
the generic algebra package become available. However, we still require a separate
operator (denoted *m) for multiplication, because only nontrivial square matrix
types are proper ringTypes.

This is about the point where most matrix libraries end, but we can eas-
ily carry on and define the unitRingType structure, along with determinants,
cofactors, and adjugate matrices, by leveraging the SSReflect permutation
library[5]:

Definition determinant n (A : ’M_n) : R :=
\sum_(s : ’S_n) (-1) ^+ s * \prod_i A i (s i).

Definition cofactor n A (i j : ’I_n) : R :=
(-1) ^+ (i + j) * determinant (row’ i (col’ j A)).

Definition adjugate n (A : ’M_n) := \matrix_(i, j) cofactor A j i.

Even these proofs remain relatively easy: it takes about 20 lines to show the
Cauchy determinant product formula |AB| = |A|.|B| and the Laplace expansion
formula for cofactors, and then 9 lines to derive the Cramer rule A.(adj A) =
|A|.1, from which we can prove the Cayley-Hamilton theorem in three lines[6].

Point-free, set-free concrete linear algebra 5

2.3 Block and reshaping operations

Matrices are also combinatorial objects, and the SSReflect matrix library
supplies some 26 operations for rearranging the contents of matrices over any

type. This includes transposition and extraction, permutation and suppression of
row and columns (the row’ and col’ functions above perform the latter). Most
importantly, this also includes operations for cutting and pasting block matrices,
e.g.,

Definition row_mx (A : ’M_(m, n)) (B : ’M_(m, p)) : ’M_(m, n + p)
:= \matrix_(i, j)

match split j with inl k => A i k | inr l => B i l end.

computes the block row matrix (A B), using the function

split : ’I_(n + p) -> ’I_n + ’I_p

from the fintype library to map column indices to the appropriate submatrix.
A set of lemmas extends the usual matrix computation rules to 1 × 2, 2 × 1
and 2 × 2 block matrices, which let us prove many identities without having to
consider individual coefficients.

As with the call to split above, it is usually not necessary how a block matrix
is subdivided — the syntactic shape of the dimensions supplies that information
via type inference. There is a downside: we may end up with matrices that have
extensionally, but not syntactically the correct shape, for instance when stating
block matrix associativity. We use a cast operation to mitigate this:

castmx : (m = m’) * (n = n’) -> ’M_(m, n) -> ’M_(m’, n’).
Lemma row_mxA : forall m n1 n2 n3 A B C,
let cast := (erefl m, esym (addnA n1 n2 n3)) in
row_mx A (row_mx B C) = castmx cast (row_mx (row_mx A B) C).

Note that castmx is bidimensional; its first argument is proof-irrelevant (because
nat is an eqType) so we can prove rewrite rules that make it easy to move, collect
and eliminate casts. We also provide a prototype-based cast: conform_mx A B
returns a matrix that has syntactically the same shape as A, but is equal to B
if B has extensionally the same shape as A (and A otherwise).

Finally we define reshaping operations mxvec and vec_mx that turn a rect-
angular m × n matrix into linear 1 × mn row vector and conversely.

3 Gaussian Elimination and Row Spaces

Here we show how to develop an algorithmic theory of linear algebra on the
basis of a single Gaussian elimination procedure. We shall assume that all our
matrices are over a fixed field.

3.1 Extended Gaussian elimination

All that is needed to extend Gaussian elimination gracefully to singular matrices
is to perform double pivoting, i.e., to search for a non-zero pivot in all the matrix

6 Georges Gonthier

and then swap both rows and columns to bring it to the top left corner. This
gives an exact value for the rank of the matrix, as the decomposition stops
exactly when it reaches a null matrix. This is our Coq code for this algorithm,
which can also be viewed as a degenerate, easy case of the Smith normal form
computation[1].

