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Abstract: Fast Multipole Methods (FMM) are a fundamental operation for the simulation of
many physical problems. The high performance design of such methods usually requires to carefully
tune the algorithm for both the targeted physics and hardware. In this paper, we propose a new
approach that achieves high performance across architectures. Our method consists of expressing
the Fast Multipole Method (FMM) algorithm as a task flow and employing a state-of-the-art
runtime system, StarPU, to process the tasks on the different computing units. We carefully design
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Parallélisation par tâche de la Méthode multipôle rapide
pour les architectures multi-cœurs

Résumé : Les méthodes multipôles rapides (FMM) constituent une opération fondamentale
pour la simulation de nombreux problèmes physiques. Leur mise en œuvre haute performance
requiert habituellement d’optimiser attentivement l’algorithme à la fois pour la physique visée
et le matériel utilisé. Dans ce papier, nous proposons une nouvelle approche qui atteint une
performance élevée et portable. Notre méthode consiste à exprimer l’algorithme FMM comme
un flot de tâches et d’employer un moteur d’exécution, StarPU, afin de traiter les tâches sur
les différentes unités d’exécution. Nous concevons précisément le flot de tâches, les opérateurs
mathématiques, leurs implémentations sur unité centrale de traitement (CPU) ainsi que les
schémas d’ordonnancement. Nous calculons les potentiels et forces pour des problèmes avec 200
millions de particules en 48.7 secondes sur une machine homogène SGI Altix UV 100 comportant
160 cœurs

Mots-clés : Méthodes multipôles rapides, architectures multi-coeurs, parallélisme à mémoire
partagée moteur d’exécution, pipeline.



Task-based FMM for multicore architectures 3

Contents
1 Introduction 4

2 Background 5
2.1 The Chebyshev Fast Multipole Method . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 StarPU – A task-based runtime system . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Task-based Fast Multipole Method 8
3.1 Fork-join model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Interleaving near-field and far-field computations . . . . . . . . . . . . . . . . . . 12
3.3 Task flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Refining the task flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Scheduling strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Numerical Studies 19
4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Refining the settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Comparison of all parallelization models . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Parallel efficiency of the task flow model . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusion 25

RR n° 8277



4 Agullo & Bramas & others

1 Introduction

Pair-wise particle interactions play an important role in many physical problems. Examples
are astrophysical simulations, molecular dynamics, the boundary element method, radiosity in
computer-graphics and dislocation dynamics. In the last decades numerous algorithms have
been developed in order to reduce the quadratic complexity of a direct computation. The fast
multipole method (FMM), first presented in [8], is probably the most prominent one. The fact
that FMMs have linear complexity makes them candidates of first choice for processing large-
scale simulations of physical problems [9]. Thus, the design of efficient FMM implementations is
crucial for the high performance computing (HPC) community.

In particular, different parallelization schemes have been proposed to exploit multicore archi-
tectures. In [5], the authors proposed a two-level approach using Posix thread (Pthread) at the
coarser level and multithreaded BLAS routines at the finer level. Alternatively, [4, 3, 15] pro-
posed OpenMP implementations based on the fork-join model. An open parallel for pragma
directive with static scheduling is used on loop of all cells on each level of the octree during the
upward pass and downward pass of the algorithm. The authors in [4, 3] obtained a good scalabil-
ity using thread affinity to increase cache access performance on adaptive FMM. They test their
approach until 64 threads. Moreover, they exploit the internal parallelism inside a processor by
using a full SIMD and SSE optimization of the different kernels. In [15] they use both MPI and
OpenMP which allow them to focus on efficiency for a small number of threads. For intra node
parallelism, they achieve 78% efficiency with 8 cores. In [16], a new approach based on a graph
description of the FMM where nodes represent computation and edges dependencies is proposed.
They use an algorithm to traverse the graph in a minimal time. Their implementation relies on
POSIX threads and achieves 90% efficiency for a medium accuracy on 24 cores. The feasibility
of a task-based approach has also been studied in [10] and assessed on a 16 cores machine.

One trend for the architecture to go to exascale computers is to increase the number of
cores per node and to add accelerators. Such architectures involve rethinking the paradigm of
parallelism by introducing at least less synchronizations. In this paper, we study the impact
of the parallelization method on the performance of Fast Multipole Method (FMM) on shared-
memory multicore machines with uniform octree. For this purpose, we consider a consistent
task-based formulation of FMM (Section 3) and we compare three parallelization paradigms
which differ from each other only with respect to the expression of the dependencies between
the different computational steps. The first paradigm may be viewed as a canonical fork-join
expression of FMM where synchronizations are performed between successive levels of the octree
for each type of task (Section 3.1). Exploiting the fact that far field and near field can be
computed independently, we propose a second formulation enabling the interleaving of far field
and near field tasks (Section 3.2). Finally we propose a so-called task flow paradigm where the
dependencies are expressed at the level of the task such that computational progress is only
limited by actual algorithmic dependencies (Section 3.3).

To illustrate our discussion, we have implemented the first two parallelization paradigms with
OpenMP while we rely on a runtime system, StarPU [2], to implement the task flow scheme.
For all three approaches, we use the same blocking scheme (first described in Section 3.1) such
that only the parallelization method impacts performance. In the task flow case, we furthermore
have the opportunity to arrange the ordering of the tasks in order to exhibit more parallelism
(Section 3.3.1), which we can then exploit with an appropriate scheduling strategy (Section 3.3.2).

The rest of the paper is organized as follows. In Section 2, we briefly introduce the FMM
algorithm in use, the StarPU task-based runtime system and the experimental environment. In
Section 3, we propose a task-based formulation of FMM as well as three methods implementing
different parallelization paradigms. We present related performance in Section 4 before conclud-

Inria
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ing in Section 5.

2 Background

Pair-wise particle interactions can be modeled mathematically as

fi =

N∑
j=1

P (xi, yj)wj for i = 1, . . . ,M. (1)

Here, pairs of particles, denoted as sources and targets, are represented by their spatial position
x, y ∈ R3. The interaction is governed by the kernel function P (x, y). The above summation
can also be understood as matrix-vector product f = Pw, where P is a dense matrix of size
M ×N . Hence, if we assume M ∼ N , the cost grows like O(N2) which becomes prohibitive as
M,N →∞. This is why we use the fast multipole method (FMM ) as a fast summation scheme.

2.1 The Chebyshev Fast Multipole Method

The FMM reduces the cost of computing such summations to O(N). It is applicable if the kernel
P (x, y) can be approximated accurately in the far-field (sources and targets are well separated).
For asymptotically smooth kernels this is always the case and in the following we limit ourselves
to kernels of that type. In the near-field (sources and targets are not well separated) the kernel
needs to be used in its original form.

