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Abstract. The primary visual cortex (V1) can be partitioned into funda-

mental domains or hypercolumns consisting of one set of orientation columns
arranged around a singularity or “pinwheel” in the orientation preference map.
A recent study on the specific problem of visual textures perception suggested
that textures may be represented at the population level in the cortex as a
second-order tensor, the structure tensor, within a hypercolumn. In this pa-
per, we present a mathematical analysis of such interacting hypercolumns that
takes into account the functional geometry of local and lateral connections.

The geometry of the hypercolumn is identified with that of the Poincaré disk
D. Using the symmetry properties of the connections, we investigate the spon-

taneous formation of cortical activity patterns. These states are characterized
by tuned responses in the feature space, which are doubly-periodically dis-
tributed across the cortex.

1. Introduction. The formation of steady state patterns through Turing mecha-
nism is a well-known phenomenon [50, 33]. For example, it occurs when a homo-
geneous state of a system of reaction-diffusion equations defined on the Euclidean
plane becomes neutrally stable when a bifurcation parameter reaches a critical value.
For the analysis of this phenomenon, the assumption that the system is invariant
under Euclidean transformations in the plane is essential. Any Fourier mode whose
wave vector has critical length is a neutral stable mode and a consequence of the
rotational symmetry of the system is that the kernel of linearized problem at the bi-
furcation point is infinite dimensional. By looking at the class of L-periodic states,
L being a discrete translation subgroup of R

2, or by looking at the system projected
onto the torus R

2/L, one renders the spectrum of the linearized problem discrete:
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2 GRÉGORY FAYE AND PASCAL CHOSSAT

the critical wave vectors are finite in number, hence the critical eigenvalue has finite
multiplicity and standard methods of equivariant bifurcation theory (see [19, 29])
can be applied to compute bifurcated solutions within the class of L-periodic states.
Such solutions are called planforms.

Ermentrout and Cowan [25] were first to propose a mathematical theory of vi-
sual patterns seen during hallucinations. Hallucinations can occur in a wide variety
of situations such as with migraine headaches, epilepsy or as the result of exter-
nal stimulus by drugs such as LSD [41, 52]. In their model, the visual cortex is
idealized by the Euclidean plane and it is assumed that the effect of drugs is to
cause instabilities, by spontaneous symmetry- breaking, in the neural activity and
these instabilities result in the visual patterns experienced by the subjects. This
model assumes that neurons in the visual cortex are not sensitive to features such
as orientation, texture, color etc.

(a) Redrawn from Bosking et al [8]. (b) Redrawn from Lund et al [46].

Figure 1. Lateral connections made by V1 cells in Tree Shrew
(left) and Macaque (right). A radioactive tracer is used to show the
locations of all terminating axons from cells in a central injection
site, superimposed on an orientation map obtained by optical imag-
ing.

However it has been well documented that neurons in the primary visual cortex
respond preferentially to visual stimuli that have a specific orientation. Subgroups
of inhibitory and excitatory neurons are tuned to a particular orientation of an
external stimulus, form what is called a Hubel and Wiesel hypercolumn of the visual
area V1 in the cortex (roughly 1 mm2 of cortical surface) [34, 35, 36]. Two cortical
circuits have been characterised which further manifest the functional structure of
V1. A local circuit, operating at sub-hypercolumn dimensions, consists of a mixture
of intra-cortical excitation and inhibition. Such circuit provides a substrate for the
recurrent amplification and sharpening of the tuned response of cells to local visual
stimuli (for example the ring model of orientation where the inhibitory connections
are more broadly tuned with respect to orientation than the excitatory connections
[4, 30]). A lateral circuit, operating between hypercolumns, anisotropically connects
cells with similar functional properties: cells in different hypercolumns tend to
connect in directions parallel to their common preferred orientation (see figures
1(a) and 1(b)). Based on these anatomical structures, Bressloff et al [14, 12] took
into account the orientation of cortical neurons and abstracted the visual cortex
as R

2 × S1. Their analysis recovered thin line hallucinations such as cobwebs and
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honeycombs. However, the anisotropic nature of cortical long-range connections
can be weak upon species. For macaques (see figure 1(b)) anisotropy tends to be
weaker than for tree shrews (see figure 1(a)). This remark has been incorporated
into numerous models of cortical map development [69, 39, 38]. Following this idea,
Golubitsky et al [28] revisited the model of Bressloff et al [14, 12] by determining
solutions obtained from symmetry-breaking bifurcations in the case of isotropic
lateral coupling and then studying how these solutions may change when anisotropy
is introduced as a forced symmetry-breaking parameter.

Neurons in the visual cortex not only respond preferentially to visual stimuli that
have a specific orientation but also to spatial frequency [10], velocity and direction
of motion [51], color [35]. Chossat and Faugeras have introduced in [20] a new
approach to model the processing of image edges and textures in the hypercolumns
of V1 that is based on a nonlinear representation of the image first order derivatives
called the structure tensor [5, 42]. It was suggested that this structure tensor was
represented by neuronal populations in the hypercolumns of V1 and that the time
evolution of this representation was governed by equations similar to those proposed
by Wilson and Cowan [67]. By definition, the structure tensor is based on the spatial
derivatives of an image in a small area that can be thought of as part of a receptive
field. These spatial derivatives are then summed nonlinearly over the receptive
field. Let I(x, y) denote the original image intensity function, where x and y are
two spatial coordinates. Let Iσ1 denote the scale-space representation of I obtained

by convolution with the Gaussian kernel gσ(x, y) = 1
2πσ2 e−

x2+y2

2σ2 :

Iσ1 = I ⋆ gσ1
.

The gradient ∇Iσ1 is a two-dimensional vector of coordinates Iσ1
x , Iσ1

y which em-
phasizes image edges. One then forms the 2 × 2 symmetric matrix of rank one

T0 = ∇Iσ1 (∇Iσ1)
T

, where T indicates the transpose of a vector. By convolving T0

componentwise with a Gaussian function gσ2
we finally form the tensor structure

as the symmetric matrix:

T = T0 ⋆ gσ2
=

(
〈(Iσ1

x )2〉σ2
〈Iσ1

x Iσ1
y 〉σ2

〈Iσ1
x Iσ1

y 〉σ2
〈(Iσ1

y )2〉σ2

)

where we have set for example:

〈(Iσ1

x )2〉σ2
= (Iσ1

x )2 ⋆ gσ2
.

Since the computation of derivatives usually involves a stage of scale-space smooth-
ing, the definition of the structure tensor requires two scale parameters. The first
one, defined by σ1, is a local scale for smoothing prior to the computation of image
derivatives. The structure tensor is insensitive to noise and details at scales smaller
than σ1. The second one, defined by σ2, is an integration scale for accumulating
the nonlinear operations on the derivatives into an integrated image descriptor. It
is related to the characteristic size of the texture to be represented, and to the size
of the receptive fields of the neurons that may represent the structure tensor.

The question of whether some populations of neurons in such a visual area as
V1 can represent the structure tensor cannot be answered at this point in a definite
manner and is still an open question. At the stage of this paper we can nonetheless
argue as follows. Cytochrome oxydase (CO) blobs and their neighborhoods seem
good candidates since their distribution appears to be correlated with a number of
periodically repeating feature maps in which local populations of neurons respond
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preferentially to stimuli with particular properties such as orientation, spatial fre-
quency, brightness and contrast. It has thus been suggested that the CO blobs could
be the sites of functionally and anatomically distinct channels of visual processing
[23, 45, 61, 63]. Bressloff and Cowan [10, 9] introduced a model of a hypercolumn
in V1 consisting of orientation and spatial frequency preferences organized around
a pair of pinwheels. One pinwheel is centered at a CO blob and encodes coarse to
medium coarse scales, the other is centered at a region that encodes medium coarse
to fine scales. Such a hypercolumn is therefore a good candidate for representing the
structure tensor at several scales as well as the local orientations at various spatial
frequencies. Finally, it was shown in very recent study [44] that neurons selective
to the direction of motion preferentially fire for natural-like random textures which
seems to corroborate the hypothesis that there exists neurons in the visual cortex
coding for textures.
This is one aim of the present work to allow for predictions about the kinds of
patterns that should be observed in the activity of real brains. This would open
the door to the design of experiments to test and probe the neurophysiological
hypotheses of the structure tensor model.

In previous studies [20, 27, 18, 26] we explored the bifurcation of patterns within
a single hypercolumn of structure tensors. For the spatial problem, this comes back
to assume that the hypercolumns are independent form each other. This was a first
and necessary step before spatialization.

Our aim is now at introducing lateral connections in the structure tensor model
and analyzing the bifurcation of patterns for this spatialized model. The visual
cortex is now abstracted as R

2 ×SPD(2, R), where the feature space SPD(2, R) is
the set of all structure tensors, that is the set of 2 × 2 symmetric positive definite
matrices. We shall see in the next section that SPD(2, R) is an unbounded Riemann
space, namely the solid cone equipped with a suitable metric. As shown in [20, 27],
the neurons within a hypercolumn are connected to each others with a weight
depending on the structure tensors that these neurons encode. Moreover, it is
natural to assume that these connections are invariant under the action of the
group of isometries of the Riemann space SPD(2, R), namely the unbounded Lie
group GL(2, R).

It is important to mention here the neurogeometric approach developed by Pe-
titot, Sarti and Citti [22, 58, 54, 55]. The idea behind neurogeometry is to model
the functional architecture of the primary visual cortex as a principal fiber bun-
dle where the two-dimensional retinal plane is the base manifold R

2 and all the
secondary variables like orientation, spatial frequency, color, texture constitute the
fibers over each point. For example in the case of orientation and spatial frequency,
Sarti, Citti and Petitot have shown that the total space is endowed with a sim-
plectic structure neurally implemented by long range horizontal connections [58].
In particular, this neuro-geometrical approach has proven its efficiency for image
completion problems [54, 22, 56]. However, as we are interested in the study of the
different types of cortical states that can be spontaneously produced by our spatial-
ized model and then interpret them as geometric visual hallucinations, we did not
pursue in that direction and we will rather use a symmetry-breaking bifurcation
analysis approach throughout this paper.

The unboundedness of the isometry group GL(2, R) introduces an important
complication in the bifurcation analysis compared to the ring model of orientation
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preferences. We shall see in Section 2 that two different approaches can be fol-
lowed in order to overcome this difficulty. One is to remark that in a ”real” cortex
an upper bound must exist to the norm of effectively detectable structure tensors,
and therefore consider a suitably chosen bounded domain in SPD(2, R) instead of
SPD(2, R) itself. The other is to take advantage of the previous analysis presented
in [18] where the bifurcation of periodic patterns in SPD(2, R) was investigated.
Periodic means here that the patterns are invariant under the action of a discrete
subgroup L of GL(2, R) which tiles the space SPD(2, R) with a compact funda-
mental domain. This method allows to reduce the domain to the quotient space
SPD(2, R)/L, which is a compact manifold.
These two approaches are investigated respectively in Sections 3 and 4. In fact, as
explained in Section 2, it is possible to work with the hyperbolic plane (identified
further with the Poincaré disk) instead of the cone SPD(2, R). This will introduce
an additional, however unessential, simplification.

2. The continuum models of V1 and their symmetries.

2.1. The model equations. The average membrane potential of a population
of neurons at a cortical position r ∈ R

2 at time t is characterized by the real
valued function V (r, T , t), where r labels a point in the visual cortex and T is a
structure tensor. All possible textures are represented at every position: r and T
are independent variables. The average membrane potential evolves according to a
generalization of the Wilson-Cowan equations [68]:

∂V (r, T , t)

∂t
= −V (r, T , t) +

∫

R2

∫

SPD(2,R)

W (r, T | r′, T ′)S(µV (r′, T ′, t))dT ′dr′.

(2.1)
Note that we put no external input in this equation, meaning that we look at
spontaneous pattern formation. The nonlinearity S is a smooth sigmoidal function
which saturates at ±∞ with S(0) = 0. In order to fix ideas we work with the
following sigmoidal function:

S(x) =
1

1 + e−x+T
− 1

1 + eT
, (2.2)

where T is a positive threshold. The parameter µ describes the stiffness of the
sigmoid.
With this nonlinearity, V = 0 is always solution.

The associated weight distribution is decomposed into local (within the hyper-
columns) and long-range parts according to:

W (r, T | r′, T ′) = Wloc(dSPD(2,R)(T , T ′))δr,r′ +β(1−δr,r′)W
ǫ
lat(r, T | r′, T ′). (2.3)

We normalize the total weight of both local and long-range connections:

∫

SPD(2,R)

Wloc(d(T , T ′))dT ′ = 1

∫

R2

∫

SPD(2,R)

W ǫ
lat(r, T | r′, T ′)dT ′dr′ = 1.

Microelectrode recordings suggest that β is small and therefore that the lateral
connections modulate rather than drive the cortical activity. The sign of β will
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determine whether the lateral connections have a net excitatory or inhibitory effect.
The rules of long-range connections are given by:

W ǫ
lat(r, T | r′, T ′) = J

(√
(r − r′)T(I2 + ǫT )(r − r′)

)
K (d (T , T ′)) (2.4)

Figure 2. Plot of r → J
(√

rT(I2 + ǫT )r
)

in the definition of

long-range connections. N = ξ = 1, ǫ = 0.05 and T =
diag (50, 0.2).

The first factor J incorporates the observation that the density patches tends
to decrease monotonically with cortical separation and lies along the direction of
their feature preference. For definiteness, we take J to be a Gaussian J (x) =

N e−x2/2ξ2

. For an illustration purpose, in figure 2, we plot the profile of r →
J
(√

rT(I2 + ǫT )r
)
, for specific values of the parameters and a diagonal structure

tensor T = diag(50, 0.2) which has a preferred orientation at π
2 . Note that first

Bressloff in [11] and then Baker and Cowan in [2] use a similar anisotropic function
for a continuum model of V1 with long-range horizontal connections without feature
space. The second factor of the horizontal connectivity ensures that the long-range
connections link cells with similar feature preferences, and is taken to be an even
positive, narrowly tuned distribution with K(x) = 0 for all |x| ≥ kc. In the limit
kc → 0, K is taken to be the δ-dirac function. The parameter ǫ controls the degree
of anisotropy.

2.2. Symmetries of the model. The Euclidean group E(2) is crucial to the anal-
yses in [14, 13] where it acts on R

2×S1 by the so-called “shift-twist” representation
due to the anisotropic nature of the lateral connections. In our model, the action of
E(2) on R

2 ×SPD(2, R) that preserves the structure of the long-range connections
in equation (2.4) is given by

a · (r, T ) = (r + a, T ) a ∈ R
2

Rθ · (r, T ) =
(
Rθr,RθT RT

θ

)
θ ∈ S1

Mκ · (r, T ) = (Mκr,MκT MT

κ ) (2.5)



A SPATIALIZED MODEL OF TEXTURE PERCEPTION 7

where Mκ is the matrix representation of the reflection (r1, r2) → (r1,−r2) and Rθ

is a matrix rotation of angle θ.
The corresponding group action on a function V : R

2 ×SPD(2, R) → R is given
by:

γ · V (r, T ) = V
(
γ−1 · (r, T )

)

for all γ ∈ E(2) and the action on the weight distribution W (r, T | r′, T ′) is

γ · W (r, T | r′, T ′) = W
(
γ−1 · (r, T ) | γ−1 · (r′, T ′)

)
.