1 Fixpoint gaussian_elimination {m n} :=
2 match m, n return ’M_(m, n) -> ’M_m * ’M_n * nat with
3 | _.+1, _.+1 => fun A : ’M_(1 + _, 1 + _) =>
4 if [pick ij | A ij.1 ij.2 != 0] is Some (i, j) then
5 let a := A i j in let A1 := xrow i 0 (xcol j 0 A) in
6 let u := ursubmx A1 in let v := a^-1 *: dlsubmx A1 in
7 let: (L, U, r) := gaussian_elimination (drsubmx A1 - v *m u)
8 in (xrow i 0 (block_mx 1 0 v L),
9 xcol j 0 (block_mx a%:M u 0 U),

10 r.+1)
11 else (1%:M, 1%:M, 0%N)
12 | _, _ => fun _ => (1%:M, 1%:M, 0%N)
13 end.

This is virtually identical to the LUP decomposition procedure described
in [7], and its correctness is easily established in a similar manner. Besides the
double pivoting, the only differences are that row and column permutations are
combined with the lower and upper triangular factors of the decomposition, and
that the decomposition of a null matrix is a pair of identity matrices (1%:M is
our Coq notation for a scalar matrix with 1s on the diagonal). If we denote by 1r

a (not necessarily square) matrix that has 1s in r first coefficients on the main
diagonal and 0 elsewhere

1r =

1 ...
1

0

0 0

and set gaussian_elimination A = (AĈ , AR̂, r(A)), then the correctness of the
above function is expressed by the five conditions

r(A) ≤ m,n AĈ , AR̂ invertible AĈ 1r(A) AR̂ = A

We call AĈ and AR̂ the extended column and row bases of A, respectively. The
column (resp. row) basis AC (resp. AR) of A consists or the r(A) first columns
(resp. rows) of AĈ (resp. AR̂). Since 1r(A)1r(A) = 1r(A) we have

AC = AĈ 1r(A) AR = 1r(A) AR̂ AC AR = A

3.2 Rank theory

The fact that r(A) has indeed the properties of the matrix rank follows directly
from the correctness conditions above and from the following two basic facts
about matrices over a commutative ring:

Lemma 1. If A and B are respectively m × n and n × m matrices such that

AB = 1, then m ≤ n, and if m = n then BA = 1.

Point-free, set-free concrete linear algebra 7

We prove the second assertion first. Consider A′ = |B|.(adj A); then

A′A = |B|.(adj A)A = |B|.|A|.1 = (|A||B|).1 = |AB|.1 = 1

so BA = A′ABA = A′A = 1. For the first assertion, assume n < m, and let

A = (Al Ar) where Al is a square n × n matrix, and similarly B =
(

Bu

Bd

)

with

Bu square. Block product now gives

AB = (Al Ar)

(

Bu

Bd

)

=

(

AlBu ArBu

AlBd ArBd

)

=

(

1 0
0 1

)

so AlBu = 1, whence BuAl = 1 by the second part, and so 1 = ArBd =
ArBuAlBd = 0, a contradiction since this is a nontrivial (m − n) × (m − n)
matrix.

This yields both upper and lower bounds on the rank function:

Lemma 2. If M and N are respectively m×r and r×n matrices, then r(MN) ≤
r, and any A such that NAM = 1 must have r(A) ≥ r.

For the first assertion, let L = 1r(MN)(MN)−1

Ĉ
and U = (MN)−1

R̂
1r(MN) be

respectively r(MN)×m and n× r(MN) matrices, and apply the first lemma to

(LM)(NU) = L(MN)Ĉ1r(MN)(MN)R̂U = 1r(MN)11r(MN)11r(MN) = 1

For the second assertion, apply the lemma to (NAC)(ARM) = NAM = 1.
It then follows immediately that r(AB) = r(ACARBCBR) ≤ r(A), r(B) and

r(A + B) = r(ACAR + BCBR) = r

(

(AC BC)

(

AR

BR

))

≤ r(A) + r(B)

3.3 Set operations

The extended row and column bases provide everything we need to implement
set-theoretic operations on matrices. We define

kerA = (1 − 1r(A))A
−1

Ĉ

cokerA = A−1

R̂
(1 − 1r(A))

A ≤ B ⇔ A(cokerB) = 0
A ≡ B ⇔ A ≤ B ≤ A

A∼1 = A−1

R̂
1r(A)A

−1

Ĉ

A +s B =
(

A
B

)