As a matter of fact, the FMM consists of two major tasks. The first one, the separation of
near- and far-field, is common to all FMM formulations. It is done by going through an octree (in
R3) which represents the hierarchically partitioned computational domain. We refer to the nodes
in the tree as clusters and the edges determine their children and parents, respectively. Adjacent
cluster pairs form the near-field, not adjacent clusters the far-field. Due to the nestedness of
the clusters in the tree, the far-field of a cluster is limited to the near-field of its parent. The
second task, the low-rank approximation of the kernel, differs among different FMM formulations.
Many are kernel specific, meaning, they require a distinct analytic treatment for each kernel. Our
approach is adapted from [7] and can deal with all asymptotically smooth kernels. Examples for
Laplace, Gauss and Stokes kernels and radial basis functions, etc. have been presented. It has
also been extended to the oscillatory kernels in [12].

In this paper we focus on the second task, the efficient approximation of the kernel in Eqn. (1).
As representative kernels we choose

P (x, y) =
1

|x− y|
and F (x, y) =

x− y

|x− y|3
. (2)

The second kernel, also force kernel, can be written as the gradient of the potential F (x, y) =
∇xP (x, y). We use a Chebyshev interpolation scheme (see [7] for a detailed explanation and a
full error analysis) to interpolate these kernels as

P (x, y) ∼
∑̀
m=1

S`(x, x̄m)
∑̀
n=1

P (x̄m, ȳn)S`(y, ȳn) and

F (x, y) ∼
∑̀
m=1

∇xS`(x, x̄m)
∑̀
n=1

P (x̄m, ȳn)S`(y, ȳn)

(3)
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6 Agullo & Bramas & others

with the interpolation polynomial

S`(x, x̄) =
1

`
+

2

`

`−1∑
i=1

Ti(x)Ti(x̄).

The interpolation points x̄ and ȳ are given by the roots of the Chebyshev polynomial T`. Note
that instead of interpolating the force kernel F we interpolate P and shift the gradient to the
interpolation polynomial. In the following, we assume that the set of M sources x (respectively,
N targets y) is located in a cluster X ⊂ R3 (respectively, Y ⊂ R3).

Let us introduce the different FMM operators to understand the remainderof the paper.

Far-field operators If the clusters X and Y are well separated we can plug the above approx-
imation of P (x, y) into Eqn. (1) and obtain

fi =
∑̀
m=1

S`(xi, x̄m)
∑̀
n=1

P (x̄m, ȳn)

N∑
j=1

S`(yj , ȳm)wj for i = 1, . . . ,M, (4)

which we split up in a three-stage fast summation scheme.

1. Particle-to-moment (P2M) or moment-to-moment (M2M) operator: equivalent source
values are anterpolated at the interpolation points ȳn ∈ Y by

Wn =

N∑
j=1

S`(yj , ȳm)wj for j = 1, . . . , N. (5)

2. Moment-to-local operator (M2L): target values are evaluated at the interpolation points
x̄m ∈ X by

Fm =
∑̀
n=1

P (x̄m, ȳn)Wn for m = 1, . . . , `. (6)

3. Local-to-local (L2L) or local-to-particle (L2P) operator: target values are interpolated at
final points xi ∈ X by

fi ∼
∑̀
m=1

S(xi, x̄m)Fm for i = 1, . . . ,M. (7)

Note, the P2M, M2M, M2L and L2L operators are the same for the kernel F (x, y), only the L2P
operator differs. The M2L operator is the most costly operator arising in the FMM algorithm.
Our implementation actually improves precomputation and running times and also memory
requirement, drastically. Technical aspects of the implementation and algorithmic optimizations
of all these operators can be found in [11] and their order of application is sketched in Fig. 1.

Near-field operator If the clusters X and Y are not well separated (near-field) we have to
evaluate Eqn. (1) directly. That corresponds to the particle-to-particle (P2P) operator. For the
force evaluation we have to use F (x, y), we cannot apply the gradient trick.

Note. The near-field and the far-field are (nearly) independent. The only dependency exists
between the far-field operator L2P and the near-field operator P2P. Both write on the target
values f , L2P via Eqn. (7) and P2P via Eqn. (1). All other far-field operators (P2M, M2M,
M2L and L2L) do not depend on the near-field operator.

Inria
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M2M

(a) Upward pass. The M2M operator translates
equivalent sources of the child cells to equivalent
sources of their parent cluster.

M2L

L2L

M2L

(b) Downward pass. The M2L operator com-
putes the contribution from source cells in the far-
field. The far-field is restricted to the near-field of
the parent cluster. The L2L operator translates the
target values from the parent cell to its child cells.

Figure 1: FMM tree traversal in 2d. Shown are the far-field operators (M2M, M2L and L2L) at
levels above the leaf-level, not shown are P2M and L2P and the near-field operator P2P.

Multilevel scheme In order to evaluate all interactions we repeat the above scheme for all
clusters X with all clusters Y at the leaf level of the octree. We choose between the fast and the
direct evaluation based on whether cluster pairs are well separated or not. Such an approach
leads to a single-level fast summation scheme. Think of applying the above described three-stage
scheme recursively. Consider the M2L operator in Eqn. (6) to be a direct summation which
needs to be accelerated (analog to Eqn. (1)). We apply the same three-stage scheme again and
again until we reach the top of the octree. In the leaf level we have the P2M and L2P operators,
in all other levels we have the M2M and L2L operators. Instead of anterpolating (respectively,
interpolating) at particles we do it now at the interpolation points of the child clusters of X and
Y .

Octree structure The octree data structure that we consider here is an octree with indirec-
tions that has been introduced in [6]. This structure allows efficient uniform computations while
being able to represent highly unbalanced octrees with heights larger than 10.

Remark. The presented FMM formulation has two approximations: 1) the interpolation of the
kernel functions which is determined by the interpolation order ` and 2) the low-rank approxima-
tion of the M2L operators is determined by the target accuracy ε. Studies in [12, 11] have shown
that the setting (`, ε) = (Acc, 10−Acc) results approximately in a relative point-wise L2 error of
εL2

= 10−Acc. In the rest of the paper we use this convention to describe the accuracy Acc.

2.2 StarPU – A task-based runtime system
A runtime system is a software component that aims at supporting the execution of an algorithm
written in a relatively high-level language. It hides the complexity of the architectures to the user
by scheduling the tasks on all the computational units available on node and by managing the data

RR n° 8277



8 Agullo & Bramas & others

transfers. Different runtime systems were designed, some of them also support accelerator-based
platforms. Hereafter, we use StarPU [1] and we focus on using it on homogeneous platforms.