It follows that W given by (2.3) and (2.4) is invariant under the action of the
Euclidean group defined by equations (2.5). As a consequence, equation (2.1) is
equivariant with respect to the symmetry group E(2) for h(r, T , t) = 0.

In the limit ǫ = 0, the lateral connectivity function defined in equation (2.4) is
called isotropic and reduces to

W 0
lat(r, T | r′, T ′) = J (‖r − r′‖)K (d (T , T ′)) . (2.6)

In that particular case, in addition to Euclidean symmetry, equation (2.1) admits
a GL(2, R)-symmetry,. The two actions decouple and are given by:

γ · (r, T ) = (γr, T ) γ ∈ E(2)

M · (r, T ) = (r,MT MT) M ∈ GL(2, R).
(2.7)

2.3. The Poincaré disk model. The feature space SPD(2, R) of structure tensors
is the set of 2×2 symmetric positive definite matrices. This set is a solid open cone
in R

3 and a Riemannian manifold with the distance [49]

dSPD(2,R)(T , T ′) = ‖ log T −1T ′‖F (2.8)

where ‖·‖F is the Frobenius norm. Now any T ∈ SPD(2, R) can be written T = δT̃
with δ > 0 and det T̃ = 1. Therefore SPD(2, R) = R

+
∗ × SSPD(2, R), the two-

dimensional submanifold of symmetric positive definite matrices whose determinant
is equal to 1. It can be shown (see appendix A) that the surface SSPD(2, R)
equipped with the Riemannian structure induced by the metric of SPD(2, R), is
isomorphic to the hyperbolic plane which is itself isomorphic to the disk D = {z ∈
C | |z| < 1} equipped with the hyperbolic distance

dD(z, z′) = arctanh
|z − z′|
|1 − z̄z′| (Poincaré disk).

Therefore, there is an isomorphism between the space of structure tensors and the
product space R

+
∗ ×D. As shown in [27], the distance in SPD(2, R) can be written

in (δ, z) ∈ R
+
∗ × D coordinates as

dSPD(2,R)(T , T ′) =

√

2 ln

(
δ

δ′

)2

+ dD(z, z′)2.

Using the same argument as in [18], we are able to cancel out the dependence on
δ ∈ R

+
∗ which would not play a significant role in the analysis that follows.

Assumption 1. Equation (2.1) is posed on R
2 × D from now on.

The group of isometries of D is the unitary group U(1, 1), see appendix B for
definitions.
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One can transcribe the group actions of E(2) and U(1, 1) defined in equations (2.5)
and (2.7) respectively on the space R

2 × D. In the anisotropic case we have:

a · (r, z) = (r + a, z) a ∈ R
2

Rθ · (r, z) =
(
Rθr, e

2iθz
)

θ ∈ S1

Mκ · (r, z) = (κr, z̄). (2.9)

and in the isotropic case (ǫ = 0):

γ · (r, z) = (γr, z) γ ∈ E(2)

g · (r, z) = (r, g · z) g ∈ U(1, 1) (2.10)

where the action of g ∈ U(1, 1) on z ∈ D is defined in equation (B.1) of appendix
B.

If we now write equation (2.1) as an abstract problem of the form:

dV (t)

dt
= F(V (t), µ, β, ǫ) = 0 (2.11)

then we can summarize the previous discussion as follows:

1. for all (µ, β, ǫ), F(·, µ, β, ǫ) is equivariant with respect to E(2) with shift-twist
action;

2. F(·, µ, β, 0) is equivariant with respect to E(2) × U(1, 1) (isotropic case);
3. F(·, µ, 0, 0) is equivariant with respect to U(1, 1) (no lateral connections).

2.4. Two complementary approaches. We are interested in the bifurcations
from the trivial state V = 0 of Equation (2.11) where µ is the bifurcation parameter.
Previous works like [25] and [28] have assumed that the pattern arising in the V1
plane was doubly periodic, occurring either on a square or hexagonal lattice. This
assumption allows to reduce the bifurcation problem to a finite dimensional center
manifold and we shall keep this framework in the present study. We have however
an additional complication, of similar type, due to the fact that the feature space
of structure tensors, which we assimilate to the Poincaré disc D, is unbounded and
has non compact isometry group U(1, 1), which puts a strong obstruction to apply
the standard tools of bifurcation theory. To overcome this difficulty we can take
two different approaches which we now define.

Problem 1. Observe that natural images can only produce a bounded set of struc-
ture tensors with determinant equal to one. This suggests to restrict ourselves to
a bounded domain of the Poincaré disc for the feature space. It is convenient to
choose a domain which still preserves the rotational invariance of (2.9). We there-
fore choose a disc Ω ⊂ D of radius rω such that rω = tanh(ω/2) < 1.
As suggested by microelectrode recordings, β is small and therefore the lateral con-
nections modulate rather than drive the cortical activity. This suggests to begin to
study the case of no lateral coupling: β = 0 (model of a single hypercolumn defined
on Ω) and then use perturbation analysis when anisotropic coupling is switched on:
0 < β ≪ 1.

Problem 1 is closely linked to the analysis of [14, 12] for the ring model (the
feature space is S1) and [10, 9] for the spherical model (the feature space is the
sphere S2 which accounts for orientations and spatial frequency), where pertur-
bation theory is used to calculate the eigenvalues and eigenfunctions of the ”spa-
tialized” cortical dynamics. Our aim is to use a similar approach in the case of a
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bounded domain Ω, with lateral coupling given by equations (2.3) and (2.4). This
problem is treated in section 3.

Problem 2. We consider again the full feature space D and we rely on the following
remark. The anisotropy in lateral connections can be small depending on the animal
studied [46] and in that case we can assume ǫ ≈ 0. This suggests to study first the
isotropic case: ǫ = 0, which has symmetry group E(2)×U(1, 1), for patterns which
are periodic both spatially in R

2 and in the feature space D. Then we break the
symmetry by switching on 0 < ǫ ≪ 1, so that it is reduced to E(2). This forced
symmetry breaking is treated as a perturbation of the isotropic case.

Section 4 is devoted to this problem. This approach was initiated by Golubitsky
et al in [28] for the ring model. There is however an important difference: in [28], the
symmetry group for one (isolated) hypercolumn is S1 and it does not take account
of the reflections which should naturally occur if the connectivity function Wloc did
only depend on the distance between angles. In their case the ”isotropic” symmetry
group is E(2)⋉S1. However if reflections are included in the symmetries, the group
becomes the direct product E(2) × O(2). In our case, because we use an explicit
expression for Wloc, the ”isotropic” symmetry group is E(2) × U(1, 1).

3. Problem 1: weak anisotropic coupling on a bounded structure tensor

space.

3.1. Eigenfunctions of the Laplace-Beltrami operator on Ω. This section is
devoted to the study of the eigenfunctions of the Laplace-Beltrami operator on Ω
which will be needed for the spectral analysis of the following parts. We impose
Dirichlet conditions on the boundary of the disk. From a physic point of view,
this problem is analog to finding the modes of a vibrating membrane in hyperbolic
geometry. The Laplace-Beltrami operator ∆D on D in hyperbolic polar coordinates
(τ, θ) with z = tanh(τ/2)eiθ is defined by:

∆D =
∂2

∂τ2
+ coth(τ)

∂

∂τ
+ sinh(τ)−2 ∂2

∂θ2
. (3.1)

We are looking for eigensolutions of
{
−∆DV (z) = λV (z), ∀z ∈ Ω, λ ∈ R

+

V (z) = 0 ∀z ∈ ∂Ω
(3.2)

which can be written Vm(z) = eimθUm(cosh(τ)). Replacing the expression of Vm(z)
into equation (3.2) and setting y = cosh(τ) yields

(y2 − 1)Üm(y) + 2yU̇m(y) +

(
λ − m2

y2 − 1

)
Um(y) = 0.

We set −λ = l(l + 1) with l = − 1
2 + iρ such that λ = ρ2 + 1

4 . The Legendre
functions Pm

l of the first kind and Qm
l of the second kind form a basis of the

space of solutions. Solutions Qm
l are not physically relevant as they blow up at

τ = 0. We write Vm(z) = eimθPm
l (cosh(τ)) the other solutions. Finally the so-

lutions of (3.2) which further satisfy Vm(z) = 0 for all z ∈ ∂Ω can be expressed
as Vm(z) = eimθPm

l (cosh(τ)) with Pm
l (cosh(ω)) = 0. Then for each m ∈ Z , one
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has to impose that lm,n = − 1
2 + iλm,n, where λm,n is the nth root of the function

λ → Pm
− 1

2
+iλ

(cosh(ω)). As a consequence, each eigenfunction V can be written:

V (z) =
∑

m∈Z

∑

n∈N∗

am,nPm
lm,n

(cosh(τ))eimθ ∀z ∈ Ω and am,n ∈ C

=
+∞∑

n=1

A0,nPlm,n
(cosh(τ)) +

+∞∑

m=1

+∞∑

n=1

Am,nPm
lm,n

(cosh(τ)) cos(mθ)

+
+∞∑

m=1

+∞∑

n=1

Bm,nPm
lm,n

(cosh(τ)) sin(mθ)

where A0,n, Am,n and Bm,n are real.
From the properties [24]:

Pm
l = Pm

−l−1 and Pm
l =

Γ(l + m + 1)

Γ(l − m + 1)
P−m

l ,

where Γ is the Gamma function, we can deduce that:

Am,n = am,n +
Γ(lm,n − m + 1)

Γ(lm,n + m + 1)
a−m,n

Bm,n = i

(
am,n − Γ(lm,n − m + 1)

Γ(lm,n + m + 1)
a−m,n

)
.

Proposition 3.1. For fixed m and ω, the function λ → Pm
− 1

2
+iλ

(cosh(ω)) possesses

only isolated simple zeros which satisfy:

0 < λm,1 < λm,2 < · · · < λm,n < . . . with lim
n→+∞

λm,n = +∞.

If we normalize associated Legendre functions such that

Ym
n (τ)

def
= Ym

lm,n
(τ) =

Pm
−1/2+iρm,n

(cosh τ)

pm,n

with p2
m,n

def
=

∫ ω

0

[
Pm
−1/2+iρm,n

(cosh τ)
]2

sinh τdτ

then

< Ym
n ,Ym

n′ >=

∫ ω

0

Ym
n (τ)Ym

n′ (τ) sinh τdτ = δn,n′ .

Proof. Multiplying equation (3.2) by sinh(τ) we can rewrite the eigenvalue problem
as a Sturm-Liouville problem:

d

dτ

(
sinh(τ)

dV

dτ
(τ)

)
− m2

sinh(τ)
V (τ) = −λ sinh(τ)V (τ), ∀τ ∈]0, ω] (3.3)

with the boundary conditions: V (ω) = 0 and lim
τ→0

V (τ) < +∞. We look for eigen-

values of the form λ = ρ2 + 1
4 .

We first assume that m = 0 such that equation (3.3) is now defined on [0, ω] and
is a regular Sturm-Liouville problem. Sturm-Liouville theorem for regular problem
[70, 16] ensures that the eigenvalues of (3.3) are non-negative, real and simple such
that:

0 < λ0,1 < λ0,2 < · · · < λ0,n < . . . with lim
n→+∞

λ0,n = +∞.

On the other hand, equation (3.3) is a second order differential equation which ad-
mits two real linearly independent solutions τ → Pν(cosh(τ)) and τ → Qν(cosh(τ))
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with ν = − 1
2 + iρ. As we impose the boundary condition lim

τ→0
V (τ) < +∞, we

only keep the solution τ → Pν(cosh(τ)). The other boundary condition imposes
that P− 1

2
+iρ(cosh(ω)) = 0, and if ρ0,n is the nth zero of the analytic function

ρ → P− 1
2
+iρ(cosh(ω)) we have λ0,n = ρ2

0,n + 1
4 . Finally (λ0,n,P− 1

2
+iρ0,n

(cosh(·)) is

the solution of the eigenvalue problem (3.3). The orthogonality property is a con-
sequence of the simplicity of each eigenvalue and the form of equation (3.3). Take
(λ0,n, Vn = P− 1

2
+iρ0,n

(cosh(·)) and (λ0,n′ , Vn′ = P− 1
2
+iρ0,n′

(cosh(·)) two solutions

of equation (3.3) then:
∫ ω

0

Vn(τ)Vn′(τ) sinh(τ)dτ = − 1

λ0,n

∫ ω

0

d

dτ

(
sinh(τ)

dVn

dτ
(τ)

)
Vn′(τ)dτ

=
1

λ0,n

∫ ω

0

sinh(τ)
dVn

dτ
(τ)

dVn′

dτ
(τ)dτ

=
λ0,n′

λ0,n

∫ ω

0

Vn(τ)Vn′(τ) sinh(τ)dτ.

This implies that for n 6= n′,
∫ ω

0
Vn(τ)Vn′(τ) sinh(τ)dτ = 0.

Next, suppose m ≥ 1. The eigenvalue problem (3.3) is now a singular Sturm-
Liouville problem because of the singularity at τ = 0. Nevertheless, it is still possible
to prove the existence of real non-negative and simple eigenvalues of (3.3) ([70, 16]):

0 < λm,1 < λm,2 < · · · < λm,n < . . . with lim
n→+∞

λm,n = +∞.

It is straightforward to see that (λm,n,Pm
− 1

2
+iρm,n

(cosh(·)) is a solution of the ei-

genvalue problem. The proof of the orthogonality property follows the same lines
as for the case m = 0, with the additional remark that for all m ≥ 1 the function

τ → sinh(τ)−1Pm
− 1

2
+iρm,n

(cosh(τ))Pm
− 1

2
+iρm,n′

(cosh(τ))

is integrable on ]0, ω] for all n, n′ ∈ N
∗.

The multiplicity of the eigenvalues of the Laplace-Beltrami operator is a complex
problem. As for the zeros of Bessel functions [66], between two consecutive zeros
of λ → Pm

− 1
2
+iλ

(cosh(ω)) there exists one zero of λ → Pm+1
− 1

2
+iλ

(cosh(ω)) [43]. This

implies that the multiplicity of λ0,1 is one and the multiplicity of λ1,1 is two. We
further have 0 < λ0,1 < λ1,1 < · · · .
3.2. Study of an isolated hypercolumn.