A ∩s B = [ker (A +s B)]lA
A = (1 − 1r(A))AR̂

We can see that kerA is the kernel of A viewed as a linear function since
(kerA)A = (1 − 1r(A))1r(A)AR̂ = 0, and likewise that cokerA is the coker-
nel of A. It follows that A ≤ B tests whether the row space of A is included in
that of B, i.e., whether A (considered as a subspace) is included in B, and that
A ≡ B tests whether A and B represent the same subspace. B∼1 is a partial
inverse to B, since, if A ≤ B we have

A − AB∼1B = AB−1

R̂
BR̂ − AB−1

R̂
1r(B)BR̂ = A(cokerB)BR̂ = 0

8 Georges Gonthier

Thus A ≤ B if and only if A = DB for some matrix D. Note finally that if v is
a row vector, then v ≤ B tests whether v is in the row space of B.

Obviously the row space of A +s B is the sum of the row spaces of A and B.
In the definition of A∩s B, K = ker (A+s B) is a square block matrix which we
divide vertically; Kl designates the left (rectangular) block. To see that A ∩s B
is indeed the intersection of A and B observe that

0 = K

(

A

B

)

= KlA + KrB

so indeed KlA = −KrB ≤ A,B. Conversely if C = A′A = B′B, then (A′ −
B′)(A +s B) = 0 so (A′ − B′) ≤ K and C = A′A = DKlA for some D, hence
C ≤ A ∩s B.

All of the usual results on linear spaces and bases easily follow from these
definitions, as well as some more advanced ones like the Frobenius rank inequality

r(AB) + r(BC) ≤ r(B) + r(ABC)

all with proofs under twelve lines (most are under two) and no induction. The
reason for this is that all the induction we need is neatly encapsulated inside
the Gaussian elimination procedure. Indeed it is instructive to consider why A,
defined above as AR̂ with the top r(A) rows zeroed out, is indeed a complement

to the row space of A. The nonzero rows of A are the rows of the identity matrix
returned by the base case of gaussian_elimination, permuted by the pivot
column transpositions during the unwinding of the recursion. Thus these are
vectors of the standard basis that complete the row base of A: our seemingly
trivial changes to the LUP decomposition algorithms are in fact a proof of the
incomplete basis theorem.

3.4 Algebras and subrings

The next structure up from linear spaces are F-algebras, which add a multi-
plicative ring structure. A finite dimensional F-algebra can always be embedded
in its algebra of endomorphisms, which is a matrix algebra, so we ought to be
able to extend our program of “doing it all with matrices” to F-algebras as well.
However, there is a catch. To enjoy the natural ring structure of matrices, alge-
bra elements should be square matrices; but to be considered as points in our
encoding of subspaces, they should be flat row vectors.

Our solution is to stick to square matrices, but to use the reshaping function
vecmx of section 2.3 when we need to test for membership in a subalgebra:

(f ∈ R) ⇔ (mxvec f ∈ R)

Note that if f is an n×n matrix, then R will have to be an m×n2 matrix (whose
type will be denoted ’A_(m,n)). The pointwise product of two subalgebras can be
defined using the iterated sums of normalized spaces we will define in section 4.2

Definition mulsmx m1 m2 n (R1 : ’A_(m1, n)) (R2 : ’A_(m2, n)) :=
(\sum_i <<R1 *m lin_mx (mulmxr (vec_mx (row i R2)))>>)%MS.

Point-free, set-free concrete linear algebra 9

We used the lin_mx function to tabulate a linear matrix-to-matrix function:

Definition lin_mx (f : ’M[R]_(m1, n1) -> ’M[R]_(m2, n2)) :=
\matrix_(i, j) mxvec (f (vec_mx (delta_mx 0 i))) 0 j.

Further, by combining lin_mx with our set-like linear functions we can define
ideals, subrings, centralisers and centers of algebras, as we can program effective
tests for just about any linear condition. For example we can test whether a
subalgebra R has an identity element (an e 6= 0 such that ef = fe = f for all
f ∈ R) with the following predicate

Definition has_mxring_id m n (R : ’A_(m , n)) :=
(R != 0) &&
(row_mx 0 (row_mx (mxvec R) (mxvec R))
<= row_mx (cokermx R)
(row_mx (lin_mx (mulmx R \o lin_mulmx))

(lin_mx (mulmx R \o lin_mulmxr))))%MS.