The algorithm (FMM in our case) to be processed by StarPU needs to be described in a
high-level view which is oblivious to the underneath platform. It is expressed as a so called task-
flow consisting of a set of tasks with dependencies among them. A task-flow can conveniently
be represented as a directed acyclic graph (DAG) where vertices represent individual tasks and
edges dependencies among them. The multi-device (CPU, GPU, etc.) implementation of tasks,
so called codelets, needs to be provided by the programmer. In other words, a runtime does not
release us from writing code for each specific architecture. Note also that data on which tasks
operate may need to be moved between the different computational units. StarPU ensures the
coherency of these data. For that, data are registered to the runtime system, which is accessing
them not through their memory address anymore but through an abstraction layer, so called
handles, returned upon their registration. StarPU transparently guarantees that a codelet which
needs to access a piece of data will be given a pointer to a valid data replicate. It will take care
of data movements and therefore relieve programmers from the burden of explicit data transfers.
StarPU also detects the closest CPU core to a GPU and selects it to handle that GPU. It remains
important to organize the order of execution of available tasks on the various processing units.
This is taken over by the scheduler. The choices and the capacity of the scheduler is an important
factor for the parallel performance and it can strongly depend on the algorithm to be parallelized.

3 Task-based Fast Multipole Method

As described in Sec. 2, the FMM uses an octree to represent the hierarchical subdivision of the
computational domain. Nodes are cells (which contain data such as multipole or local expansions)
and edges point to parent, respectively child cells as can be seen in Fig. 2a. The FMM operators

root cell

leaf cells

particles

(a) Tree view

P2M/L2P P2M/L2P

M2M/L2L M2M/L2L

M2L

M2L

(b) Operators

Figure 2: Simplified FMM tree and far-field operators

operate on this data structure as the edges in Fig. 2b show. We briefly recall their functioning:
P2P operates only on the leaf-level. P2M, M2M, L2L and L2P operate always on two levels,
unlike the M2L which operates only on one level at a time. P2M and L2P operate on the
particles and the leaf-level, M2M and L2L on all other levels and their parent, respectively
child levels. The directed graph in Fig. 2b shows how the FMM algorithm is conventionally
represented. However, that representation contains cycles and, thus, does not provide insight on
the dependencies between the operators. For example it cannot be perceived, whether P2M or
L2P comes first, or whether the FMM is upward/downward or downward/upward algorithm. In
order to get insight on that, we need to design a directed acyclic graph (DAG) as given in Fig. 3.

Inria
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We notice that the tree is traversed twice. A bottom up traversal executes P2M and M2M and
a top down traversal executes M2L followed by L2L and L2P. P2P is usually associated to leaf
cells and can be executed at any time except when the corresponding L2P is being executed.

L2P L2P L2P L2P

L2L

L2L L2L

M2L
M2L

M2L

M2M
M2M

M2M

P2M P2M P2M P2M

Figure 3: Operators in mirrored tree view

Work share distribution In order to design efficient parallelization models it is indispensable
to understand the distribution of the computational work among the operators at all levels of
the tree. We analyze the breakdown of such based on an example with N = 20 · 106 particles
uniformly distributed in the unit cube, an octree of height h = 7 and give results for an accuracy
Acc = 7 (for the definition of Acc see the remark at the end of Sec. 2.1). Recall, the accuracy
does only influence the work share of the far-field computation (see Sec. 2.1). The work share
of the near-field computation is not affected as long as the height of the tree coincides. Here,
it is 0.78 TFlop (28.75 %) versus 2.71 TFlop (71.25 %) for the far-field, whose computational
cost increases with respect to the accuracy. In Fig. 4 we study the percentage share of the
overall number of required floating point operations for level-wise grouped operators (far-field:
P2M, M2M, M2L, L2L, L2P and near-field: P2P). The directed edges indicate the dependencies
between the operators. The far-field computation starts with the P2M at level 6 (the leaf level),
once it is concluded the M2L at the leaf level and the M2M at level 5 are ready, and so on. The
work share of the M2L is clearly predominant. Moreover, as we climb down the tree the work
share, hence also the parallelism, increases. In fact, most of the work is done by the operators at
the leaf level. The reason is that the number of cells between parent and child level behaves like
1/8 (because of the uniform particle distribution). Another important aspect is the work share
between near-field and far-field. For the same example as above, but with Acc = 3 (instead of
Acc = 7), the ratio between far-field and near-field changes from 28.75 % vs. 71.25 % to 4.50 %
vs. 95.50 % (removing one level of the octree would yield a similar ratio). Examples with a large
near-field and a small far-field work share are easier to parallelize than vice versa. For an efficient
design of parallelization models of the FMM some aspects need to be taken into account. Let us
recap them.

RR n° 8277



10 Agullo & Bramas & others

M2M 0.0002% M2L 0.0042% L2L 0.0002%

M2M 0.002% M2L 0.070% L2L 0.002%

M2M 0.016% M2L 0.750% L2L 0.016%

M2M 0.13% M2L 6.88% L2L 0.13%

P2M 0.89% M2L 58.75% L2P 3.60%

P2P 28.75%

Far-field

Near-field

Figure 4: The breakdown of the computational work (N = 20 · 106 and h = 7 and Acc = 7)
shows dependencies between the FMM operators at different levels and their percentage share
of the overall work (total work 2.71 · 1012Flop with 71.25% far-field and 28.75% near-field).

• The near-field and far-field computations are (nearly) independent.
• The far-field provides much parallelism at the bottom and little towards the top of the tree.
• The near-field is easy to parallelize, the far-field is not.

In the remainder of this section we exploit these aspects in a step-by-step fashion to obtain a
highly efficient parallelization of the FMM algorithm.

3.1 Fork-join model
The most straightforward way of parallelizing the FMM is to progress with the algorithm level by
level and to split the work at each level between the threads. Algorithm 1 shows such level-wise
progression.

Algorithm 1: Fork-join model for the FMM algorithm
function FMM(tree, kernel)

// Near-field
P2P(tree.levels[tree.height-1]);
// Far-field
P2M(tree.levels[tree.height-1]);
for l = tree.height-2 → 2 do

M2M(tree.levels[l]);

for l = 2 → tree.height-2 do
M2L(tree.levels[l]);
L2L(tree.levels[l]);

M2L(tree.levels[tree.height-1]);
L2P(tree.levels[tree.height-1]);

Inria
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For the distribution of work among the threads we use the omp parallel for statement of
OpenMP (see [13]). In Alg. 2 we show the exemplary implementation for the M2L operator: each
call operates on a single cell, hereafter, we refer to it as the simple fork-join model. OpenMP
offers different scheduling strategies (dynamic or static) in order to influence the balancing of
the work between threads. Nonetheless, after each level there is need for a barrier in order to
satisfy dependencies among operators to ensure correct results.