3.2.1. Linear stability analysis. We rewrite equation (2.1) for β = 0 in the lateral
coupling function in (τ, θ)-coordinates.

∂V (r, τ, θ, t)

∂t
= −V (r, τ, θ, t) +

∫ ω

0

∫ 2π

0

Wloc

(
dD

(
tanh(τ/2)eiθ, tanh(τ ′/2)eiθ′

))

× S(µV (r, τ ′, θ′, t)) sinh(τ ′)dτ ′dθ′

(3.4)

The local connectivity function can be expressed in a compact form as

Wloc(τ, τ
′ | θ − θ′)

def
= Wloc

(
dD

(
tanh(τ/2)eiθ, tanh(τ ′/2)eiθ′

))

=

+∞∑

m=0

∑

n∈N∗

Ŵm,nYm
n (τ)Ym

n (τ ′) cos(m(θ − θ′)). (3.5)
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Equation (3.4) presents an O(2) symmetry with action:

ϕ · (τ, θ) = (τ, θ + ϕ) ϕ ∈ [0, 2π]

s · (τ, θ) = (τ,−θ).

With the fact that S(0) = 0 in the definition of the sigmoidal function S, the fully
symmetric state V = 0 is always a solution of (3.4) for all values of the parameter
µ and its uniqueness has been discussed in [27]. To study the linear stability of the
trivial state V = 0, we have to look at solutions of the linearized equation

∂V (r, τ, θ, t)

∂t
= −V (r, τ, θ, t) + µs1

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′)

× V (r, τ ′, θ′, t) sinh(τ ′)dτ ′dθ′.

(3.6)

with s1 = S′(0), of the form eσtU(r, τ, θ). Substituting the distribution (3.5) for
Wloc and using orthogonality relation shows that the dispersion relation is given by:

σn,m = −1 + µs1Ŵm,n

with corresponding eigenvectors Ym
n (τ) cos(mθ) and Ym

n (τ) sin(mθ) if m ≥ 1, Y0
n(τ)

if m = 0. Thus the eigenvalue σn,m is at least 2-fold degenerate for m ≥ 1. If we
denote

ŴM,N = max{Ŵm,n | (m,n) ∈ N × N
∗}

then V = 0 becomes unstable at a critical value µc =
(
s1ŴM,N

)−1

.

The cases (M = 0, N = 1) and (M = 1, N = 1) are relevant from a biological
point of view. If M = 0 and N = 1, sufficiently close to the bifurcation point, the
resulting activity profile satisfies

V (r, τ, θ) = a(r)Y1(τ)

and if M = 1 and N = 1 we have:

V (r, τ, θ) = α(r)Y1
1 (τ) cos (θ − φ(r)) .

In the first case, the new steady state shows no orientation preference as it can
be seen in figure 3(a) where the region of high activity is centered at z = 0. In
the second case, the response is both unimodal with respect to τ and θ, see figure
3(b). The occurrence of a tuned surface peaked at some angle φ(r) corresponds
to the presence of local contour there. The angle φ(r) for each tuning surface
is arbitrary which reflects the O(2) equivariance of equation (3.4). Without any
lateral connections, the overall tuned response is uncorrelated across the cortex. As
explained in [14], the presence of anisotropy has for consequence to correlate the
peaks of the tuning surfaces at different locations.

3.2.2. Pitchfork bifurcation with O(2) symmetry. We have a Pitchfork bifurcation
with O(2) symmetry at the critical point µ = µc. In order to be able to compare
our results with those obtained in the Ring Model of orientation, we select unimodal
solution in the θ variable: M = 1 and the τ variable N = 1. Close to the bifurcation
point (V = 0, µ = µc) there exists a polynomial change of variables of the form

V (r, τ, θ, t) = A(r, t)ζ1(τ, θ) + B(r, t)ζ2(τ, θ) + Ψ(A(r, t), B(r, t), µ − µc)

with

ζ1(τ, θ) = Y1
1 (τ) cos(θ) and ζ2(τ, θ) = Y1

1 (τ) sin(θ)
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(a) Mode (0, 1) with λ0,1 = 0.2798. (b) Mode (1, 1) with λ1,1 = 0.334.

(c) Mode (2, 1) with λ2,1 = 0.3585. (d) Mode (3, 1) with λ3,1 = 0.3753.

Figure 3. Plot of solution of the form Pm
lm,n

(cosh(τ)) cos(mθ) with

(τ, θ) ∈ [0, ω] × [0, 2π] and lm,n = − 1
2 + iλm,n.

which transforms equation (3.4) into the normal form

dA

dt
=

[
µ − µc

µc
+ ̟(A2 + B2)

]
A + h.o.t.

dB

dt
=

[
µ − µc

µc
+ ̟(A2 + B2)

]
B + h.o.t.

(3.7)

and ̟ can be expressed as

̟ =
µ3

cπŴ1,1

4


s3Λ

2
+ µcs

2
2

∑

n∈N∗


 πŴ0,n (γ0,n)

2

(
1 − µcs12πŴ0,n

) +
πŴ2,n (γ2,n)

2

4
(
1 − µcs1πŴ2,n

)






(3.8)
with s2 = S′′(0), s3 = S′′′(0) and

Λ =

∫ ω

0

(
Y1

1 (τ)
)4

sinh(τ)dτ

γk,n =

∫ ω

0

Yk
n(τ ′)

(
Y1

1 (τ ′)
)2

sinh(τ ′)dτ ′.

Proof. These formulas are derived in appendix C.
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The sign of ̟ determines if the bifurcation is subcritical or supercritical. If
̟ < 0, the Pitchfork is oriented towards the increasing µs (supercritical) otherwise
it points towards the decreasing µs (subcritical). In this latter case, it can be shown
[64] that the bifurcated branch has to turn around which produces two additional
solutions on each branch. As it has been noticed in [65] in the case of the ring
model of orientation, ̟ > 0 does not give a biological plausible behaviour of the
network. This is why we impose the condition ̟ < 0, which gives a constrain on the
threshold T of the sigmoidal function defined in equation (2.2) and the coefficients

Ŵm,n of the coupling function Wloc. In the simplified case where Ŵ0,1 = −1 and

Ŵm,n = 0 for all (m,n) ∈ N × N
∗ \ {(0, 1), (1, 1)}, we plot in figure 4 the sign of ̟

as a function of T and Ŵ1,1.

Figure 4. Plot of the sign of ̟ as a function of T and Ŵ1,1.

3.3. Weak lateral interactions. We now turn on the lateral interactions: β 6= 0.
We have already mentioned in Problem 1 that the lateral connections modulate
rather than drive the cortical activity. This is why we will work in the regime
where 0 < β ≪ 1. In order to be able to present some analytic results, we select a
simplified version of the function K (this is the limit case kc → 0 in the definition
of K in equation (2.4)):

K(τ, θ | τ ′, θ′) =
1

sinh(τ)
δτ,τ ′δθ,θ′ .

3.3.1. Eigenvalues and eigenfunctions of the linear problem. We first linearize equa-
tion (2.1) close to the fully symmetric state V (r, τ, θ, t) = 0.

∂V (r, τ, θ, t)

∂t
= −V (r, τ, θ, t) + µs1

[∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′)

×V (r, τ ′, θ′, t) sinh(τ ′)dτ ′dθ′ + β

∫

R2

J (r − r′, τ, θ)V (r′, τ, θ)dr′
]

,

(3.9)
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where we have set:

J (r − r′, τ, θ)
def
= J

(√
(r − r′)T(I2 + ǫT (τ, θ))(r − r′)

)

with T (τ, θ) given through the “D to SSPD(2, R)” dictionary in appendix A by

T (τ, θ) =

(
a(τ, θ) c(τ, θ)
c(τ, θ) b(τ, θ)

)

and

a(τ, θ) =
1 + tanh(τ/2)2 + 2 tanh(τ/2) cos(θ)

1 − tanh(τ/2)2

b(τ, θ) =
1 + tanh(τ/2)2 − 2 tanh(τ/2) cos(θ)

1 − tanh(τ/2)2

c(τ, θ) =
2 tanh(τ/2) sin(θ)

1 − tanh(τ/2)2
.

We look for perturbations of the form eσtuk(τ, θ)eik·r+ cc with k = q(cos ϕ, sin ϕ)
and uk(τ, θ) = u(τ, θ − 2ϕ). Equation (3.9) leads to the eigenvalue problem for
(σ, u(τ, θ)):

σu(τ, θ) = −u(τ, θ) + µs1βJ̃k(τ, θ + 2ϕ)u(τ, θ)

+ µs1

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′) u(τ ′, θ′) sinh(τ ′)dτ ′dθ′
(3.10)

with

J̃k(τ, θ + 2ϕ) =

∫

R2

J (r − r′, τ, θ + 2ϕ)eik·(r−r
′)dr′.

Due to the rotational invariance of the lateral coupling (2.4) with shift-twist action,

the function J̃k(τ, θ+2ϕ) only depends upon q the magnitude of vector k ∈ R
2. This

is why (σ, u(τ, θ)) given by equation (3.10) also only depends upon q. Expanding
u(τ, θ) on the basis (Ym

n (τ) cos(mθ),Ym
n (τ) sin(mθ))m∈Z,n≥1 we obtain:

u(τ, θ) =
+∞∑

n=1

A0,n(q)Yn(τ) +
+∞∑

m=1

+∞∑

n=1

Ym
n (τ) (Am,n(q) cos(mθ) + Bm,n(q) sin(mθ)) .

Taking the scalar product of equation (3.10) with Yn,Ym
n cos(mθ) and Ym

n sin(mθ′)
gives respectively:

[
σ + 1

µs1
− Ŵ0,n

]
A0,n(q) = β

∑

m′∈N

∑

n′∈N∗

J̃ 0
0n,m′n′(q)Am′,n′(q)

[
σ + 1

µs1
− Ŵm,n

]
Am,n(q) = β

∑

m′∈N

∑

n′∈N∗

J̃ +
mn,m′n′(q)Am′,n′(q)

[
σ + 1

µs1
− Ŵm,n

]
Bm,n(q) = β

∑

m′∈N∗

∑

n′∈N∗

J̃−
mn,m′n′(q)Bm′,n′(q)

where
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J̃ 0
0n,m′n′(q) =

1

2π

∫ ω

0

∫ 2π

0

J̃k(τ, θ + 2ϕ)Yn(τ)Ym′

n′ (τ) cos(m′θ) sinh(τ)dτdθ

J̃ +
mn,m′n′(q) =

1

π

∫ ω

0

∫ 2π

0

J̃k(τ, θ + 2ϕ)Ym
n (τ)Ym′

n′ (τ) cos(mθ) cos(m′θ) sinh(τ)dτdθ

J̃−
mn,m′n′(q) =

1

π

∫ ω

0

∫ 2π

0

J̃k(τ, θ + 2ϕ)Ym
n (τ)Ym′

n′ (τ) sin(mθ) sin(m′θ) sinh(τ)dτdθ.

Based on the analysis made for β = 0, we assume that

Ŵ1,1 = max{Ŵm,n | (m,n) ∈ N × N
∗}.

There is a k-dependent splitting of the degenerate eigenvalue σ associated to the
mode (1, 1) and denoting the characteristic size of such a splitting by δσ = O(β),

we impose the condition that δσ ≪ µ∆Ŵ , where ∆Ŵ = min{Ŵ1,1 − Ŵm,n,m 6=
1 and n 6= 1}. We can introduce the following perturbation expansions and solve
the resulting hierarchy of equations to successive orders in β:

σ± + 1

µ
= Ŵ1,1 + βσ

(1)
± + β2σ

(2)
± + . . .

Am,n(q) = A(q)δm,1δn,1 + βA(1)
m,n(q) + β2A(2)

m,n(q) + . . .

Bm,n(q) = B(q)δm,1δn,1 + βB(1)
m,n(q) + β2B(2)

m,n(q) + . . .

Setting m = 1 and n = 1 we can collect the O(β) terms and get:

σ
(1)
± = J̃±

11,11(q)

A(1)
m,n(q) =

J̃ +
mn,11(q)A(q)

Ŵ1,1 − Ŵm,n

B(1)
m,n(q) =

J̃−
mn,11(q)B(q)

Ŵ1,1 − Ŵm,n

.

For the O(β2) terms we obtain two equations:

[
σ

(1)
+ − J̃ +

11,11(q)
]
A

(1)
1,1(q) + σ

(2)
+ A(q) =

∑

(m′,n′) 6=(1,1)

J̃ +
11,m′n′(q)A

(1)
m′,n′(q)

[
σ

(1)
− − J̃−

11,11(q)
]
B

(1)
1,1(q) + σ

(2)
− B(q) =

∑

(m′,n′) 6=(1,1)

J̃−
11,m′n′(q)B

(1)
m′,n′(q)

which give:

⇒ λ
(2)
± =

∑

(m′,n′) 6=(1,1)

(
J̃±

11,m′n′(q)
)2

Ŵ1,1 − Ŵm′,n′

.

Finally we have the following proposition.

Proposition 3.2. The two dispersion relations are given by:
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σ± = −1 + µs1


Ŵ1,1 + βJ̃±

11,11(q) + β2
∑

(m′,n′) 6=(1,1)

(
J̃±

11,m′n′(q)
)2

Ŵ1,1 − Ŵm′,n′

+ O(β2)




(3.11)
and uk(τ, θ) = u±

k
(τ, θ) where to O(β):

u+
k
(τ, θ) = Y1

1 (τ) cos(θ − 2ϕ) + β
∑

(m,n) 6=(1,1)

Ym
n (τ)

J̃ +
mn,11(q)

Ŵ1,1 − Ŵm,n

cos(m(θ − 2ϕ))

(3.12)

u−
k

(τ, θ) = Y1
1 (τ) sin(θ − 2ϕ) + β

∑

(m,n) 6=(1,1)

Ym
n (τ)

J̃−
mn,11(q)

Ŵ1,1 − Ŵm,n

sin(m(θ − 2ϕ)).

(3.13)

3.3.2. Discussion. If we suppose that H±(q) = Ŵ1,1 + βJ̃±
11,11(q) has a unique

maximum at q = q± 6= 0. We define qc = q+ if H+(q+) > H−(q−) and qc = q− if
H+(q+) < H−(q−), then the homogeneous state a(r, τ, θ) = 0 is marginally stable

at µc = (s1H+(qc))
−1

if qc = q+ and at µc = (s1H−(qc))
−1

if qc = q−. From the
rotation invariance, all modes lying on the critical circle ‖k‖ = qc become neutrally
stable at µ = µc. The question of the occurrence of even or odd patterns depends
of the specific form of the lateral connection J in equation (2.4).