The lower inclusion is satisfied iff there is an e such that the left-hand side is equal
to the product of v = mxvec e by the right-hand side, i.e., that u(coker R) = 0
and R = R(lin_mx (mulmx e)) = R(lin_mx (mulmxr e)), that is, e ∈ R and
ef = fe = f for all the f = vec_mx (row i R), which generate R.

4 General direct sums

The concept of direct sum is one of the more powerful tools for reasoning about
collections of subspaces, because it links a strong combinatorial property (unique
decomposition) to a simple arithmetic (in)equality of ranks. This correspondence
is especially useful when applied to general iterated sums, but there are some
intricate technical issues that must be addressed to formalize it in Coq.

4.1 On subspace equality

While the theory exposed in Section 3 lets us compute and reason with subspaces
represented as matrix row spaces, it does not provide a unique representation
for subspaces. Indeed, for any given A, there are many B ≡ A, and this remains
true even if we restrict ourselves to square matrices.

In addition, the “setoid” framework that implements relational congruence
in Coq[18, 15] is incapable of dealing with the multiply dependent, polymorphic
relation A ≡ B. We must resort to a proxy relation A :=: B that lets us replace
A by B directly in expressions of the form r(A), A ≤ C and C ≤ A; these
three cases cover most of the contexts in which we need to substitute equivalent
subspace expressions.

For other contexts, we can either compose context lemmas directly or use the
choiceType structure to obtain a standard representation:

〈A〉 = choose (λ B : Mn. A ≡ B) (1r(A)AR̂)

This defines 〈A〉 (Coq notation: <<A>>) as a square matrix with the same row
space as A, such that 〈A〉 = 〈B〉 iff A ≡ B.

10 Georges Gonthier

4.2 Monoidal set operations

While the SSReflect bigop library[6] will let us turn the binary subspace
operators +s and ∩s into n-ary ones, most of its facilities would be unusable
because they require strictly monoidal operators (e.g., we need A +s 0 = A, not
A +s 0 ≡ A). Fortunately, it turns out we can use 〈A〉 to fix this, by setting:

A +ss B =

A if B = 0 and A is square
B if A = 0 and B is square

〈A +s B〉 otherwise

We use the conform_mx function of section 2.3 to code the first two cases in Coq.
It is easy to show that +ss is strictly monoidal as its identity element 0 is only
equivalent to one square matrix — itself. Thus, this definition lets us use generic
bigop sums for subspace sums (Coq notation (\sum_ ...)%MS).

Obtaining a strictly monoidal intersection is similar but more delicate because
although we can choose the identity matrix 1 as the identity element, it is by
no means unique. We need to ensure that our normalization operation does not
return 1 by accident; we thus write A ≃ 1 when A ≡ 1 and A = 1 if A is square,
and let 〈A〉1 be a canonical square matrix B ≡ A such that B = 1 iff A ≃ 1.
Then we can take A ∩ss B to be B if A ≃ 1 and B is square, A if B ≃ 1 and A
is square, else 〈A〉1 if B ≡ 1, and 〈A ∩s B〉1 otherwise.

4.3 A direct sum package

A binary sum A +s B is direct iff A ∩s B = 0, or, equivalently iff r(A +s B) =
r(A) + r(B). Both characterizations are useful, but the latter one generalizes
best to arbitrary sums, by which we mean arbitrary combinations of binary and
n-ary sums, as

∑

A direct iff r
(

∑

A
)

=
∑

r(A)

To formalize this definition it would appear we need to describe arbitrary general
sum expressions

∑

A, which would require some sort of reflexion or quotation.
On closer examination, however, note that we do not actually care about the
exact makeup of a sum: we only need its value (a subspace), and the sum of the
ranks of the summands (an integer), so we can use the type

Structure proper_mxsum_expr n := ProperMxsumExpr {
proper_mxsum_val : ’M_n; proper_mxsum_rank : nat;
_ : mxsum_spec proper_mxsum_val proper_mxsum_rank

}.

where the inductive predicate mxsum_spec A s states that s is the sum of the
ranks of a finite collection of matrices, whose row space sum is A. Thus, A is
direct iff r(A) = s.