Algorithm 2: Scalar fork-join model for the M2L operator
function M2L(level)

#pragma omp parallel for
foreach cell cl in level.cells do

M2L(cl.local, cl.far_field.multipole);

Let us analyze the fork-join queue from Alg. 1: each for-loop represents one fork-join node,
meaning that each for-loop ends with a barrier. In total there are one barrier for the near-field
and 3(h− 2) barriers for the far-field computations.

Granularity Up to now, each operator called operates only on a single cell. For example in
the simple fork-join model, a P2P call evaluates the at most 26 near-field interactions of one cell
at the leaf level. Or an M2M call computes the equivalent source values based on the source
values of its 8 child cells and an M2L call computes the at most 189 far-field interactions. This
model has a negative impact on the overall performance due to the following aspects:

• Large number of operator calls: there are at most 8l cells at level l, hence, the same number
of operator calls.

• Large number of dependencies: a cell has at most 189 far-field interactions and a leaf cell
has at most 26 near-field interactions which must be made available to each operator call;

• Small granularity of far-field operators: depends on number of particles in leaf cells and
the accuracy Acc.

In order to remedy these issues we introduce a parametrization of the granularity of these operator
calls. The idea is presented in Fig. 5 and we refer to it hereafter as the blocked fork-join model.
Instead of a tree where nodes represent cells (left figure) we move to a tree where nodes represent
blocks of at most ng cells (right figure) and let each operator call operate on such a block of cells.
Note that in the trivial case with ng = 1 the blocked fork-join model reduces to the simple one.

Figure 5: A tree with ng = 3 (one node in the tree groups three cells)

We use the Morton ordering [14] for indexing cells within the octree and, hence, also for the
assembly of blocks of cells. That is, why they tend to be grouped also locally and, hence, they

RR n° 8277



12 Agullo & Bramas & others

very likely share common near and far-field interactions. Because of this increased data locality
operator calls of larger granularity lead to a higher performance in their execution. However,
as result of coarser granularity we get fewer operator calls which limits the concurrency. It is
essential to find values for ng the granularity to find the optimal trade-off between performance
and concurrency. In Alg. 3 we use parametrized operator calls with the omp parallel for
statement exemplary for the near-field computation. It works analogously for the far-field and
we can plug such into Alg. 1 in order to obtain a grouped fork-join model for the FMM algorithm.
We do still have a barrier at each level.

Algorithm 3: Blocked fork-join model for the P2P operator
function P2P(level)

#pragma omp parallel for
foreach block of cells bl in level.blocks do

P2P(bl.particles, bl.near_field.particles);

3.2 Interleaving near-field and far-field computations
In the previous models we studied sequential executions of parallel regions which is the usual
way of parallelizing the FMM. We did not exploit the fact that the near-field and far-field
computations are (nearly) independent. Here, we present a model that exploits this property by
replacing the loop parallelization by a task parallelization strategy (see Alg. 4). We use the omp
task model. In the following we describe why that allows us to interleave the computations of
near and far field.

We use the omp sections statement for splitting the FMM algorithm in two: the first section is
concerned with the near-field computation and the second section with the far-field computation.
All created threads enter the omp sections scope but only two move on to the two omp section
scopes (one each). The remaining threads wait at the end of the omp sections scope. For the
computation of near- and far-field we use the omp task statement (see Alg. 5 for the M2Ltask
implementation). Now, the two active threads create tasks, deliver them to the OpenMP run-
time which schedules them to the waiting threads which execute them concurrently. The omp
taskwait barriers in the far-field section (see Alg. 5) can be partially hidden by the concurrent
task insertion in the near-field section: imagine, there are not enough far-field task available due
to a taskwait barrier, threads, instead of being idle till the end of that barrier, can proceed with
available near-field tasks.

Recall, that the near-field and far-field computation is only nearly independent, because both,
P2P and L2P write indeed on the same values (see Sec. 2.1). We implement this reduction
manually by introducing an omp single directive before calling the L2P in Alg. 4.

Note that in Alg. 5, M2L tasks operate on blocks of cells and not on single cell. The reason is
the following. Assume, ts is the time needed by the runtime system to create/schedule/destroy a
task, te is the time to execute a task and nt the number of available threads. As long as ntts > te
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Task-based FMM for multicore architectures 13

Algorithm 4: Interleaving near-fiels and the far-field computations
function FMMtask(tree)

#pragma omp parallel
#pragma omp sections

// Near-field
#pragma omp section

P2Ptask(tree.levels[tree.height-1]);

// Far-field without L2P
#pragma omp section

P2Mtask(tree.levels[tree.height-1]);
for l = tree.height-2 → 2 do

M2Mtask(tree.levels[l]);

for l = 2 → tree.height-2 do
M2Ltask(tree.levels[l]);
L2Ltask(tree.levels[l]);

M2Ltask(tree.levels[tree.height-1]);

// Reduction with L2P
#pragma omp single

L2Ptask(tree.levels[tree.height-1]);

Algorithm 5: Task model for the M2L operator
function M2Ltask(level)

foreach block of cells bl in level.blocks do
#pragma omp task

M2L(bl.local, bl.far_field.multipole);

#pragma omp taskwait;
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is true, not sufficient work will be available for all threads. By increasing the granularity of tasks
we increase te and as a consequence the overhead for the runtime system to handle the tasks
becomes negligible. Preliminary studies (not reported here) have shown that Alg. 4 with tasks
of too fine granularity does not scale.

According to our knowledge of the OpenMP standard, this algorithm is the one of the most
efficient, in terms of pipelining, which can be obtained using simple OpenMP statements. In
fact, OpenMP does not provide a feature which allows to express dependencies between tasks or
to give priorities to them.

3.3 Task flow
At the beginning of Sec. 3 we created a directed acyclic graph (DAG, see Fig. 3) to express
the dependencies between tasks which are represented by its nodes. In the following we turn
that DAG into one where nodes represent tasks and edges carry the dependencies (see Fig. 6).
This is the natural representation for runtime systems like StarPU (Sec. 2.2), which model them

Figure 6: The task flow of the FMM algorithm given by a DAG where nodes represent tasks and
edges dependencies (straight lines represent a writing operation from different tasks on the same
memory).

internally by declaring dependencies based on the access mode task have on their data and on
the order of their insertion. In StarPU the insertion of tasks is performed asynchronously in
other words the computation and the tasks insertion are done in parallel. The main thread calls
a method to insert a task into the runtime system which has a prototype like

insertTasks(codelet, access_mode_1, handle_1, access_mode_2, handle_2, ...);

The access modes can either be READ, WRITE or READ_WRITE. They express the access mode of
data handles which are a key structure to enable the data management in StarPU. Data handles
with READ access mode can be processed simultaneously. However, in order to obtain correct and
defined results, data handles with WRITE access mode have to be processed one after another.
Based on this concept the entire DAG and, thus, the insertion order of all tasks is defined.