The infinite degeneracy of the modes on the critical circle can be reduced to a
finite set of modes by restricting solutions to be doubly periodic functions on the
Euclidean plane, for which we recall some basic properties. Let ℓ1, ℓ2 be a basis of
R

2. The set L = {2πm1ℓ1 + 2πm2ℓ2 | (m1,m2) ∈ Z
2} is a discrete subgroup of

R
2, called a planar lattice. If we denote by H the largest subgroup of O(2) which

preserves the lattice, then the symmetry group ΓL of the lattice is generated by
the semi-direct product ΓL = H ⋉ T

2, where T
2 is the 2-torus. The group H is

called the holohedry of the lattice. We also define the dual lattice of L by L∗ =
{2πm1k1 +2πm2k2 | (m1,m2) ∈ Z

2} with ℓi ·kj = δi,j . A function a : R
2 ×Ω → R

is doubly periodic with respect to L if a(r + ℓ, τ, θ) = a(r, τ, θ) for every ℓ ∈ L. We
summarize in table 1 the different holohedries of the hexagonal, square and rhombic
lattice.

Name Holohedry ℓ1 ℓ2 k1 k2

Hexagonal D6 (1, 1√
3
) (0, 2√

3
) (1, 0) (− 1

2 ,
√

3
2 )

Square D4 (1, 0) (0, 1) (1, 0) (0, 1)
Rhombic D2 (1,− cot θ) (0, cot θ) (1, 0) (cos θ, sin θ)

Table 1. Lattices in two dimension with their holohedry. 0 < θ <
π
2 , θ 6= π

3 .

The action of ΓL on the space of doubly periodic functions is the one induced
from the action of E(2) on R

2 × Ω given in (2.9). We consider only bifurcations
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based on dual wave vectors of shortest (unit) length and assume that the critical
eigenspace Vk consists of functions of the form:

a(r, τ, θ) =

s∑

j=1

zjukj
(τ, θ)eikj ·r + c.c. (3.14)

where (z1, . . . , zs) ∈ C
s with s = 2 for square or rhombic lattices and s = 3 for

hexagonal lattices. It was shown in [13] that the subspace Vk decomposes into two
nonisomorphic absolutely irreducible representations of ΓL: Vk = V +

k
⊕ V −

k
, where

V +
k

is the space of even eigenfunctions and V −
k

is the space of odd eigenfunctions

in θ. The actions of the group ΓL on V +
k

and V −
k

can be explicitly written down
for both the square or rhombic and hexagonal lattices and are given in [14].

Finally, by applying the Equivariant Branching Lemma [29, 19], we can show the
existence of branches of solution for each of the axial subgroups of ΓL. A subgroup
H ⊂ ΓL is axial if the dimension of the space of vectors that are fixed by H is equal
to unity. All these axial subgroups have been calculated in [13, 14] and lead to even
and odd planforms. In particular, the perturbation analysis made in the previous
part shows that uk(τ, θ) in equation (3.14) can take the forms:

(i) uk(τ, θ) ≈ Y1
1 (τ) cos(θ − 2ϕ) for even planforms (equation (3.12)),

(ii) uk(τ, θ) ≈ Y1
1 (τ) sin(θ − 2ϕ) for odd planforms (equation (3.13)).

The reduced feature space model for structure tensors is then a direct general-
ization of the model developed by Bressloff et al in [13, 14] but it does not predict
new planforms.

4. Problem 2: bifurcation of doubly periodic planforms in both R
2 and

D. In this section, we adopt the strategy developed in [28]. We will determine
solutions to symmetry-breaking bifurcations in the isotropic case (ǫ = 0), with
symmetry group E(2) × U(1, 1), and then study how these solutions change when
anisotropy is introduced as a forced symmetry-breaking parameter (0 < ǫ ≪ 1).

4.1. Bifurcation problem. First of all we rewrite equation (2.5) on R
2 × D with

W 0
lat in the definition of (2.3), which gives

∂V (r, z, t)

∂t
= −V (r, z, t) +

∫

D

Wloc (dD(z, z′))S(µV (r, z′, t))dm(z′)

+ β

∫

D

∫

R2

J (‖r − r′‖)K (dD(z, z′))S(µV (r′, z′, t))dm(z′)dr′.

(4.1)

With the fact that S(0) = 0 in the definition of the sigmoidal function S, the fully
symmetric state V = 0 is always a solution of (4.1) for all values of the parameter
µ and its uniqueness has been discussed in [27]. To study the linear stability of the
trivial state V = 0, we have to look at solutions of the linearized equation

∂V (r, z, t)

∂t
= −V (r, z, t) + µs1

∫

D

Wloc (dD(z, z′))V (r, z′, t)dm(z′)

+ βµs1

∫

D

∫

R2

J (‖r − r′‖)K (dD(z, z′))V (r′, z′, t)dm(z′)dr′.

(4.2)
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with s1 = S′(0) of the form eσtU(r, z). Solutions must satisfy the eigenvalue prob-
lem:

(σ + 1)U(r, z) = µs1

∫

D

Wloc (dD(z, z′))U(r, z′)dm(z′)

+ βµs1

∫

D

∫

R2

J (‖r − r′‖)K (dD(z, z′))U(r′, z′)dm(z′)dr′.
(4.3)

Because of the E(2) × U(1, 1) equivariance of equation (4.1), solutions of (4.3) are
plane waves in R

2 ×D. Let b be a point on the circle ∂D, which we may take equal
to b1 = 1 after a suitable rotation. For z ∈ D, we define the ”inner product” 〈z, b〉 as
the algebraic distance to the origin of the (unique) horocycle based at b and passing
through z. This distance is defined as the hyperbolic signed length of the segment
Oξ where ξ is the intersection point of the horocycle and the line (geodesic) Ob. Note
that 〈z, b〉 does not depend on the position of z on the horocycle. In other words,
〈z, b〉 is invariant under the action of the one-parameter group N (see definition in
appendix B). The ”hyperbolic plane waves”

eρ,b(z) = e(iρ+ 1
2
)〈z,b〉, ρ ∈ C,

satisfy

−∆D eρ,b = (ρ2 +
1

4
)eρ,b,

where ∆D is defined for z = z1 + iz2 ∈ D by

∆D =
(1 − z2

1 − z2
2)2

4

(
∂2

∂z2
1

+
∂2

∂z2
2

)
. (4.4)

Real eigenvalues −(ρ2 + 1
4 ) of ∆D correspond to taking ρ real or ρ ∈ iR. The

latter case is irrelevant for our study as it corresponds to exponentially diverging
eigenfunctions. Therefore the real spectrum of △ is continuous and is bounded
from above by −1/4. Functions eρ,b are the elementary eigenfunctions with which
Helgason [32] built a Fourier transform theory for the Poincaré disc, see [32].

Definition 4.1. Given a function f on D, its Helgason-Fourier transform is defined
by

f̃(ρ, b) =

∫

D

f(z)e−ρ,b(z)dm(z), ∀(ρ, b) ∈ R × ∂D (4.5)

Assuming that U(r, z) = eik·reρ,b(z) we obtain the following relation

σ = −1 + µs1

(
W̃loc(ρ) + βĴ (q)K̃(ρ)

)
(4.6)

where Ĵ (q) is the Hankel transform of J (‖·‖) with q = ‖k‖ and W̃loc(ρ) (resp. K̃(ρ))
is the Helgason-Fourier transform of Wloc(dD(·, 0)) (resp. K(dD(·, 0))). The fact that
Helgason-Fourier transform of Wloc(dD(·, 0)) and K(dD(·, 0)) does not depend upon
b ∈ ∂D was already proved in [27]. It follows that the neutral stability curve

µ(q, ρ) =
(
s1

(
W̃loc(ρ) + βĴ (q)K̃(ρ)

))−1

attains its minimum at µc =
(
s1

(
W̃loc(ρc) + βĴ (qc)K̃(ρc)

))−1

with (qc, ρc) defined

by (qc, ρc) = max(q,ρ)∈R+×R

[
W̃loc(ρ) + βĴ (q)K̃(ρ)

]
.

A consequence of the E(2)×U(1, 1) symmetry is that the kernel of the linearized
equation (4.2), at the critical point µ = µc is infinite dimensional (indifference to
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b and all k such that ‖k‖ = qc). As in the Euclidean case of pattern formation,
we want to look for solutions in the restricted class of patterns which are doubly
periodic in the r variable and spatially periodic in the z variable. Doubly-periodic
functions on the Euclidean plane correspond to rectangular, square and hexagonal
tilings of R

2, see section 3.3.2. Functions which are periodic in the Poincaré disk
D are, by definition, invariant under the action of a discrete subgroup G of U(1, 1)
whose fundamental domain is a polygon. Such a subgroup is called a cocompact
Fuchsian group and we can restrict further to look for such groups which contain
no elliptic elements nor reflections1.

Tilings of the Poincaré disc have very different properties from tilings of the Eu-
clidean plane. In particular tilings exist with polygons having an arbitrary number
of sides, while in R

2 only rectangular, square and hexagonal periodic tilings exist.
But the size of a regular polygon with a given number of vertices is fixed in hy-
perbolic geometry, a consequence of the Gauss-Bonnet formula [40]. This has for
consequence to render discrete the set of values of the wave number ρc and hence
µc. It follows that, although we can look for the bifurcation of spatially periodic
solutions associated with a given tessellation in D, these patterns will not in gen-
eral correspond to the most unstable perturbations unless the parameters in the
equation are tuned so that it happens this way. In section 4.3, we will tune the
parameters of the local connectivity function Wloc, such that the most unstable
mode is associated to the tiling that we have chosen.

This problem of pattern formation on the Poincré disk was presented in [18, 26]
and an example was studied, namely the case where the group G corresponds to a
tiling of D with regular octagons. This particular choice was initially motivated and
explained in [20] where families of subgroups of U(1, 1) were identified to naturally
arise from the retinal input to the hypercolumns in the visual area V1 such as the
group G. In this case G is generated by four hyperbolic transformations which
are rotated from each other by angles kπ/4 (k = 1, 2, 3), and D/Γ is a double torus
(genus 2 surface). Moreover the group of automorphisms G of D/G is known and has
96 elements. Restricting to the class of G-periodic functions, the initial bifurcation
problem is now reduced to an equation that is invariant under the action of G. By
standard center manifold reduction, this equation can be projected onto the critical
eigenspace of the linearized operator. In our case the critical eigenvalue is 0 (“steady
state” bifurcation) and its eigenspace is an absolutely irreducible representation
space of the group G.

4.2. Bifurcations of octagonal H-planforms. In this section, we introduce the
octagonal lattice and its symmetries, we recall the structure of the group G of
automorphisms of D/G and its irreducible representations. We also recall the main
result of [18, 26] about the bifurcation of H-planforms in this case.

4.2.1. General setting. The octagonal lattice group G is generated by the following
four hyperbolic transformations (boosts), see [3]:

g0 =

(
1 +

√
2

√
2 + 2

√
2√

2 + 2
√

2 1 +
√

2

)
(4.7)

1These subgroups of SU(1, 1) contain only hyperbolic elements and are the exact counterparts
of discrete translation subgroups of R

p. They are called ”torsion-free” cocompact Fuchsian groups,

see [40].
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Figure 5. Tessellation of the hyperbolic octagon O with congru-
ent triangles.

and gj = rotjπ/4g0rot−jπ/4, j = 1, 2, 3, where rotϕ indicates the rotation of angle
ϕ around the origin in D. The fundamental domain of the lattice is a regular
octagon O as shown in Figure 5. The opposite sides of the octagon are identified
by periodicity, so that the corresponding quotient surface D/G is isomorphic to a
”double doughnut” (genus two surface) [3]. The fundamental octagon O can be
further decomposed into 96 congruent triangles (see Figure 5) with angles π/2, π/3
and π/8. By applying reflections through the sides of one triangle (like the purple
one in Figure 5) and iterating the process, applying if necessary a translation in G

to get the resulting triangle back to O, one fills out the octagon. The set of all these
transformations (mod G) is isomorphic to the group of automorphisms of D/G, we
call it G. Let us call P , Q, R the vertices of the red triangle in Figure 5 which have
angles π/8, π/2 and π/3 respectively.

Definition 4.2. We set :
(i) κ, κ′ and κ′′ the reflections through the sides PQ, PR and QR respectively (mod
G);
(ii) ρ the rotation by π/4 centered at P , σ the rotation by π centered at Q and ǫ
the rotation by 2π/3 centered at R (mod G).

Note that ρ = κ′κ, σ = κ′′κ and ǫ = κ′′κ′. Moreover ρσǫ = Id. Any two of these
”rotations” generate the subgroup G0 of orientation-preserving automorphisms of
G. It can be seen that G = G0 ∪ κ · G0, and moreover G0 can be identified with
GL(2, 3), the group of invertible 2 × 2 matrices with entires in the field Z3.

There are 13 conjugacy classes and therefore 13 complex irreducible representa-
tions of G, the characters of which will be denoted χj , j = 1, ..., 13. It was shown in
[18] that there are 4 irreducible representations of dimension 1, 2 of dimension 2, 4
of dimension 3 and 3 of dimension 4. In the following we shall denote the irreducible
representations by their character: χj is the representation with this character. The
following lemma is proved in [18].

Lemma 4.3. All the irreducible representations of G are real absolutely irreducible.
In other words, any matrix which commutes with such a representation is a real
scalar multiple of the identity matrix.

4.2.2. Irreducible representation χ8. For each representations χ1 to χ13, we have
given in [18] the isotropy types of each representations which have on dimensional
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fixed-point subspace and presented in [18, 26] the corresponding bifurcation dia-
grams. In this study, we focus on the case of the irreduclible representation χ8.
The choice of χ8 is arbitrary for the moment but will be explained in great details
in 4.2.4. In that case, from Theorem 5 in [18] and Theorem 1 in [26], we have the
following proposition. We recall that the octahedral group O, the direct symmetry
group of the cube, possesses two irreducible representations of dimension three. In
order to differentiate these two irreducible representations we adopt the convention
“natural” as used in [48].

Proposition 4.1. For the three dimensional irreducible representation χ8 of G, the
isotropy subgroups with one dimensional fixed point subspace are the following:

D8 = 〈ρ, κ〉
C̃6κ′ = 〈−ǫ, κ′〉
D̃2κ = 〈−Id, σ, κ〉.

The bifurcation diagram is the same as the bifurcation diagram with “natural” full
octahedral O ⋉ Z2 symmetry in R

3.