As hinted by the Structure keyword, we wish to declare Canonical instances
of proper_mxsum_expr so that we can infer these structures from either of their
two projections. This poses no problem for the proper binary and n-ary sums;
however for trivial (unary) sums we would need to declare

Point-free, set-free concrete linear algebra 11

Canonical Structure trivial_mxsum n A :=
@ProperMxsum n A (\rank A) (TrivialMxsum A).

whose proper_mxsum_val projection is an arbitrary matrix A. This is interpreted
by Coq as a default projection, which will be used eagerly for any matrix expres-
sion that is not immediately a binary or n-ary sum (the Canonical Structure
selection process is determinate and driven by the head symbol of the projec-
tion value). This is undesirable because in actual use n-ary sums are often rather
large expressions that need abbreviations, and we expect these to be transparent
to the direct sum predicate.

Getting the right unification behavior requires a few helper structures:

Structure wrapped T := Wrap {unwrap : T}.
Canonical Structure wrap T x := @Wrap T x.

is a generic wrapper with a default instance. A unification problem unwrap w ∼ t
will immediately be turned into w ∼ wrap t, unless t is of the form unwrap u.

We then define the mxsum_expr structure as a“wrapped”proper_mxsum_expr

Structure mxsum_expr m n := Mxsum {
mxsum_val : wrapped ’M_(m, n); mxsum_rank : wrapped nat;
_ : mxsum_spec (unwrap mxsum_val) (unwrap mxsum_rank)

}.
Canonical Structure sum_mxsum n (S : proper_mxsum_expr n) :=
Mxsum (wrap (proper_mxsum_val S)) (wrap (proper_mxsum_rank S))

...
Canonical Structure trivial_mxsum m n A :=
Mxsum (Wrap A) (Wrap (\rank A)) (TrivialMxsum A).

Since wrap is “self-inserting”, matching unwrap (mxsum_val ?) to some ar-
bitrary matrix expression E will first try to use sum_mxsum, matching T to
proper_mxsum_val ?. This will succeed if E is a proper binary or n-ary sum;
otherwise, Coq will expand wrap E into Wrap E and use trivial_mxsum. In ef-
fect we use the wrapped structure to explicitly introduce limited nondeterminism
in the otherwise determinate Canonical Structure inference process.

With these structures we can now put

Definition mxdirect_def m n T
of phantom ’M_(m, n) (unwrap (mxsum_val T)) :=

\rank (unwrap (mxsum_val T)) == unwrap (mxsum_rank T).
Notation mxdirect A := (mxdirect_def (Phantom ’M_(_,_) A%MS)).

where Inductive phantom T (x : T):= Phantom is the generic tagged unit
type. These definitions let us write mxdirect S for an arbitrary subspace sum S,
and have Coq infer the corresponding mxsum_expr that actually defines the
meaning of this expression. We also use the mxsum_expr structure to define
generic lemmas about direct sum, such as

Lemma mxrank_sum_leqif : forall m n (S : mxsum_expr m n),
\rank (unwrap S) <= unwrap (mxsum_rank S) ?= iff mxdirect (

unwrap S).

12 Georges Gonthier

which gives the conditionally strict rank inequality. The leqif predicate de-
noted m <= n ?= iff C reads m ≤ n, with m = n iff C. The ssrnat library
defines several combinators for leqif, and when applying such combinators to
mxrank_sum_leqif the unknown S can be inferred from any one of the three ar-
guments of leqif, thanks to the dual set of canonical projections of mxsum_expr.

5 Module and Representation Theory

Giving a full account of our development of representation theory, or of its use
in the proof of the Feit-Thompson Theorem, is clearly beyond the scope of this
paper. This section therefore only samples the two subjects, to illustrate how
the design choices of our matrix linear algebra library fare in practice.

5.1 Group representation

Group representations are basically morphisms from a given finite group G to
some general linear group, so we adopt the design pattern introduced in [5] and
define representations as a structure that can be inferred for specific group-to-
matrices functions.