3.3.1 Refining the task flow

Generally, when processing the DAG the following two aspects have to be considered. 1) A strict
execution order requires one task to be processed after the other one. For example, one task
depends on the result of the previous one. 2) A flexible execution order prohibits a simultaneous
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Task-based FMM for multicore architectures 15

execution of tasks but does not prescribe which to process first. For instance, if two tasks want
to write on the same memory simultaneously a race condition arises and no statement about the
correctness of the result can be made. In the FMM DAG both types of execution orders occur.
Strict ones are met for M2M tasks. Before processing the M2M tasks at level l those from level
l − 1 have to be completed. Flexible ones are met for L2L and M2L tasks. At a given level l
it does not matter which of the two tasks is processed first. The same situation is met for P2P
and L2P tasks. Both are writing on the same data. They add the near-, respectively far-field
contribution to the target values (see Sec. 2.1). In the following we will show how the flexible
execution order allows to refine and optimize the task flow.

L2P before/after P2P P2P tasks are independent from all other tasks except L2P tasks
which come at the end of the far-field computation. As we mentioned above, in order to satisfy
dependencies between them it does not matter which one we process first. We first insert L2P
and then P2P tasks. This puts P2P tasks at the very end of the task flow as shown in Fig. 7a
and StarPU allows P2P tasks to be executed only once all L2P tasks are completed.

Our objective is, however, to use P2P tasks to remedy concurrency bottlenecks during the
far-fields computation. We can do so by inserting P2P before L2P tasks (see Alg. 6). Now L2P
tasks start being executed once all other far-field and P2P tasks are completed. But P2P tasks
are available all the time. The resulting task flow is presented in Fig. 7b.

Algorithm 6: P2P before L2P
foreach block of cells bl in leaflevel.blocks do

insertTask(P2P, READ_WRITE, bl.particles, READ,
bl.near_field.particles);

foreach block of cells bl in leaflevel.blocks do
insertTask(L2P, READ_WRITE, bl.particles, READ, bl.local);

In Fig. 7 we can see that inserting P2P before L2P tasks leads to a task flow with more tasks
without predecessors which are available right away, thus, it provides more parallelism. Note,
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Figure 7: DAG generated by the two P2P and L2P tasks insertion algorithms.
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both, P2P and L2P tasks have READ_WRITE access on bl.particles, because both increment
their target values f . This is the reduction after the independent execution of near- and far-field.

M2L before/after L2L The execution order of M2L and L2L tasks is important as it might
induce barriers during the computation. L2L tasks at level l have READ access to cells at level
l and READ_WRITE access to their child cells at level l + 1. M2L tasks at level l have READ and
WRITE access on cells at level l. Hence, both, L2L tasks at level l − 1 and M2L tasks at level l
have WRITE access on cells of level l. Meaning that these tasks cannot be executed simultaneously
but the order of their execution does not matter. There are two situations for far-field tasks to
satisfy dependencies. First, M2M tasks at level l + 1 have to be completed before M2L tasks at
level l can be executed. Secondly, M2L tasks at level l and L2L tasks l− 1 have to be completed
before L2L tasks at level l can be processed.

We can choose to execute L2L tasks at level l − 1 before we execute M2L tasks at level l.
This choice is presented in Alg. 7 and the resulting task flow can be seen in Fig. 8a. It delays
the insertion of the M2L tasks of the leaf level which provide the most parallelism. The reason
is that first the L2L tasks from the level above the leaf level have to be completed which means
that all M2M and L2L and all M2L except the one from the leaf level have to be completed, too.

Algorithm 7: L2L before M2L
for l = tree.height-2 → 2 do

foreach block of cells bl in tree.levels[l].blocks do
insertTask(M2M, WRITE, bl.multipole, READ, bl.children.multipole);

for l = 2 → tree.height-2 do
foreach block of cells bl in tree.levels[l].blocks do

insertTask(M2L, READ_WRITE, bl.local, READ, bl.far_field.multipole);
foreach block of cells bl in tree.levels[l].blocks do

insertTask(L2L, READ_WRITE, bl.children.local, READ, bl.local);

foreach block of cells bl in tree.levels[tree.height-1].blocks do
insertTask(M2L, READ_WRITE, bl.local, READ, bl.far_field.multipole);

The second choice is to execute first M2L tasks at level l and then L2L tasks at level l − 1
and is presented in Alg. 8. In the resulting task flow in Fig. 8b can be seen that M2L tasks at
level l become available just after M2M tasks at level l+1 are concluded. In theory such order of
execution might create a small lack of parallelism if all M2L tasks are concluded but L2L tasks
not. However, in practice, the cost of L2L compared to M2L tasks is negligible. This approach
releases quickly much parallelism and it is to choose over the previous one.

3.3.2 Scheduling strategies

Since the computation is split in tasks, it remains important to organize the order of execution of
tasks among available processing units. This is done by the scheduler. Its choices and capabilities
have a big impact on the performance of the parallel execution.
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Algorithm 8: M2L before L2L
for l = tree.height-2 → 2 do

foreach block of cells bl in tree.levels[l].blocks do
insertTask(m2m, WRITE, bl.multipole, READ, bl.children.multipole);

foreach block of cells bl in tree.levels[2].blocks do
insertTask(m2l, READ_WRITE, bl.local, READ, bl.far_field.multipole);

for l = 2 → tree.height-2 do
foreach block of cells bl in tree.levels[l+1].blocks do

insertTask(m2l, READ_WRITE, bl.local, READ, bl.far_field.multipole);
foreach block of cells bl in tree.levels[l].blocks do

insertTask(l2l, READ_WRITE, bl.children.local, READ, bl.local);
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Figure 8: DAG generated by the tasks insertion of algorithm 6 followed by 7 or 8
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Each task has a state which can be either blocked or ready. Blocked tasks need to wait
until those it depends on are finished. Whereas, ready tasks have all their dependencies satisfied
and can be executed right away. The scheduler is the system in charge of ready tasks, only. It
manages their order of execution and their assignment to available processing units. The idea
is the following. Each scheduler owns one or more containers (list, queue, FIFO, etc.) which
store ready tasks. The runtime system passes ready tasks to the scheduler by calling push. At
the same time, pop releases tasks to available processing units (also workers). The scheduler
specific implementation of these two methods push and pop is visible in the Figs. 9 and 10. Any
scheduler in StarPU has to implement these two methods and is obligated to make sure that
all tasks given to be schedule are also released, i.e. the containers are emptied. The number of
ready tasks can be high, and scheduling has to be efficient, i.e., the time for scheduling a task
must be negligible compared to the time required for it execution.