Figure 6. Maximal isotropy subgroups D8, C̃6κ′ and D̃2κ of O ⋉

Z2. The axes γ1 ·D8 and γ2 ·D8 are copies of D8 by the elements
γ1, γ2 ∈ G (see 4.2.3). The plane (0, c2, c3) (resp. (c1, 0, c3)) has
symmetry D2 (resp. D′

2).
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4.2.3. Associated octagonal H-planforms. In order to illustrate our purpose, we nu-
merically compute the octagonal H-planforms associated to the irreducible repre-
sentation χ8 of G. We recall that these planforms are eigenfunctions of the Laplace-
Beltrami operator in D, defined in equation (4.4), which satisfy certain isotropy
conditions: (i) being invariant under a lattice group G and (ii) being invariant un-
der the action of an isotropy subgroup of the symmetry group of the fundamental
domain D/G (mod G). We implement the finite element method (see [21] for a
review) with periodic boundary conditions in the octagon and afterward, identify
the corresponding planforms. Our results are in agreement with those of Aurich
and Steiner reported in [1]. In figure 7, we plot the corresponding eigenfunctions
of the Laplace-Beltrami operator associated to the lowest non-negative eigenvalue
λ = 3.8432 with multiplicity 3. We identify each solution by its symmetry group.
Note that the solution in figure 7(a) corresponds to an axis of symmetry in the
sense that its symmetry group is an isotropy subgroup with one dimensional fixed
point subspace. In figure 8, we plot each eigenfunction in the Poincaré disk. It
becomes now clear that 8(b) and 8(c) can be obtained from 8(a) by hyperbolic
transformations. From appendix B and the definition of g0 in equation (4.7), we

see that g0 = ar0
with r0 = ln

(
1 +

√
2 +

√
2 +

√
2
)
. If we define γk ∈ G by:

γk = rotkπ/4ar0/2rot−kπ/4

then figure 8(b) (resp. 8(c)) is obtained from 8(a) by applying γ1 (resp. γ2).
Planforms in figure 8 correspond the three coordinate axes of the cube in figure 6.

4.2.4. Polar map and choice of χ8. In optical imaging ([17] for a review), a polar
map is obtained by combining the color code for preferred orientation with a bright-
ness code representing the strength of orientation tuning. Dark regions represent
areas of weak tuning, whereas bright areas represent strong orientation preference.
Dark areas are prevalent in pinwheel centers. The PM is a functional map that
assigns each location r, a complex number z(r). The values of z(r) are calculated
from the OM as follows. Let (ϕj)j=1...p be p equidistant orientations presented
to the animal, let S

ϕj

r denote the response at location r for the OM evoked by
orientation ϕj .

z(r) = ρ(r)eiθ(r) =
2

p

p∑

j=1

S
ϕj

r eiϕj

where θ(r) is the preferred orientation at location r and the magnitude measures
the degree to which the response at location r is modulated by the stimulus’s ori-
entation. This is the selectivity of location r. When moving from a point far from
the pinwheel towards the pinwheel, the selectivity is gradually reduced, resulting
in a large range of selectivity values. For each preferred orientation there is a wide
range of selectivities. It was shown in [59] that neurons in regions of homogeneous
orientation preference (iso-orientation domains) have much sharper tuning than in
heterogeneous regions of the map (near pinwheel centers). These anatomical exper-
iments lead us to identify a point of the polar map z(r) with a point in the Poincaré
disk seen as a structure tensor of determinant equal one. The point z = 0 of the
Poincaré disk is interpreted as a point where all orientations are represented with
low selectivity and then corresponds to a pinwheel center, whereas a point z = |z|eiθ

close the boundary D has a preferred orientation θ and a very high selectivity.
We have identified the modulus of a point in the Poincaré disk to the selectivity.

From the computer vision point of view, the modulus can also be linked to to the
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(a) Symmetry D8 =< ρ, κ >.

(b) Symmetry D′

2 =< −Id, ρ2κ >. (c) Symmetry D2 =< −Id, κ >.

Figure 7. Plot of the eigenfunctions of the Laplace-Beltrami oper-
ator in the octagon O associated to the lowest non-negative eigen-
value λ = 3.8432 corresponding to the irreducible representation
χ8.

coherence of the corresponding structure tensor. The coherence measures the degree
of anisotropy of the two eigenvalues of the structure tensor. For a given structure
tensor T , the coherence is defined as the ratio λ1−λ2

λ1+λ2
, where λ1 ≥ λ2 > 0 are the

two eigenvalues of T . In the case of a structure tensor T with determinant equal to

1 which is identified to a point z ∈ D, we have λ1−λ2

λ1+λ2
= 2|z|

1+|z|2 . Then the coherence

is directly linked to the selectivity.
The choice of irreducible representation χ8 comes from the direct interpretation

of H-planforms plotted in figures 7(b), 7(c) and 7(a) in terms of preferred orienta-
tion. For example, in figure 7(a), the high region of activity near the center of the
Poincaré disk traduces the fact the point z = 0 is preferred, this means that the
selectivity is low and all orientations are represented. On the other hand, in figure
7(b), two points on the boundary of the octagon correspond to high activity of the
eigenfunction. Due to the periodicity (opposite faces of the octagon are identified),
these two points are the same and thus there is a preferred orientation at π

4 . With
a similar argument, in figure 7(c), there is a preferred orientation at π

2 . As sur-
prising as it can be, solutions in figures 7(b), 7(c) and 7(a) have to be thought as
unimodal solution of the z variable due to the periodicity. These solutions are the
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(a) H-planform Ψ3 with symmetry D8.

(b) H-planform Ψ1 with symmetry γ1 · D8. (c) H-planform Ψ2 with symmetry γ2 · D8.

Figure 8. Plot of the eigenfunctions of the Laplace-Beltrami op-
erator in the Poincaré disk D associated to the lowest non-negative
eigenvalue λ = 3.8432 corresponding to the irreducible representa-
tion χ8. In (a) we also plot the octagon (black line) and in (b),(c)
its image by γ1, γ2 respectively.

counterpart, in the hyperbolic disk, to the tuning curves found in the ring model of
orientations [4, 30].

4.3. Bifurcation diagrams for one hypercolumn. In this paragraph, we con-
sider the case β = 0 and deal with the following equation:

∂V (z, t)

∂t
= −V (z, t) +

∫

D

Wloc (dD(z, z′))S(µV (z′, t))dm(z′). (4.8)

For S(0) = 0, the fully symmetric state V = 0 is always solution of (4.8) and the
associated linear equation is given by

∂V (z, t)

∂t
= −V (z, t) + µs1

∫

D

Wloc (dD(z, z′))V (z′, t)dm(z′). (4.9)

If we denote Ψ1 the H-planform in figure 7(b), Ψ2 the H-planform in figure 7(c) and
Ψ3 the H-planform corresponding to the symmetry group D8 in figure 7(a), then
(Ψ1,Ψ2,Ψ3) is a basis for the irreducible representation χ8. This can be easily seen
through the identification of each H-planform to the three coordinate axes of the
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cube in figure 6. Then if we define:

1

4π

∫

O

∫

D

Wloc (dD(z, z′))Ψi(z)Ψi(z
′)dm(z′)dm(z) = W̃ c

loc ∀i = 1 . . . 3

there is a bifurcation at µc =
(
s1W̃

c
loc

)−1

such that for µ < µc the state V = 0 is

stable. Note that we have normalized planforms such that:

〈Ψi,Ψj〉 =
1

4π

∫

O
Ψi(z)Ψj(z)dm(z) = δi,j .

If we rewrite equation (4.8) as

V ′ = LV + R(V, λ)

with λ = µ − µc and

LV = −V + µcs1Wloc ⋆ V

R(V, λ) = Wloc ⋆ (S((λ + µc)V ) − µcs1V ) .

Close to the bifurcation point, there exists a polynomial map Φ(·, λ) such that the
change of variable:

V (z) = c1Ψ1 + c2Ψ2 + c3Ψ3 + Φ(c1, c2, c3, λ)

transforms equation (4.8) into the normal form (see [47] for a review on bifurcation
problems with octahedral symmetry):





dc1

dt = λ
µc

c1 +
[
a(c2

2 + c2
3) + bc2

1

]
c1 + h.o.t.

dc2

dt = λ
µc

c2 +
[
a(c2

1 + c2
3) + bc2

2

]
c2 + h.o.t.

dc3

dt = λ
µc

c3 +
[
a(c2

1 + c2
2) + bc2

3

]
c3 + h.o.t.

(4.10)

Taylor expanding the map Φ:

Φ(c1, c2, c3, λ) =
∑

1≤r+s+l+m≤3

cr
1c

s
2c

l
3λ

mΦrslm

and R:
R(V, λ) = R11(V, λ) + R20(V, V ) + R30(V, V, V ) + h.o.t.

with

R11(V, λ) = λs1Wloc ⋆ V

R20(U, V ) =
µ2

cs2

2
Wloc ⋆ (UV )

R300(U, V,W ) =
µ3

cs3

6
Wloc ⋆ (UV W )

where s2 = S′′(0) and s3 = S′′′(0) we obtain the following system of equations:

0 = −LΦ0020 −R20(Ψ3,Ψ3)

0 = −LΦ1010 − 2R20(Ψ1,Ψ3)

a = 〈2R20(Φ0020,Ψ1) + 2R20(Φ1010,Ψ3) + 3R30(Ψ1,Ψ3,Ψ3),Ψ1〉
b = 〈2R20(Ψ3,Φ0020) + R30(Ψ3,Ψ3,Ψ3),Ψ3〉. (4.11)

In order to solve the two first equations of the previous system, we need to know
the functions Ψ3(z)Ψ3(z) and Ψ1(z)Ψ3(z) can be expressed as a linear combina-
tion of eigenfunctions of the Laplace-Beltrami operator on O. In general, it is very
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difficult to obtain these expressions because the eigenfunctions are only know numer-
ically and one needs the computation of the associated Clebsch-Gordan coefficients.
It turns out that in our case we have been able to conjecture and numerically verify
the following relations:

Ψ1(z)Ψ3(z) =
1√
3
Ψ

D
′

2κ
χ10

(z)

Ψ2
3(z) =

6

5
Ψ

eD8κ
χ6

(z) + 1

where the corresponding isotropy subgroups are given by:

D′
2κ =< −Id, ρ2κ, ρ2σ > and D̃8κ =< ρ, ρ2σρ−2, κ > .

Furthermore we have normalized Ψ
D

′

2κ
χ10

and Ψ
eD8κ
χ6

such that:

〈ΨD
′

2κ
χ10

,Ψ
D

′

2κ
χ10

〉 = 〈ΨeD8κ
χ6

,Ψ
eD8κ
χ6

〉 = 1.

(a) Plot of Ψ
D

′

2κ
χ10

. (b) Plot of Ψ
eD8κ
χ6

.

Figure 9. Plot of the eigenfunctions of the Laplace-Beltrami oper-
ator in the octagon O corresponding to the irreducible representa-
tions χ10 with eigenvalue λ = 15.0518 (left) and χ6 with eigenvalue
λ = 8.2501 (right).

In figure 9, we plot the eigenfunctions Ψ
D

′

2κ
χ10

and Ψ
eD8κ
χ6

of the Laplace-Beltrami
operator in the octagon O. One interesting remark is that the product Ψ1Ψ3

corresponding to the three dimensional irreducible representation χ8 produces an
eigenfunction associated to another three dimensional irreducible representation:
χ10 whereas Ψ2

3 is the linear combination of the constant function which has G as

isotropy subgroup and thus corresponds to χ1 and the eigenfunction Ψ
eD8κ
χ6

which is
associated to two dimensional irreducible representation χ6.

If we define

W̃
χ10,D′

2κ

loc =
1

4π

∫

O

∫

D

Wloc (dD(z, z′))Ψ
D

′

2κ
χ10

(z)Ψ
D

′

2κ
χ10

(z′)dm(z′)dm(z)

W̃χ6, eD8κ

loc =
1

4π

∫

O

∫

D

Wloc (dD(z, z′))Ψ
eD8κ
χ6

(z)Ψ
eD8κ
χ6

(z′)dm(z′)dm(z)

W̃χ1

loc =

∫

D

Wloc (dD(z, z′)) dm(z′)
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then the two first equations of system (4.11) give

Φ0020 = Span (Ψ1,Ψ2,Ψ3) +
µ2

cs2

2

[
W̃χ1

loc

1 − W̃χ1

loc/W̃ c
loc

+
6

5

W̃χ6, eD8κ

loc

1 − W̃χ6, eD8κ

loc /W̃ c
loc

Ψ
eD8κ
χ6

]

Φ1010 = Span (Ψ1,Ψ2,Ψ3) +
µ2

cs2√
3

W̃
χ10,D′

2κ

loc

1 − W̃
χ10,D′

2κ

loc /W̃ c
loc

Ψ
D

′

2κ
χ10

.

We can now obtain the expression of the coefficients a and b in the reduced
equation (4.10).

Lemma 4.4.

a = µ3
cW

c
loc

(
s3

6
+

µcs
2
2

2

[
W̃χ1

loc

1 − W̃χ1

loc/W̃ c
loc

− 2

3

W̃χ6, eD8κ

loc

1 − W̃χ6, eD8κ

loc /W̃ c
loc

+
1

3

W̃
χ10,D′

2κ

loc

1 − W̃
χ10,D′

2κ

loc /W̃ c
loc

]) (4.12)

b = µ3
cW

c
loc

(
61s3

150
+

µcs
2
2

2

[
W̃χ1

loc

1 − W̃χ1

loc/W̃ c
loc

+
36

25

W̃χ6, eD8κ

loc

1 − W̃χ6, eD8κ

loc /W̃ c
loc

])
. (4.13)

Proof. See appendix D.

From the analysis derived in [47], we have the following result.

Lemma 4.5. The stability of the branches of solutions corresponding to the three
maximal isotropy subgroups given in proposition 4.1 is:

(i) the D8 branch is stable if and only if a < b < 0,

(ii) the C̃6κ′ branch is stable if and only if 2a + b < 0 and b − a < 0,

(iii) the D̃2κ branch is never stable.

The corresponding bifurcation diagram is given in figure 10 for a < b < 0.

We want that our hypercolumn produces tuning surfaces close the bifurcation
point µ = µc. From the discussion made in paragraph 4.2.4 on the interpretation
of H-planforms, we impose that the condition a < b < 0 is satisfied such that
the D8 branch is the only stable branch. Depending on the initial condition in
the (c1, c2, c3)-space, the solution will converge to one of three axis of coordinates:
D8, γ1 · D8 or γ2 · D8. The condition a < b < 0 gives a constrain on the threshold
T of the sigmoidal function defined in equation (2.2) and the different coefficients

W̃loc of the coupling function Wloc.
In order to illustrate this constrain on the parameters, we present a specific

example. The local coupling function is given by:

Wloc(x) = A cosh(2x)−σ0 − cosh(2x)−σ (4.14)

with A > 1 and σ0 > σ > 1
2 . The Helgason-Fourier transform of z → Wloc(dD(z, 0))

can be computed analytically [62] and we have shown [27] that it only depends upon
ρ ∈ R in definition 4.5:

W̃loc(ρ) =
√

π

[
A

2σ0−3

Γ(σ0)

∣∣∣∣Γ
(

σ0 + iρ − 1
2

2

)∣∣∣∣
2

− 2σ−3

Γ(σ)

∣∣∣∣Γ
(

σ + iρ − 1
2

2

)∣∣∣∣
2
]

. (4.15)
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Figure 10. Bifurcation diagram in the case a < b < 0. Solid lines
correspond to stable branches, dotted ones to unstable branches.
For each maximal isotropy subgroups, we plot the corresponding
planform.