Definition mx_repr (G : {set gT}) n (r : gT -> ’M[R]_n) :=
r 1%g = 1%:M

/\ {in G &, {morph r : x y / (x * y)%g >-> x *m y}}.
Structure mx_representation G n :=
MxRepresentation {repr_mx :> gT -> ’M_n; _ : mx_repr G repr_mx}.

Recall that the %g is the Coq overloading disambiguation operator. Note that
the structure encapsulates both the morphism property, and a specific subgroup
on which it holds.

Given rG : mx_representation G n we can define the global stabilizer of
a row space U , and therefore test whether U is a G-module (i.e., stable under
the action of G).

Definition rstabs U := [set x \in G | U *m rG x <= U]%MS.
Definition mxmodule U := G \subset rstabs U.

Given a G-module U , we can use the matrix bases of U to define a new represen-
tation that is the corestriction of rG to U , by composing rG with the following
injection and projection:

Definition val_submod m : ’M_(m, \rank U) -> ’M_(m, n) :=
mulmxr (row_base U).

Definition in_submod m : ’M_(m, n) -> ’M_(m, \rank U) :=
mulmxr (invmx (row_ebase U) *m pid_mx (\rank U)).

Here mulmxr A is the function B 7→ BA, and row_base U , row_ebase U , and
pid_mx r are the Coq lingo for what was denoted UR, UR̂ and 1r in section 3.1.
We also give a complementary construction for the factor representation rG/U .

Results in representation theory are alternatively formulated in terms of the
representation (rarely), of modules (frequently), and sometimes of algebras. For
the latter we use the encoding of section 3.4:

Point-free, set-free concrete linear algebra 13

Definition enveloping_algebra_mx :=
\matrix_(i < #|G|) mxvec (rG (enum_val i)).

defines the enveloping algebra of rG. Note how we use the enum_val function
provided by the fintype library to effectively index the matrix rows by elements
of G.

Results on modules and algebra often refer to module homomorphisms. Rather
than defining a predicate testing whether a linear function f (given as a matrix)
is a G-homomorphism on a given submodule U , we find it more convenient to
define the largest domain on which f is a G-homomorphism:

Definition dom_hom_mx f : ’M_n :=
let commGf := cent_mx_fun (enveloping_algebra_mx rG) f in
kermx (lin1_mx (mxvec \o mulmx commGf \o lin_mul_row)).

and then test whether U is included in dom_hom_mx f , as in this definition of
module isomorphism

CoInductive mx_iso (U V : ’M_n) : Prop := MxIso f of
f \in unitmx & (U <= dom_hom_mx f)%MS & (U *m f :=: V)%MS.

Note that this definition concerns modules over the same representation; we need
another predicate mx_rsim to state that different representations are similar.

5.2 Simple modules

Many results in group module theory depend on breaking down modules into
minimal or simple submodules. For example, Schur’s lemma states that a non-
trivial homomorphism between simple modules yields an isomorphism:

Lemma mx_Schur_iso : forall U V f,
mxsimple U -> mxsimple V -> (U <= dom_hom_mx f)%MS ->

(U *m f <= V)%MS -> U *m f != 0 -> mx_iso U V.

Unlike the mxmodule predicate, mxsimple is non-effective. To test whether mod-
ules are simple we need a means of testing whether polynomials are reducible,
which we have not assumed. As a consequence we cannot prove constructively
within Coq some obvious classical properties, such as the fact that any non-
trivial module contains a simple submodule. This turns out to be only a minor
nuisance, because we can still prove such facts classically :

Lemma mxsimple_exists m (U : ’M_(m, n)) : mxmodule U -> U != 0 ->
classically (exists2 V, mxsimple V & V <= U)%MS.

where classically is a simple variation on double negation

Definition classically P := forall b : bool, (P -> b) -> b.

Whenever we are trying to prove an effective property (in bool), the SSReflect

without loss tactic lets us conveniently use such results in a declarative style:

without loss [V simV sVU]: / exists2 V, mxsimple V & V <= U.
exact: mxsimple_exists.

14 Georges Gonthier

We prove classically the existence of module decomposition series, of splitting
and closure fields, and of socles.