Moreover, the scheduler needs to be able to deal with heterogeneous processing units, various
kinds of tasks and potential data transfer between different processing units. Some scheduler
allow the user to give hints to fill processing units and to make it doing correct choices. The
scheduling strategy in such context is an ongoing research topic. Along with StarPU come several
scheduler. One of them is the Eager scheduler which we compare with the Priority scheduler,
which we developed specifically for the FMM algorithm. In the following we first briefly introduce
the Eager scheduler and then in more details the Priority scheduler. Finally, we compare both
schedulers.

Eager scheduler The Eager scheduler is described in StarPU [1]. Its behavior is based on the
greedy algorithm. push consists in storing the newly ready tasks in a single container. When a
worker calls pop Eager releases the head of the container. Such scheduling is very cheap since it
reduces the scheduling time to a minimum, no choice needs to be made. On the other hand, there
is no distinction between tasks and bad choices might be taken. For example, it does not allow
the user to have any influence on the scheduling (as opposed to the Priority scheduler which we
introduce later). In Fig. 9 we outline the mechanics of this scheduler.

? X X X R R
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User StarPU Core Eager Workers (PU)

Release dependencies

Push ready task Pop taskInsert a new task

C
P
U

G
P
U

Task legend:
? : Unknown status
X : Not ready
R : Ready
P : Currently processed
F : Finished              

Figure 9: The Eager scheduler

Priority scheduler In the following, we present the MultiPrio scheduler we developed and
show its efficiency to pipeline FMM tasks. To be able to control the task flow, we developed a
scheduler that supports the assignment of priorities to tasks. These priorities lie in the range
from 0 to MAX_PRIO: 0 denotes the highest and MAX_PRIO the lowest priority. The choice of the
priority for a task may depend on its type and on the level in the octree it operates on. Such
flexibility of assigning different priorities to different types of tasks lead to a much better pipeline
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of the task flow. In Fig. 10, we present the structure of the MultiPrio scheduler. As opposed
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Figure 10: Priority scheduler

to the Eager scheduler, it has several containers to store tasks of a given priority each. With
push, we add tasks which are ready to the container for the relative priority. Then, with pop we
iterate through the containers storing the tasks and release those with the highest priority first
and those with the lowest priority last.

4 Numerical Studies
In the previous section, we have presented how the FMM algorithm can be turned into a task
flow which, as a consequence, can be executed by a runtime system. We constructed this scheme
in a step-wise fashion. We started with the well known simple fork-join parallelization model of
the FMM. We introduced a blocking of cells in order to increase the granularity. We interleaved
near- and far-field computations by using the task model from OpenMP and finally we presented
the full task flow model.

In this section we compare and validate all these models. We start by presenting the two
examples we use for that and two homogeneous machines we use for the computations. Then we
study various settings and identify the most efficient ones. Finally we study the parallel efficiency
and compare the presented parallelization models in detail.

4.1 Experimental setup
We consider two different example geometries with different types of particle distribution, re-
spectively.

Cube (volume) Corresponds to random sampling particles in the unit cube as illustrated in
Fig. 11a. Such distributions have approximately the same number of particles per leaf cell.
Also each cell has all its neighbors.

Ellipsoid (surface) Corresponds to a sampling of particles on a the surface of the ellipsoid
with a higher density at the extremities as illustrated in Fig. 11b. Such distributions lead
to octrees where the ratio of the leaf cell with the most particles versus the one with the
least particles might be � 1. Also, an adaptive structure for the octree, introduced in
section 2.1, needs to be used in order to achieve good performance .

We consider two different homogeneous platforms for assessing our algorithms for the above
examples and we use the Intel compiler (version 12.0.5.220) with the compilation flags -ip -O2.
We do not exploit the NUMA memory structure.
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(a) Cube (volume) (b) Ellipsoid (surface)

Figure 11: Particles distributions of the test cases.

4 deca-core Intel Xeon E7-4870 This platform is composed of four deca-core Intel Xeon
E7-4870 processors running at 2.40 GHz (40 cores total). This machine is cache-coherent
with Non Uniform Memory Access (ccNUMA), which means that each core can access the
memory available on all sockets, with a higher latency if the accessed data is on another
socket. Each socket has 256 MB of random access memory (RAM) and a 30 MB L3 cache.
Each CPU core has its own L1 and L2 caches of size 32 KB and 256 KB, respectively.

20 octa-core Intel Xeon E7-8837 This machine is an SGI Altix UV 100. It is also a cc-
NUMA machine, composed of twenty octa-core Intel Xeon E7-8837 processors running at
2.67 GHz (160 cores total). Each socket has 32 GB of RAM and 24 MB of L3 cache. Each
CPU core has its own L1 and L2 caches of size 32 KB and 256 KB, respectively.

To compare the parallel efficiency on these machines, we consider traces of execution of FMM
computations. The color legend for the tasks is illustrated in Fig. 12, red (dark) stands for idle
time, white stands for P2P tasks, light-gray for M2L tasks and gray tasks for all other tasks
(P2M, M2M, L2L and L2P). Purple color indicates that a task is ready but its data not.

idle P2P M2L other kernels copying data

Figure 12: Color legend for traces

4.2 Refining the settings

In order to come up with the optimal settings of our method here we perform numerical studies
on the block size and we compare both presented schedulers. Based on these studies we choose
the settings which lead to the most efficient computations in terms of pipelining the task flow
and computational times.
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Block size Obviously the optimal block size ng depends on the example and the machine we
use for the computation. Too small values lead to too many tasks of too small granularity. Too
large values lead to too few tasks and, hence, not all threads may have work. Our goal here is to
find out if there exists a range of values for ng which lead to efficient computations independent
of example and machine. In Fig. 13 we plot the achieved performance of different examples
computed on both machines for a large range of ng.

Interesting is the benchmark for the cube (volume) with N = 20 · 106 particles on the 20
octa-core Intel Xeon E7-8837 . It is best performing for 250 < ng < 1 000. This is a rather small
interval compared to the other benchmarks. The reason is that larger ng do not provide enough
parallelism anymore. For N = 20 · 106 particles and h = 7 there are 86 = 262 144 cells at the leaf
level. With 160 threads the block size cannot exceed ng < 86/160 ∼ 1 638 otherwise there will
not be work for each thread.

Particle distributions on surfaces, e.g., the ellipsoid (surface), represent the trickier case. The
set of far-field interactions for the cube (volume) is complete, i.e. each cell has 63 − 33 = 189
cells in its far-field. This is not the case for the ellipsoid (surface), indeed it behaves more like
62 − 32 = 27. Moreover, the number of far-field interactions can change considerably. Thus,
for particle distributions on a surface tasks of block size ng provide less work than it is the
case for particle distributions in the volume. Moreover, if we fix the number of particles N and
their bounding box the particle density is much higher in the case of a particle distribution on a
surface. Thus, a higher octree needs to be constructed which leads to many more cells (in fact
their number 8h for volume and 4h for surface distributions grows exponentially in h). Another
issue in the case of a particle distribution on a surface is that the ratio of the leaf cell containing
the most particles to the one containing the least particles may be � 1. Hence, if we solely use
ng to define the granularity of a task we actually end up having tasks (P2M, L2P and P2P) with
vastly different numbers of particles.