Figure 11. Plot of the local coupling function Wloc given in equa-

tion (4.14) and its Helgason-Fourier transform W̃loc given in equa-
tion (4.14) with σ0 = 3.5 and σ = 1.5. For the choice of A, see
text.

Firstly, we fix the value of σ0 = 3.5. Then, we tune the value of A such that the

most unstable mode ρc = maxρ∈R W̃loc(ρ) corresponds to the irreducible represen-
tation χ8. Note that A depends upon (σ0, σ). In figure 11, we plot both the local
connectivity function and its Helgason-Fourier transform for σ = 1.5. For each
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Figure 12. Regions of the plane (T, σ) where the branches D8

and C̃6κ′ are stable with σ0 = 3.5.

value of (T, σ) in [0, 2]× [0.75, 1.75] we have numerically computed the coefficients a
and b given in lemma 4.4 and then checked if the stability conditions in lemma 4.5
are satisfied. Our results are plotted in figure 12. We can see the different regions

of the plane (T, σ) where the branches D8 and C̃6κ′ are stable: in blue the region

where D8 is stable and in purple the region where C̃6κ′ is stable.

4.4. Symmetry-breaking bifurcations on lattices. Knowing the behaviour of
our network at the hypercolumnar level, we can come back to the fully isotropically
connected model and we restrict ourselves to doubly periodic functions on a square
lattice for the r variable and periodic on the octagon O in the z variable. The choice
of the square lattice is dictated by the fact that the rotations of π/2 centered at 0
in the Euclidean square and of π at 0 in the hyperbolic octagon can be identified.
Indeed, for anisotropic coupling, the action of a rotation on (r, z) is given by (see
equation (2.9))

Rθ · (r, z) =
(
Rθr, e

2iθz
)

so that if O is the feature space, only rotations with angle θ = k π
4 are allowed.

Hence the hexagonal lattice is not compatible with the octagonal tiling whereas
both rhombic and square lattices are compatible.

By restricting the bifurcation problem to a direct product of lattices, the group of

symmetries E(2)×U(1, 1) is transformed to the compact group Γ
def
= (D4 ⋉T

2)×G,
where D4 is the holohedry of the square lattice, T

2 is the 2-torus (see paragraph
3.3.2) and G is the group of automorphisms of the octagon O. The kernel of the
linearized equation (4.2), at the critical point µ = µc is now finite dimensional and
tools from equivariant bifurcation theory can be applied. Namely, the Equivariant
Branching Lemma [29, 19] ensures the existence of branches of equilibria for every
axial subgroup of Γ and the remaining paragraphs will be dedicated to this study.

4.5. Group actions. As the principal isotropy subgroup for χ8 is C2 =< Id,−Id >
we get a faithful action by taking G/C2

∼= O×Z2, where O is the octahedral group.
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By identifying elements of G with elements of the octahedral group O it is possible
to construct action on the eigenspace spanned by Ψ1,Ψ2,Ψ3. If we have:

u(z) = c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)

we identify the eigenspace with (c1, c2, c3) ∈ R
3 and we have





ρ · (c1, c2, c3) = (−c2, c1, c3)
κ · (c1, c2, c3) = (−c1, c2, c3)
σ · (c1, c2, c3) = (−c1,−c3,−c2)
ǫ · (c1, c2, c3) = (−c2,−c3, c1)

where ρ, κ, σ and ǫ have been defined in 4.2.
We denote ξ the rotation of angle of π/2 centered at 0 of the square, δ the

reflection along the horizontal axis and

Θ = θ1ℓ1 + θ2ℓ2
def
= [θ1, θ2] (4.16)

with (θ1, θ2) ∈ [0, 2π[2. We suppose that the critical eigenspace W consists of
functions of the form:

a(r, z) = (c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)) eik1·r

+ (d1Ψ1(z) + d2Ψ2(z) + d3Ψ3(z)) eik2·r + c.c
(4.17)

where (c1, c2, c3, d1, d2, d3) ∈ C
6. We will identify W with C

6 through 4.17.
The action of ξ on a(r, z) can be expressed as:

ξ · a(r, z) = a(ξ−1r, z)

= (c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)) eik1·ξ−1
r

+ (d1Ψ1(z) + d2Ψ2(z) + d3Ψ3(z)) eik2·ξ−1
r + c.c

=
(
d̄1Ψ1(z) + d̄2Ψ2(z) + d̄3Ψ3(z)

)
eik1·r

+ (c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)) eik2·r + c.c .

Then we have ξ · (c1, c2, c3, d1, d2, d3) = (d̄1, d̄2, d̄3, c1, c2, c3) and the action of each
elements on (c1, c2, c3, d1, d2, d3) is given by




ξ · (c1, c2, c3, d1, d2, d3) = (d̄1, d̄2, d̄3, c1, c2, c3)
δ · ( ′′ ) = (c1, c2, c3, d̄1, d̄2, d̄3, )
Θ · ( ′′ ) = (e−i2πθ1(c1, c2, c3), e

−i2πθ2(d1, d2, d3))
ρ · ( ′′ ) = (−c2, c1, c3,−d2, d1, d3)
κ · ( ′′ ) = (−c1, c2, c3,−d1, d2, d3)
σ · ( ′′ ) = (−c1,−c3,−c2,−d1,−d3,−d2)
ǫ · ( ′′ ) = (−c2,−c3, c1,−d2,−d3, d1).

(4.18)

Lemma 4.6. The action of Γ on C
6, given in 4.18, is absolutely irreducible.

Proof. Any 6× 6 complex matrix which commutes with the action D4 ⋉ T
2 decom-

poses into a direct sum of two 3 × 3 identical diagonal matrices with real entries.
Indeed the action of translations forces any 6×6 complex matrix to be diagonal with
real entries and the action of D4 decomposes this matrix into two 3 × 3 identical
diagonal matrices. The action of G renders each diagonal matrix equal to a scalar
multiple of the identity matrix I3, which proves that the action of Γ is absolutely
irreducible. Note that we could also have directly apply the general result of lemma
4.7 in order to prove this lemma.
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Our aim is now to apply the Equivariant Branching Lemma (see [29]). For
this, we need to compute each isotropy subgroup Σ of Γ such that the subspace
WΣ = {x ∈ W | Σ ·x = x} is one dimensional. Such subgroups are called axial. We
recall the following lemma, the proof of which is given in Serre [60].

Lemma 4.7. Let H = H1 × H2 be an isotropy subgroup for the irreducible repre-
sentation R of G1×G2 acting in X. Then X = X1⊗X2 and R = R1⊗R2 where R1

is an irreducible representation of G1 in V1 and R2 is an irreducible representation
of G2 in V2 and therefore H1 acts in V1 and H2 acts in V2. Furthermore we have:

dim
(
XH

)
= 1 if and only if dim

(
V H1

1

)
= dim

(
V H2

2

)
= 1.

It is then possible to determine the maximal isotropy subgroups of Γ that satisfy
the hypotheses of the Equivariant Branching Lemma.

Theorem 4.8. The following six isotropy subgroups are axial:

• Σ1 = D4(ξ, δ) × D8

• Σ2 =
[
O2(ξ

2, [0, θ2]) × Z2(δ)
]
× D8

• Σ3 = D4(ξ, δ) × C̃6κ′

• Σ4 =
[
O2(ξ

2, [0, θ2]) × Z2(δ)
]
× C̃6κ′

• Σ5 = D4(ξ, δ) × D̃2κ

• Σ6 =
[
O2(ξ

2, [0, θ2]) × Z2(δ)
]
× D̃2κ.

The corresponding fixed subspaces are listed in table 2.

Proof. We have already seen that D8, C̃6κ′ and D̃2κ are the three axial isotropy
subgroups for the irreducible representation χ8 of G. D4(ξ, δ) and O2(ξ

2, [0, θ2]) ×
Z2(δ) are the two axial subgroups for the irreducible action of D4⋉T

2 on C
2 [29, 33].

Lemma 4.7 gives the result.

Axial subgroup Fixed subspace
Σ1 R{(0, 0, 1, 0, 0, 1)}
Σ2 R{(0, 0, 1, 0, 0, 0)}
Σ3 R{(1,−1, 1, 1,−1, 1)}
Σ4 R{(1,−1, 1, 0, 0, 0)}
Σ5 R{(0, 1,−1, 0, 1,−1)}
Σ6 R{(0, 1,−1, 0, 0, 0)}

Table 2. Fixed subspaces of C
6 for each axial subgroups.

4.6. Selection and stability of patterns. Close to the bifurcation point, there
exists a polynomial map Φ(·, λ) such that the change of variable:

V (r, z) =
3∑

l=1

[
clΨl(z)eik1·r + dlΨl(z)eik2·r]+

3∑

l=1

[
c̄lΨl(z)e−ik1·r + d̄lΨl(z)e−ik2·r]

+ Ψ(c1, c2, c3, d1, d2, d3, c̄1, c̄2, c̄3, d̄1, d̄2, d̄3, λ)
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transforms equation (4.1) into the normal form




dc1

dt
= λc1 + c1

[
α1|c1|2 + α2

(
|c2|2 + |c3|2

)
+ α3|d1|2 + α4

(
|d2|2 + |d3|2

)]
+ h.o.t.

dd1

dt
= λd1 + d1

[
α1|d1|2 + α2

(
|d2|2 + |d3|2

)
+ α3|c1|2 + α4

(
|c2|2 + |c3|2

)]
+ h.o.t.

(4.19)

with (α1, α2, α3, α4) ∈ R
4. Equations for

dcj

dt
,
ddj

dt
, j = 2, 3, are obtained by cyclic

permutation.

Proof. See appendix E for the computation of cubic equivariants.

Remark 4.1. In order to simplify notations, we have normalized the normal form
equation (4.19) such that λ is the coefficient of the linear terms and not λ

µc
as for

normal form (4.10).

Theorem 4.9. The branches of solutions corresponding to the six maximal isotropy
subgroups satisfy the following equations:

• Σ1 : λ = −(α1 + α3)x
2 + o(x4),

• Σ2 : λ = −α1x
2 + o(x4),

• Σ3 : λ = −(α1 + 2α2 + α3 + 2α4)x
2 + o(x4),

• Σ4 : λ = −(α1 + 2α2)x
2 + o(x4),

• Σ5 : λ = −(α1 + α2 + α3 + α4)x
2 + o(x4),

• Σ6 : λ = −(α1 + α2)x
2 + o(x4).

The Σ1 branch is stable if and only if α2 + α4 < α1 + α3 and α1 < −|α3|. The Σ2

branch is stable if and only if α1 < 0, α2 < α1, α3 < α1 and α4 < α1. The Σ3

branch is stable if and only if α1 + 2α2 < −|α3 + 2α4| and α1 − α2 < −|α3 − α4|.
The Σ4 branch is stable if and only α1 +2α2 < 0, α1 < α2 and α3 +2α4 < α1 +2α2.
Branches Σ5 and Σ6 are never stable.

Proof. The equation of each branch of solutions comes directly from table 2 and
the amplitude equations (4.19). The stability of a branch requires the computa-
tion of the Jacobian matrix of (4.19) evaluated on the branch and the study of
the corresponding eigenvalues. It is always possible to set the imaginary parts of
any solution (c1, c2, c3, d1, d2, d3) to zero, by moving the origin, and then choose
(c1, c2, c3, d1, d2, d3) to be real.

For the Σ1 branch for example, a straightforward calculation shows that the
eigenvalues of the Jacobian matrix evaluated at (0, 0, x, 0, 0, x) are:

µ1 = λ + 3(α1 + α3)x
2 = 2(α1 + α3)x

2 + o(x4)

µ2 = λ + (3α1 − α3)x
2 = 2(α1 − α3)x

2 + o(x4)

µ3 = µ4 = µ5 = µ6 = λ + (α2 + α4)x
2 = (α2 + α4 − α1 − α3)x

2 + o(x4).

And the stability result automatically follows.

4.7. Pictures of axial planforms Σ1 and Σ2. We have already explained in
4.2.4 that it is possible to interpret, in term of tuning surface, planforms with D8-
symmetry in the case of an isolated hypercolumn. This is why, we will focus only
axial planforms Σ1 and Σ2 of theorem 4.8. For example, in the case of Σ1, the
corresponding planform can be written as:

a(r, z) = cΨ3(z) (cos(r1) + sin(r2))
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(a)

(b)

Figure 13. Axial eigenfunctions on the square lattice associated
with D8-symmetry: (a) square, (b) roll.

with r = (r1, r2) and c a real constant. Planform Ψ3(z) has z = 0 as preferred
point in the Poincaré disk such that if we further have cos(r1) + sin(r2) > 0 then
we represent a dark region at r in terms of activity profile in V1 . On the other
side, planform −Ψ3(z) has z = ±(2k + 1)π/8 with k = 0 . . . 3 as preferred points
in the Poincaré disk such that when cos(r1) + sin(r2) < 0 we draw a star shape
indicating the presence of multiple orientations at r. In figure 13, we plot the axial
planforms corresponding to square and roll solutions on the plane and D8 solutions
on the Poincaré disk. In figures 14 and 15 we plot the planforms corresponding to
branches of solution with symmetry γ1 ·D8 and γ2 ·D8. Note that these planforms
are now contoured planforms as they only have one preferred orientation. In figures
16, 17 and 18 we plot the same planforms in the visual field coordinates, with
methods developped in [14]. Planforms in figure 14 and 15 have already been
found by Bressloff et al in [13, 14], whereas to our best knowledge it is the first
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(a)

(b)

Figure 14. Axial eigenfunctions on the square lattice associated
with γ1 · D8-symmetry: (a) square, (b) roll.

time that planform of type 13 is found. Planform in figure 13 is a combination
of both contoured and non-contoured regions, contoured regions having multiple
orientations. In [13, 14], contoured planforms with multiple orientations have been
found only in the case of an hexagonal lattice.