The socle of a representation is the sum of all its simple modules. Within
the socle simplicity and isomorphism become decidable, so once a socle is known
most constructivity issues vanish. A socle can alternatively be described as the
direct sum of the components of the representation – the sums of isomorphic
simple modules. We define a socleType “quasi-structure” that contains enough
data to compute components, and coerces uniformly to a type that contains
exactly the components.

Record socleType := EnumSocle {
socle_base_enum : seq ’M[F]_n;
_ : forall M, M \in socle_base_enum -> mxsimple M;
_ : forall M, mxsimple M -> has (mxsimple_iso M) socle_base_enum
}.

Definition socle_enum sG := map component_mx (socle_base_enum sG).
Inductive socle_sort sG := PackSocle W of W \in socle_enum sG.
Coercion socle_sort : socleType >-> sortClass.

5.3 Some classic results

The framework we have briefly surveyed allows us to formulate and prove all of
the basic results in representation theory, including:

Lemma mx_Maschke :
[char F]^’.-group G -> mx_completely_reducible 1%:M.

Theorem Clifford_component_basis : forall M, mxsimple rH M ->
{t : nat & {x_ : sH -> ’I_t -> gT |
forall W, let sW := (\sum_j M *m rG (x_ W j))%MS in
[/\ forall j, x_ W j \in G, (sW :=: W)%MS & mxdirect sW]}}.

Theorem mx_JordanHolder : forall U V compU compV (m := size U),
(last 0 U :=: last 0 V)%MS ->

m = size V /\ (exists p : ’S_m, forall i : ’I_m,
mx_rsim (@series_repr U i compU) (@series_repr V (p i) compV))

Lemma mx_Jacobson_density :
mx_irreducible rG -> let E_G := enveloping_algebra_mx rG in

(’C(’C(E_G)) <= E_G)%MS.

Maeshke’s theorem asserts that representations in coprime characteristic are
completely reducible; this is classically equivalent but constructively slightly
weaker than “semi-reducible”. Clifford’s theorem explains how an irreducible
(i.e., simple) representation of G decomposes into a sum of components when
restricted to some H ⊳G. The Jordan-Hölder theorem asserts the equivalence up
to permutation of module composition series U and V (implemented as matrix
sequences). In finite dimension, the Jacobson density theorem asserts that the
enveloping algebra of an irreducible (i.e., simple) representation is equal to its
double centraliser (in infinite dimension equality is replaced by density, hence the
name). It combines with Schur’s lemma to yield the definition and construction
of splitting and closure fields for groups.

Point-free, set-free concrete linear algebra 15

The regular representation of a group G interprets G as the basis of a module
on which G acts by right translation. If the scalar field of the representation is
a splitting field whose characteristic does not divide the order of G, then the
Wedderburn structure theorem asserts that the algebra of the regular represen-
tation RG (known as the group ring) decomposes into a direct sum of simple
subrings Ri isomorphic to matrix rings. The Ri correspond to the components
of the regular representations, so we formalize this result by giving an explicit
construction for the Ri given a socleType sG, and then establishing all key
properties of the construction.

Definition Wedderburn_subring (i : sG) := <<i *m R_G>>%MS.
Lemma Wedderburn_sum : (\sum_i R_ i :=: R_G)%MS.
Lemma Wedderburn_direct : mxdirect (\sum_i R_ i)%MS.
Lemma Wedderburn_is_ring : forall i, mxring (R_ i).
Lemma Wedderburn_subring_center i : (’Z(R_ i) :=: mxvec (e_ i))%MS
Lemma rank_Wedderburn_subring i : \rank (R_ i) = (n_ i ^ 2)%N.
Lemma sum_irr_degree : (\sum_i n_ i ^ 2 = nG)%N.

We are now using this part of the theory as the basis for the formalization
of character theory needed for the second part of the Feit-Thompson Theorem
proof[4].