If we look at the studies for the 4 deca-core Intel Xeon E7-4870 machine in Fig. 13 we note
that the achieved performance is almost the same for any ng in the studied interval, except for
very small values ng < 500. This tells us that the N = 20 · 106 particles example provides
enough parallelism on that machine, and that is why we do not study larger examples on it (see
Tab. 1). This is different on the 20 octa-core Intel Xeon E7-8837 machine. The examples with
N = 20 · 106 perform well for ng ∈ [500, 2 500] for the cube (volume) and ng ∈ [1 500, 5 500]
for the ellipse (surface). Then the achieved performance breaks down and approaches the one
obtained on the 4 deca-core Intel Xeon E7-4870 machine. The large examples, with 200 ·106 and
100 · 106 particles for cube (volume), respectively ellipsoid (surface) show a similar invariance on
ng as seen for the smaller examples on the 4 deca-core Intel Xeon E7-4870 machine. In Tab. 1 we
summarize the values for ng we use for the examples in the remaining sections on both machines.

Cube (volume) Ellipsoid (surface)
Machine small large small large

4 deca-core Intel Xeon E7-4870 1 500 not studied 6 000 not studied
20 octa-core Intel Xeon E7-8837 1 000 3 000 3 550 8 000

Table 1: Chosen block sizes ng (On the 4 deca-core Intel Xeon E7-4870 machine, large examples
are trivial to parallelize and, thus, not interesting to study.)
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Figure 13: Parallel performance on the 4 deca-core Intel Xeon E7-4870 (4deca) and 20 octa-core
Intel Xeon E7-8837 (20octa) machines for different block-sizes ng ∈ (0, 20000]. Presented are
studies for the cube (volume) (N = 20 · 106 with h = 7 and N = 200 · 106 with h = 8) and the
ellipse (surface) (N = 20 · 106 with h = 10 and N = 100 · 106 with h = 12). The chosen accuracy
is Acc = 5.

Scheduler comparison In Fig. 14 we compare traces of simulations obtained via the Eager
and the Priority scheduler. Each line in the traces stands for one thread over time. In the case
of the cube (volume) example both traces look almost the same, both, in terms of time and
tasks execution. Scheduling in that case is easy. The main difference is when P2P tasks are
executed. Eager inserts them at the same time as it inserts M2L tasks. By means of the Priority
scheduler we are able to give M2L and P2P tasks different priority. In the case of the particle
distribution in a volume this is not yet apparent. As we have already explained above, particle
distributions on a surface, such as the ellipsoid (surface) leads to max{Nleaf}/min{Nleaf} � 1
where Nleaf denotes the number of particles per leaf cell. Note, that the cost of the M2P and
L2P grows like O(Nleaf), but the one for the P2P task grows like O(N2

leaf). Consequently, we
decided to differentiate between P2P(large) and P2P(small) tasks and to assign them different
priorities within the Priority scheduler. The Eager scheduler does not allow that and we can see
in Fig. 14c the negative impact in the trace. Some of the P2P(large) tasks are executed before
the M2L tasks and the remaining ones after. At that stage of the execution no other tasks are
available which could give work to the idle threads. Within the Priority scheduler we assign the
P2P(large) tasks a higher and the P2P(small) a smaller priority with respect to the M2L tasks.
That is why the ponderous P2P(large) tasks are executed right away and the sleek P2P(small)
tasks are used after the M2L tasks in order to give idle threads work. The resulting trace is
presented in Fig. 14d. We do also give individual priorities to all other tasks as can be seen in
Tab. 2. As we identify 7 different types of tasks we consider a maximum of 7 + 2h priorities (h is
the octree height). In fact, five types of tasks (P2P(small) and P2P(large), P2M, M2M and L2P)
are assigned static priorities and two types of tasks (M2L(l) and L2L(l)) are assigned priorities
which depend on the respective level l in the octree they operate on. The priorities decrease as
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Figure 14: Comparison of traces obtained from the Eager and the Priority scheduler for the
cube (volume) and ellipsoid (surface) with N = 20 · 106 on the 4 deca-core Intel Xeon E7-4870
machine. The granularity of the tasks is parametrized by ng.

priority index type of task priorities

1 P2M 0
2 M2M 1
3 L2L(l) l ∈ [2, h− 2]
4 P2P(large) h− 1
5 M2L(l) h + l − 2 with l ∈ [2, h− 1]
6 P2P(small) 2h− 2
7 L2P 2h− 1

Table 2: Assigned priorities (l denotes the level in the octree the respective L2L(l) or M2L(l)
tasks operates on). Note that all priorities of tasks at index i + 1 have to be strictly larger than
those at index i; h is the oct-tree height.
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h decreases.

4.3 Comparison of all parallelization models

In Sec. 3.3 we have presented a total of four different parallelizations models for the FMM
algorithm. For the sake of simplicity we introduce abbreviations for them.

• SFJ stands for simple fork join model and is presented in Sec. 3.1.

• BFJ stands for blocked fork join model and is also presented in Sec. 3.1.

• INF stands for interleaving near- and far-field and is presented in Sec. 3.2.

• TFL stands for task flow model and is presented in Sec. 3.3.

In Fig. 15, we study how the performance, measured in GFlop/s, of these four models evolves as
we increase the number of particles N in the cube (volume) and on the ellipsoid (surface). Since
the octree height h is chosen such that the computational time is minimized, as N increases also
h needs to be increased. For example, in Fig. 15a we choose h = 7 for 107 ≤ N < 5 · 107 and
h = 8 for N ≥ 5.0 · 107. Also, in the studies we confront the theoretical upper bound and the
actual parallel performance. The theoretical upper bound is given by the sequential performance
multiplied by 160, i.e. the number of cores on the 20 octa-core Intel Xeon E7-8837 machine. The
BFJ, INF and TFL models have similar theoretical upper bounds. The SFJ model looses, it is
the only model which does not exploit data locality due the blocking of cells.

Let us focus on the intervals of N for h = 8 and of N for h = 12 in Fig. 15a, and Fig. 15b
which show the performance behavior. The octree height is constant, hence the work spent for
the far-field computation is the same for the entire interval and only the work spent for the near-
field computation grows with N . As we know, the near-field computations, i.e. the execution
of the P2P operators is trivial to parallelize, the parallelization of the far-field computation is
not. That is why the problems with N being close to the lower range of the interval are hard
to parallelize and those with N being at the upper range are easy to parallelize. The reason
for the high upper bound in the lower range of N is that the far-field operators (mainly M2L)
achieve a much higher sequential performance than the P2P operator. In the upper range of N
the theoretical upper bounds of all models have approximately the same asymptote.