4.8. Forced symmetry breaking. In this section we study the effect of taking
ǫ 6= 0 in the bifurcation problem analyzed in the previous sections. We therefore
assume a square lattice in the plane and the octagonal lattice in D. We wish to
treat the problem as a weak perturbation of the isotropic case. The symmetry group
when ǫ = 0 is Γ and it acts as defined in (4.18). The G symmetry of individual
hypercolumns disappears when ǫ 6= 0 but something remains of it through the ”shift-
twist” symmetries (2.9) which act simultaneously on the ”spatial” and ”structure
tensor” components. The action of square symmetries ξ and δ introduced in (4.18)
have therefore to be replaced by the transformations R = ξρ and K = δκ, which
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(a)

(b)

Figure 15. Axial eigenfunctions on the square lattice associated
with γ2 · D8-symmetry: (a) square, (b) roll.

act on (c1, c2, c3, d1, d2, d3) as follows

R(c1, c2, c3, d1, d2, d3) = (−d̄2, d̄1, d̄3,−c2, c1, c3)
K(c1, c2, c3, d1, d2, d3) = (−c1, c2, c3,−d̄1, d̄2, d̄3)

(4.20)

The continuous part Θ of the action in (4.18) remains unchanged. R,K and Θ
define a new action of D4 ⋉ T

2 in R
12 ≃ C

6.
What is the effect of this perturbation on the bifurcation problem? In order to

give a full description of the perturbed bifurcation diagram one should consider the
codimension two bifurcation problem in the limit when both µ → µc and ǫ → 0,
which requires first to compute the eigenvalues of the linear operator Lµ,β,ǫ =
DV F(0, µ, β, ǫ) (see eq. (2.11) when (µ, ǫ) ∼ (µC , 0). For this we need to know how
the representation of D4 ⋉ T

2 we just defined above decomposes into irreducible
components. There are two 4 dimensional irreducible representations of this group
which are called scalar and pseudoscalar because the former occur naturally in the
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(a)

(b)

Figure 16. Axial eigenfunctions on the square lattice associated
with D8-symmetry in the visual field: (a) square, (b) roll.

bifurcation analysis for scalar fields while the latter occur naturally in the analysis
of pseudoscalar fields2.

2A field u : R
2
→ R is pseudoscalar if a reflection S in the plane acts by S · u(x) = −u(Sx)),

see [7]. The importance of this distinction in the context of neural fields was first noticed by [28]

in the ring model.
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(a)

(b)

Figure 17. Axial eigenfunctions on the square lattice associated
with γ1 · D8-symmetry in the visual field: (a) square, (b) roll.

Lemma 4.10. The representation of D4 ⋉T
2 in R

12 defined by Θ and (4.20) is the
sum of three real absolutely irreducible, 4 dimensional representations T1, T2, T3,
which act respectively on the subspaces E1 = {(c1, d2, c̄1, d̄2)}, E2 = {(c2, d1, c̄2, d̄1)}
and E3 = {(c3, d3, c̄3, d̄3)}. The representation T1 is pseudoscalar while T2 and T3

are scalar (therefore equivalent).

Proof. The subspaces are clearly invariant by Θ = [θ1, θ2], R and K. We note Rj

and Kj the restrictions of R and K on Ej for j = 1, 2, 3. Then a simple computation
using (4.20) shows that

[π/2,−π/2]R2 [−π/2, π/2] = R3 and [π/2,−π/2]K2 [−π/2, π/2] = K3.

This implies the equivalence of T2 and T3. Now, T3 is the ”standard” scalar abso-
lutely irreducible representation of dimension 4. There is however no such equiva-
lence with T1. Hence T1 is the pseudoscalar irreducible representation of dimension
4.
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(a)

(b)

Figure 18. Axial eigenfunctions on the square lattice associated
with γ1 · D8-symmetry in the visual field: (a) square, (b) roll.

This lemma provides the isotypic decomposition of the representation and it
implies that Lµ,β,ǫ admits a bloc diagonal decomposition with one 4×4 bloc L1

µ,ǫ =

λ(µ, ǫ)I4, λ ∈ R and λ(0, 0) = 0, corresponding to T1 and another 8 × 8 bloc L2
µ,ǫ

corresponding to the sum T2+T3. We shall however not go further in this bifurcation
analysis here, it will be the subject of a forthcoming work.

We can instead look at the perturbation of the branches of equilibria listed in
Theorem 4.8 ”far” from the bifurcation. Given such an equilibrium P , its orbit
under the action of Γ consists in a disjoint union of tori which are isomorphic to
T

2, resp. T, depending on whether its isotropy subgroup is finite, resp. contains
T. The number of connected components in the orbit is given by the action of G,
more precisely it is equal to nH = |G|/|H| where H is the part in G of the isotropy
subgroup of P . If this orbit is hyperbolic, in particular if the equilibrium is orbitally
stable, it persists as an invariant set for the equation when ǫ 6= 0 (small enough).
Moreover this invariant set is still filled with equilibria because the torus action is
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not destroyed by the perturbation. However the nH tori are not anymore in the
same group orbit and therefore they correspond to different solutions.

Let us concentrate on the solutions of types Σ1 and Σ2. Note that Γ ∩ Σ1 =
Γ ∩ Σ2 = D8, hence nΣ1

= nΣ2
= 96/16 = 6. These six components correspond to

the hyperbolic planforms ±Ψ1(z), ±Ψ2(z) and ±Ψ3(z). These orientations persist
at leading order for the perturbed equilibria.

One can say a little more. Looking for λ(µ, ǫ) = 0 and assuming that we
have λ′

µ(0, 0) 6= 0, we have a curve of solutions µc(ǫ). For a fixed value of ǫ,
a bifurcation occurs at µ = µc(ǫ), with kernel E1 and invariance by the pseu-
doscalar representation T1. Therefore we expect branches of ”anti-rolls” and ”anti-
squares” to bifurcate [7]. We recall that these planforms have isotropies [π, 0]O(2)
and [π, 0]D4 respectively. Here O(2) is generated by the translations [0, θ2], θ2 ∈
S1, and K, while D4 is generated by R and K. A simple computation shows
that indeed, dimFix([π, 0]O(2)) = 1 and dimFix([π, 0]D4) = 1 (the Equivariant
Branching Lemma can be applied), these axes belonging to the subspace E1, while
dimFix(O(2)) = dimFix(D4) = 2 and these planes are in E2 + E3.

5. Discussion. In this paper we have analyzed a spatialized network of interacting
hypercolumns in the context of textures perception in the primary visual cortex.
Such a network is described by Wilson-Cowan neural field equations set on an ab-
stracted cortex R

2 × SPD(2, R), where the feature space SPD(2, R) is the set of
structure tensors. The coupling function of the network is characterized by local
and long-range connections and can explicitly be written down. Long-range con-
nections modulate rather than drive the cortical activity and can have an isotropic
or anisotropic nature. Previous studies [18, 27] allow us to consider only struc-
ture tensors with determinant equal one and then identify the feature space to the
Poincaré disk D. We addressed two complementary problems. The first one was to
study the effect of weak anisotropic lateral coupling on the cortical activity when
the feature space is reduced to a bounded compact disk Ω of the Poincaré disk. The
second problem that we addressed in this paper is the question of spontaneous pat-
tern formation for a model with E(2) × U(1, 1) symmetry. We have restricted our
study to solutions which are doubly periodic on the Euclidean plane and periodic
on the Poincaré disk. The visual planforms generated by our spatialized network
are correlated tuning surfaces across the visual cortex and are the counterpart of
the visual geometric hallucinations for orientation in the context of textures.

Regarding the first problem, we have been able to generalized the previous results
obtained by Bressloff et al [13, 14] for orientations to the context of structure tensors.
We have shown that the structure tensor model, limited to a bounded compact disk
Ω, is able to effectively reproduce all known planforms found in [13, 14]. In the
second problem, using the symmetries of the hyperbolic octagonal lattice, we have
first developed a tuning mechanism in one hypercolumn of V1 equivalent to the one
used in the ring model of orientations for the Poincaré disk setting. One of the main
advantage of this tuning mechanism is that both tuned (with a preferred orientation)
and untuned (with no preferred orientation) responses are present within the same
irreducible representation which is not the case for the ring model of orientation.
Furthermore, we have made use of the concept of polar map in order to provide some
neurophysiological and phenomenological evidences for such a model. We have also
numerically investigated the set of parameters for which this tuning mechanism can
occur. Secondly, for the spatialized network of interacting hypercolumns, we been
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able to show the existence of two new planforms, which have not been identified
so far with specific hallucinations (see Figures 13 and 16). These new planforms
are a combination of untuned and tuned states in feature space. Note that for
convenience, we have only represented the preferred orientation in each of our figures
of planforms as it already gives enough information on the local structure of the
visual hallucination and can be easily compare to previous studies. It would be
natural to numerically investigate the set of real images that can produce such a
structure tensor fields on a square lattice. This is ongoing areas of current research
and will be reported on elsewhere.

In the present study, we investigated the case of spatialization with a square
lattice. This choice was dictated by the fact that the octagonal lattice for the
feature space is only compatible with square and rhombic lattices due to discrete
rotations. The particular choice of a square lattice was somehow arbitrary but the
methods developed here would naturally extend to the rhombic lattice. In order to
generalize our results to a hexagonal lattice on the plane, one would have to work
with a different hyperbolic lattice in the feature space which has to be compatible
with D6-symmetry. The simplest non trivial choice of such a lattice is given by the
regular hyperbolic dodecagonal lattice generated by six hyperbolic transformations
which are rotated from each other by angles kπ/6 (k = 1, . . . , 5). The elementary
polygon is now a hyperbolic dodecagon and the genus of the corresponding quotient
surface is g = 3. Using similar techniques as the one used in [18, 26] and in this
manuscript, it would be possible to analyze spontaneous pattern formation for a
planar hexagonal lattice and the regular hyperbolic dodecagonal lattice which are
both compatible.

As already highlighted in the introduction, a neuro-geometrical approach, adapted
from Petitot, Sarti and Citti [54, 22, 58], should be developed for the structure
tensor formalism. We believe that it would provide a natural extension of the
neuro-geometrical theory of texture segmentation and completion problems with a
biological inspired approach. It would also be interesting to see how our structure
tensor formalism can be related to the image structure tensor introduced by Sarti
and Citti [57] through Bragmann transform and probability measure on the set of
orientations.

Another extension of our work would be to include external stimuli and see
how long-range connections modulate its effects. We think that our framework
(center manifold reduction close to the point of instability) is applicable if we further
suppose that the external input is sufficiently weak: amplitude of order O(β) if β
is the strength of the lateral coupling function. Of course it could be interesting
to include the effects of noise in our model and one approach would consist to
add space-dependent noise term to the external stimuli. It will be the subject of
forthcoming research.

Finally, another approach to the modeling of the primary visual cortex is to
consider model with no feature space [11, 6, 2] where cortical maps are included
into the equations. This requires understanding the mechanism of their formation.
Wolf et al [69, 39, 38] have designed equations for the development of cortical map
of orientations and Bressloff-Oster [53, 15] for ocular dominance map. One can ask
the question of formation of cortical map of structure tensors during development.
Then it would be very interesting to model a structure tensor map embedded in
the Riemannian manifold SPD(2, R) on a growing cortex with different topology
(disk, square and sphere) using an evolution equation similar to those proposed
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in [39, 15]. The maps obtained from the model could be then compared to those
obtained experimentally by optical imaging technics and incorporated into a model
of V1 with no feature space. We plan to explore these pathes in future work.

Appendix A. Relationships between SSPD(2, R) and D. A unit determinant
structure tensor T is a 2 × 2 symmetric positive definite matrix defined as

T =

(
a c
c b

)

with ab − c2 = 1. The corresponding point in D is given by:

z =
a − b + 2ic

a + b + 2
(A.1)

where z satisfies

0 ≤ |z| =
a + b − 2

a + b + 2
< 1.

Conversely given a point z = z1 + iz2 representing a point of D, the corresponding
tensor coordinates are given by:

a =
(1 + z1)

2 + z2
2

1 − z2
1 − z2

2

b =
(1 + z1)

2 − z2
2

1 − z2
1 − z2

2

c =
2z2

1 − z2
1 − z2

2

.

(A.2)

Note that equation (A.1) is the “SSPD(2, R) to D” dictionary that allows us to
translate statements about structure tensors to statements to points in the Poincaré
disk and (A.2) is the “D to SSPD(2, R)” dictionary.

Appendix B. Isometries of the Poincaré disk. We briefly describes the isome-
tries of D, i.e the transformations that preserve the distance dD. We refer to the
classical textbooks in hyperbolic geometry for details, e.g, [40]. The direct isome-
tries (preserving the orientation) in D are the elements of the special unitary group,
noted SU(1, 1), of 2 × 2 Hermitian matrices with determinant equal to 1. Given:

γ =

(
α β
β̄ ᾱ

)
such that |α|2 − |β|2 = 1,

an element of SU(1, 1), the corresponding isometry γ in D is defined by:

γ · z =
αz + β

β̄z + ᾱ
, z ∈ D (B.1)

Orientation reversing isometries of D are obtained by composing any transformation
(B.1) with the reflection κ : z → z̄. The full symmetry group of the Poincaré disc
is therefore:

U(1, 1) = SU(1, 1) ∪ κ · SU(1, 1)
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Let us now describe the different kinds of direct isometries acting in D. We first
define the following one parameter subgroups of SU(1, 1):





K
def
= {rotφ =

(
ei φ

2 0

0 e−i φ

2

)
, φ ∈ S

1}

A
def
= {ar =

(
cosh r sinh r
sinh r cosh r

)
, r ∈ R}

N
def
= {ns =

(
1 + is −is
is 1 − is

)
, s ∈ R}

Note that rotφ · z = eiφz and also ar · O = tanh r, with O being the center of the
Poincaré disk that is the point represented by z = 0. The group K is the orthogonal
group O(2). Its orbits are concentric circles. It is possible to express each point
z ∈ D in hyperbolic polar coordinates: z = rotφar · O = tanh reiφ and r = dD(z, 0).
The orbits of A converge to the same limit points of the unit circle ∂D, b±1 = ±1
when r → ±∞. They are circular arcs in D going through the points b1 and b−1.
The orbits of N are the circles inside D and tangent to the unit circle at b1. These
circles are called horocycles with base point b1. N is called the horocyclic group. It
is also possible to express each point z ∈ D in horocyclic coordinates: z = nsar ·O,
where ns are the transformations associated with the group N (s ∈ R) and ar the
transformations associated with the subgroup A (r ∈ R).

Iwasawa decomposition The following decomposition holds, see [37]:

SU(1, 1) = KAN

This theorem allows us to decompose any isometry of D as the product of at most
three elements in the groups, K, A and N .

Appendix C. Computation of ̟ in 3.2.2. We use methods developed in [31]
in order to compute the coefficient ̟ in the normal form (3.7). We use the scalar
product:

〈ζ1, ζj〉 =
1

π

∫ ω

0

∫ 2π

0

ζi(τ, θ)ζj(τ, θ) sinh(τ)dτdθ = δi,j .

If we rewrite equation (3.4) as

V ′ = LV + R(V, λ)

with λ = µ − µc and

LV (τ, θ) = −V (τ, θ) + µcs1

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′) V (τ ′, θ′) sinh(τ ′)dτ ′dθ′

R(V, λ) =

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′) S((λ + µc)V (τ ′, θ′)) sinh(τ ′)dτ ′dθ′

− µcs1

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′) V (τ ′, θ′) sinh(τ ′)dτ ′dθ′.