5.4 p-stability and extraspecial representations

One of the early driving applications for our work on matrix linear algebra and
representations was the study of p-stability, an important technical property of
groups of odd order that underpins the proof of the two “deep” results on which
the first part of the Feit-Thompson Theorem proof is based, the Thompson Tran-
sitivity and Uniqueness theorems[3]. The variant of p-stability we are interested
in is an extension to groups G with a non-trivial p-core Op(G) of the property of
“no p-element of G has a quadratic minimal polynomial in a faithful representa-
tion with a characteristic p field”, whose rather technical formulation translates
in Coq as

Definition p_stable p G :=
forall P A : {group gT},

p.-group P -> ’O_p^’(G) * P <| G ->
p.-subgroup(’N_G(P)) A -> [~: P, A, A] = 1 ->

A / ’C_G(P) \subset ’O_p(’N_G(P) / ’C_G(P)).
Theorem odd_p_stable : forall gT p G, odd #|G| -> p_stable p G.

The proof of this theorem is about 300 lines long, and summarizes about 6 pages
of the textbook it is drawn from[2], with some improvements (like eliminating
“proof by ellipsis”).

The most challenging representation theory result in [3] was Theorem 2.5,
whose 240-line proof uses representation theory to derive numerical properties
of the orders of a specific class of groups (semidirect products of a cyclic group
acting in a prime manner on an extraspecial p-group).

16 Georges Gonthier

Theorem repr_extraspecial_prime_sdprod_cycle :
forall p n gT (G P H : {group gT}),
p.-group P -> extraspecial P -> P ><| H = G -> cyclic H ->
let h := #|H| in #|P| = (p ^ n.*2.+1)%N -> coprime p h ->
{in H^#, forall x, ’C_P[x] = ’Z(P)} ->

[/\ (h %| p ^ n + 1) || (h %| p ^ n - 1)
& (h != p ^ n + 1)%N ->

forall F q (rG : mx_representation F G q),
[char F]^’.-group G -> mx_faithful rG -> rfix_mx rG H != 0)].

References

1. Lang, S.: Algebra. Springer-Verlag (2002)
2. Gorenstein, D.: Finite groups. Second edn. Chelsea, New York (1980)
3. Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. Number

188 in London Mathematical Society Lecture Note Series. Cambridge University
Press (1994)

4. Peterfalvi, T.: Character Theory for the Odd Order Theorem. Number 272 in
London Mathematical Society Lecture Note Series. Cambridge University Press
(2000)

5. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular For-
malisation of Finite Group Theory. In: Theorem Proving in Higher-Order Logics.
Volume 4732 of LNCS. (2007) 86–101

6. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In:
Theorem Proving in Higher-Order Logics. Volume 5170 of LNCS. (2008) 86–101

7. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Theorem Proving in Higher-Order Logics. Volume 5674 of LNCS.
(2009) 327–342

8. Pottier, L.: User contributions in Coq, Algebra (1999) Available at
http://coq.inria.fr/contribs/Algebra.html.

9. Blanqui, F., Coupet-grimal, S., Delobel, W., Koprowski, A.: Color: a Coq library
on rewriting and termination (2006) Eighth Int. Workshop on Termination (WST
06), to appear in MSCS.

10. Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative algebra in the Mizar
system. J. Symb. Comput. 32(1) (2001) 143–169

11. Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. In: Theorem
Proving in Higher-Order Logics. (2005) 227–244

12. Harrison, J.: A HOL Theory of Euclidian Space. In Hurd, J., Melham, T.F., eds.:
TPHOLs. Volume 3603 of LNCS., Springer (2005) 114–129

13. Cowles, J., Gamboa, R., Baalen, J.V.: Using ACL2 Arrays to Formalize Matrix
Algebra. In: ACL2 Workshop. (2003)

14. Stein, J.: Documentation for the formalization of Linerar Agebra http://www.cs.

ru.nl/~jasper/.
15. Coq development team: The Coq Proof Assistant Reference Manual, version 8.3.

(2010)
16. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system.

INRIA Technical report, http://hal.inria.fr/inria-00258384.
17. Sozeau, M., Oury, N.: First-Class Type Classes. In: Theorem Proving in Higher

Order Logics, 21th International Conference. Volume 5170 of Lecture Notes in
Computer Science., Springer (August 2008) 278–293

18. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional
Programming 13(2) (2003) 261–293