We now focus on the parallel performance of all four models and explain why the TFL model
is the clear winner. For both, the cube (volume) and the ellipsoid (surface) the performance
increases in the following order: the SFJ is the least performing, then comes BFJ, then INF and
the most efficient model is TFL. There are two more results which are in favor of the TFL model.
For the first one we look at Fig. 15a. The performance of all four models tends to approach the
asymptote for the theoretical upper bound. Note, that the curve for the TFL model is flat,
i.e. it yields the same performance for problems which are easy and problems which are hard
to schedule. The other three models still contain some kind of barriers, but as the problems
become easier to parallelize, they succeed to get closer to the asymptote. The second reason
why we claim that the TFL model is better than the other is coming from the ellipsoid (surface)
example presented in Fig. 15b. This type of example is harder to parallelize than the cube
(volume) case, because it leads to non uniformly sized tasks. In fact, the octree is non uniform
and the ratio of the biggest (containing the most particles) leaf cell over the smallest leaf cell
can be large. Despite this problem, the TFL model is the only model which reaches a parallel
performance of about 75 % of the theoretical upper bound. The INF and the BFJ models reach
only 35 %, respectively 25 % and the SFJ only 17 % of their respective theoretical upper bound
of the parallel efficiency. Also the INF model, which is the second best one, reaches only 40 % of
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the parallel performance of the TFL model. This behaviors repeat similarly in all other intervals
of N for a given h.

Remark. It is not entirely true that for a constant octree height h but increasing number of
particles N only the cost of the near-field grows and the cost of the far-field remains constant.
The reason is that also the far-field operators P2M and L2P involve particles. However their cost
growth is negligible because of two reasons. Their cost compared to the one of the M2L operator
is vanishingly small (recall Fig. 4) and the cost per P2P grows quadratically with Nleaf and the
cost per P2M and L2P only linearly.

4.4 Parallel efficiency of the task flow model

Above we have compared the performance of the four models and as a result we identified the
TFL to be the clear winner. We now study the parallel efficiency en, defined as

en =
t1
ntn

,

for this model. In the above equation tn denotes the wall time needed for n computational units
(e.g., CPU cores in our case). In the Figs. 16 and 17 we present studies obtained on the 4
deca-core Intel Xeon E7-4870 and the 20 octa-core Intel Xeon E7-8837 machine, respectively, for
different N in the cube (volume) and on the ellipsoid (surface) and for the accuracies Acc = 3, 7.

All studies show strong scaling. On the 4 deca-core Intel Xeon E7-4870 machine we obtain
up to 91 % efficiency for all four examples (see Fig. 16). To obtain a good strong scaling, one
just needs to chose an example which is large enough and provides sufficient parallelism for all
available computational units. In Fig. 17a we reduce the number of particles N in the cube
(volume) to such an extent that the parallel efficiency on the 20 octa-core Intel Xeon E7-8837
machine breaks down. For N = {2, 20, 200}·106 the parallel efficiency at 160 computational units
is still between 53 % and 83 %, but for N = 0.2 · 106 it breaks down. In order to understand the
scaling behavior more in detail we analyze the influence of the granularity of the tasks. In Sec. 3
we have introduced the parametrization of the task granularity by means of the number of cells
ng they operate on. In Fig. 13 we show studies on it. Obviously, parallel efficiency is related to
concurrency (another word for parallelism), which can be increased by increasing octree height
h or by reducing the granularity ng. However, this cannot be carried to an extreme, because at
some point we approach the problem described in Sec. 3.2 that ntts < te is not true anymore.
In other words, the time for scheduling tasks for all available threads ntts becomes larger than
the time required for executing a tasks te and only about nt ∼ te/ts threads will be working. In
this sense the studies on the task granularity and the parallel efficiency are strongly related.

5 Conclusion

The FMM parallel pattern is not unique but strongly depends on the considered test case (ge-
ometry, octree height, accuracy). When the far field work share is negligible with respect to the
near field one, FMM can be viewed as a set of independent tasks and is thus trivial to parallelize;
we have indeed shown that any task-based formulation leads to nearly optimum efficiency in this
context, including the most basic (blocked) fork join model (BFJ). Up to some point, an increase
of the far field work share can be efficiently handled simply by overlapping far and near-field
computation (INF). However both these techniques fail to achieve a high parallel efficiency when
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Figure 15: Performance GFlop/s of all four parallelization models on the 20 octa-core Intel Xeon
E7-8837 machine for varying N and h and a fixed accuracy Acc = 5. The sequential performance
multiplied by 160 (the number of threads) gives the upper bound for the respective model. SFJ:
simple fork-join, BFJ: block fork-join, INF: interleaved near and far field, TFL: StarPU.
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Figure 16: Parallel efficiency en on the 4 deca-core Intel Xeon E7-4870 machine for N = 20 · 106

particles in the cube (volume) with h = 7 and ng = 1500 and on the ellipsoid (surface) with
h = 11 and ng = 6000.

the far field work share is of the same magnitude as (or higher than) the near field one, due to
artificial synchronizations imposed by the fork-join model at the end of each loop. On the con-
trary, the task flow (TFL) paradigm exactly captures the algorithmic dependencies (edges in a
DAG of tasks). We have shown that this latter model consistently provides a higher concurrency
and hence delivers higher performance.

Processing the tasks associated to the FMM DAG can be done in different manners. One can
imagine writing an ad hoc mechanism at a low-level specifically optimized for both the method
and the considered architecture. Alternatively, a modular approach may be employed where the
DAG is processed by a generic runtime system which ensures data consistency and progress, a
task being triggered only when the corresponding data it operates on has reached the expected
state. We employed such an approach by relying on the StarPU runtime system. As a result we
benefit from the robustness of a modern state-of-the-art layer for taking care of how to perform
low-level operations efficiently and we only have to focus on essential high-level matters such
as refining the DAG shape and designing scheduling algorithms ensuring the highest possible
task pipeline. Experimental results have shown the tremendous impact of such a design on
performance, in particular for irregular test cases (ellipsoid distribution).

Because they enable an abstraction of the architecture, runtime systems represent an im-
portant asset to take advantage of the evolution of architectural trends and ensure performance
portability. We plan to study whether the same task flow may also efficiently be used to exploit
heterogeneous architectures such as multicore processors enhanced with Graphics Processing
Units (GPUs) or co-processors (such as Intel Xeon Phi). We will also consider the case of a
cluster of such nodes based on the same task flow expression. Indeed, since the DAG contains
the knowledge of the dependencies (edges) between tasks, MPI communications can also be
automatically instantiated by the runtime systems.

Finally, in the long term, we want to implement an adaptive FMM to cover strongly het-
erogenous particle distributions.
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