Taylor expanding the map Ψ:

Ψ(A,B, λ) =
∑

1≤s+l+m≤3

AsBlλmΨslm

and R:

R(V, λ) = R11(V, λ) + R20(V, V ) + R30(V, V, V ) + h.o.t.
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with

R11(V, λ) = λs1

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′)V (τ ′, θ′) sinh(τ ′)dτ ′dθ′

R20(U, V ) =
µ2

cs2

2

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′) UV (τ ′, θ′) sinh(τ ′)dτ ′dθ′

R30(U, V,W ) =
µ3

cs3

6

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′) UV W (τ ′, θ′) sinh(τ ′)dτ ′dθ′

where s2 = S′′(0) and s3 = S′′′(0) we obtain the following system of equations:

0 = LΨ200 + R20(ζ1, ζ1)

̟ = 〈2R20(Ψ200, ζ1) + R30(ζ1, ζ1, ζ1), ζ1〉. (C.1)

We start by evaluating R20(ζ1, ζ1):

R20(ζ1, ζ1) =
µ2

cs2

2

∫ ω

0

∫ 2π

0

Wloc (τ, τ ′ | θ − θ′)
(
Y1

N (τ ′)
)2

cos(θ′)2 sinh(τ ′)dτ ′dθ′

=
µ2

cs2

2
π
∑

n∈N∗

Y0
n(τ)Ŵ0,n

∫ ω

0

Y0
n(τ ′)

(
Y1

N (τ ′)
)2

sinh(τ ′)dτ ′

+
µ2

cs2

2

π

2
cos(2θ)

∑

n∈N∗

Y2
n(τ)Ŵ2,n

∫ ω

0

Y2
n(τ ′)

(
Y1

N (τ ′)
)2

sinh(τ ′)dτ ′

=
µ2

cs2

2

∑

n∈N∗

[
πY0

n(τ)Ŵ0,nγ0,n +
π

2
cos(2θ)Y2

n(τ)Ŵ2,nγ2,n

]

where

γk,n =

∫ ω

0

Yk
n(τ ′)

(
Y1

1 (τ ′)
)2

sinh(τ ′)dτ ′.

This implies that:

Ψ200 = Span(ζ1, ζ2) +
∑

n∈N∗

[
c0
nY0

n(τ) + c2
n cos(2θ)Y2

n(τ)
]

with c0
n =

µ2
cs2πŴ0,nγ0,n

2
(
1 − µcs12πŴ0,n

) and c2
n =

µ2
cs2πŴ2,nγ2,n

4
(
1 − µcs1πŴ2,n

) .

It is now possible to compute coefficient ̟:

〈R20(Ψ200, ζ1), ζ1〉 =
µ2

cs2

2
Ŵ1,1〈Ψ200, ζ1ζ1〉

=
µ4

cs
2
2π

4
Ŵ1,1

∑

n∈N∗


 πŴ0,n (γ0,n)

2

(
1 − µcs12πŴ0,n

) +
πŴ2,n (γ2,n)

2

4
(
1 − µcs1πŴ2,n

)




and
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〈R300(ζ1, ζ1, ζ1), ζ1〉 =
µ3

cs3

6
Ŵ1,1〈ζ1ζ1, ζ1ζ1〉

=
µ3

cs3π

8
Ŵ1,1Λ

with Λ =

∫ ω

0

(
Y1

1 (τ)
)4

sinh(τ)dτ

which implies

̟ =
µ3

cπŴ1,1

4


s3Λ

2
+ µcs

2
2

∑

n∈N∗


 πŴ0,n (γ0,n)

2

(
1 − µcs12πŴ0,n

) +
πŴ2,n (γ2,n)

2

4
(
1 − µcs1πŴ2,n

)




 .

Appendix D. Proof of Lemma 4.4. We compute each term in the expression
of a and b in (4.11).

〈R30(Ψ1,Ψ3,Ψ3),Ψ1〉 =
µ3

cs3

6
〈Wloc ⋆ (Ψ1Ψ3Ψ3) ,Ψ1〉

=
µ3

cs3

6
〈Ψ1Ψ3Ψ3,Wloc ⋆ Ψ1〉

=
µ3

cs3

6
W c

loc〈
1√
3
Ψ

D
′

2κ
χ10

,
1√
3
Ψ

D
′

2κ
χ10

〉

=
µ3

cs3

18
W c

loc

〈R30(Ψ3,Ψ3,Ψ3),Ψ3〉 =
µ3

cs3

6
〈Wloc ⋆ (Ψ3Ψ3Ψ3) ,Ψ3〉

=
µ3

cs3

6
W c

loc〈Ψ3Ψ3Ψ3,Ψ3〉

=
µ3

cs3

6
W c

loc〈
6

5
Ψ

eD8κ
χ6

(z) + 1,
6

5
Ψ

eD8κ
χ6

(z) + 1〉

=
61µ3

cs3

150
W c

loc

〈R20(Φ1010,Ψ3),Ψ1〉 =
µ2

cs2

2
〈Wloc ⋆ (Φ1010Ψ3) ,Ψ1〉

=
µ2

cs2

2
W c

loc〈Φ1010Ψ3,Ψ1〉

=
µ4

cs
2
2

2

W̃
χ10,D′

2κ

loc

1 − W̃
χ10,D′

2κ

loc /W̃ c
loc

W c
loc〈

1√
3
Ψ

D
′

2κ
χ10

,
1√
3
Ψ

D
′

2κ
χ10

〉

=
µ4

cs
2
2

6

W̃
χ10,D′

2κ

loc

1 − W̃
χ10,D′

2κ

loc /W̃ c
loc

W c
loc



46 GRÉGORY FAYE AND PASCAL CHOSSAT

〈R20(Φ0020,Ψ3),Ψ3〉 =
µ2

cs2

2
〈Wloc ⋆ (Φ0020Ψ3) ,Ψ3〉

=
µ2

cs2

2
W c

loc〈Φ0020Ψ3,Ψ3〉

=
µ4

cs
2
2

4
W c

loc

[
W̃χ1

loc

1 − W̃χ1

loc/W̃ c
loc

〈Ψ3,Ψ3〉

+
W̃χ6, eD8κ

loc

1 − W̃χ6, eD8κ

loc /W̃ c
loc

〈6
5
Ψ

eD8κ
χ6

,Ψ2
3〉
]

=
µ4

cs
2
2

4
W c

loc

[
W̃χ1

loc

1 − W̃χ1

loc/W̃ c
loc

+
36

25

W̃χ6, eD8κ

loc

1 − W̃χ6, eD8κ

loc /W̃ c
loc

]

and

〈R20(Φ0020,Ψ1),Ψ1〉 =
µ2

cs2

2
〈Wloc ⋆ (Φ0020Ψ1) ,Ψ1〉

=
µ2

cs2

2
W c

loc〈Φ0020Ψ1,Ψ1〉

=
µ4

cs
2
2

4
W c

loc

[
W̃χ1

loc

1 − W̃χ1

loc/W̃ c
loc

〈Ψ1,Ψ1〉

+
W̃χ6, eD8κ

loc

1 − W̃χ6, eD8κ

loc /W̃ c
loc

〈6
5
Ψ

eD8κ
χ6

,Ψ2
1〉
]

=
µ4

cs
2
2

4
W c

loc

[
W̃χ1

loc

1 − W̃χ1

loc/W̃ c
loc

− 2

3

W̃χ6, eD8κ

loc

1 − W̃χ6, eD8κ

loc /W̃ c
loc

]

where 〈 6
5Ψ

eD8κ
χ6

,Ψ2
1〉 = 〈Ψ2

3 − 1,Ψ2
1〉 = 〈Ψ1Ψ3,Ψ1Ψ3〉 − 〈Ψ1,Ψ1〉 = 1

3 − 1 = − 2
3 .

It is now a simple calculation to obtain the coefficients a and b in the reduced
equation (4.10).

Appendix E. Calculation of cubic equivariants. We want to compute the
cubic equivariants for the action group defined in (4.18). First of all, we adopt the
following notations:

C = (c1, c2, c3) and D = (d1, d2, d3)

such that a cubic equivariant E is a cubic complex polynomial of C
6 which we write:

E(C,D, C̄, D̄) =




f1(C,D, C̄, D̄)
f2(C,D, C̄, D̄)
f3(C,D, C̄, D̄)
g1(C,D, C̄, D̄)
g2(C,D, C̄, D̄)
g3(C,D, C̄, D̄)




It is straightforward to check that of all the possible cubic terms only ck|cl|2, ck|dl|2
and dk|cl|2, dk|dl|2 are transformed in the appropriate way by the translation Θ =
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[θ1, θ2] such that we have:

fm(C,D, C̄, D̄) =
3∑

k=1

ck

3∑

l=1

[
akl

m|cl|2 + bkl
m|dl|2

]

gm(C,D, C̄, D̄) =
3∑

k=1

dk

3∑

l=1

[
ãkl

m|cl|2 + b̃kl
m|dl|2

]

with akl
m, bkl

m, ãkl
m and b̃kl

m are complex constants. Now using the reflection equivari-
ance κ shows that:

−
3∑

k=1

ck

3∑

l=1

[
akl
1 |cl|2 + bkl

1 |dl|2
]

= −c1
3∑

l=1

[
a1l
1 |cl|2 + b1l

1 |dl|2
]

+
3∑

k=2

ck

3∑

l=1

[
akl
1 |cl|2 + bkl

1 |dl|2
]

and

−
3∑

k=1

dk

3∑

l=1

[
ãkl
1 |cl|2 + b̃kl

1 |dl|2
]

= −d1
3∑

l=1

[
ã1l
1 |cl|2 + b̃1l

1 |dl|2
]

+
3∑

k=2

dk

3∑

l=1

[
ãkl
1 |cl|2 + b̃kl

1 |dl|2
]

which implies that akl
1 = bkl

1 = ãkl
1 = b̃kl

1 = 0 for all k = 2, 3 and l = 1, 2, 3 and:

f1(C,D, C̄, D̄) = c1
3∑

l=1

[
a1l
1 |cl|2 + b1l

1 |dl|2
]

g1(C,D, C̄, D̄) = d1
3∑

l=1

[
ã1l
1 |cl|2 + b̃1l

1 |dl|2
]
.

Extending similar arguments for conjugate reflections of κ we finally have:

fm(C,D, C̄, D̄) = cm

3∑

l=1

[
aml

m |cl|2 + bml
m |dl|2

]

gm(C,D, C̄, D̄) = dm

3∑

l=1

[
ãml

m |cl|2 + b̃ml
m |dl|2

]
.

Now using reflection equivariance ∆ and ξ2∆ leads to the requirement that aml
m ,

bml
m , ãml

m and b̃ml
m are real. The rotation equivariance ξ imposes the conditions that:

aml
m = b̃ml

m and bml
m = ãml

m .

This reduces the form the equivariant map E to:

fm(C,D, C̄, D̄) = cm

3∑

l=1

[
aml

m |cl|2 + bml
m |dl|2

]

gm(C,D, C̄, D̄) = dm

3∑

l=1

[
bml
m |cl|2 + aml

m |dl|2
]
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with real coefficients. To conclude the computation, we use the result about cubic
equivariants with octahedral symmetry [47] that we used for the normal form in
equation (3.7) (equivariance with respect to ρ, σ and ǫ) and find that the following
conditions have to be satisfied:

a11
1 = a22

2 = a33
3

b11
1 = b22

2 = b33
3

a12
1 = a13

1 = a21
2 = a23

2 = a31
3 = a32

3

b12
1 = b13

1 = b21
2 = b23

2 = b31
3 = b32

3 .

This gives:

E(C,D, C̄, D̄) =




c1

[
α1|c1|2 + α2

(
|c2|2 + |c3|2

)
+ α3|d1|2 + α4

(
|d2|2 + |d3|2

)]

c2

[
α1|c2|2 + α2

(
|c1|2 + |c3|2

)
+ α3|d2|2 + α4

(
|d1|2 + |d3|2

)]

c3

[
α1|c3|2 + α2

(
|c1|2 + |c2|2

)
+ α3|d3|2 + α4

(
|d2|2 + |d1|2

)]

d1

[
α1|d1|2 + α2

(
|d2|2 + |d3|2

)
+ α3|c1|2 + α4

(
|c2|2 + |c3|2

)]

d2

[
α1|d2|2 + α2

(
|d1|2 + |d3|2

)
+ α3|c2|2 + α4

(
|c2|2 + |c3|2

)]

d3

[
α1|d3|2 + α2

(
|d2|2 + |d1|2

)
+ α3|c3|2 + α4

(
|c2|2 + |c1|2

)]




with (α1, α2, α3, α4) ∈ R
4.
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[24] I. Erdélyi. ”Higher Transcendental Functions”, volume 1. Robert E. Krieger Publishing Com-
pany, 1985.

[25] GB Ermentrout and JD Cowan. A mathematical theory of visual hallucination patterns.
Biological Cybernetics, 34(3):137–150, 1979.

[26] G. Faye and P. Chossat. Bifurcation diagrams and heteroclinic networks of octagonal h-
planforms. Journal of Nonlinear Science, 22(1):277–326 , 2012.

[27] G. Faye, P. Chossat, and O. Faugeras. Analysis of a hyperbolic geometric model for visual

texture perception. The Journal of Mathematical Neuroscience, 1(4), 2011.
[28] M. Golubitsky, L.J. Shiau, and A. Török. Bifurcation on the visual cortex with weakly

anisotropic lateral coupling. SIAM Journal on Applied Dynamical Systems, 2(2):97–143, 2003.
[29] M. Golubitsky, I. Stewart, and D.G. Schaeffer. ”Singularities and Groups in Bifurcation The-

ory”, volume II. Springer, 1988.
[30] D. Hansel and H. Sompolinsky. Modeling feature selectivity in local cortical circuits. Methods

of Neuronal Modeling, pages 499–567, 1997.
[31] M. Haragus and G. Iooss. ”Local bifurcations, center manifolds, and normal forms in infinite

dimensional systems”. EDP Sci. Springer Verlag UTX series, 2010.
[32] S. Helgason. ”Groups and Geometric Analysis”, volume 83 of Mathematical Surveys and

Monographs. American Mathematical Society, 2000.

[33] R.B. Hoyle. ”Pattern Formation: an Introduction to Methods”. Cambridge Univ Pr, 2006.
[34] D.H. Hubel and T.N. Wiesel. Receptive fields and functional architecture in two nonstriate

visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28:229–289, 1965.
[35] D.H. Hubel and T.N. Wiesel. Receptive fields and functional architecture of monkey striate

cortex. The Journal of Physiology, 195(1):215, 1968.
[36] D.H. Hubel and T.N. Wiesel. Functional architecture of macaque monkey. Proceedings of the

Royal Society, London [B]: 1–59, 1977.
[37] H. Iwaniec. ”Spectral methods of automorphic forms”, volume 53 of AMS Graduate Series

in Mathematics. AMS Bookstore, 2002.
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